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Abstract

Simplex meshes are simply connected meshes that
are topologically dual of triangulations. In a pre-
vious work, we have introduced the simpler mesh
representation for performing recognition of par-
tially occluded smooth objects[5]. In this paper, we
present a physically-based approach for recovering
three-dimensional objects, based on the geometry of
simplex meshes. FElastic behavior is modelled by lo-
cal stabilizing functionals, controlling the mean curva-
ture through the simplex angle extracted at each ver-
tex. Those functionals are viewpoint-invariant, intrin-
sic and scale-sensitive. Unlike deformable surfaces de-
fined on regular grids, simplex meshes are highly adap-
tive structures, and we have developed a refinement
process for increasing the mesh resolution at highly
curved or inaccurate parts. FEnd contours are created
in a semi-automatic way. Finally, operations for con-
necting simplex meshes are performed to recover com-
plex models from parts of simpler shapes.

1 Introduction

The emergence of high resolution three-dimensional
images either in the form of range data or voxel im-
ages, enforces the need for general shape reconstruc-
tion techniques. The difficulty stems from the neces-
sary flexibility of object reconstruction systems to in-
clude a wide variety of man-made or natural shapes.
Flexibility should be achieved both in terms of geome-
try and topology. Geometry relates to the local control
of shape whereas topology relates to the global model
structure.

Dynamically deformable models were first proposed
by Terzopoulos et al. and have attracted signif-
icant interest for their intuitive and clay-like be-
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havior. Several researchers have applied the dy-
namic model fitting scheme to range data or med-
ical images[2][4][8][7]. Elastic models successfully ad-
dress the problem of shape control. However, few re-
searchers have proposed general adaptive reconstruc-
tion techniques for solving both geometric and topo-
logical aspects. [8][9][6]

This paper presents a shape reconstruction algo-
rithm that offers both geometric and topological flex-
ibility. As in Hoppe et al.[6], we chose to represent
a surface with a discrete mesh without considering
a continuous surface representation. We use a sim-
ply connected mesh or simplex mesh as a surface rep-
resentation in a deformable model fitting approach.
The simplex mesh representation has several desirable
properties that makes them well suited for the recov-
ery of geometric models from range data. The surface
reconstruction system that we are presenting in this
paper, has the following characteristics:

Generality The simplex mesh representation is gen-
eral because it can represent all types of ori-
entable surfaces regardless of their genus and end
numbers.

Simplicity and Efficiency of Implementation
The meshes and contours are considered as phys-
ically based models. The displacement between
two iterations is derived from the computation of
an internal and external force. Most models pre-
sented in this paper can be deformed in real-time.

Local Shape Functionals We have defined at set of
shape functionals that are derived from the mini-
mization of a local energy and have the properties
of being viewpoint invariant and scale sensitive.

Adaptability Three different levels of adaptability
was defined on a simplex mesh. A first algorithm
consists in adapting the spacing of vertices in or-
der to obtain a concentration of vertices at parts
of high mean curvature. The second algorithm
consists in refining the mesh by adding vertices



at parts that do not correctly fit the data. Fi-
nally, we adapt the mesh topology by creating
end contours where the data is incomplete.

Contour-Surface Interaction Contours or closed
curves may be simply defined on a simplex mesh.

2 Simplex Meshes
2.1 Topology

A simplex mesh has constant vertex connectivity.
In order to represent three dimensional surfaces, we
make use of 2-simplex meshes where each vertex is
connected to three neighboring vertices. The structure
of a simplex mesh is dual of the structure of a trian-
gulation (see figure 1). However, this correspondance
exists only in terms of topology but not in terms of
geometry. In another words, we cannot associate an
underlying triangulation to given simplex mesh and
conversely. Therefore, the simplex mesh representa-
tion has different geometric properties than triangula-
tions that make them better suited for surface recon-
struction. However, both representations are general
since they can represent all types of orientable sur-
faces.

We have coined the word simplex mesh in order to
stress the existence of a 3-simplex, a tetrahedron, at
each vertex. The structure of a simplex mesh is the
one of a simply connected graph and does not in it-
self constitute a new surface representation. The main
contribution of this paper, however, is to exhibit the
topological and geometric properties inherent to those
meshes and demonstrate their relevance for object re-
construction as well as object recognition.

Figure 1: A 2-simplex mesh and its dual triangulation.

We define a contour on a simplex mesh as a closed
polygonal chain consisting of neighboring vertices on
the simplex mesh. We restrict a contour to not inter-
sect itself. Contours are deformable models as well,
and they are handled independently of the simplex

mesh where they are embedded. In terms of surface
topology, contours on a 2-simplex mesh can be clas-
sified in two categories depending whether they are
"dividing" or not. The combination of surface and
contour deformation enables the recovery of objects
with complex topology.

2.2 Mesh Transformation

Simplex Meshes as well as triangulations are lo-
cally adaptive meshes. We define at set of four inde-
pendent transformations {T¢,T2,T2,T;} for achiev-
ing the whole range of possible mesh tranformations.
The first two transformations are Eulerian and there-
fore do not change the mesh topology. They consist
in inserting or deleting edges in a face. The last two
transformations correspond to either connecting two
faces or cutting a mesh along a contour[3]. When the
contour is dividing, the cutting operation results in
splitting the mesh into two parts. Otherwise, it re-
sults in decreasing the genus of the mesh.

2.3 Geometry

We introduce the notion of Simplex Angle on a sim-
plex mesh, that generalizes in many ways, the angle
used in planar geometry. In the following sections, we
will describe how this angle is linked to the mean cur-
vature of a surface and how a shape description of a
mesh may be uniquely determined.

2.3.1 Simplex Angle

Let M be an oriented simplex mesh of R®. Let
P, € IR® be a vertex of a 2-simplex mesh, and
(PN, (i)> Pn,(iys Py (i) its three neighbors. The three
neighboring vertices define a plane P; and its nor-

mal vector N;. If S; is the circumscribed circle at
the three neighboring vertices (Py, (i), P, (i), Pns(i))
of radius 7; and Ss be the circumscribed sphere
at the four vertices (Pi, Py, (i), Pny(i)> Pny(iy) of ra-
dius R;, then the simplex angle at vertex P;, ¢; =
Z(Pi7PN1(7;)7PN2(7;)7PNS(i)) is defined as:

@i € [-m, 7] :
sin(p;) = i Risign(P;i Py, () - Ni) (1)
cos(pi) = [|0:Ci|| R * sign(O;C; - N;)

The simplex angle ¢; is independent of the position
of Pn, (i), Pny(i), Pn,(iy on the circle Sy and of P; on
a hemisphere of Sy. It is null when P; and its three
neighbors are coplanar. The simplex angle ¢; can be



easily computed by considering an inversion of center
P;. More details on the simplex angle definition and
properties can be found in [3].

We then define the notion of discrete mean curva-
ture H; on a simplex mesh as the inverse of the radius
of the circumscribed sphere:

Hl' = S’Lg’l’l/(Plﬁ;];(.b) . Nl)Rl = sin(cpi)m (2)

We justify this definition by demonstrating that the
mean curvature at a point on a three dimensional sur-
face is the inverse radius of the sphere that best ap-
proximate the surface at that point [3].

2.3.2 Metric Parameters

In addition to the simplex angle, we introduce two ad-
ditional parameters called metric parameters {€1;, €2;}
that describe how a vertex is located with respect to
his 3 neighbors. If we consider the orthogonal projec-
tion F; of P; on the plane defined by its 3 neighbors,
then F; may be written as a weighted average of the
3 neighboring vertices:

Fi = €1:Pn,(3) + €2i PN, i) + €3: Py (i) (3)
€1, + €+ €3, =1 (4)

The position of a vertex P; is completely deter-
mined by the position of its 3 neighbors and the knowl-
edge of (€14, €2, ) :

P; = €1:Pn, (5) + €2i Py (i) + €3i Py (i) + L7, diy i) N;
(5)
where d; is the distance between F; and the center
of the circumscribed circle C; and where L(r;, d;, ;)
is a function described in [3].
The 3n values {(€1;, €2, i)} of a simplex model M
consisting of n vertices completely describe the model
shape, up to an isometry and scale.

3 Smoothness and Shape Control
3.1 Equations of Motion
We propose a modeling scheme based on de-

formable and adaptive mesh. The dynamics of each
vertex is given by a Newtonian law of motion:

d*P; dP; ’ ’
5o — an Fez 6
e Vg Tt Fe (©)
where m is the mass unit of a vertex and v is the
_

damping factor. Fj,; contrains either the shape of a

—
mesh to be smooth whereas F,,; constrains the mesh
to be close from some three-dimensional data.

3.2 Internal Forces

Internal forces determine the response of a
physically-based model to external constraints. In this
paper, we do not derive the internal force expression
from an almost quadratic smoothness energy as in
[8][2]- Instead, we chose to minimize a local energy
S; = 2.P,PF*. Pf is computed from equation 5 with
a value of ¢; = ¢r. The choice of ¢} determines the
types of constraints enforced on the mesh:

Normal Discontinuity We set ¢} = ¢;. The sur-
face can freely bend around vertex P;.

Normal Continuity constraint We have simply
¢f = 0. Hence, the internal force is: Fj,,; =
ai(€1:Pn, (i) + €2iPny (i) + €3:Pny i) — Bi)-

Mean Curvature Continuity Constraint ¢} is
chosen such that the mean curvature in P;, H}, is

70

the weighted average of the mean curvature in a
neighborhood N"(P;) : HY =3 c yv(p,) €ij * Hj-
r is the size of the neighborhood on which the
smoothing is performed. This parameter is called
the rigidity and it effects the dynamics of the sur-
face model.

Shape Constraint Given the constant ©? by setting
or = ¢V we constrain the simplex angle at P;
to ©?. In this case, since we are using constant
metric parameters, this amounts to constraining
the shape of the mesh up to an isometry and scale.

The expression of those internal forces has the ad-
vantages of being intrinsic, viewpoint invariant and
scale dependant. Similar type of constraints with sim-
ilar formulation hold for contours.

3.3 External Forces

In a surface reconstruction scheme based on de-
formable models, external forces constrain the close-
ness of fit to some three dimensional data. At each
vertex P; , the closest point Mg ;) on the data is com-
puted and the force is computed as:

ij’ 7 — — —
Fevr =BG w (PiM gy -Ni)Ni (7)

G(x) is the stiffness function that is constant between
0 and 1 and rapidly decreases at values greater than



1. D corresponds to the maximum distance at which
a data point strongly attracts a vertex, and it is com-
puted as a fraction of the overall data diameter. In-
deed, in order to avoid the effect of outliers, the mesh
model is only attracted toward data points that are
relatively close.

The computation of the closest point depends on
the data type. For structured range data, or volu-
metric images, it is computed in a O(1) complexity by
projecting the normal line on the image. For scattered
data points, we use a kd-tree structure to get the data
points located inside a sphere of radius D and centered
on P;.

4 Topology Control
4.1 Mesh Adaptivity

The metric parameters control the relative distance
of P; from its three neighboring vertices. While we
have previously used the simplex angle to control
the variation of mean curvature, we will define in
this section a procedure to adapt the spacing of ver-
tices to the mean curvature of the mesh. The no-
tion of adaptive mesh has been studied by several
researchers[8][9][6][1]. In all cases, their aim is to pro-
vide an optimal shape description from a mesh with
a fixed number of vertices, by concentrating vertices
at highly curved parts. Our algorithm uses that ap-
proach but is characterized by the following proper-
ties:

e The concentration of vertices is governed by the
local minimization of an energy &;. This energy
expresses the link between the metric parameters
and the variation of mean curvature.

o Vertices of low mean curvature migrate toward
neighboring vertices of relatively larger mean cur-
vature. Therefore, the concentration of vertices is
governed by the relative variation of curvature.

e Vertices of high mean curvature have metric pa-

rameters close to % in order to obtain a uniform

concentration at highly curved parts.

We proceed by periodically adapting the metric pa-
rameters to the mean curvature of a mesh. if € is the
value of the metric parameters at iteration ¢, then we
compute the metric parameter at iteration ¢t + p as:

1-
6:+p:€§+§v5i
1
gi:— *—iQ
(€~

Figure 2: Left the mesh fit on the isosurface. The metric
parameters are everywhere equal to %; Center The adaptive
mesh with a value of v; = 0.15; Right The adaptive mesh
with a value of v; = 0.20.

where € is computed as a function of the variation
of the absolute value of the mean curvature. We
derive the expression of € by first considering the
mean value of the absolute mean curvature |H;| =
([Hny )| + [Huy )| + [Hig()])/3- We then compute
the relative mean curvature deviation vector 6|H|;:

|Hy, )| —Hi|
— |Hwoii| = Hil
oMl = =g
|Hng iy |—Hil

[H;|

We link the value of the reference metric parameter €}
with the relative mean curvature deviation vector:

& = 5 + 0l Hl; ®)
~; is a constant that controls the extent of the adaptiv-
ity of the simplex mesh and is usually chosen between
0.03 and 0.25. However, since we guaranty all metric
parameter €g; to be greater than 0.05 and lower than
0.833, we may have a +v; substantially lower than 0.05.
Finally we have:

= S - et) ©)
The coefficient % enables a smoother variation of the
metric parameters over time. In practice, we choose to
update the metric parameters every p = 10 iteration
in order to stabilize the mesh before re-evaluating the
mean curvature over the mesh.

Figure 2 shows the effect of the mesh adaptation on
an isosurface shaped as a cube.

4.2 Refinement

We introduce an algorithm for automatically in-
creasing the mesh resolution at parts of high curvature
or at parts whose distance to the range data is higher



than a threshold. The refinement process is completed
in an iterative way. First, we evaluate, for every face
model, a criterion measuring the need for refinement.
Then, faces whose criterion exceeds a given threshold,
are refined and the mesh is deformed during a con-
stant number of iterations. The refinement process is
repeated until all faces criteria are below the thresh-
old. This approach has the advantage of recovering
models satisfying both geometric constraints (regular-
ity and closeness of fit) and topological constraints
(optimal vertex spacing).

The criterion is computed as the face area multi-
plied by three dimensionless coefficients. The first one
is the measure of Gaussian curvature on the face. It
can be computed as the area of a spherical polygon on
the Gauss sphere [3]. The second coefficient is the ra-
tio of the distance to the closest data point and the ref-
erence distance D. The third coefficient measures the
elongation of a face in order to refine in priority large
elongated faces. The threshold has the dimension of
a surface area and therefore the refinement process
is guaranteed to stop since the faces area decrease at
every iteration. In order to keep the number of ver-
tices per face as close as possible to six, we either use a
T3 operation or a T2 operation [3] depending whether
the face has more or less than five vertices.

4.3 End Contour Creation

We have implemented an algorithm that adapts the
simplex model topology to the three dimensional data,
by creating holes or ends at parts where the mesh is
distant from the data. We proceed by first computing
at each vertex the distance to the closest data point.
We then create zones, i.e. set of faces whose vertices
are located at a distance greater than a given thresh-
old from the data. A set of contours surrounding those
zones are created and operation T7 is performed to re-
move the artificial part. Contours are systematically
created around the newly created faces. Those de-
formable contours will deform to fit the shape of the
hole existing in the data set.

4.4 Building Models from Parts

Recovering a complex model by deforming and re-
fining a simple primitive is a difficult task since the
mesh would have to automatically change its genus
and avoid numerous local minima. Moreover, current
range techniques cannot acquire a complex shaped ob-
ject within a single image. A more natural approach
for recovering complex objects, consists in connect-
ing separately built models, corresponding to approx-

imately convex subsets. In this framework, different
meshes are fit on different subsets of a same objects.
Then two meshes are connected with a single transfor-
mation operation and the zone around the connection
is smoothed to remove the normal and curvature dis-
continuities.

Figure 3: Upper left Six initial meshes; Upper right Re-
sulting hand model after connecting the finger models to the
palm model; Lower left Face model after refinement;Lower
right Rendered face model.

5 Experimental Results

We have applied the simplex mesh modeling
on a variety of structured and unstructured three-
dimensional datasets. The recovery of three-
dimensional objects from range data proceeds in two
stages. In a first stage, the model is initialized as
one of four primitives with a limited number of ver-
tices. We use a high value of the rigidity parameter
to obtain a smooth and stable deformation toward the
image data. However, the resulting model tends to be
inaccurate at locations of high curvature. In a sec-
ond stage, we apply the iterative adaptation and re-
finement process over the whole mesh or over selected
parts while decreasing the rigidity parameter to its
minimum. A new equilibrium is reached when highly
curved parts are sufficiently refined and adapted and
when vertices closely approximate the raw data.

Human Face Figure 4 shows the different stages of
the fitting process on a human face digitized with a
Cyberware Inc. range finder. The first fit does not



Figure 4: Left The initial mesh is a sphere with 720 nodes;
Center the mesh is fit on the surface. The mesh grossly ap-
proximates the surface because it is smoothed over a large
extent and because the mesh is not adapted; Right The mesh
is now iteratively adapted and refined. We chose a small value
of v; = 0.06 and a medium threshold for controlling the re-
finement;

correctly fit the nose and the chin, but nicely interpo-
lates the missing data corresponding to the hair (fig-
ure b).¢ Figures ¢ displayd the result of the combined
adaptation and refinement algorithms. The final mesh
has 1700 vertices. The mesh has been cut at the level
of the neck and the bounding contour is deformed to
fit the data.

Human Skull We use a 60 x 60 x 60 CT Scan im-
age of a human skull. The isosurface is a closed surface
of complex topology. Fitting a mesh on a isosurface
greatly differs from previous cases because the data is
already segmented and complete. The aim here is to
recover a simplified model of the skull in order to per-
form interactive deformation on a surgery simulator.
In this example, we first deform a 2000 vertices spher-
ical simplex mesh toward the skull data. The model
then grossly oversmooth the skull especially around
the jaw. The adaptation of the mesh greatly decreases
its overall distance to the data. No refinement was
performed in this example.

6 Conclusion

We have presented a general algorithm for recover-
ing three dimensional objects from range data. Sim-
plex meshes modeling differs from previous reconstruc-
tion techniques by their highly malleable and their es-
sentially local nature.

Future work will focus on the extraction of geomet-
ric representation of anatonomical parts from medical
images by elastically deforming some generic simplex
models.

Figure 5: Left A sphere with 2000 vertices is initialized around
the skull data extracted from a CT Scan Image; Center Ren-
dered view of the adapeted mesh. End contours located at the
eyeballs, the nose and the foramen are automatically created;
Right Bottom view of the skull
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