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Abstract. The aim of this work is to automatically extract quantita-
tive parameters from time sequences of 3D images (4D images) suited
to heart pathology diagnosis. In this paper, we propose a framework for
the reconstruction of the left ventricle motion from 4D images based
on 4D deformable surface models. These 4D models are represented as
a time sequence of 3D meshes whose deformation are correlated dur-
ing the cardiac cycle. Both temporal and spatial constraints based on
prior knowledge of heart shape and motion are combined to improve
the segmentation accuracy. In contrast to many earlier approaches, our
framework includes the notion of trajectory constraint. We have demon-
strated the ability of this segmentation tool to deal with noisy or low
contrast images on 4D MR, SPECT, and US images.

1 Context

Recently, the improvement of medical image acquisition technology has allowed
the production of time sequences of 3D medical images (4D images) for several
image modalities (CT, MRI, US, SPECT). Tagged MRI is the gold standard of
heart motion analysis since it is the only modality permitting the extraction of
the motion of physical points located in the myocardium [18]. However, other
modalities may be used for meaningful parameters extraction at a lower cost. In
particular, the fast development of 3D US imaging is very promising due to its
accessibility and low cost [17].

The main target for these new ultra-fast image acquisition devices is to cap-
ture and analyze the heart motion through the extraction of quantitative para-
meters such as volume, walls thickness, ejection fraction and motion amplitude.
In order to estimate these parameters, it is necessary to reconstruct the Left
Ventricle (LV) motion during a cardiac cycle. Tracking the LV motion in 2D or
3D image sequences has led to several research efforts [10, 9, 2]. Tracking [12, 16]
and motion analysis [4, 7] based on deformable models in 4D images take into
account time continuity and periodicity to improve their robustness.

In this paper, we propose to track the LV based on 4D deformable models.
Our concept of 4D deformable surface models combines spatial and temporal
constraints which differs from most previous approaches [12, 16, 4] that decouple
them. Furthermore, in contrast to the strategy presented in [7], the motion esti-
mation is not parameterized by a global time-space transformation. It leads to



more efficient computation and to greater descriptive ability in motion recovery.
Finally, our approach can include the notion of trajectory constraint which is
the generalization of the shape constraint.

2 4D Deformable Models

Let I denote a 4D image composed of n volume images corresponding to n dif-
ferent time points {to, ..., t,—1}. We define a 4D deformable model S as a set of
n deformable surfaces {S;}icf0,,—1], €ach surface model S; representing a given
anatomical structure at time point ¢. Among the possible geometric representa-
tions of deformable surfaces [13], we have chosen the simplex meshes [8] discrete
surfaces. They are defined by a set of vertices and a constant connectivity func-
tion. Their main advantage lies in their simple data structure permitting an
efficient implementation both in terms of computational time and memory stor-
age. This is specifically important in the case of 4D deformable models where n
surface meshes must be updated at each iteration. Furthermore, simplex meshes
are especially well-suited for the computation of curvature-based regularizing
forces. All n surface meshes S; have the same topology, i.e. there is a one to one
correspondence between the d vertices composing each surface. In the rest of the
paper, p;; denotes the position of vertex number ¢ at time ¢. While the model
undergoes deformations, each surface S; evolves in space but it remains at its
time step (i.e., ¢ does not change).

A 4D model deforms under the combined action of three forces aiming at
recovering the shape and motion of an anatomical structure: (i) the data, or
external, force attracts each vertex towards the structure boundaries; (ii) the
spatial regularizing, or internal, force ensures the smoothness of the deforming
surface by introducing spatial continuity constraints in the deformation process;
(iii) the temporal regularizing force similarly relies on prior knowledge on the
time dimension continuity to regularize the deformation process. A second order
(Newtonian) evolution scheme discretized using an explicit scheme governs the
displacement of each vertex (see [8] for details):
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where fint, ftime, and fext are the internal, the temporal, and external forces
respectively. a;, §;, and §; are weights including the vertex mass and the iteration
step Ak. In all our experiments, the background damping + is fixed to value 0.35
based on an empirical study showing that this value optimizes the convergence
speed in general. The a; values are always fixed to 1.

Simplex meshes provide a powerful framework for computing internal regular-
izing forces [8] including smoothing forces without shrinking side effect. External
forces are computed as distance functions of the model vertices to the data. This
speeds-up the model convergence compared to potential fields approaches and
it avoids oscillations [5]. Deformations are computed along each vertex normal
direction to avoid creating distorted meshes. Both gradient based and region
based criteria are used to determine boundary voxels in images. For the sake



of brevity, the external forces computation is not discussed here and the reader
may refer to [15] for details.

3 Shape and Temporal Constraints

The main incentive for performing medical image segmentation based on de-
formable models lies in their ability to incorporate prior knowledge on the data
that is being recovered. In most cases, this knowledge is translated mathemati-
cally into a set of regularizing constraints that greatly improves the robustness
and accuracy of the segmentation process. Indeed, many methods have been pro-
posed to regularize deformations by limiting the model number of parameters
[20, 6], or controlling the kind of deformation applied onto the model [3,11].

We introduce two complementary constraints that are specifically suited for
the LV tracking in 4D images. The former consists of a shape constraint that
tends to enforce 3D geometric continuity. The latter is a temporal constraint that
causes a 4D mesh to rely on prior motion knowledge. It is important to note that,
in contrast to many previous works, both constraints are applied simultaneously
thus leading to a true 4D approach. Furthermore, each constraint can encapsulate
a weak or strong prior knowledge, as summarized in table 1.

Prior knowledge Spatial constraint Temporal constraint
Weak Curvature-based shape smoothing| Temporal position averaging
Strong Shape constraint Trajectory constraint

Table 1. Spatial and temporal constraint depending of the amount of prior knowledge.

3.1 Shape Constraints

In the case where no reference shape is known (weak shape constraint), we use the
regularizing force defined in [8], that minimizes the variation of mean-curvature
over the mesh. Otherwise, we add an additional shape constraint force fshape
that is related to a reference shape S’ of the anatomical structure. It introduces
shape prior knowledge by extending the globally-constrained deformation scheme
described in [14] to the 4D case. Let S* denotes the 4D model after the k'R
iteration. At initialization, S'© = S°. At each iteration, external forces fox are
computed for each vertex so that p; ; + fext(Pi,:) corresponds to the myocardium
boundary point that best matches p; ;. We estimate a global transformation Tk
belonging to a given group of transformations (e.g. affine transformations Tfine)-
T* approximates the external force field by minimizing the least square criterion:

n—1d—1
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We then update the reference shape: S'*+4k = Tk o TF=1 . o TY(S"). Thus
S'**+Ak remains identical to S’° up to an affine transformation. A shape force is



defined on each vertex of S* as a spring-like force towards its updated reference
position: fshaplE(prC,t) = pi‘c,tpy,ct-

Furthermore, a locality parameter A is introduced to weight the influence of
the shape force relative to the internal and external forces as described in [14]:

pii 2 =pf, + (1= (pF, - pf, ") +

)\(aifint(pﬁt) + 6iftime(pi,t) + ﬂifext(pi‘c,t)) + (]- - )\)fslmpe(pi‘c,t)~

When A = 0, the 4D model is deformed through the application of a global
transformation from its reference shape, thus making the deformation process
robust to noise and outliers. Conversely, if A = 1, only the weak shape constraint
applies and the model shape variability is very high. Any intermediate value of
A produces local deformations combined with a global shape constraint.

3.2 Temporal Constraints

The temporal regularizing force fiime is defined as a spring-like force fiime(pi ) =
Pi,t — Pi¢ attracting vertex p;; towards a reference point p; ;. When no prior
knowledge is used, we define a weak temporal constraint by attracting p;; to-
wards the middle position of its two temporal neighbors: p;; = w
Applying this force is equivalent to minimizing the speed of each vertex and
therefore to minimizing the kinetic energy of the 4D model.

When using prior information on the trajectory of each vertex, we determine
Di,« such that this point lies on the ideal vertex trajectory. It is important to
note that these trajectories usually do not correspond to trajectories of physical
points lying on the myocardium but are only used as mathematical constraints.
To store prior trajectories, we could store the n vertex positions {pi.¢}iec[o,n—1]
of each vertex over time. However, this representation would imply that the
trajectory orientation and scale is constant between images, which is not the
case. Instead, we choose to store the 3D curve trajectory as a set of geometric
parameters {e; ¢, @i ¢, ¥i} that are invariant to rotation, translation, and scale.
The left side of Fig. 1 illustrates the elements composing the trajectory geometry.

Let p denote the orthogonal projection of p; ; onto its two temporal neigh-
bors segment [Pi,t—1,Pi,t+1]- The position of point p;; may be deﬁned through:
(i) the metric parameter ¢;, measuring the relative position of pht in segment
[Pi,t—1, Pi,t+1]; (ii) the angle ¢; ; measuring the elevation of p,; above the seg-
ment [P;¢—1,Pit+1] in the plane (pit—1,Pit, Pie+1); and (i) the angle v;,
measuring the discrete torsion. Intuitively, ¢; ., @i, and 1; ; correspond to dis-
crete arc length, curvature, and torsion respectively. Let t; ; denote the discrete
tangent, b;; the binormal vector, and n;; the discrete normal to point p;;
respectively:
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Fig. 1. Left: trajectory geometry and temporal force. Right: temporal force effect.
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The position of p;; is related to the position of its neighbors and the trajec-
tory parameters by equation:

Pit = €itPit—1 + (1 —€it)Pije+1 + (3)
h(git, Pists Pist—1, Piyt+1)(CO8(Vi e )i + sin(ehi )t ATiy),

where h = ||p; pi;||- The temporal force is computed with p, ; defined by equa-
tion 3 using the trajectory reference parameters.

The right side of Fig. 1 shows the temporal constraint effect. A spherical 4D
model composed of 3 time points (to, t1, and ¢3) is shown in the upper row. A
single vertex of the model is submitted to an external force at time ¢;. The middle
row shows the resulting deformation. Surface S; is deformed causing surfaces Sy
and Ss to deform through the temporal constraint, although the deformation is
attenuated in time. The bottom row shows the surface converging towards its
reference motion after 40 iterations.

3.3 [Initialization procedure

In general, to get a first rough position of the 4D LV model, we first proceed
by using only highly constrained spatial deformations without any temporal
constraint. By using A = 0, we basically estimate a set of global affine transfor-
mations to align the model with the 4D dataset. Then, we proceed by iteratively
increasing the locality parameter A while adding temporal constraints. This ap-
proach allows an evolutional deformation scheme based on a coarse-to-fine strat-

egy.



4 4D Medical Image Segmentation

The 4D model described above has been used to segment 4D MR, SPECT and
US images. Figure 2 shows two slices of each image modality at the end of diastole
and the end of systole. Due to real time imaging constraints, all images have a
sparse resolution. Cardiac MR images have a very high resolution in slice planes.
However, the third dimension resolution is much lower (256 x 256 x 9). SPECT
images are sampled on a 643 voxel grid. Finally, the 4D US images shown are
composed by a set of slices acquired with a rotative probe [15] leading to a low
spatial resolution (256 x 256 x 9, with a 20 degrees angle between two slices).

The 4D model used are made of 500 to 700 vertices per surface. This rough
resolution is adapted to the images level of detail. In MR and US images, the
internal wall of the LV is reconstructed by a closed surface representing the
internal blood volume. In the case of SPECT images, the internal and external
walls of the LV appear. A cup shaped surface model is then used. The US image
sequences are composed of 8 time points covering only the systole while the MR
(13 time points) and the SPECT (8 time points) sequences cover a complete
heart cycle.

Fig. 2. MR (left), SPECT (centre), and US (right) slices at end diastole and end systole

4.1 MR Images

We show a segmentation experiment on one heart beat sequence. The cardiac
MR images contrast varies between slices and the heart boundaries are poorly
defined. A 4D model is generated by embedding a set of identical ellipsoids
roughly centered on the LV in the first image sequence. Only spatial and temporal
smoothing (weak) constraints are used since no relevant prior information was
given. The local deformations are constrained by a global affine transformation.
The coarse-to-fine deformation algorithm involves two stages composed of 30
iterations each: A = 10% and 8 = 0.5 followed by A = 40% and 3 = 0.1. The
weight values & = 1 and 6 = 0.1 are fixed. The low A value prevents the surface
from being too sensitive to the lack of information in area where the gradient
filter gave no response.

Each surface model is composed of 500 vertices and the deformation process
for the whole 4D model only takes 1 min 46 s on a 500 MHz Digital PWS
with 512 Mb of memory. Four out of the 13 surfaces composing the 4D model
are shown in Fig. 3 on the left. The middle graph plots the curve of volume
variation through time. It corresponds to an healthy case volume curve.
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Fig. 3. Left: 4 surfaces from the 4D models deformed in an MRI. Middle: 4D model
volume curve. Right: 4D model volume obtained from a US image by 3D (dashed line)
and 4D (solid line) segmentation.

4.2 SPECT Images

We have processed a 4D SPECT image database including healthy and patho-
logical patients. The systole is approximatively three time points long whereas
the diastole takes the remaining five time points. We compare images of healthy
patients with a normal endocardium blood perfusion and pathological patients
with an abnormal perfusion due to some ischemic zones. The mean deformation
time for all 4D models, made of 700 vertex surfaces, is 2 min 34 s.

The reference model is built from an healthy patient image by 3D segmenta-
tion. The high image contrast allows us to use gradient information to compute
external forces. The 3D segmentation does not involve any time continuity con-
straints. A 4D deformation stage with time smoothing forces is therefore needed
to obtain a reference model with reliable shape and motion. Shape constraints
are especially beneficial for the segmentation of low contrasted images showing
pathologies such as ischemia. Due to the similarity between images, the 4D model
is roughly initialized in its reference position. Rigid then similarity registration
are first used to compensate the differences in location and size between patients
(o =1, =0.1, § = 0.2). Local deformations with an affine constraint are then
used. The deformation involves 3 stages (20 iterations each) in the coarse-to-fine
algorithm: the locality increases (A = 20%, 50%, 70%) while the external force
range decreases (range= 4, 2, 2 voxels).

Figure 4 shows a frontal view of the 4D models. Top line displays the reference
model obtained by 3D segmentation and revealing poor time continuity. The
center line displays the 4D model regularized by time smoothing constraints
in the image of a healthy patient. The bottom line shows the model extracted
from a pathological case by 4D segmentation. The surface model reveals the
pathological heart with weak motion amplitude.

4.3 Ultrasound Images

The speckle noise of US images and the lack of beam reflection on boundaries
tangent to the US rays make the segmentation process difficult. A 4D model
is built by 3D segmentation of a 8 time points reference image. The model is
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Fig. 4. 4D models of the myocardium: reference model obtained by 3D segmentation
(top row), healthy case (middle row), and pathological case (bottom row).

first registered by a similarity transformation to align and adapt its scale to the
data. The gradient information is sufficient since the deformations are strongly
constrained to speed-up the model convergence. A large force range allows the
model to find boundaries far from the initial model position. After registration,
the model locally deforms with an affine global constraint (a« = 1, 8 = 0.5,
6 = 0.1, range = 20 voxels). Local deformations guided by region based forces are
used in the final segmentation. Region-based forces slow down the deformation
process and the total reconstruction time was 4 min 42 s.

Right of Fig. 3 shows the evolution of the LV volume through time (solid
line). The volume is compared to the result of an iterative 3D segmentation of
the same sequence from an earlier study [15] (dashed line). The time regularizing
constraints make the 4D curve much more regular. The initial volume value is
very close (3% difference) but it grows with time. This is not surprising since
the 3D segmentation tends to accumulate errors. Moreover, the 4D curves shows
a profile closer from the theoretical line expected. The model volume leads to a
49% ejection fraction. This value compares to the 45% ejection fraction computed
from a manual segmentation by a cardiologist on the same sequence.

Figure 5 shows the sequence slices on which are superimposed the model
intersections with each plane. The 8 figure columns correspond to the 8 time
points. Five rows corresponding to one slice out of two (from top to bottom: 0,
40, 80, 120, and 160 degrees of arc) are shown.

5 Conclusion

We have demonstrated the ability of 4D models to track the LV motion in
4D noisy medical images. The proposed framework relies on complementary
spatial and temporal constraints to regularize the deformation while introducing



prior knowledge about the LV shape and motion in the segmentation process.
Shape constraints allow the segmentation of sparse and low contrast data. The
deformable models approach is generic and allows us to deal with different image
modalities. In all examples shown above, the algorithm leads to a fully automatic
segmentation of the LV once the weighting parameters have been fixed for each
image modality.

The resulting surface models are well suited for estimating quantitative para-
meters such as endocardium volume or wall thickness. Visual results and quan-
titative measures extracted are reasonable although a thorough clinical study
would be necessary to validate the algorithm accuracy. Comparison to earlier
work involving 3D segmentation [15] demonstrates the interest of a full 4D ap-
proach.
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Fig. 5. Set of slices of the US image superimposed with the deformed model inter-
section. From left to right: cardiac sequence time point. From top to bottom: slices
oriented with angle 0, 40, 80, 120, and 160 degrees of arc.
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