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The explosive growth in medical imaging technologies has been matched by
a tremendous increase in the number of investigations centered on the struc-
tural and functional organization of the human body. A pivotal first step towards
elucidating the correlation between structure and function, accurate and robust
segmentation is a major objective of computerized medicine. It is also a substan-
tial challenge in view of the wide variety of shapes and appearances that organs,
anatomical structures and tissues can exhibit in medical images.

This chapter surveys the actively expanding field of medical image segmenta-
tion. We discuss the main issues that pertain to the remarkably diverse range of
proposed techniques. Among others, the characteristics of a suitable segmentation
paradigm, the introduction of a priori knowledge, robustness and validation are
detailed and illustrated with relevant techniques and applications.

1. Introduction

Imaging technologies have undergone fast paced developments since the early days of
anatomy. Magnetic resonance imaging (MRI), computer-assisted tomography (CT),
positron emission tomography (PET) and an increasing number of other techniques
(see Figure 1) now permit precise analysis of post-mortem tissue and non-invasive
exploration of living organisms. They can elucidate the structures of organs and
cells, observe and help understand their function, and give clinicians the means to
monitor their dysfunctions, or assist in the removal of pathologies.

A deeper understanding of both the anatomical characteristics of the tissues
and organs of the human body (or, more precisely, of the sub-structures we dis-
tinguish within them) and of their inter-relationships is crucial in diagnostic and
interventional medicine. The need, shared across many levels of description, for
such correlation between structure and function is exemplified by the vast number
of studies analysing cortical structures (in populations with a particular disease
127 "through the developmental cycle ¢ or comparing normal and diseased subjects
189) " quantifying tissue loss, gain or structure volumes °+:5°, or aiming for automated
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Fig. 1. A collection of imaging modalities: (a) MR image of the human brain, (b) digital mam-
mogram, (c) myelin-stained histological section of the human visual cortex, (d) PET image of the
human brain, (e) CT scan of the chest.

diagnosis of disease 8176 among others.

While qualitative analysis may sometimes be sufficient for diagnosis, quantitative
analysis, for which segmentation and labeling are absolute prerequisites, is neces-
sary for a variety of applications: longitudinal monitoring of disease progression or
remission 72157, pre-operative evaluation and surgical planning 7%:°%:6 radiotherapy
treatment planning 13! or statistical analysis of anatomic variability 35193,

Even so, accurate segmentation of anatomical structures and tissues in medical
images is especially challenging, given the wide variety of shapes, sizes and appear-
ances they can present. Still the delineation process calls for high precision as the
quality of the analysis generally depends on how accurately the various structures
are identified. For instance, given the corpus callosum’s key role as the primary cor-
tical projection system, regional analysis of its structure is important in assessing
several neurological disorders (Alzheimer’s disease, vascular dementia, dysplasias).
Nonetheless, subtle variations in shape, relative to a mean callosal delineation, are
observed between and within patient and control groups, and this makes it difficult
to detect and classify abnormal structural patterns. As a result, intense debate still
rages on whether different callosal regions undergo selective changes in each of these
disease processes and whether these are systematic differences in neuropsychiatric
disorders such as autism or schizophrenia. These controversies may be alleviated by
precise and reliable segmentations, applied to large image databases.

Segmentation has traditionally been tackled by human operators. However the
many drawbacks of manual delineation (lack of reproducibility, a priori biases,
lack of sufficient resources to handle ever-growing databases) favor the use of auto-
mated methods. Nonetheless, to reach the desired accuracy, many difficulties must
be overcome: input images may be noisy, poorly contrasted and full of “decoys”
(many structures are similar in shape or intensity), the target structures may be
highly variable in geometry, etc.

We propose in this chapter an overview of the ever-expanding palette of au-
tomated segmentation techniques applied to biomedical images. Remarkably, the
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diversity of the developed techniques is more than matched by the variety of the
objectives (disease diagnosis, surgical planning, atlas building, etc.), of the seg-
mentation targets and of the input imaging modalities, with substantially different
hypotheses and requirements for each of them. Rather than arbitrarily privileging
a particular outlook over another, we discuss the main issues associated with these
application-specific parameters, and the constraints they entail. More algorithm- or
application- oriented taxonomic reviews are available elsewhere !4:180,224,117,32,138
A brief account of relevant techniques accompanies the discussion of the issues. A
detailed summary of each method or application would be beyond the scope of this
chapter. Instead, we provide a generic description of the main algorithmic classes
and more specifically discuss their interactions with the issues we have identified.

We begin with some reflections on the definition of segmentation. Section 3
then characterizes the input images from which organs and structures must be seg-
mented, most especially in terms of dimensionality. We also introduce the commonly
used radiological modalities referred to in this chapter, considering difficulties they
create for segmentation techniques. The selection of an appropriate segmentation
paradigm, which depends on the envisaged application and the imaging modality,
is examined in Section 4. We analyze how the flexibility, locality and continuity
of the model impact the segmentation performance. Section 5 discusses the intro-
duction of a priori knowledge and medical expertise to guide the segmentation
process towards more probable shapes. We then comment on the robustness of seg-
mentation techniques in Section 6 where the difficult matters of initialization and
the trade-off between genericity and application-specificity are emphasized. Valida-
tion is discussed in Section 7. We analyze its inherent contradictions (lack of true
gold-standard due to inter /intra operator variability, conflicting error measures, ap-
plication specificity) and how they bear on issues raised so far. Finally, Section 8
comments on the future of medical segmentation and the underexplored territories
of semi-automated and manually-assisted segmentation.

2. Segmentation criteria

Biomedical images, being digital pictures, are organized collections of values linked
via a chain of treatments and sensors to some underlying physical measures (radia-
tion absorption, acoustic pressure, radiofrequency responses, etc.). These measures
are related to the physical characteristics of the imaged tissues (density, chemical
composition, cellular architecture). In that respect, these images are a means to
analyze otherwise undecipherable raw measurements. The necessity to understand
the measured values then becomes that of extracting meaningful information from
the associated images, that is, to establish a relationship between the acquired data
and the associated physiological phenomena. Segmentation is the first step on the
path towards understanding these complex inter-relationships.
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Fig. 2. The corpus callosum (c.c) and its neighbours in a T1-weighted MRI section (a) and their
associated intensity distributions (b).

Irrespective of the envisioned application, segmentation essentially consists of
partitioning the input image into a number of disjoint regions, so as to satisfy
in each region a given criterion. This criterion may be derived from the intensity
distribution of the underlying voxels in the image, or from the morphology of the
region, among other choices.

The first difficulty in designing an adequate criterion is characterizing the objec-
tives of the segmentation process, which may vary quite subtly from one application
to the next and often depend on the object being segmented. For instance, the seg-
mentation accuracy required to construct anatomical atlases (built by averaging
the shapes of several segmented instances of the structures in the atlas) may be
somewhat less than that required to quantify gray matter loss in a neurological
study '72. Indeed, missing the true boundary between gray and white matter might
significantly bias the analysis in the latter case, whereas the errors introduced by
the atlas shape averaging process are often as significant as those of a standard
segmentation step. Therefore, even though correctly dealing at the criterion level
with partial volume effect voxels (voxels to which multiple tissues contribute, which
result in blurred edges at the surface of structures) may not be so crucial for atlas
building, it is pivotal for accurate quantification of subtle tissue changes.

The second difficulty is linked to estimating the effects of noise and of the
plethora of artifacts that plague the input images (bias fields, projection errors,
variability in tracer uptake times, etc.). Together with more structure-specific pa-
rameters (contrast with respect to surrounding tissues, shape variability), these are
bound to influence the choice of a segmentation criterion, most especially in terms
of its leniency and permissiveness (and false positives and negatives).

In turn, the characteristics of the chosen criterion will affect the efficiency of the
optimization or evolution process to which most segmentation applications can be
reduced (see Section 6.3). Evaluating this efficiency (that is, assessing the perfor-
mance of the segmentation system) is however particularly difficult in the absence
of a satisfactory ground truth (we comment on this validation issue in Section 7).
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2.1. Hard segmentation

From a mathematical point of view, image segmentation is an injective process
that maps sets of voxels (low-level numerical bits of information) to annotated
regions (high-level semantic information). These annotations may be actual labels
(in reference to some dictionary of labels) or simply ordinal numbers to differentiate
the regions.

More formally, let I be an input image, defined by its value (usually a scalar
intensity value, but sometimes a real-valued vector or even a tensor) at each point
of its domain 2. Let w be a non-empty subset of 2. Then let A be a predicate (the
above mentioned criterion restricted to a single target organ or structure) which
assigns the value true or false to w. A segmentation of image I for predicate A is a
partition of 2 into n disjoint non-empty subsets {w;};_; such that:

o Vi, 1 <i<n,A(w;) = true; and
hd Via.j7 1 S Z7.] S n, { #.]a A(CL%UUJJ) Zfalse.

For example, in thresholding approaches (see Section 4.2.2), perhaps the simplest
image segmentation approach, regions in I are defined by creating a partition of the
image intensities 1. If we restrict I to take values in [0, 1], a choice for A could be:

A Q — {true, false}
{true if Ve ew, I(z) >0

v false otherwise

where 6 € [0,1] is a threshold, usually determined from the image intensity
histogram (see Figure 2).

Note that A often relies on a neighborhood of w; to assign it a boolean value
(see Section 4.2): in other words, it is not a uniformity predicate.

2.2. Soft segmentation

Fuzzy segmentation ?! generalizes this predicate to a membership function, provid-
ing an efficient means to deal with partial volume effects,

Given a set of K tissue or target classes C = {ci1,...,cx}, K membership
functions are designed: Vk € [1, K], g : 2 — [0, 1], subject to the constraint

K
Vo € Q, Zuk(x) =1
k=1
They represent the contribution of each tissue (i.e. volume fraction) at every voxel
in the input image.

A number of fuzzy clustering techniques have been developed to automate the
computation of these membership functions '°?. In the context of brain tissue seg-
mentation, these classes may represent gray matter, white matter or cerebrospinal
fluid for example 3776, Probability densities can also be substituted for fuzzy
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membership functions within a classical a posteriori maximization / expectation-
maximization framework 21297,

Yet, apart from probabilistic and fuzzy atlases which directly use proba-
bility densities of tissue memberships, most clinical applications require the actual
boundaries of the segmentation targets to be accurately determined. Consequently,
suitable cut-off and thresholds have to be selected to turn soft segmentations into

hard ones, a non-trivial problem in itself.

191,193

3. Input data

Each imaging modality comes with a specific set of characteristics (structural or
functional measures, actual spatial and temporal resolution, effective field of view,
signal to noise ratio, etc.) and sheds a different light on the studied pathology or
organ. Ideally, segmentation algorithms should be fed images acquired from the full
battery of existing modalities: MRIs to act as anatomical references, histologic sec-
tions for precise pathological tissue analysis, PET/SPECT or functional MRI data
to reveal metabolic or functional relationships, etc. However, practical considera-
tions beg for compromises to be found. Imaging resources may be unavailable (not
only are radiological machines very expensive, but each acquisition is also costly),
there may be potential health hazards linked to the invasiveness of data acquisition
(x-ray CT or PET radiations must be used with caution, histology is a post-mortem
analysis), etc. Often, the availability of a set of imaging modalities will determine
the medical objectives which can be reasonably achieved. Conversely, the envis-
aged applications (or standard diagnostic protocols) condition the acquisition of
appropriate modalities. In any case, segmentation systems have to be designed, or
adapted, accordingly.

3.1. Image characteristics

Since biomedical images are located at the interface between physical measurements
and human cognitive processes (namely, image interpretation and analysis), their
characteristics are intimately linked to those of both the imaging equipment that
acquired them and of the mathematical model that allows their algorithmical ma-
nipulation. These two sets of features are intricately related. For instance, while
x-ray films are inherently continuous in space, segmentation systems manipulate
them as a discrete set of pixels, once digitized. Conversely, most deformable model
approaches (simplex meshes °!, medial representations '*3, etc., see Section 4) oper-
ate on discrete input images, such as MRIs or CT scans, represented as continuous
functions by using interpolation techniques, thereby achieving sub-voxel accuracy.
Images can then be considered either as continuous functions observed at a continu-
ous or discretized positions in space, or as a set of discrete intensity values organized
on a regular or irregular lattice. They may also be treated as observations of a ran-
dom vector (where each component is a random variable associated to a site in a
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lattice) or even as the realization of a stochastic process (for Markov random field
approaches).

As much a characteristic of the input images as one of the conceived applications,
dimensionality (the dimension of the space in which the segmentation algorithm op-
erates) may also significantly affect the choice, implementation and behavior of a
segmentation system. For instance, in one of the corpus callosum statistical variabil-
ity studies mentioned above 1%, only the mid-sagittal sections of the input MRI’s
were selected for delineation, whereas Narr et al. 27 used 3 additional 1 mm thick
slices on each side. Clearly, even if a fairly simple 2-D algorithm should be sufficient
to automate the callosal segmentations in the first case, the segmentation of actual
surfaces would be better handled in a true 3-D segmentation system in the second
case: the callosal surface obtained would be smoother and more globally coherent
than those resulting from concatenating of successively segmented 2-D sections.

Incidentally, while some modalities are inherently 3-D (MR for instance, even
though images are acquired slice by slice), or inherently 2-D (histological slices),
others are so only artificially. X-ray images for instance are 2-D projections of a 3-D
object; conversely, CT scans are 3-D volumes reconstructed from a series of 2-D pro-
jections (see Fuchs et al. %! for a review). Projections often make for more difficult
segmentations as the target boundaries of structures may be substantially distorted
and the contours of other organs may be intercepted by the projection and may
pollute the image, further umpairing precise target localization. Furthermore, 3-D
reconstruction induces many artifacts which may reduce the signal to noise ratio
60,69 Note that 2-D segmentation techniques are sometimes applied to 3-D data,
one 2-D slice at a time 7'°1. This could be for complexity reasons (real-time con-
straints, limited memory resources), algorithmic reasons (thresholding techniques,
for instance, are not affected by the dimensionality of the data space as they do
not rely on neighborhood considerations: only the intensity at the considered voxel
is taken into account) or application-oriented reasons (the corpus callosum may be
easier to segment in a series of coronal slices on each side of the mid-sagittal plane
than in a 3-D MRI taken as a volume).

A hybrid dimensionality case, brain cortex parcellation deals with the segmen-
tation of patches on 2-D surfaces folded in 3-D space (2-D manifolds) and often
requires specialized segmentation systems 122160195 where the expected geometry
and topology of the manifolds have to be woven into the contour-finding algorithms.

3.2. Modalities

We consider in this chapter only the most commonly used radiological modali-
ties. Macovski 1°7 and Sprawls 174
physical phenomena.

Arguably the most common modality, radiography encodes in each voxel of the
generated image the accumulated density of the structures intercepted by a beam of
ionizing radiations (x-rays). This is a fast acquisition process which yields a particu-

provide in-depth introductions to the underlying
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larly high contrast between hard structures (such as bones) and soft tissues (organs).
Unfortunately, radiography is also substantially invasive, suffers from the projection
issues mentioned above (poor localization, decoy structures), and provides only lim-
ited information about soft tissues. In the related fluoroscopy, a contrast agents in
injected into the patient and a moving x-ray beam enables the observation of struc-
tures in vivo and in real time. Among other applications, digital mammography has
proved invaluable for the early detection of tumors and microcalcification clusters.
In view of the poor contrast of structures in breast images, the robust detection of
tumors is more important than the accuracy of their segmentation.

Another x-ray based modality, computed tomography (CT) alleviates most of
the projection issues of planar radiography. It provides excellent soft tissue constrast
and allows the 3-D visualisation of deep internal structures.

In ultrasound imaging, high frequency sound waves replace the ionizing radia-
tions of radiographic techniques. The sound waves emitted by a transducer moved
over the patient skin by an operator, are reflected back to the transducer at the
interfaces between the traversed organs or tissues. An image of the variations of
accoustic impendance can subsequantly be reconstructed. Ultrasound systems are
completely non invasive, operate in real time and allow multi-planar imaging. Their
low cost has ensured a wide dissemination. They can observe static organs and fol-
low their dynamic evolution. They are however plagued with high level of speckling.
Furthermore, bones and air act as opaque screens and prevent the visualization of
deep structures.

The modality of choice for segmentation systems, magnetic resonance imaging
(MRI) records the radio-frequency signal emitted by the protons of water molecules
after excitation by a strong magnetic field. It provides excellent soft tissue contrast
(most especially as it can be tuned by using an appropriate pulse sequence), high
signal-to-noise ratio and good spatial resolution (commonly 1mm?) to the detriment
of the temporal resolution, unfortunately (20 minutes for a standard examination).
Besides, a number of intensity inhomogeneities and artifacts 15217 complexify the
segmentation task. A large number of dedicated overviews are available 224:32,14,

In scintigraphy, radioisotopes are injected into the patient and a series of cameras
correlate the emitted beams to reconstruct a 3-D map of increased or decreased
activity. It is an inherently functional modality, which unfortunately suffers from
poor spatial resolution.

4. Segmentation paradigm

A segmentation paradigm encompasses under a single umbrella the many consid-
erations about the nature of the segmentation application (statistical variability
analysis, CAD, tumor tracking), the associated operational constraints, the algo-
rithmic class of the selected segmentation technique and its working hypotheses,
among others. As such, it depends on the envisioned application and on the imag-
ing modality employed. For instance, segmentation of gray and white matter in a
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cerebral MRI induces vastly different constraints from that of vertebrae in an x-ray
of the vertebral column, in terms of target topology, prior knowledge, choice of tar-
get representation, signal to noise ratio, and dimensionality of the input data. The
selection of an adequate segmentation paradigm is therefore pivotal as it affects how
efficiently the segmentation system can deal with the target organ or structure, and
conditions its accuracy and robustness. We detail below the foremost compromises
and parameters that should shape an educated choice.

4.1. Bottom-up versus top-down

Reminiscent of the bipolar character of the couple image / application, segmenta-
tion involves extracting from the input image the relevant features (texture patches,
edges, etc.) associated with the target structure and immersing these into a higher-
order model of the target (surface mesh, m-rep, etc.). These are then passed to
the application for analysis. Not surprisingly, this dual nature is reflected in the
dichotomy between feature-extraction algorithms (bottom-up) and model-based ap-
proaches (top-down).

Bottom-up strategies can usually be decomposed into three stages: first, features
are extracted, then they are grouped into several regions or contours, which, finally,
serve to identify the structure’s boundaries. However, since these techniques usu-
ally consider only local neighborhoods without a higher order comprehension of the
nature of the image ?, they are prone to generating invalid outlines. For instance,
in edge detection, all extracted contours do not correspond to the boundaries of the
target structure: some of them may merely follow decoys or noise artifacts. These
problems are rooted in the inherently numerical nature of the data manipulated by
these low-level model-free algorithms, and aggravated by the underconstrained na-
ture of the segmentation of highly variable structures. As such, image-level segmen-
tation techniques (region growing, edge detection, etc.) tend to operate adequately
only under substantial expert guidance.

On the other hand, high-level model-based approaches (top-down strategies) op-
erate on semantic concepts (shape, appearance, relative position with respect to
surrounding structures, etc.) associated with a representation of the actual segmen-
tation target, extracted from the image. They are linked to the interpretation and
understanding of the input data and can overcome many of these limitations P.

aThat is, they operate on values attached to the image voxels without necessarily establishing a
relationship with the reality that they represent.

bIncidentally, whereas model-based approaches usually require a training set of segmented contours
as an input, low-level feature extraction is generally performed without reference to an a priori
contour model. Such distinction between the problem of contour modeling and that of edge extrac-
tion is characteristic of Marr’s vision paradigm '14. The interest of that dichotomy lies in its ability
to decompose the segmentation problem into independent and manageable tasks. Unfortunately, it
may also result in a unidirectional and somewhat irreversible cascade of errors. Furthermore, due
to image noise and the image projection process, local model-free edge extraction is an ill-posed
problem with no unique solution 4.
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As such, top-down strategies provide a convenient framework to include a priori
knowledge and medical expertise (see Section 5). Briefly, they also consist of three
stages: model building (based on prior knowledge or on structures segmented a pri-
ori), model initialization (initialization of the parameters that control the model’s
shape, position, etc.), and model matching (adaptation of the parameters to the
input image). By considering the target boundaries as a whole, they become a lot
more robust to noise and imaging artifacts than bottom-up techniques. Unfortu-
nately, they are also potentially less accurate. Indeed, the reference a priori models
which act as shape, intensity, or distance constraints effectively prevent the segmen-
tation of what they identify as noisy or invalid contours. When these correspond
to actual noise, robustness is increased. However, when they correspond to the true
contours of the target structure, accuracy decreases (Section 6 comments on this
trade-off between accuracy and robustness, which also relates to locality, flexibility
and continuity).

Often, a segmentation system will implement a mixture of bottom-up and top-
down approaches, either explicitly '® or implicitly (as with deformable models, see
Section 4.3).

4.2. Locality

Locality refers to the extent of the neighborhoods around the voxels of the in-
put image considered by the segmentation process. It is inherently linked to the
segmentation strategy discussed above. Namely, very local techniques are usually
considered bottom-up approaches (the size of the neighborhood being too small for
an actual model to be used) whereas global techniques are ideally suited for intro-
ducing shape or appearance models. Local segmentation methods tend to be very
fast, owing to the small number of parameters considered at each voxel 4. In the
absence of a model, they are more accurate (immune as they are from constraints
linked to the geometrical arrangement of voxels or to their intensity distribution)
but they are also more sensitive to noise and inhomogeneities. Conversely, larger
neighborhoods increase noise robustness at the expense of accuracy.

In the absence of high-level models, local techniques are effectively a special case
of classification algorithms. Segmentation then consists in deciding, for every voxel
in the input image, whether or not it belongs to the target structures, based on
attributes (intensity values, geometric descriptors or other statistics) collected in
its immediate neighborhood.

On the other end of the locality spectrum, we find most of the model-based
(top-down) approaches. These use the maximum amount of information that can
be gathered from the underlying image to fit the parameters of the models they
rely on and to guide the segmentation process (the considered neighborhood is then
often extended to the voxels in the vicinity of the entire model surface, or even to
the whole image).
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After a generic description of voxel classification methods, we detail more specific
local approaches in Section 4.2.2. The main global techniques, deformable models
and atlas warping approaches are discussed later in sections 4.3 and 5.2.

4.2.1. The classification paradigm

Classification techniques associate every voxel in the input image with a unique
lable, or class, where classes are built from the voxel attributes ®* (usually, one
class per segmentation target, plus a “non-target” class). In the simplest general
case, voxels are classified independently of each other as the criteria employed,
often based on distances between attribute vectors, do not take into account their
geometric arrangements. As such, classification is really only a pre-processing step.
Connected components must be extracted from the classification map to effectively
segment the input image.

From a pattern recognition point of view, classification techniques aim to parti-
tion the multidimensional feature space formed by the voxel attributes. This could
be a supervised or unsupervised process.

Supervised classification. Supervised methods consist of two phases: a training
phase in which a learning set of a priori segmented structures help adjust the classi-
fier parameters, and a classification phase where a previously unknown input image
is processed with the trained classifier. A large number of supervised techniques are
available in the literature (see Duda and Hart 5% for a review).

In view of the difficulty of modeling the probability distribution of the target
voxel attributes, non-parametric techniques, which make no hypothesis about the
class distributions, have proved popular. Nearest-neighbor classifiers for example
assign a voxel to the same class as the voxel in the training set which is closest in
terms of attribute distance (often, the class of the learning set voxel with the closest
intensity). A generalization of this straightforward approach, a k-nearest-neighbor
classifier ™ assigns classes based on a majority vote of the k closest voxels in the
learning set. Parzen window techniques extend the majority vote to a rectangular
or spherical neighborhood of the attribute space centered on the considered voxel.

When the distribution of the attribute values is better behaved, parametric
classifiers may increase the segmentation performances ®*. Often, voxel attributes
are assumed to be drawn from a mixture of Gaussian distributions, as with the
maximum likelihood classifier (Bayes method). Training such a classifier requires
estimating the means and standard deviations of the Gaussian distributions and
their mixing coefficients from the learning set of a priori segmented structures. In
the classification phase, voxels are then assigned to the classes which maximize the
posterior probability.
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Unsupervised classification. When no a priori learning set is available to train
the classifier, unsupervised classification (clustering) become a more suitable alter-
native. In the absence of an initial parameter fitting phase, clustering techniques
often maintain, for each class, a model of the characteristics of their attribute dis-
tribution. These models are iteratively updated during the classification process,
which usually alternates between classification and model fitting. The training phase
is consequently distributed over the entire course of the classification phase.

The unsupervised version of the k-nearest-neighbor algorithm, the k-means clus-
tering algorithm 87 models each class by its mean attribute vector and partitions
the voxels in the input image by assigning them to the class whose mean is closest.
By introducing fuzzy membership functions into the classification step, the fuzzy
c-means algorithm % allows for a soft segmentation of the input image. A paramet-
ric unsupervised technique, the expectation-maximization algorithm (EM) assumes
a Gaussian mixture model for the voxel attributes and iterates between the com-
putation of the posterior probabilities associated to each class and the maximum
likelihood estimation of the model parameters (means, covariances, mixing coeffi-
cients) 119, Note that unsupervised techniques are often more sensitive to the initial
values of their parameters than supervised classifiers 54.

Feature selection Often, the voxel intensity alone is considered as an attribute.
However, when multiple attributes are available, an “optimal” subset of attributes,
as discriminating as possible, must be selected while keeping the number of selected
attributes reasonably small. This selection task (also called feature reduction) is a
fundamental problem in statistical pattern recognition. Indeed, reducing the num-
ber of attributes saves computing resources by discarding irrelevant or redundant
features. It also alleviates the effects of the so-called curse of dimensionality 3,
which links the ratio: sample size (in the learning set) / dimensionality of the fea-
ture vector to the classification performances °.

Given an objective function, which evaluates the performance of the classifier
on an a priori set of measurements, the feature selection problem then boils down
to a search problem in the combinatorial space defined by the voxel attributes.
Trying out, in a brute force manner, every possible combination of features can be
prohibitively costly when the number of attributes is high (although, as argued by
Cover 43, traversing the entire search space is the necessary condition to an optimal
selection). Specific sub-optimal selection strategies have therefore been suggested
in the literature. They either rely on a priori knowledge about the classification
problem at hand to discard features, or use generic optimization heuristics when

“Namely, when the dimensionality of the feature space increases, more parameters must be esti-
mated, which enhances the risk of overfitting the model: adding new descriptors then usually first
increases the classification performance, which attains a peak value, before decreasing as more
descriptors are added (overfitting phenomena).
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no domain-specific information is available (or when it is too difficult to exploit).
Algorithms as diverse as stochastic annealing, genetic algorithms, max-min pruning,
principal component analysis or neural network node pruning have been introduced
(see Jain et al 8* for a taxonomy of feature selection algorithms).

Applications. In view of the tremendous shape and topological variability of the
human cortex, brain tissue segmentation in MRI is a natural application for classifi-
cation techniques 192. The many intensity inhomogeneities and bias fields mentioned
in Section 3.2 tend to favor unsupervised clustering approaches 103.71,137,158
though a priori intensity models of the cerebral tissues may also prove adequate
212,23 However, due to its highly convoluted morphology, the gray matter ribbon
comprises a large proportion of partial volume effect voxels in typical T1-weighted
MRIs. There are often better handled by fuzzy approaches 3°:15_ Classifiers are also
ideally suited to extract lesions and tumors in digital mammography !°° or in MRI
31 using a combination of intensity and texture attributes.

even

4.2.2. A few classification approaches

We detail in this section three commonly used classification techniques in decreasing
order of locality (thresholding, region growing and Markov random fields) and briefly
comment on more exotic classification techniques at the end.

Thresholding. As far “left” as could be on the locality spectrum, thresholding al-
gorithms (see Sankur et al. 193, Sahoo et al. 1%° or Lee et al. °° for broad overviews)
do not consider any neighborhood in the image per se: the classification is based
solely on comparing the voxel’s intensity and an intensity threshold that is set in
advance, or determined globally from the intensity histogram of the input image.
A vpartition of the input image is therefore obtained by partitioning the image in-
tensities. When the histogram is multi-modal, several thresholds can be computed.
As could be expected from a local technique, the effectiveness of a thresholding
algorithm depends on the contrast between the target structure or tissue and the
surrounding ones. Several improvements have been made to increase the segmenta-
tion robustness. In Lee et al. °° for instance, connectivity constraints were added to
separate regions that would otherwise be incorrectly merged. A number of local his-
togram thresholding techniques are also available (iterative Bayesian classification
113 " dynamic thresholding 26, etc.).

Thresholding techniques have been mostly applied to the segmentation of digital
mammograms, either as a first-stage segmentation tool to provide a second-stage
classifier with candidate pathologies 1478
the location of masses in previously pathologically labeled images 7. Highly con-
trasted structures such as bones in CT 22768 or the cavities of the left ventricle
in cardiac MR 59170 can also readily be segmented by thresholding techniques. In
Zimmerand et al. 22, ovarian cysts were extracted from ultrasound images with an

, or to determine with enhanced accuracy
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(a) (b) (c)

Fig. 3. Four steps of the region growing segmentation of a human hippocampus from a 1mm?
T1-weighted MRI of the head.

attribute vector consisting of intensity and texture descriptors.

Region growing. The simplest form of neighborhood information is exploited by
region growing approaches that rely on the hypotheses that adjacent pixels have
similar characteristics, and in particular, comparable intensity values. Region grow-
ing is then an iterative process that produces connected regions. First, a number
of seeds are selected in the input image to form single voxel regions. Then, at each
iteration, the neighboring voxels of those in the regions are tested against a simi-
larity criterion and those that pass the test are added to the corresponding region.
This process is repeated until no more voxels can be added or until a stopping
condition is satisfied. Among the many similarity criteria, usually based on features
computed on the regions, we find geometric ones (convexity, size, shape of region)
and radiometric ones (intensity, texture) 7. However, the fundamental assumption
of feature consistency makes region growing techniques very sensitive to noise and
imaging artifacts. Homotopic region growing techniques ! have been developed to
constrain the shape of the regions in the face of the potential topological changes
(holes, fusion of previously disconnected regions, etc.) induced by imaging inhomo-
geneities. Furthermore, the placement of the initial seeds is particularly difficult to
automate (although seed-invariant approaches are available 2°7) and depends on the
segmentation application (see Section 6.2).

In view of its many drawbacks, region growing, like thresholding techniques,
often require post-processing. Its main applications are segmenting tumors and le-
sions in digital mammography 2% or in MRI 6. Figure 3 shows four steps of the
segmentation of a human hippocampus with a heavily regularized region growing
algorithm initialized with two seeds.

Markov Random Fields. A favored means to model images in the presence of
noise and artifact *>, Markov random fields (MRF) are particularly well-suited to
capturing local intensity and textural characteristics of images as they provide a
consistent way to model context-dependent entities such as image voxels and cor-
related features *%°. They rely on the assumption that the intensity of any given
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voxel partially dependent on those of its neighbors (that is, that neighbor voxels
belong to the same class, or that they must belong to an a priori defined class, e.g.
voxels from the amygdala class are not allowed to be posterior to voxels from the
hippocampus class). In the context of medical image segmentation, the hypothesis
becomes that of a low probability for a single voxel of a given class to occur inside
an homogeneous group of voxels from another class.

A defining characteristic of an MRF system is the shape and size of the neighbor-
hood system imposed on the voxels of the input image. Inside these neighborhoods,
cliques (subset of sites in which every pair of distinct sites are neighbors) are of-
ten used to define the conditional MRF distributions that characterize the mutual
influences between pixels and textures.

In accordance with the Hammersley-Clifford theorem !2, an MRF can also be
represented by a Gibbs distribution

P(z)=Z1te V@

where Z = 3" _ e~Y(® is the so-called partition function that acts as a normal-
izing constant, and U(x) is the associated energy function, which is usually much
easier to manipulate.

In this framework, segmentation consists of estimating a label process A from
the realization of a voxel process IT. Rather than directly modeling P (A = A|II = p),
a Bayesian approach is generally used to compute the conditional probability from
a fixed probability law imposed on A and an estimation of P (Il = p|A = A). A can
then be iteratively approximated by maximizing this a posteriori probability, which
boils down to minimizing the compound energy U associated with the MRF model.
Among the many optimization approaches, we find iterated conditional modes '3
and stochastic simulated annealing %4.

In spite of their high computational demands, MRF techniques have been suc-
cessfully applied to a variety of medical image segmentation tasks. Their ability to
handle local inhomogeneities and topologically complex voxel arrangements makes
them ideally suited for brain tissue segmentation in MRI 7>1%3. Other MRI appli-
cations include knee image labeling 28, cortical sulci ' and magnetic resonance
angiograms segmentation 2°°. MRF texture models have proved useful in the seg-
mentation of lung in chest radiographs 2°°, bones in CT '3° and, of course, patho-
logical masses in digital mammography 26-101:57,

Exotic classifiers. In addition to the above mentioned techniques, less standard
classification approaches are also available ®*. Neural network in particular are worth
detailing.

Artificial neural networks (ANN) are mathematical tools that mimic the densely
interconnected and parallel structure of the brain, and the adaptive biological pro-
cesses of the nervous system, both in terms of learning and of information process-
ing. They are composed of a large number of processing elements (so-called neurons)
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ROI

Fig. 4. Neural classification of corpus callosum, caudate nucleus and hippocampus: (a) input MRI;
(b) extracted structures (after thresholding of classification map) with true outlines superimposed.
The classifier was trained and applied only to the unshaded regions of interests (ROI).

linked together by weighted connections (analogous to synapses). Each neuron re-
ceives activation signals from other neurons and outputs a non-linear function of the
weighted sum of these activations. This nonlinear mapping function (¢) is called the
activation function. A commonly used activation function is the sigmoid function
(hyperbolic tangent for instance). Output from a neuron neuron; is then written:

neuron; (r) = ¢ (wfx) + w;0

where z is the d; dimensional vector of input signals, w; is the weight vector (or
vector of synaptic weights), and w; ¢ is a constant bias.

A neural network is then a graph of interconnected neurons, whose connectivity
matrix defines the connection pattern. Given a learning set of labeled samples,
training an ANN then essentially consists of modifying the weights of its neurons
so as to minimize the overall difference between the output values of the network
and the target values from the learning set. The most popular learning technique
is the so-called back-propagation algorithm, which is based on a straight-forward
gradient descent technique. Various more sophisticated learning techniques have
been developed, please refer to 2! for a broad overview.

Neural networks have been mostly used to segment tissues and structures in MR,
images 14:195.216,208 "Hall et al. "' also used them to segment tumors and edema.
They can also be employed as a pre-processing stage for other segmentation algo-
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rithms 20414056 Figure 4 displays the classification results for three cortical struc-
tures (corpus callosum, caudate nuclei and hippocampus) obtained with the two
stage neural network presented in Pitiot et al. 13.

4.3. Flexibility

In this chapter, flexibility stands for (1) the actual geometrical and topological flexi-
bility of the segmentation process and of the underlying shape or intensity models if
available, as well as (2) their combined expressivity, that is, their ability to represent
a variety of shapes and appearances with a minimal number of parameters. Because
of their high accuracy, local techniques (classification approaches in particular) are
geometrically and topologically very flexible. Clearly, their locality enables them to
segment arbitrarily complex arrangements of voxels. However, they are not compact
in that they often require as many parameters as there are voxels in the input image
to represent the extracted structure or tissue.

We submit that the use of a segmentation model is a necessary condition to
achieve true flexibility. We therefore focus our discussion of this issue on deformable
models, and in particular on how they are formulated: explicitly or implicitly.

Deformable models ''7 are model-based (top-down) segmentation approaches
that evolve parametric surfaces or curves in fashions inspired by mechanics and
physics 9. They are characterized both by their surface representation (continuous
or discrete, explicit or implicit) and by their evolution law, which determines the
space of available shapes (see Montagnat et al. 122 for a thorough taxonomy). Once
initialized reasonably close to the segmentation target (in terms of position and
of shape), they often deform via iterative relaxation of a compound functional E.
Classically, F is made up of three terms:

e an internal (or regularization) energy E;,ternai Which characterizes the pos-
sible deformations of the deformable surface,

e an image coupling energy FEjqge which couples the model to the image,
and

e a constraint energy FE.onstraint Which regroups the various available con-
straints (shape, appearance, etc.).

We get:
E = Oé'Einternal + ﬂnEimage + 'YOEconstraint

with «, 3, ye R.
Typically, the internal energy measures the amount of bending and stretching
undergone by the deformable model as it evolves. A large number of image forces

dAs the name indicates, deformable models generally behave like elastic bodies, within a La-
grangian dynamics framework.
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are also available 124, They can be based on the gradient of the input image 23, on
a smoothed version of its associated edge-image 42, on intensity profiles %7, etc.

Alternatively, the evolution of the deformable model can be controlled by a
dynamic equation within a Lagrangian framework (following the reasoning detailed
in Section 6.3), or within a Bayesian probabilistic framework 17,

When the deformable surface is described by coordinate functions that depend
on a vector of shape parameters, the model is explicit. Alternatively, implicit for-
mulations model the surface with implicit equation. At a glance, explicit parametric
models are the most frugal in terms of parameters, while implicit models, level sets
or atlas registration (see Section 5.2), win the palm of flexibility.

Explicit parametric models are especially interesting in medical image segmen-
tation for the following reasons. First, as detailed below, they can adequately handle
the various discontinuities that sampling artifacts and noise create on the bound-
aries of the target structures. Also, they compactly describe a wide variety of shapes
while minimizing the overall number of parameters or masking these behind a small
and easily manageable set of physical principles. They often provide a local, if not
global, analytical model of the structure once segmented, which makes it easier
to analyze subsequently. Finally, a priori knowledge about the shape, location, or
appearance of the target structure can guide the deformation process: deformable
models are then the framework of choice to mix bottom-up constraints computed
from the input images with a priori top-down medical knowledge.

Inspite of these advantages, explicit models raise several practical concerns, most
of which are linked to the somewhat delicate balance between the contributions of
the internal and external forces or energies. Clearly, as image coupling forces may
drive the models towards the wrong boundaries (especially in the absence of prior
knowledge constraints), the regularization constraints must limit the geometrical
flexibility of the models. The extent of this limitation is not trivial to determine a
priori, and will often depends on the variability of the segmentation target and on
the input image characteristics. As a result, explicit models often exhibit significant
difficulties in reaching into concave boundaries. Balloon forces 3°, gradient vector
flow 27 or dynamic structural changes (subdivision of model basis functions 22,
densification of control points in regions which undergo dramatic shape changes 20!
or which are too far from the closest potential boundary '#?) are a few of the many
techniques developed to control the accuracy of the segmentation scheme and ad-
dress this restriction. Furthermore, most models cannot accommodate topological
changes since these are usually not coded into the model parameters. Still, a few
topologically flexible approaches are available in the literature that can adapt the
topology of the deformable surface as it evolves 164:215:109,201,118,52 ‘Rinally. they are
also notoriously sensitive to initialization (we tackle this particular issue in Section
6.2).
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(b)

Fig.5. Four types of deformable models: (a) simplex mesh of ventricles; (b) m-rep of hippocampus
(courtesy of Pizer et al.); (c) B-spline representation of the mid-sagittal slice of the corpus callosum;
(d) level-set of vertebra (courtesy of Leventon et al).

A popular implicit formulation, level sets model deformable surfaces '8 using

a higher dimensional signed function whose zero level corresponds to the actual
surface. From the desired properties of the surface evolution process, an adequate
flow equation can be derived for the embedding signed function.

Initially proposed by Sethian and Osher 139167 to track moving interfaces in
fluid mechanics and combustion simulations, level sets alleviate both the parameter
granularity issue of explicit approaches (namely, which sampling strategy to choose
to parameterize the deformable surface) and their difficulties in handling topological
changes. Their main drawbacks are linked to their inherently implicit formulation,
which makes it difficult to analyze the segmented surface, once extracted from the
input image, in the form of an unstructured set of voxels. It also makes it sub-
stantially awkward to incorporate prior medical expertise into them. Finally, like
explicit models, they are quite sensitive to initialization. Other implicit formulations
include algebraic surfaces '®4, superquadrics '° and hyperquadrics 34

Not surprisingly, deformable models (explicit and implicit) have been mostly
applied to the segmentation and tracking of anatomical structures.

Aside from the cerebral cortex 4>:63 and the ventricles 198, they have been widely
employed in the segmentation of most of the deep gray cortical structures (corpus
callosum 140202 hippocampus 144202 168,140 "etc.). A natural seg-
mentation target in x-ray images, the extraction of bones has also proved amenable
to the use of deformable surfaces 134186:220 Goft, tissue organs such as the liver
125,62 the kidney 2, the stomach !'° or the heart 2516118 have also been targeted.

Because of their dynamic nature, deformable models have been immensely pop-

, caudate nuclei
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ular in motion tracking applications, most especially in ultrasound images 108121,
Finally, they have also been applied to the delineation of a variety of lesions and tu-
mors: brain tumors in MRI 77, cysts in ultrasound breast images 2!?, etc. Please refer
to McInerney et al. 117 for additional applications and Figure 5 for an illustration.

4.4. Continuity

In view of the various irregularities that sampling artifacts or noise induce along the
target contours in the input image, boundary continuity is another constraint that
substantially affects the analysis of the segmented target. For instance, statistically
comparing the shape variability of anatomical structures across diseased populations
or between normal subjects and disease groups 27, or computing an average pattern
of gray matter growth across a population of patients 172, is much more easily and
accurately performed when continuous surfaces (discrete meshes in these cases)
are used to represent the target tissues or structures instead of the unstructured
and quite probably topologically complex sets of voxels that level set techniques
would produce ©. This allows noisy and possibly sparse local image features to be
structurally linked inside a coherent and compact model.

Use of a continuous segmentation model (deformable models, for instance) in
conjunction with a continuous representation of the image space (via interpolation
techniques %) also enables sub-voxel accuracy. This is especially interesting when
the radius of the target structure is not large with respect to the resolution of
the input image (for example, for the segmentation of small lesions in MRI, or of
organs in standard 2x2x4mm PET scans). The segmentation results are however
particularly difficult to validate in this case as little to no information is available
to compare, inside each voxel, the location of the segmented contours to those of
the actual structures.

On the other hand, continuity can be a hindrance to accurate segmentation. For
instance, the quantification of cortical gray matter loss in Alzheimer disease'®® does
not require that voxels classified as gray matter form a single connected component.
Ensuring the extraction of the cortical gray layer by a single continuous surface or
by a single voxel connected component would only prevent difficult to reach regions
from being segmented. As an illustration, the inferior horns of the human brain
ventricles are connected to the rest of the lateral ventricles via a group of partial
volume voxels that are exceedingly difficult to segment in standard T1-weighted
Imm? resolution MRIs (to the point where a lot of manual delineation protocols
will just exclude them for fear of introducing an artificially high shape variability).
Consequently, a region growing approach initialized with seeds inside the main body

°Note that, as demonstrated in Leventon et al. 1°0 or Golland et al. 67, average anatomical shapes

can still be computed from level set representations by averaging their associated distance maps.
However, this approach makes the strong assumption, that pixels at the same location across the set
of level set segmentation are homologous which certainly does not hold when topological changes
occur, even when relaxed by the influence of the diffusion factor of the distance computation.
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of the ventricles only would most probably stop at the PVE voxels and discard
the inferior horns altogether. Likewise for deformable model techniques, the image
coupling energy, often linked to the image gradient, would most likely prevent the
model from reaching as far as the inferior horns. Clearly, this difficulty would not
impede other classification techniques even though these might incorrectly exclude
some of the PVE voxels. Similar considerations apply to the segmentation of the
tail of the caudate nucleus in brain MRI (figure 7).

4.5. Surface versus volume

Aside maybe from the cortical gray matter layer which can be handled as a surface
in typical 1mm? resolution brain MRIs, most segmentation targets correspond to
actual anatomical volumes, and behave like deformable solids. When the target
boundaries have to be extracted from a single static image though, choosing between
a surface or a volume representation is arguably a mere matter of taste since most
of the features of volume segmentation systems useful on static images have their
counterparts in surface segmentation systems and vice versa. However, in dynamic
segmentation cases (organ tracking, for instance) much can be gained by using
a volumetric framework within which physiologically or anatomically motivated
constraints between structures or tissues are more easily incorporated.

Volumetric approaches are especially interesting in cardiac motion tracking ap-
plications 136:166.117 a5 they can model the thick-walled left ventricles as a whole
instead of requiring difficult to synchronize endocardial and an epicardial surface
models !.

For these dynamic segmentation problems (which are often functional in nature),
116,132 ¢ould help increase the overall robustness,
owing to their ability to encode the dynamics of the shape, appearances and relative
positions of structures in an anatomically accurate and mechanically plausible way.

Undoubtedly, the choice of a surface or volume representation is in part dictated
by how easily the extracted segmentation target can be analyzed in the envisaged
application (average shapes are more easily computed on sets of surfaces than vol-
umes, tissue loss is often simpler to assess from sets of voxels, etc.) and in part
determined by the characteristics of the target itself embedded inside the input im-
age (volumetric frameworks have typically proved more efficient than dual surface
approaches in preventing thick walls from collapsing in the presence of heavy noise).

volumetric biomechanical models

5. Expert knowledge (a priori information)

However variable in shape and appearance the target structures or tissues may be,
their general morphology, contrast and relative position with respect to surrounding
tissues and neighborhood structures is often known. In view of the many intensity
inhomogeneities and the plethora of artifacts and decoys present in the input image,
this a priori medical knowledge is an invaluable tool in the search for the best



August 10, 2004 9:11 WSPC/Trim Size: 9.75in x 6.5in for Review Volume leondes-segmentation-2004Aug09

22 Pitiot et al.

trade-off between accuracy and robustness. In addition to facilitating the actual
segmentation process, shape, appearance and position models can also significantly
assist the subsequent analysis of the segmented target. Clearly, compact models are
more easily interpreted and compared (between themselves or against statistically
built average models and modes of variation) than tediously long lists of vertices or
voxels.

The available corpus of medical information can be leveraged in essentially two
ways: implicitly (computationally) and explicitly. Given a learning set of a priori
segmented instances of the segmentation target, implicit knowledge algorithms have
to automatically discover the relationships and functional dependencies of the var-
ious parameters of the model. However, explicit information about the target is
often available, in the form of medical expertise. For instance, the relative positions
of most of the deep gray nuclei in the bain is fairly consistant across individuals,
anatomical structures do not usually intersect, etc. From these observations, a series
of rules can be derived to better drive the segmentation process. Broadly speaking,
explicit knowledge approaches can be seen as a special case of implicit knowledge
algorithms where the additional medical expertise provides short cuts in the search
for the target structure or tissue.

As mentioned earlier, model-based (top-down) methods are more amenable to
the introduction of medical knowledge. Nonetheless, bottom-up techniques such as
thresholding and region growing can also benefit from intensity models built from
a priori observations.

We review below a selection of approaches organized according to the type of
knowledge that they model: shape and appearance in Section 5.1 and position in
Section 5.2. In each case, we propose a number of implicit and explicit knowledge
techniques.

5.1. Modeling shape and appearance
5.1.1. Implicit models

Even though a given structure can present a wide variety of forms, the notion of
biological shape seems reasonably well explained by a statistical description over a
large population of instances. Consequently, statistical approaches have attracted
considerable attention 4140175 A deformable model is then constrained not only by
the number of degrees of freedom imposed by its geometric representation, but also
in that it must be a valid instance of the shape model. Developed by Cootes and
Taylor 4!, active shape models are represented by both a set of boundary /landmark
points and a series of relationships established between these points from the differ-
ent instances of the training set. New shapes are modeled by combining in a linear
fashion the eigenvectors of the variations from the mean shape '°%. These eigen-
vectors encode the modes of variation of the shape, and define the characteristic
pattern of a shape class. The shape parameter space serves as a means to enforce
limits and constraints on the admissible shapes, and insure that the final extracted
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shape presents some similarity with the shape class, as established from the training
set. Many variants have been presented in the literature 2°%80. They either intro-
duce more constraints or decrease the control over admissible shapes. In particular,
active appearance models “° incorporate both a statistical model of the shape of
the target, and a description of the statistical distribution of the gray-level intensi-
ties of the structure. A similar PCA approach was applied to the signed functions
embedding level set representations in Leventon et al. 1°°.

Blum et al.!” introduced the medial representation as a model of biological
growth and a natural geometry for biological shapes. Pizer et al. '*? derived a sam-
pled medial model. Joshi et al. 85 used it within a Bayesian framework to incorporate
prior knowledge of anatomical variations. A multi-scale medial representation was
used to build the template examples needed to obtain prior information about the
geometry and shape of the target anatomical structure. Within this framework, the
anatomical variability of a structure corresponds to the distribution of the admissi-
ble transformations of the shape model. Medial representations are however difficult
to build for non symmetrical shapes and are notoriously plagued by topological dif-
ficulties.

Staib et al. 7 used a similar Bayesian scheme to control the coefficients of an
elliptic Fourier decomposition of the boundary of a deformable template. They in-
troduced a likelihood functional, which encoded the spatial probability distribution
of each model, to be maximized under a Bayesian framework. The distribution of
the model parameters was derived from a learning set of instances of the target
object, and served to constrain the deformable template towards the most likely
shapes. Székely et al. 82 added an elastic property to a Fourier decomposition to
create elastically deformable Fourier surface models. A mean shape and its associ-
ated modes of variation were extracted via statistical analysis of a learning set of
Fourier decomposed instances of the target structure. The elastic fit of the mean
model in the shape space was used as a regularization constraint.

Styner et al. '™ combined a fine-scale spherical harmonics boundary descrip-
tion with a coarse-scale sampled medial description. The SPHARM description,
introduced by Brechbiihler 20 is a global, fine scale parameterized description which
represents shapes of spherical topology. It uses spherical harmonics as a basis func-
tion. Styner’s medial models were computed automatically from a predefined shape
space using pruned 3-D Voronoi skeletons to determine the stable medial branching
topology.

Metaxas et al. 12 devised deformable superquadrics which combined the global
shape parameters of a conventional superellipsoid with the local degrees of freedom
of a membrane spline. The relatively small number of parameters of the superellip-
soid captured the overall shape of the target structure while the local spline com-
ponent allowed flexible shape deformation in a Lagrangian dynamics formulation.
Vemuri et al. 2° used the properties of an orthonormal wavelet basis to formulate
a deformable superquadric model with the ability to continuously transform from
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local to global shape deformations. Such model can continuously span a large range
of possible deformations: from highly constrained with very few parameters, to un-
derconstrained with a variable degree of freedom. Here again, a Bayesian framework
biased the deformable models towards a range of admissible shapes.

Poupon et al. '* proposed the use of 3-D moment invariants as a way to embed
shape distributions into deformable templates. They devised a framework capable
of dealing with several simultaneously deforming templates, thanks to their fairly
low updating cost, with the goal of segmenting deep grey nuclei in 3-D MRI. The
remarkable stability of the invariant moments allowed them to study the anatomical
variability of the deep gray nucleir in brain MRI.

A given instance of the target structure may not always exhibit homogeneous
intensity distribution along its boundaries. Yet, the intensity may be locally char-
acteristic. The intensity profile, computed along the border of the structure models,
then provides an efficient means to introduce a priori knowledge. Cootes et al. 3°,
for instance, modeled the statistical distribution of the intensity profile on each side
of the structure surface. The mean profile, established from a structure learning set,
was compared against the image data to determine the cost of a particular con-
figuration of the model and guide the segmentation process. Brejl et al. 2! used a
somewhat similar border appearance model to automatically design cost functions
that served as a basis for the segmentation criteria of edge-based segmentation
methods.

Note that most of these statistical or bayesian approaches require that corre-

spondences between the shapes in the learning set be available a priori, a non-trivial
problem in itself 196,33,59,209,89,192,46,48,141

5.1.2. FExplicit models

An even larger variety of explicit knowledge techniques is available in the literature.
These approaches tend to be more heterogeneous as they usually combine shape
and intensity descriptions in the same framework. Often, explicit information is
complemented or generalized by implicit information (for instance, a purely explicit
position rule can be made more robust as a fuzzy condition, which however intro-
duces non-explicit elements: the o parameter of the cut-off, the amount of diffusion,
etc.).

Since the seminal work on spring loaded templates by Fischler et a
explicit knowledge approaches have been proposed in the literature to incorporate
computationally extracted medical expertise about the shape or appearance of a

1. 58, many

structure.

Early work frequently relied on highly specific hand-crafted models. Yuille et
al. 221 chose to use circles and parabola to retrieve eye and mouth patterns in face
pictures. Noticing the elliptical shape of the vertebra in axial cross section images
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of the spine, Lipson et al. 19 used deformable ellipsoidal templates to extract their
contours. These methods present the advantage of providing a very economical
description of the shape in terms of the number of required parameters but lack
genericity in that a new model with new parameters has to be developed with each
new object.

Even though ASM can handle disconnected shapes it is easier to partition a
complex shape (i.e. the vertebral column), into simpler and more manageable el-
ements (the vertebrae). Nothing this, Bernard et al. '? devised a two-level hierar-
chical scheme to model both the shape and the topology of the resulting complex
model. Each individual structure was controlled by its own ASM, subject to an
overall global ASM encoding the relative positions and orientations of the set of
components.

Amit and Kong 2 used a complex graph of landmarks, automatically chosen from
the input images as a topological model, to guide the registration process of x-ray
images of the hand. A dynamic programming algorithm was used on decomposable
subgraphs of the template graph to find the optimal match to a subset of the
candidate points.

As it can represent and merge uncertain or imprecise statements, fuzzy theory
is particularly well-suited to model shape. Among others, Chang et al. developed
a fuzzy-controlled rule-based system capable of segmenting MR images of diseased
human brains into physiologically and pathologically meaningful regions by incor-
porating expert knowledge about both brain structures and lesions. They used the
distance between pixels and the ventricular boundary as a fuzzy property of periven-
tricular hyperintensities to help diagnose the studied disease. Barra and Boiré !
used information fusion to combine medical expertise with fuzzy maps of morpho-
logical, topological, and tissue constitution data to segment anatomical structures
in brain MRIs. For instance, they encoded expert information about the relative po-
sition of two structures as a fuzzy distance map. Wen et al. 2! used fuzzy-embedded
human expert knowledge to evaluate the confidence level of two matching points
using their multiple local image properties such as gradient direction and curvature.
Studholme et al. 17" merged region labeling information with classic iconic image
registration algorithm via information fusion to align MR and PET images of the
pelvis.

When anatomic knowledge can be captured by a series of simple positional, ge-
ometric or intensity rules, expert systems provide a convenient framework to assist
in segmentation tasks. Ardizzone ® for instance developed a descriptive language
to express the geometric features and spatial relationships among areas of images.
115 also used a rule-based system to organize and classify features (such as bright-
ness, area, neighborhood, etc.) for regions that had been automatically extracted
via region growing and they segmented scalp, gray and white matter, CSF and
strokes. In Brown et al. 22, lung boundaries were segmented in chest X-ray images
by matching an anatomical model to the image edges using parametric features
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guided by a series of rules. Li et al. 19 described a knowledge-based image inter-
pretation system to segment and label a series of 2-D brain X-ray CT-scans. Their
model contained both analogical and propositional knowledge on the brain struc-
tures, which helped interpret the image primitive information produced by different
low-level vision techniques. Finally, Poupon et al. '4° used 3-D moment invariants
to embed shape distributions in deformable templates. They devised a framework
that could deal with several simultaneously deforming templates, with a fairly low
updating cost, to segment deep gray nuclei in 3-D MRI. We presented in Pitiot et
al. 140 an expert-knowledge guided system which evolved, in parallel, a number of
deformable models (one per target structure). These evolutions were supervised by a
series of rules and meta-rules derived from a priori analysis of the model’s dynamics
and from medical experience. The templates were also constrained by knowledge on
the expected textural and shape properties of the target structures (caudate nuclei,
ventricles, corpus callosum and hippocampus in T1-weighted MRIs).

5.2. Position

Often, the positions (and shapes) of nearby anatomical structures are not inde-
pendent of each other. For instance in the human brain, the caudate nuclei are
juxtaposed to the lateral ventricles, so any change in the shape or position of one
will affect the other. Information about the respective position of structures can
then dramatically help the segmentation process. Positional knowledge can be ei-
ther relative (with respect to neighborhood structures) or absolute (with respect to
an anatomical atlas or standardized coordinate system).

5.2.1. Distance constraints

Relative positional knowledge often takes the form of distance constraints. In Barra,
and Boiré ! for instance, fuzzy logic was used to express both distance and po-
sitional relationships between structures. In Tsai et al. 7, a series of parametric
models, built via principal component analysis of multiple signed distance functions,
enabled the concurrent segmentation of anatomical structures, via minimization of
a mutual information criterion. Inter-object distance constraints were also used in
Yang et al. ' where a maximum a posteriori estimator for anatomical shapes
helped constrain the evolution of level set functions.

In Pitiot et al. 0, we also chose distance maps as they can model distance con-
straints accuratly and robustly (guaranteeing non-intersection, for instance). Given
a deformable model I1° (a simplex mesh ), we wished to impose on it a distance
constraint with respect to another model IT'. We first computed the distance map
D' associated with a discrete sampling of IT'. We used a classical Chamfer map *
algorithm to compute a signed distance map, positive outside the discrete sampling
of IT* and negative inside. At each vertex P of I1°, we then computed a “distance
force” faistance whose magnitude depended on the value of the distance map at the
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considered vertex. We derived two types of constraints. For some pairs of structures,
we wanted the force to attract the vertex, along the direction of the gradient of the
distance map, up to an exact distance diqrget Of the target mesh: For other pairs,
we only wished to enforce that this same vertex remained at distance greater than
diarget (t0 prevent intersections between structures for instance). Note that these
forces could also be applied to a subset of the mesh vertices (so-called “zones”) to
enforce more local constraints.

5.2.2. Atlas warping

A hybrid shape/position explicit knowledge approach, atlas registration or warping
183,8,36 enables the concurrent segmentation and labeling of several target struc-
tures. Prior anatomical expertise about the shape, orientation and position of the
target structure is projected onto a 3-D atlas, usually modeled as an elastically (or
fluidly) deformable object, to be used as anatomical reference. Segmenting the tar-
get structures then boils down to registering the a priori labeled atlas to the input
image. In effect, this transforms a model-to-region matching problem (the initial
segmentation task) into an intensity to intensity matching one (iconic registration
of two images). As a result, the effectiveness of the process relies on the assumption
that the actual target structures in the input image are only marginally different in
shape, orientation and location from the ones in the atlas, a reasonable hypothesis
in non pathological cases.

Atlas techniques usually consists of two phases. First, the atlas is initialized
over the input image with a rigid or affine registration algorithm 3. Then, a non-
linear registration stage corrects for the finer anatomical differences 36:162:44:29 Not
surprisingly, the main drawbacks of this approach are classical registration issues.
To begin with, a poor linear initialization will undoubtedly yield an even worse non-
linear registration. Second, because of their tessellated nature, biomedical images
are packed with decoy structures which look surprisingly close to the target ones
and may fool the registration process. Finally, because of the high variability of the
segmentation targets, the non-linear registration process may not be flexible enough
to adapt the atlas contours to the convoluted boundaries of the actual structures,
all the more since the regularization parameters of the non-linear registration have
to be kept fairly high to prevent warping to incorrect boundaries and to avoid
producing self-intersecting boundaries. One way to alleviate this issue is to restrict
atlas registration to only the initialization step of the segmentation process (see
Section 6.2). Another work-around consists in using preprocessing techniques. In
161 for instance, 3-D edge detection and a series of morphological operators were
used to extract from the input MR images the main cortical sulci. These helped
increase the convergence speed of the atlas warping procedure by providing a smooth
representation of the cortical surface.

Atlas warping has been mostly applied to the segmentation of cerebral struc-
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tures in MR images of the brain 194, Aside from the segmentation per se, it also
provides a standard reference space in which to study the morphometric properties
of structures and organs 4785,

6. Robustness

A segmentation system can arguably never be robust enough, as exemplified by
the variety of techniques discussed in the literature to cope both with the high
variability of the target structures and with the noise characteristics of the input
images. However, as already mentioned above, increased robustness often comes at
a cost, that of decreased accuracy. As always, trade-offs have to be found, which
we discuss in this section, along with the two main robustness factors: initialization
(Section 6.2) and the optimization framework (Section 6.3).

6.1. Generic versus specific

In the absence of a single segmentation algorithm capable of effectively handling
all segmentation applications with satisfactory accuracy and robustness, most seg-
mentation approaches have to deal with the delicate balance between genericity and
specificity. On the one hand, generic techniques perform reasonably well over a large
number of applications, mostly due to a high robustness to noise and imaging ar-
tifacts. On the other hand, application-specific methods are more accurate, the use
of adapted prior knowledge increases their robustness and they can deal optimally
with artifacts associated with the images they have been specifically trained on. In
between these extremes, application-tailored approaches provide the user with the
means to adapt an otherwise generic segmentation technique to the application at
hand. For instance, the statistical shape constraint techniques we reviewed in Sec-
tion 5 effectively adapt generic deformable model formulations to segment specific
target structures (or a specific class of target structures).

Specialization is all the more attractive since several optimization tricks can be
applied to improve the segmentation performance and speed when the application
is restricted to a limited domain. In motion tracking ''7 for instance, the bound-
aries of the segmentation target extracted at a given time may serve to initialize
the segmentation of the same target at the next time instant, a tactic that relies on
the assumption that the target exhibits only small changes in shape and position
between time instants. Although initially developed in the context of computer vi-
sion 88187 the most popular motion tracking application is probably the analysis
of the dynamic behavior of the human heart, the left ventricle in particular 7.
The multi-channel capabilities of MR systems also motivate the increasing special-
ization of algorithms. Indeed, a variety of MR pulse sequences are available, where
each sequence yield a different distribution of the tissue contrast characteristics. In
the event where a segmentation system should be applied to images acquired with
the same sequence on a single scanner, a careful study of the imaging character-
istics of the sequence would most probably favor a combination of highly specific
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bottom-up strategies and specifically tailored generic approaches. Conversely, it is
sometimes possible to determine the optimal pulse sequence for a particular seg-
mentation target or application 1°1173. The optimized MR acquisition processes are
then specifically tuned to maximize the contrast between the tissues underlying the
segmentation target and their surroundings, thereby facilitating the segmentation
process.

Furthermore, real time issues and other resource constraints (CPU power, mem-
ory occupation) may severely impede the adaptation of a segmentation system from
one application to another. Sophisticated model-based techniques are not particu-
larly fast for instance and must be optimized in speed at the expense of great efforts
if they are to be used in the surgical arena 2'°.

At any rate, segmentation systems will most probably require a large amount of
specialization to become fully automated.

6.2. Initialization

As discussed throughout this chapter, the amount of noise present in the input
images, the intensity inhomogeneities and imaging artifacts that plague them and
the variability of the segmentation targets all contribute to a poorly structured
and highly non-convex space that the segmentation system must traverse in search
for the target’s boundaries. Most approaches would only lead to weak sub-optimal
solutions (where the deformation model adapts to noise or decoys or maybe only
follows parts of the desired boundaries) if the search space were not drastically
reduced by assuming that a good approximation to the solution was available. This
can be either in the form of a set of pose parameters (position, orientation, scale)
or shape and appearance descriptors.

Various approaches have been presented in the literature to overcome this ro-
bustness issue. Some are specific to a particular segmentation technique (histogram
peak detection for region growing for instance), others (such as atlas registration)
are applicable across a wider ranger of segmentation strategies.

Classification techniques often require ad hoc initializations. When only limited
a priori knowledge about the characteristics of the target voxel attributes is avail-
able, in PET tumor or lesion detection applications for instance, the salient peaks
in a histogram of the voxel attribute values can be used to seed region growing
algorithms. Other techniques ensure relative insensitivity to seed position 2°°. Note
that the closely related split and merge algorithms effectively avoid this seed posi-
tioning difficulty !33:112:196_ On the other hand, when the intensity characteristics of
the target structure or tissue can be statistically estimated, they can help initialize
the various Gaussian means, variances and mixing coefficients of EM and Bayesian
classification approaches, to ensure better classification performance °7.

In view of their inherent complexity, model-based approaches are certainly even
more sensitive to initial parameters. As pointed out by Xu and Prince 2!7, the ini-
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Fig. 6. (a) reference MRI with manually delineated structures superimposed (corpus callosum
in red, ventricles in white, caudate nuclei in green and hippocampi in yellow); (b) reference MRI
registered to an input MRI and initialized structures.

tial distance between the model and the target structure (both in terms of actual
Euclidean distance and of morphological difference) and the ability to reach into
concave boundaries are the two key difficulties of parametric deformable models.
These have been tackled by numerous authors. Blake et al.!> for instance imple-
mented a coarse to fine strategy, the Graduated Non-Convexity Algorithm, where a
scalar parameter controlled the amount of “local” convexity. To resolve the issue of
the capture range of the segmentation target within a highly cluttered and tessel-
lated environment, the models can also be initialized at a number of locations and

Fig. 7. Anatomically correct caudate nucleus (green + red) and manually segmented caudate
nucleus (green) as obtained from most delineation protocols: the caudate tail is explicitly cut to
reduce delineation variability. The nearby ventricles and corpus callosum are rendered in gray.
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evolved in sequence: the deformed model with the best final match is then selected.
In Pitiot et al.'*2, a hybrid evolutionary algorithm controlled a family of deformable
templates that were evolved simultaneously to explore the search space in a robust
fashion. A pre-processing stage involving filtering, thresholding or morphological
techniques may also be useful 223.

Yet another series of techniques utilizes linear or nonlinear registration to ini-
tialize the deformable models or the seed points of region growing approaches or
level set methods reasonably close to their expected positions 162,

In Pitiot et al.'*°, we selected an MRI brain dataset for its “standard” appear-
ance (the reference MRI), and the target structures were carefully segmented in
it (see Figure 6(a)) following established anatomic delineation protocols. Given an
input MRI to be processed, the first step consisted of registering the reference MRI
to it with a non-linear registration algorithm with an elastic prior (the MAMAN
algorithm 24). The transform obtained was then applied to the meshes segmented
in the reference MRI. These transformed meshes served as initial guesses for the
segmentation of the target structures (Figure 6(b)).

6.3. Optimization scheme

While the segmentation model determines the structure of the space of extracted
shapes (see Section 4), the optimization scheme conditions the ability of the model
to traverse this space in search of the correct boundaries.

Most of the segmentation approaches we have mentioned in this chapter can
be cast as an optimization problem whereby the search for the target boundaries
corresponds to the search for the global minimum of a given functional. The diffi-
culties linked to the choice of a suitable segmentation criterion (which we identified
in the introduction to Section 2) carry over to the determination of an adequate
objective function. Namely, the remarkable variability in shape and appearance of
the segmentation targets, the intensity characteristics of the input images (noise
distribution, artifacts, contrasts between sutrctures, etc.) and the varying objec-
tives of the envisioned applications all contribute to the burden of an appropriate
design. However in return, formulating the segmentating process as an optimization
problem clearly states its objective: finding the global minimum of the functional f.

As with deformable models, the objective function to be minimized can be
thought of as an energy, or as a sum of energies £ = ) . E;. A necessary con-
dition to minimize F is the zero crossing of its first derivative: V(E) = 0, which

fIn view of the somewhat irregular nature and lack of convexity of the landscape of the optimization
functional, it would be illusory to expect that the global minimum would effectively coincide with
the target boundaries, if it can be found at all. Yet, in practice, the many e priori knowledge
constraints and a priori information imposed on the segmentation process increase the probability
that a good approximation of the true boundaries coincides with a reachable local minimum not
too far away from the global one.
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effectively can be read as a balance of forces (with one force per energy component).

When it is not possible to minimize F in a static or algebraic way, either theoret-
ically or practically, a dynamical system can be built whose evolution to equilibrium
yields the same minimum 24, An estimation of the target boundaries can then be
obtained iteratively. In fact, it is sometimes easier to directly design the laws of
evolution that control such a system, most especially when some of its terms do
not derive from an energy, as is often the case with medical knowledge based con-
straints. An added benefit is the offered possibility to converge towards the local
minimum closest to the initial position. This proves useful in semi-automated seg-
mentation systems where a manual estimate of the target boundary can be refined
automatically.

However invaluable they can be in increasing the robustness to noise and imaging
artifacts, these shape or appearance models induce a poorly structured optimization
space when they serve as constraints on the deformation process. The matter is made
worse by the high variability of the segmentation target and the tessellated nature
of medical images. All in all, we are left with a very difficult minimization problem.

Several algorithms have been developed to remedy this difficulty 1?4, most of
them coarse-to-fine strategies. In a multiscale framework 37128 for instance, the
segmentation is first performed on a smoothed downsampled version of the input
image and successively refined at higher resolutions. With multiresolution tech-
niques (pyramidal schemes), the segmentation model itself is subjected to changes
in resolution (multi-scale pyramid of basis functions in Székely et al. 182, octree-
spline in Széliski et al. 18!, and dynamic mesh decimation in Létjonen et al. 10°).
Among other optimization strategies, dynamic programming was used by Amini et
al. 2 or Coughlan et al. *? to increase the spectrum of the search for the global
minima. Poon et al. 1#® selected simulated annealing, owing to its ability to reach
the global minimum and to incorporate non-differentiable constraints. In Pitiot et
al. 19, most of the parameters controlling the segmentation process were dynam-
ically modified, along with the deformation of the models. The overall robustness
was increased without sacrificing too much accuracy by dynamically controlling the
balance between the two and adapting it to the segmentation problem at hand.

7. Validation

Characterizing, both qualitatively and quantitatively, the performances of an au-
tomated segmentation system is all the more pivotal since the available algorithms
have only limited precision and accuracy. In other words, since segmentation ap-
proaches make compromises, the validity of the underlying assumptions must be
checked against the envisaged applications. Yet, medical image segmentation vali-
dation is still an open problem plagued with challenges and conflicting objectives.

The foremost difficulty stems from the absence of ground truth. Given the cur-
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rent resolution of the most common imaging modalities and the artifacts that afflict
them, even human operators cannot establish the actual boundaries of the segmen-
tation targets from the acquired data with sufficient accuracy. The availability of
physical or simulated phantoms 737 partially alleviates that issue, but their lim-
ited sophistication prevents them from accurately modeling either the large anatom-
ical complexity of organs and structures (for physical phantoms) or the full flavor
of imaging characteristics (noise, inhomogeneities, partial volume effects) both in
normal and pathological cases (for simulated phantoms).

Often, the target boundaries extracted by an automated algorithm are compared
against those manually delineated by a series of experts, under the assumption that
the expert delineations are a good approximation of the actual boundaries. However,
as demonstrated by many intra- and inter- operator variability results 228:154:127,129
manual segmentation accuracy is often poor when target structures are difficult
to segment, sometimes to the point where the manual delineation protocols must
explicitly discard certain anatomical parts from the target structures to limit the
delineation variability and avoid introducing spurious outlines (as an illustration,
the segmented caudate nuclei reported in Pitiot et al. 14° have a very short tail, and
the inferior horns of the ventricles are missing). Approaches to establish the true
boundary from a series of manual delineations are being investigated 2!,

What is more, the modus operandi of the validation studies must be adapted
to the objectives of the application for which the structures are segmented in the
first place. For instance, longitudinal studies typically rely more on reproductibility
than actual accuracy: systematic segmentation biases may be tolerable so long as
the segmentation targets are outlined consistently across a large population of input
images. The ability to adequately handle pathological cases is also an application
parameter that may influence the design of a segmentation approach. Consequently,
although assessing the behavior of a system tuned for standard cases on pathological
data is certainly informative, it would seem unfair to penalize it on such a ground.
Clearly, as mentioned above, the increased robustness yielded by introducing prior
medical knowledge is often counterbalanced by decreased accuracy, especially with
shape models that tend to forbid the segmentation of non-standard boundaries.

The variety of segmentation objectives is clearly reflected in the diversity of
validation metrics (see Zhang 222 for a broad overview). Some authors use volume
overlap %332, or ratios of misclassified voxels “°, others the Hausdorff distance be-
tween contours %5. Agreement measures have also been developed 22° as a means
to draw a most probable decision from a set of expert ones. Unfortunately, from a
practical point of view, how accuratly and easily a given validation metrics can be
implemented often depends on the chosen segmentation model. This also introduces
errors in the quantitative validation. For instance, the computation of the Hausdorff
distance between two continuous curves or surfaces runs into quantization problems
as the curves must be discretized. Furthermore, manual outlines are often obtained
in the form of a set of voxels, at a somewhat coarse resolution for most radiograph-
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ical modalities, which is again likely to introduce artificial errors in the validation
measures.

All in all, a consensus still has to emerge as to which validation strategy to apply
in each case.

8. Concluding remarks

With the advent of increasingly powerful and gradually less invasive modalities,
medical imaging has become an invaluable tool for clinical use as well as research
applications. While the quest for even better acquisition techniques continues, the
attention of the medical imaging community has now shifted to the extraction
of meaningful anatomical and physiological information out of the ever growing
databases of medical images. Before the function, morphology or inter-relationship
of organs, structures and tissues can be fully investigated, these must be isolated,
that is segmented, from their embedding images. Mirroring the great variety of
modalities and medical or research objectives, an even larger variety of segmenta-
tion systems has therefore been, and is still being, developed.

Yet, accurate and robust segmentation remains a challenge beset by a number
of issues, that we discussed throughout this chapter. Clearly, in view of the com-
plexity of the segmentation problem, there are no general prescriptions for selecting
a “good” segmentation method. This choice must not only be driven by the char-
acteristics of the input image (imaging artifacts, signal-to-noise ratio, contrast of
the segmentation target with respect to surrounding image features, etc.) but also
by the possible usage constraints (algorithmic complexity with respect to available
memory/CPU resources, time limits if real-time applications are envisioned, etc.)
and of course by the downstream treatments that follow this segmentation step
(diagnosis, morphometric analysis, shape recognition, etc.).

However helpful automated segmentation systems could be in replacing manual
operators, their limited accuracy and, more importantly, their inadequate robustness
still prevent their widespread application.

In a research environment where time is less of a premium than the quality
of the overall analysis, the parameters of a segmentation system can always be
set to specifically fit the requirements of the envisoned application, in terms of
accuracy or robustness. Furthermore, the segmentation results can be, and usually
are, thoroughly checked before the actual analysis takes place. Even so, the rapid
growth of image databases presses the need for fully automated tools. Because of
the sheer size of the image collection to be processed, database applications are
more forgiving with regard to the shortcomings of segmentation systems. Clearly,
invaluable information can always be extracted even when the algorithm employed
suffer from statistical biases, as long as these are consistent.

In a clinical setting though, time is a precious resource that has to be managed
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tightly. To be useful, a segmentation system must exhibit maximum accuracy with
the standard “out of the box” set of parameters. To gain physicians’ trust, it must
also be sufficiently robust not to require any exhaustive and tedious quality checking
phase.

To achieve this long-term goal, substantial progress is still to be made. In the
meantime, semi-automated segmentation is likely to remain the favored means to
assist in the labor intensive tasks of medical imaging analysis. By assisting man-
ual operators rather than replacing them, partial automation effectively decreases
the segmentation burden without comprimising the trust placed in the quality of
the final results. Semi-automated delineation tools that can complete delineations
based on prior shape knowledge, atlas registration assisted segmentation systems, or
expert system controlled segmentation approaches that communicate with the op-
erator to attract his attention to potential problems, are set to obtain an increasing
share of the limelight.
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