
3.3. Generating polygon

Conclusion
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Figure 11 is an example of IS3 used to fit two postures of order two.
The curvature is a cubic polynomial and jerk a parabola.

Figure 12 is an example of IS3 used to fit two posture of order two with
two intermediate points. The curvature profile is piecewise cubic and
the jerk is C1 continuous.

3.2. Trajectories with bounded curvature

 Figure 13 illustrates the effect of limiting extremum of curvature: we
use the same end conditions than figure 9 and 11 but add a constraint on
maximum curvature.

Figure 10: Set of clothoids passing through (P0,P1,P2,P3,P4) with heading
conditions φ0=90o and φ4=90o. a) Curve b) Curvature profile

(a) (b)

Figure 11: IS3 passing through P0 (4,1) and P1 (4,7) with heading
condition φ0=90o , φ1=50o and curvature condition k0 = 0.2 , k1 =0.2. a) Curve
b) Curvature profile c) Jerk profile.

Figure 12: Set of IS3 passing through (P0,P1,P2,P3) with the heading
conditions φ0=50o, φ3=25o and curvature conditions k0=0.2 , k3= -0.2. a) Curve
b) Curvature profile.

(a) (b)

Figure 13: a) Same as figure 9 but with curvature limited to 2 m-1. b)
Same as figure 11 but with curvature limited to 0.6 m-1.



clothoid will degenerate into circles and IS3 into cubic spirals without
modification of the algorithm. Finally, the coefficients of the polynomi-
als k(s) can be easily extracted once convergence has been reached.

The algorithm does not currently allow to generate curves that enroll
around a point like a spiral.

2.4. Trajectories with curvature constraints

Because most mobile robots have a limited radius of curvature, it is nec-
essary to provide trajectories with curvature within certain bounds.
Without this constraint, , the mobile robot would be unable to follow the
prescribe trajectory which could result in serious deviation from the
path and eventually in a collision with an obstacle. Another reason to
control the extrema of curvature along the path is to avoid the robot to
slow down at high curvature points and therefore to guaranty a mini-
mum speed of the robot.

Previous path generation method did not address this problem, the
extrema of curvature being usually impossible to compute explicitly.
We propose a method that, given an intrinsic spline of order one or
three, deforme the trajectory until its extrema of curvature are below a
given value, while keeping the continuity of curvature. This method
consists in adding intermediate points and moving these points outside
the curvature of the curve. The result is a piecewise intrinsic spline.

More precisely, let T(u) be a trajectory obtained from the previous
method. Because the curvature profile is either a line or a cubic, there
are at most two extrema of curvature. If the curvature exceeds a certain
threshold, then these points are used are moved , and then considered as
intermediate points. A new spline is fit that meets the previous end-con-
ditions and that goes through the intermediate points. The result is a
picewise intrinsic spline. The algorithm is applied on the new spline and
iterated until the extrema of curvature are below the threshold. Figure 6
shows the different stages of the algorithm. It should be noticed that the
extrema of curvature are not necessary the same duting the deformation.

Figure7 shows how the extrema are moved along the normal of the
curve. The distance of which the point is moved is proportional to the

curvature.

By moving the points outside the curvature, we create a longer trajec-
tory which allow to decrease curvature since the amount of turning is
spread along the curve. This method performs well if the maximum cur-
vature allowed is not too small (otherwise trajectories tend to be
extremely long).

3. Examples

3.1. Free Trajectories

Figure 8 is an example of a clothoid spline that is fit between two pos-
tures of order one. The curvature is linear and the jerk is constant.

Figure 9 is an example of a piecewise clothoid fit between two postures
of order one and three intermediate points. The curvature is piecewise
linear and the jerk is therefore not continuous at intermediate points.

P0 P1
k0

k1

Initial Spline

Final
piecewise spline

Figure 6: IS3 spline deformed such that its curvature is bounded by a
given value. The small arrows indicate how the extremum of curvature are
moved. The final spline is a piecewise IS3.

Extremum
of curvature

Center of curvature

Point of
extremum curvature

Normal
direction

Intermediate
point

Figure 7: Movement of a point of extremum curvature outside the
curvature of the curvature. The intermediate point is used to fit a new [piecewise
spline.

Figure 8: Clothoid drawn between P0 (0,0) and P1 (0,1) with φ0=90o and
φ1= -135o. a) Curve b) Curvature profile.

(a) (b)



Figure3 shows the four types of geometric constraints that can be matched
using the intrinsic splines; by combining these four types, it is possible to solve
most of the path constraints encountered for trajectory generation..

Intrinsic splines of degree one and three is therefore sufficient for generating
most of trajectories. An algorithm based on the deformation of a string allow to
derive these splines.

2.3. Trajectory generation

The lack of closed-form expression for intrinsic spline has been a serious limi-
tation for their applicability as the usual numerical method such as Newton-
Raphson algorithm or Simpson’s approximation perfom poorly. Our method
has the advantage to be fully parallelizable and to solve more general problem
than the previous methods.

To explain the principle of the algorithm, we will make an analogy with cubic
splines. Let T0(u) be a curve such that it meets the end-conditions (P0,P’0) and
(P1,P’1) (Figure 4). If we use the smoothness criterion :

then the cubic spline is the only curve that meet the same end-conditions that
T0(u) and that minimizes at the same tome the criterion C. The algorithm con-
sists in deforming iteratively the curve T0(u) such that it minimizes its cost C.
A parallel can be drawn with the deformation of a clamped string as it tries to
reach its stable position through the minimization of its potential energy.

The deformation D(T0(u)) of the curve T0(u) is given by the Euler-Lagrange
equation derived from the criterion C :

The curve T0(u) is transformed into the curve T0(u)+α.D(T0(u)) (α is a con-
stant) that applying this deformation iteratively, will converge toward the cubic
spline for which D(T(u))=0. The convergence is guaranteed by the convexity
of the cost function C.This method is an example of regularization techniques,
widely used in computer vision.

In a similar manner, we can deformed a given curve T(u) such that it converges
toward an intrinsic spline. The deformation functionals D(T(u)are then
defined as :

where  and are the tangent and normal of the curve, s is the arc-length, φ
is the polar angle of the tangent and u0 is a constant. D1(T(u)) leads to intrin-
sic spline of degree one, while D1(T(u)) leads to IS3. In practice, we use dis-
crete curve defined by a set of knots {Ri = (xi,yi)} (i=0,q) and we use the
discrete curvature {ki}, (i=0,q) (Figure 5.a). The curves are initialized as
straight lines and then deformed by moving the knots {Ri}; the deformation is
stopped when the displacement of the knots is less than a threshold.

Figure 5.b shows the deformation of a curve from a line to a clothoid. The con-
vergence rate depends on the number of knots and of the degree of the intrinsic
spline. We use a minimum of 12 knots to defined each curve.

While previous numerical methods attempted to find the coefficients of the
polynomial k(s), our method provides direcly a discrete trajectory that can be
used by the tracking module.Futhermore, if symetric postures are used then
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Figure 3: a) Geometric contraint consisting in two posutures of order one.
b) Two postures of order two.c) Two postures of order one with intermediate
points. d) Two postures of order two with intermediate points.
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tions. A generating polygon can be used to handle these spline in the
same manner than B-spline. Futhermore, it is possible by adding control
points to provide trajectories such that their maximum curvature is
below a given value; therefore, we can take into account the limitation
of radius of curvature of a mobile robot.

In the next section, we will consider Section2 descibes the algorithm
and Section 3 gives some examples of trajectories.

2. Trajectory generation

2.1. Path constraints

Once the Path Planning problem solve, a set of postures is generated
that provide the geometric constraints for the Trajectory Generation
module. These constraints can be of different nature and we set the fol-
lowing definition : a posture of order p (p>0) is defined by the set
(x,y,φ,φ(1),..φ(p-1)) where(x,y)are the coordinates of a point and where
φ(i) is the ith derivative of the heading with respect to the arc length. For
example, a posture of order two corresponds to the data of a point, a
heading and a curvature. A posture of order zero corresponds to the data
of a point (x,y). A posture of order p is therefore a set of 2+p real num-
bers. In practice, postures of order p with p<3 are used to generate tra-
jectories.

We can represent path constraints by an ordered set of n postures
(Q0,Q1,..,Qn). Figure 1 shows an example of path constraints with a tra-
jectory that matches the constraints.

2.2. Intrinsic Splines

Given geometric constraints, we use curves with polynomial curvature
profile to generate trajectories. We set the following definition :we call
Intrinsic Splines of degree n, ISn, curves whose curvature profile k(s)
is a polynomial of degree n. Their parametric expression is :

(1)

Clothoids correspond to IS1 while cubic spirals correspond to IS2. Fig-
ure 2 shows examples of intrinsic splines of degree one and three.

Intrrinsic splines can be used to solve end conditions in the same way
that polynomial splines. But while end conditions are defined in terms
of first and second derivatives for polynomial splines, they are defined
in terms of heading and curvature for the intrinsic splines. More pre-
cisely, given two postures of order p, there exists at most one intrinsic
spline of order n=2p-1 that matches the constraints. The following
table shows the analogy between on one hand, IS1 (Clothoids) and
cubic splines, and on the other hand, IS3 and quintic splines.

Figure 1: a) Path constraints made of four postures of order one .
 b) Resulting trajectory.

(a) (b)

P0

P1

P2

P3

x u( ) x0 a0 a1 s⋅ .. an 1+ s
n 1+⋅+ + +( )cos ds

0

u

∫+=

y u( ) y0 a0 a1 s⋅ .. an 1+ s
n 1+⋅+ + +( )sin ds

0

u

∫+=

(a)

(b)

Figure 2: a) Clothoid : Curve of equation k=s. b) Intrinsic spline of degree
3 : curve of intrinsic equation k=s3-s
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Abstract 1

Trajectories for mobile robots have to be smooth and at the same
time have to meet certain geometric constraints. Previous work We
present an algorithm that generates trajectories that

1. Introduction

The trajectory generation problem is a key aspect of the more general
Motion Planning problem for mobile robots. Once the Path Planning
module have found a satisfactory global path among obstacles, the Tra-
jectory Planning module have to geometrically define the trajectories
that will be used by the Tracking module. Therefore, the trajectory gen-
eration problem is of purely geometric nature; furthermore, it can be
defined as providing a set of trajectories that are “smooth” and meet cer-
tain boundary conditions.

The notion of “smoothness” is an ambiguous one. First, smoothness of
a trajectory relates to the smoothness of its curvature profile k(s) (s is
the length along the curve). Most mobile robots or autonomously
guided vehicles are controlled by the velocities of their wheels which
are related to the radius of curvature of the vehicle. Therefore, suitable
trajectories should have a smooth curvature profile k(s) in order to guar-
anty smooth variations of the wheels velocities.

Second, the smoothness of a trajectory is a relative concept and is
defined through the use of a smoothness criterion. Authors have used
different types of smoothness criterion in order to derive trajectories.
Kanayama and al.[1] used the square of curvature and the square of the
derivative of curvature as cost functions:

 where  is the polar angle of the tangent vector:. The trajectories that

1. This research was supported in part by NASA under Grant NAGW 1175, and
in part by DARPA through ARPA order No 4976. The views and conclusions
contained in this document are those of the authors and should not be interpreted
as representing the official policies, expressed or implied of those agencies.

minimizes these criterion are clothoids and cubic spirals. Takahashi and
al[2]. used the jerk or derivative of acceleration:

 which led to quintic polynomials. For a different purpose, Horn[3]
studied the curves that minimize the square of curvature with fixed end
points :

He found that the optimal curves were those having the intrinsic equa-
tion :

Bruckstein[4] pointed out that the previous cost function was scale
dependant and proposed to use :

where L is the length of the curve. He found that curves of equation
:were solution which include circles.

 Circular arcs and lines[5] have first been used to generate trajectories
despite the fact that the curvature profile generated is not continuous.
Quintic polynomia[2]l and B-splines[6] are easy to compute and can
provide curvature continuity along the curve. But their curvature profile
is complex, not necessary smooth and make them difficult to follow.
Clothoids on the contrary are easy to track because their curvature pro-
file is a straight line but are difficult to compute because no closed-form
expression of the coordinates (x,y) is available. Pairs of clothoids[7]
have been used to join two straight lines and provide the minimum
length curve for a maximum jerk. Shin and al[8]. develloped a method
to create piecewise-clothoids trajectories that guaranty continuity of
curvature; but its complexity and some numerical considerations limit
its applicability. Cubic spirals introduced by Kanayama and Hartman[1]
allow a continuous smooth trajectory and minimizes the variation of
jerk but is rather difficult to compute. Nelson[9] chose curves with
closed-form expression such as polar splines to join a pair of segment.

Clothoids, cubic spirals and more generally curves with a polynomial
curvature profile k(s) are of great interest for trajectory generation
because they provide a simple curvature profile. Nonetheless current
numerical methods make them expensive to compute and therefore limit
their applicability. In this paper, we propose an original method to build
such curves; the generality and efficiency of this method allow to create
trajectories that are curvature continuous and that meet given end condi-
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