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Abstract

In this paper, we describe the latest developments
of the hepatic surgery simulator prototype developed at
INRIA. The goal of this simulator is to provide a real-
istic training testbed for performing laparoscopic pro-
cedures. Therefore, its main functionality is to allow
to cut and deform tridimensional anatomical models
with the help of two virtual laparoscopic surgical in-
struments. Thoughout this paper, we present the gen-
eral features of the simulator including the creation
of anatomical models from medical imaging, the im-
plementation of different biomechanical models based
on linear elasticity and finite element theory and the
integration of two force-feedback devices in the simu-
lation platform. More precisely, we describe two new
important developments that improve the overall re-
alism of the simulator. First, we can create biome-
chanical models that include the notion of anisotropic
deformation. Indeed, we have generalized the linear
elastic behavior of anatomical models to "tramsver-
sally isotropic” materials, i.e. materials having one
privileged direction of deformation. The second im-
provement is related to the problem of haptic render-
ing. Currently, we are able to achieve a simulation
frequency of 25Hz (visual real-time) with anatomical
models of complex geometry and behavior. But to
achieve a good haptic sensation requires a frequency
update of the applied forces typically above 300Hz
(haptic real-time). Thus, we propose an extrapolation
algorithm of the forces computed by the deformable
model in order to reach haptic real-time.

1 Introduction

A major and recent evolution in surgery has been
the development of laparoscopic surgery. In this

type of surgery, abdominal operations such as hep-
atic surgery are accomplished through small incisions
rather than a large one that might be a foot long.
The abdomen is blown up with gas so that there is
open space inside. A video camera is introduced into
the abdomen through one of the small incisions. The
video image is magnified and transmitted to a high
resolution monitor, allowing the surgeon to see the
abdominal anatomy with great clarity. The surgical
operation is then performed inside the abdomen using
long and narrow scissors and clamps that are intro-
duced through the other incisions. Thus, laparoscopic
surgery allows surgeons to perform less traumatizing
operations, the drawback of this technique being es-
sentially for the surgeon who needs to learn and adapt
himself to this new type of surgery. In this context,
surgical simulation systems could be a great help in
the training process.

There are several key problems in the development
of a surgical simulator [2]. First of all, a model of the
target organ(s) is required. This model should define
both geometrical and physical characteristics of the
organ(s). The geometry is usually obtained from var-
ious medical images modalities, while the deformable
nature of the soft tissues are determined — when it
is possible — through bio-mechanical studies. How-
ever, the computation of the shape and deformable
behavior of an organ is not sufficient. Another very
important requirement in surgery simulation concerns
real-time interaction. Real-time interaction requires
that any action from the operator generates an instan-
taneous response from the stimulated organ, whatever
the complexity of its geometry. It means that we must
be able to interactively deform or cut a virtual or-
gan and eventually feel its reaction in real-time by
the introduction of force feedback devices. A good
balance between surgical realism and interactive rates
of simulation is one of the most challenging prob-



lems in surgical simulation. To study all the prob-

Figure 1: surgery simulator prototype

lems related to surgery simulation, INRIA gathered
six teams in a joined action AISIM [1]. A laparoscopic
surgery simulators prototype has been developed (fig-
ure 1), based on linear elasticity theory, finite element
method and utilization of force feedback devices. In
this article, we will give a general description of the
two key components of the simulator: the implemen-
tation of real-time physical models and the integra-
tion of force feedback devices. The first component
is centered on the "Tensor/Mass" model [10] which
allows real-time deformations and topology changes,
and we describe the generalization of linear elasticity
to anisotropic materials. The second component deals
with the problem of haptic rendering. Using a force
feedback device within the framework of deformable
object simulation remains challenging because of the
trade-off between the computation time needed by re-
alistic physical models and the high update frequen-
cies required for real-time haptic rendering. Indeed,
it is well-known that the update frequency for haptic
feedback is at least ten times greater than for visual
rendering (25Hz for visual real-time and more than
300Hz for haptic real-time). To solve this trade-off,
we propose to extrapolate contact forces such that we
can use visual rendering frequency update without a
great loss in the quality of haptic feedback.

2 Deformable models

Little bibliography about deformable models
2.1 Linear elasticity

The physical behavior of a soft tissue may be con-

sidered as linear elastic if the displacements applied
to it remain small [11, 12] (less than 10% of the mesh

size); as displacements increase, the linear elastic ap-
proximation becomes less and less valid. In particular,
several biological materials are nearly incompressible
since they are mainly composed of water. Such behav-
ior cannot be modeled with linear elasticity for large
displacements.

To describe a linear elastic model, we first need
to define a reference volumetric anatomical model
Minitial  corresponding to its rest position. Un-
der external constraints, for instance a surgical
instrument, the anatomical model M, is de-
formed. We represent the deformation of a volumetric
model from its rest shape with a displacement vec-
tor Ul(x,y,z) for (z,y,2) € Minitial and we write
Mdeformed = Minitial + U(:c,y, Z) The displacement
vector U(z,y, z) has three components:

u(z,y,2)
v(z,y,2)
w(x,y,z)

U(z,y,2) =

With this displacement vector, we define the lin-
earized Green-St Venant strain tensor (3 x 3 symmet-
ric matrix) E by :

E= %(VU + VU (1)
From the principal invariants of E :
i
la
we can express the linear elastic energy Wegiastic, for

homogeneous isotropic materials, by the following for-
mula (see [9]) :

tr B
tr B2 (2)

Whlastic = = (trE)? + p trE? (3)
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A and p are the Lamé coefficients characterizing the
stiffness of a material.

Equation 3, known as Hooke’s law, shows that the
elastic energy of a deformable object is a quadratic
function of the displacement vector.

2.2 Anisotropic elasticity

Isotropic behavior is a strong restriction to model
human tissues. In fact a lot of anatomical structures
like muscles, tendons, ligaments, blood vessels, are
strongly anisotropic. That is why we are particularly
interested in models of materials with one privileged
direction, which are called "transversally isotropic"
materials.



Bibliography about anisotropic elasticity
(Kaiss-Le Tallec, Spencer, Weiss-Maker-
Govindjee)

For such materials, the elastic energy of equa-
tion 3 must be modified in order to account for the
anisotropy. First, we explain in more details, the
meaning of the strain tensor E. We consider an el-
ementary cube in M, and then look at its shape
after applying the displacement U(z,y, 2). The local
cube deformation is characterized by six components
of strain corresponding respectively to the relative
elongations (e, €, and €,) in the three directions of
the cube and the relative changes of angles (Yoy, Yoz
and +,.) between the faces (shear) of the cube. For
small displacements, these six numbers are related to
the derivatives of U(x,y, 2) by :

ou ov ow
= — = — 2 = = 4
¢ ox € y ¢ oz )
_Ov  Ou _Ow  Ou _ Ow N dv
Yoy = B y Ter = By T oz 2T oy 0z
The strain tensor E can then be written as :
Ein En Eis € 3Vey 3=
E=| Ey E;»p Ey3 |= %%y €y %792
E3 Es Ess %’sz %Wyz €z

The isotropic elastic energy of equation 3 can be
written as :

WElastic = 5

I

2

(o t+e€y+e) +ules+e +6€)

+ (Vay + 722 +75.) dedydz  (6)
This energy is isotropic since the same weight is given
to each direction of stretch and shear. For transver-
sally isotropic materials, it is necessary to define two

sets of Lamé constants:

e (A", u"): Longitudinal Lamé constants in a
given direction having unitary vector ag

e (AT, u"): Transverse Lamé constants in the
plane transversal to ag.

o AN=X — AT and Ap = put — p7

For instance, if the z axis is the direction of
anisotropy ag (0 0 1), then we need to add
to the isotropic energy of equation 6, the anisotropic
contribution AW 4,,:s0 defined as :

AN
2

AVVAnisob
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In the general case, this anisotropic elastic energy can
be simply written with the introduction of two new
invariants {4 and [5 linked to the strain tensor E and
direction ag :
ly
=

Then the anisotropic energy can be written as :

aot E ag
aot E?
0 aog

(8)

AN
LhAX+ 200 = (5= +4Ap) - (9)

Finally, the total elastic energy of a transversally
isotropic material is:

AI/VvAniso

W’I‘ransfiso = WElastic + AVVAniso (10)

2.3 Finite element formulation

All our deformable models are based on a finite
element model consisting of a conformal tetrahedral
mesh. At each point M(z,y, z) in the tetrahedron T,

u
R

S0

)
e

Figure 2: Py tetrahedral finite element

the displacement vector is expressed as a function of
the displacements of the vertices Py:

3
Uz,y,2) = Y Uphe(,y, 2) (11)
k=0

where {\;,k=0,...,3} are the barycentric coordi-
nates of M in the tetrahedron.

We can then write the isotropic linear elastic energy
as a function of the displacement of each vertex :

3 3

=Y S KR

k=0 [=0

(12)

WElastic



where [K,;Il"'] = o) + pagal, + p(adog)Ids is the
tetrahedron contribution to the stiffness tensor of the
edge (P, P;) (or of the vertex Py if &k =1). (ax, k =
0..3) are the shape vectors of the tetrahedron. Like-
wise, we obtain a similar equation for the anisotropic
part of the elastic energy:

3 3
WAniso = Z Z U?c [A']:;l]Ul (13)
k=0 1=0
A}?l" = Al apal)(aral) (14)
A
+ 5 [(agab)(eua) + (af)(anap)
+(agar)(a0ay) + (aoag) : (axay)lds]
AN
(55 + Aw)(aoad (anal)(aoal)
To obtain the force F,vT applied to the vertex Py
produced by tetrahedron T, we derive the elastic en-
ergy with respect to the vertex displacement Py:

8(VVElas‘r,in: + AVVAnisotropic) ¢
Uy

T;
Fk

3
= 2) [Kh +AY1U;
=0

3
GRIUL+ > G0 (15)
1=0;1#k

Construction of the tensor:

We obtain the global force applied on vertex Py by
adding the contributions of all the tetrahedra sharing
this vertex:

Fr, = [Gu]Us+ > [Gu]U  (16)
PZEN(Pk)
G = > oG (17)
T,EN(Pk)

Gu = > Gy (18)

T:eN(P,Py)

Because the elastic energy is quadratic with respect
to the displacement vector, the forces Fj are linear
functions of the displacement vectors of each node Py,.

2.4 Pre-computed model

10 lines about pre-computed model with a

link to [7]

e Construct the global stiffness matrix [G] U = F

e Solve this linear systeme (with conjugate gradi-
ent) for elementary forces applied on each node
in each space direction, and store the results.

e Use the pre-computations during real-time simu-
lation:
Apply "general forces
forces".

Apply > "elementary

e Results: very efficient simulation, but no topology
changes

— another model which can handle cutting: no
pre-computations.

2.5 Tensor/Mass model

Given a tetrahedral mesh of a solid — in our case an
anatomical structure — we build a data structure incor-
porating the notion of vertices, edges and tetrahedra.
For each vertex, we store its neighoring tetrahedra, its
current position Py, its rest position P and the tensor
[Gkk]. For each edge, we store the two vertices linked
by this edge as well as the tensor [Gyj]. Finally for
each tetrahedron, we store its four vertices and its six
edges as well as the Lamé coefficients g, pur, AF, puF,
the direction of anisotropy ag, and the four shape vec-
tors ay.

2.5.1 Numerical integration

We use a Newtonian differential equation:
?P;  dP;
az ~
as the equation governing the motion of our linear

elastic model. This equation is related to the differen-
tial equation found in continuum mechanics [3] :

MU +CU +KU =R (20)

+F, (19)

m;

Following finite elements theory, the mass M and
damping C matrices are sparse matrices that are re-
lated to the stored physical properties of each tetra-
hedron. In our case, we consider that M and C are
diagonal matrices, i.e. that mass and damping effects
are concentrated at vertices. This simplification called
mass-lumping decouples the motion of all nodes and
therefore allows to write equation 20 as the set of in-
dependent differential equations (19) for each vertex.

Furthermore, we choose an explicit integration
scheme where the elastic force is estimated at time ¢
in order to compute the vertex position at time ¢t + 1 :

m; i ) t+1 _ 2m; (mi i ) t—1
_ i \pt+l _, pt_ i) pt
(At2 SAL) T Tae i \ae T aAr (211)




2.5.2 Simulation of cutting

One of the basic task in surgery simulation consists in
cutting. With the dynamic linear elastic model, this
task can be achieved in real-time.

We simulate the action of an electric scalpel — a
bipolar cauttery instrument — on soft tissue by suc-
cessively removing tetrahedra at places where the in-
strument is in contact with the anatomical model.
This approach implies that for realistic simulation,
the tetrahedra must be relatively small in the regions
where the cutting may occur. Furthermore, in order to
keep the mesh conformal, additional tetrahedra may
be automatically removed after checking the local ver-
tex and edge adjacency.

When a collision between the instrument and a
tetrahedron is detected, the local deformation tensors
associated with the tetrahedron are subtracted to the
current deformation tensors at the edges and vertices
of the tetrahedron. Since the update of the tensors is
only local, this is performed in a very efficient manner.
For instance, when removing the tetrahedron 7T;, ten
update operations are performed :

Kyl = Kyl — K5 [Kad = [Kad — [Kj,]
Finally, we update the list of displayed triangles if the
tetrahedron is located at the border of the volumetric
model. By locally updating the tensors, the tissue has
exactly the same behavior as if we had removed the
corresponding tetrahedron at its rest position. Be-
cause of the volumetric continuity of finite element
modeling, the deformation of the tissue remains quite
realistic during the cutting.

2.6 Results
2.7 hybrid model

10 lines about hybrid model with a link to

[10]

3 Force feedback

Thanks to retina persistence a visual sensation of
continuity is provided with relatively low frequencies
(about 25Hz). But haptic rendering requires update
frequencies ranging from 300Hz for soft objects to
10kHz for rigid contact.

In the literature, two main approaches to obtain hap-
tic real-time are developed:

e computing forces empirically [4], for example by
using a force proportional to the penetration
depth of the tool in the object. In this case the
force is not computed from a physical deforma-
tion, but from purely geometric constraint.

e using a simplified physical model. The simplifica-
tion can be done in two ways, either by decreas-
ing the size of the model [6] or by performing
as much pre-computation as possible [7]. In the
latter case, the model cannot undergo any topo-
logical change. A combination of these two pos-
sibilities have been proposed in [8, 10| where an
hybride model combines a large model where uni-
tary deformations have been pre-computed, with
a smaller model allowing topology changes.

We propose to enhance the hybrid model by using
force interpolation. Indeed, it has been shown ([5])
that if haptic rendering is very precise (we can feel vi-
brations until 10kHz, and force variations between 30
and 300 Hz), the gesture is slower (from 1Hz for the
answer to an unexpected signal and 10Hz for a reflex
action). Thus, the applied forces must be updated at
a high rate, but, because it is related to user’s action,
their evolution is quite slow. The idea is to estimate
the force between two time steps of the deformable
model simulation.

First, we will describe our simulator architecture.
Then we present various force extrapolation schemes
we tried.

3.1 Simulator architecture

As the update rates of visual rendering and haptic
rendering are quite different, it is natural to divide the
simulator in two component. As shown in figure 3, the
former component manages the force feedback loop
while the latter component manages the object de-
formation loop. In our setup, the two force feedback
devices (Laparoscopic Impulse Engines') are driven by
dedicated computer. The communication between the
simulation workstation and the force feedback work-
station is performed via a classical Ethernet connec-
tion, using UDP sockets.

3.2 Force extrapolation

Our aim is to generate forces at a rate of 500Hz from
forces computed by the deformable object simulation
at a rate of about 30Hz. The simulation loop gives us a
discrete series of parameters (¢,,P,,F,) representing

Thttp://www.immerse.com
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Figure 3: Hepatic surgery simulator

the force F, applied to the tool in position P, at
time t,. The time step between two successive t,, is
about 0.04s (visual real-time) and is not necessarily
constant. Good quality force feedback can be reached
by an update of the force at about 500Hz. So, we
must choose an extrapolation function F(¢) providing
an estimation of the force to apply to the tool at time
t (tn, <t < tng1) according to already known data
(ti,Pi,Fi), 1t =0..n.

The hardware of the Laparoscopic Impulse Engine
assumes a constant extrapolation between two re-
ceived feedback forces. This has several advantages.
First, it does not need any additional forces. Then, as
the applied force results from the deformation com-
putation, such an extrapolation scheme ensures that
only valid forces are applied without risking to dam-
age the device. The main problem with this method is
the discontinuity of the applied force which gives the
sensation of touching a rough surface as soon as the
update rate becomes too low (under about 300Hz).

Another way to estimate the current value of a sig-
nal changing over time is to extrapolate it over time.
As our deformable model sketches a linear elastic be-
havior, we only consider linear extrapolation over
time. This method gives better results than the pre-
viously described one. The force discontinuities are
less noticeable. But we must face a new problem, as
the applied forces are not the ones that the simula-
tion of the deformable model computes, they can be
arbitrarily large. These force amplitude peaks occur
especially when the time step increases.

The force changes are mainly due to the tool move-
ment. Furthermore, it is possible to query at a very
high rate the position of the tool during the extrapo-
lation. These observations lead us to develop a force

estimator based on the tool position: linear extrap-
olation over position. We project the current tool

Pe
R |
Fn_ |
\.1 __________________ R
Ph-1 Pn P’

Figure 4: Tool position projection for extrapolation over
position

position P in P’ on the line defined by the two pre-
vious tool position P,,_; and P, (figure 4). We can
then consider the norm ratio for extrapolation:

[P' = Py

FPr(t)=F,,+———
O =Futp =, ]

(Fn_Fn—l) tn S t < tn+1
We can notice that the error induced by the tool po-
sition projection is null when P, ;, P, and P are
aligned, in other words when the tool trajectory is a

line.

All of these three extrapolation methods were im-
plemented in our surgery simulator. In order to com-
pare and to evaluate them, several experiments were
performed. The results are presented in the next sec-
tion.

3.3 Results

The first experiment was simply performed by using
our surgery simulator with one of the three extrapo-
lation schemes activated. The constant extrapolation
gives us the sensation of touching a rough surface. The
extrapolation according to time is an improvement,
but the device sometimes send some unexpected large
forces. As soon as the tool movement is slow enough,
the sensation given by the extrapolation over position
are smooth. Of course, this is a very subjective eval-
uation, and we tried to compare the three methods
more objectively.

The time, the tool position, and the force com-
puted by the simulation of the deformable model were
recorded during several surgery simulation sessions.
We interpolate the force a posteriori to have a refer-
ence for the computation of the errors. For an easier
understanding of the figures, we plot 2D experiments.
We also prefer a polar representation of the forces.



Force Errors

e

0.3

Constant extrapolation

Norm

M

02 04 06 08 1 12 14 16 18 2 0 02 04 06 08 1 12 14 16 18 2

O — il L

Time linear extrapolation 0.2
( 0.1
0
5

02 04 06 08 1 12 14 16 18 2

Position linear extrapolation

02 04 06 08 1 12 14 16 18 2

vl Vi
02 04 06 08 1 12 14 16 18 2 0 02 04 06 08 1 12 14 16 18 2

Time

Figure 5: Evaluating the different extrapolation methods

The left column shows the original data set with
impulses and the extrapolated one with a line. The
difference between the extrapolated and the interpo-
lated forces, which is taken as a measure of the error,
is plotted, also in a polar fashion, in the right column
of the figure 5. Theses plots shows the extrapolation
results for a input data set at 20Hz.

We note that the linear extrapolation over position
gives very interesting results (very few discontinuities
and no singular force). We tried the same type of
experiment with different simulation frequencies and
with different tool movements. The position linear
extrapolation always gave the best results, which is
confirmed by sensation received during simulation.
Other tests were performed with different speeds for
the tool movement. They show that if the toll motion
is too fast or if the update frequency is too low, the
error becomes important. Studies have shown that the
surgeon’s gesture is performed at about 0.01 m.s™!.
With such a speed and a simulation running at a visual
real-time rate (about 20Hz), the linear extrapolation
over position gives very good results.

4 Conclusion
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