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Abstract

In this paper, we propose to study different smoothness mea-
sures of planar contours or surfaces. We first define a
smoothness measure as a functional that follows three types
of invariance : invariance to changes of contour parame-
terization, invariance to contour rotations and translations
and invariance to the contour sizes. We then introduce dif-
ferent smoothness measures that can be classified into local
or global functionals but also that can be of geometric or
algebraic nature. We finally discuss their implementation
by observing the advantages and disadvantages of explicit
and implicit contour representations.

1 Introduction

The notion of smoothness functionals is at the heart of sev-
eral practical and theoretical problems in computer vision.
For instance, it is naturally related to the problem of visual
reconstruction [2] and regularization [1]. Through their first
variation, these functionals can also be used for smoothing
curves or surfaces in an intrinsic manner to obtain multi-
scale representations of these manifolds.

In this paper, we first define some mathematical crite-
ria corresponding to our intuitive notion of curve or surface
smoothness. We then propose several functionals that meet
these criteria. Among them, most of those based on geom-
etry have been already proposed in the litterature [13, 5].
Also, Gage [7] and Sapiro [14] have studied curve flows
having remarkable invariance properties, but that do not cor-
respond to the minimization of a functional.

In addition to the geometry-based smoothness measures,
we show that functionals based on algebraic invariants can
also be considered as smoothness measures. By extending
the calculus of variation to more general functionals, we
introduce new curve flows that have interesting invariance
properties. Finally, we discuss the different possible imple-
mentations based on implicit or explicit representations.

2 Propertiesof Fonctionals

2.1 Definitions

In this section, we mostly concentrate on the evaluation of
smoothness functionals defined on planar contours. To de-
scribe analytically each contour, we use an explicit con-
tour representation : for each parameter value v € [0, ug]
we associate a point on the Euclidean plane C(u) =
(z(u),y(u))T € IR2. The choice between implicit and ex-
plicit contour representation does not have any impact on
the definition of smoothness functionals but only on their
numerical computation (this is discussed in section 5.3). A
contour may be closed or open. We write as N(u), T(u),
the normal and tangent vector at point C(u) while k(u) is
the curvature at that point.

A functional E(C(u)) is an application that associates a
positive scalar value with a given contour : E : C(u) €
F +— E(C) € R*. The set of admissible contour F de-
pends on the nature of the functional. For a functional rely-
ing on the contour first derivatives, F is the set of continu-
ously differentiable contours.

2.2 Invariance Properties

A first way of characterizing a functional is to look at its
invariance properties. In particular two different invariance
properties are of high importance :

e Invariance under the application of a group of
transformation. Given a group of transformations 7
of the Euclidean plane IR?, such as the group of rigid
or similarity transformations, a functional is invariant
under the application of 7 iff :

E(T(C)(u)) = E(C(v)) VT €T @)

e Invariance under change of contour parameter. A
contour, in its explicit formulation is described by a
parameter u. A functional is invariant to any change of
parameterization iff :

E(C(u)) = E(C(u")) Vu* = ¢(u) O]



In this case, the functional is called “intrinsic” since
it only depends on the contour shape. For an intrinsic
functional we use the following notation : E(C(u)) =
E(C). Finally, only intrinsic functionals can be written
with an implicit formulation of a contour.

2.3 First Variation of a functional

Under certain conditions, it is possible to compute the first
variation of a functional that should be seen as the functional
first derivative. Indeed, the first variation of a functional
6E(C(u)) is defined as :

E(C(u) + e(u)) — B(C(u))
lleCw)ll

The Euler-Lagrange equation provides the expression of the
first variation when the functional consists of an integral
along the contour. Also, if a functional is a function of two
functionals, then the following chain rule applies :

SE(C(w)) =

im
lle(x){l—0

E(C) = h(El(C),Ez(C))
oh oh

0E(C) = a—EéEl(C) + 8—E26E2(C) 3)

This relation allows us to easily calculate the first varia-
tion of complex functionals by decomposing it into simpler
functionals.

Among all contours having given boundary conditions,
it is important for characterizing a functional to look for
the contours minimizing this functional. Depending on the
nature of the functional, its natural boundary conditions
may be posed in terms of end positions (C(0) = P and
C(up) = Q) but can also include the contour end first or
second derivatives.

The first variation of a functional is useful to find the
set of contours minimizing this functional. Indeed, a nec-
essary condition for C* to be an extremum of E(C(u) is
that 6E(C*) = O. A sufficient condition for C* to be an
extremum is not simply related to the sign of the second
variation 62E(C) but is based on more complex notions of
the “extremum field” theory. However, we will abusively
call minimal contours of a functional £(C(u)), the contours
verifying ;

SE(C*)=0 4)

This set of minimal contours provides important clues about
the nature of the functionals since they correspond to the
“smoothest” contours according to the smoothness metric
given by the functional.

If a functional is convex then existence and unicity of the
minimal contours is guaranteed.

2.4 Associated contour evolution

Also of interest for characterizing a functional, is the study
of the contour evolution when minimizing this functional.
In this case, an evolving contour C(u, t) depending the time
parameter ¢ is controlled through a partial differential equa-
tion defining its law of motion. Two laws of motion are
mainly used :

o Lagragian law of motion : 20 — §E(C(u,t))
which corresponds to a gradient descent of the func-
tional.

2
¢ Newtonian law of motion : w = —7% +

6E(C(u,t)) which corresponds to the equation of a
mechanical spline minimizing its potential energy in
a viscous medium (v is the damping factor).

For an analysis of this pde, it is easier to consider a La-
grangian law of motion since it only depends on the nature
of the functional (and not on the value of the damping factor
~). Several authors including Kimia et al. [10] have studied
the general contour evolution associated with this pde. A
first result is that the evolution of the contour shape only
depends on the normal component 3(u,t) of 6 E(C(u,t)).
Furthermore, they provide simple pde’s that give the evolu-
tion of most geometric entities of the contour as a function
of B(u, t). For instance, the contour length £(t) evolves as :

or
% = /C k() B, £)du

2.5 Smoothness Functionals

We define a smoothness functional as a functional that mea-
sures the geometric regularity of a shape. Since several de-
finitions of smoothness are possible, we provide a list of
criteria that should be met in order to state that a functional
is a smoothness functional. With these criteria, we try to
capture the intuitive perception of shape smoothness :

1. Invariancewith respect to parameterization. A con-
tour smoothness measure should be intrinsic and not
depend on a given parameterization.

2. Invariance with respect to similarity transforma-
tions. The position, orientation and size of a contour
should not affect its smoothness measure.

3. Circlesand lines should belong to the set of curves
minimizing smoothness functionals.

4. Dependance on inner-scale. The smoothness mea-
sure should be a scale-related value. A contour may
be rough at a small scale and smooth at a large scale.
Without any scale dependence, it is assumed that the
smoothness is evaluated at the finest scale.



2.6 Quadratic Functionals

The most widely used functionals in computer vision are
quadratic functionals that can be written as :

E(C(u)) = / P V) % Ow)Pdu

where F'(u) *C(u) designates the convolution of C(u) with
function F'(u). In particular, Tikhonov stabilisers corre-
sponding to the Sobolev norms have been extensively used
for the regularization of active contours or active surfaces
to solve ill-posed problems such as image segmentation or
surface reconstruction [1].

Their main advantage is to lead to linear systems of
equations that can be solved in closed form. Also they
have been extensively studied in the approximation the-
ory. Unfortunately, none of these functionals follow the 4
above criteria since they are not invariant with scale changes
E(0C(u)) = 02E(C(u)). More importantly they are not
independent to changes of parametrisation (can be shown
using the Parseval theorem) which makes them ill-suited
for measuring shape characteristics of contours or surfaces.
However, Tikhonov stabilisers are invariant with the appli-
cation of any rotations and translations on contours or sur-
faces [3].

2.7 Classification of Smoothness Functionals

We propose to classify smoothness functionals according to
two criteria : geometric vs algebraic and local vs global.
Geometric functionals only depends on intrinsic geomet-
ric entities. For a planar contour, it implies that it only de-
pends on arc length s, curvature and the derivatives of cur-
vature . On the other hand, algebraic functionals can be

expressed as:
1 Y1
/ P(fc7y)dx+/ Q(z,y)dy
Zo Yo
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The latter equation has a simple mechanical interpretation :

if ( —Q(,9) ) is a force field defined on the Euclidean
P(z,y)
plane, then E(C) corresponds to the work done by the force
as a point mass moves along the contour.
Furthermore, if the contour is closed, and 2 is the domain

enclosed by the contour then the Stoke’s theorem states
that :
1 Y1
/ P(x y)dw+/ Q(z,y)dy

ACEIEE

E(C)

E(C)

For the second criterion, we define local smoothness
functionals, a functional for which its smoothness is the
sum of the smoothness of its parts. If C; is the part of C
for u €]0,u*[ and C; is the part of C for w €]u*,uo[ then
we have :

E(C) = E(C1) + E(C2)

With these functionals, the first variation 6E(C(u)) only
depends on the characteristics of the contour around point
C(u) and not of parameters related to the whole contour.
Therefore, with local smoothness functionals each con-
tour part contributes independently to the functional value
whereas there is a coupling occuring between each contour
part in the evaluation of a global functional.

3 Geometric Smoothness Functionals

3.1 Contour Length

The contour length is computed as :

- /“0 ds

and its first variation is 6 F = —j—ZkN which implies that
the minimal curves are straight lines. The associated pde is
the well studied mean curvature motion [8] which exhibits
remarkable properties. Clearly, this functional is dependent
on the contour size which explains why all closed contours
shrink to a point under the mean curvature motion. There-
fore, the contour length cannot be considered as an adequate
smoothness measure.

As an alternative, it is possible to consider, instead of the
Euclidean contour arc length, the contour arc length which
is invariant with respect to similarity transformations [14] :
kds. Since the curvature & is the variation of polar angle
k= Z_f’ then the “ similarity contour length” of a closed
contour is :

E(C) =2mn(C)
where n(C) is the number of turns of the contour. This mea-
sure is linked with the contour embedding in the plane but
does not characterise its shape. Therefore, it cannot be used
also as a smoothness measure.

3.2 Bending Energy

c
:M:/ k2ds
0

ds [ 4 &2k

The bending energy is :

Its first variation is :

§E(C) =



Polden [13] have studied the associated pde :

ac (., &2k
— = 2— | N
ot (k (u) + d32>

The curves minimizing the sum of their square curvature,
also called mechanical splines, or M-curves have been stud-
ied by many authors including Horn[9] and Su et al[15].

Surprisingly, the bending energy is not scale invariant,
and Horn[9] first noticed that circles do not minimize this
functional. Therefore, the bending energy cannot be con-
sidered as a smoothness measure of planar contours.

To achieve scale invariance, Bruckstein[4] et al.have in-
creased the bending energy for longer curves, by defining
the energy below :

c c
- _ 2
=L M= /0 ds /0 k*(s)ds (5)

The first variation of this normalized bending energy can be
computed with equation 3 as :

2
sE(C) = & (£k3 +ocdk Mk)

du ds?

Clearly lines and circles are among the contours that min-
imize this functional. For a straight line, the smoothness
measure is zero whereas it is equal to 472 for a circle.
Therefore, this functional is a smoothness measure that fol-
lows the first three criteria. To obtain a scale dependent
smoothness measure, we propose to use the functional be-
low :

161" ds (6)

When dl decreases towards zero, then the functional of
equation 6 converges towards equation 5. Also, it is impor-
tant to note that scale-dependent version of the normalized
bending energy can be evaluated on a curve that may not be
twice differentiable which makes it a more powerful mea-
sure of smoothness.

Finally, it should be noticed that this smoothness measure
is global since its first variation depends on the shape of the
whole contour through the two parameters £ and M.

L/“ IC(s = dl) —2C(s) + C(s + dl)|?

3.3 Bending Energy of 3D Surfaces

We now consider smoothness measures defined on 2-
manifolds of IR®. We consider a surface S(u, v) as a map-
ping from its parametric domain Q € IR? into IR*. The cor-
responding bending energy defined on tridimensional sur-

facesis :
E8)=//H2(u,v)dA 7)
Q

where :

e H is the mean curvature of the surface equal to the
average sum of the two principal curvatures.

e dA designates the elementary surface element equal to
VLN — M2dudv where L = [|95|2, N = ||252

85 S
and M = 5

In fact, this total energy is closely related to the total curva-

ture of the surface :
/] Ki(w0) + B(.v)
Q 4

where k;(u,v) and ka(u,v) are the two principal curva-
tures. Since k% + k3 = 4(H? — 4K) and [ [, K (u,v)dA
is a topological invariant of the surface, the total curvature
is equivalent to the using the bending energy.

Unlike the bending energy defined on contours, this func-
tional defined on tridimensional surfaces is clearly invariant
with respect to the surface size. Furthermore, its first varia-
tion is computed as :

§E(S) = VLN — M2 (A*H + 2H? - 2HK) N

where A*H is the Laplace-Beltrami operator applied on
the surface mean curvature. It appears that all planes and
spheres ( for which H = 1/r and K = 1/r% ) minimizes
this bending energy. The bending energy is equal to zero for
planes and 4 for spheres. Therefore, the surface bending
energy of is an appropriate smoothness measure.

To obtain a scale-dependent smoothness measure, it is
necessary to evaluate the mean-curvature at different scales.
We propose to use the following property of the mean cur-
vature : H(u,v)N = A*S(u,v). This intrinsic Laplacian
operator can be approximated using a circular neighborhood
around point S(u,v). If N'(u,v,dl) is the tridimensional
curve corresponding to the set of points on S located at the
geodesic distance dl from point S(u,v) (see figure 1), then
we can approximate the mean curvature H (u, v, dl) at scale
dl with the following relation :

f/\/(u,v,dl) S(m’ TL)dS

H(u,v,dl) = 7

S(u,v) —

*
dr

N (u,v,dl)
Therefore, the mean curvature is proportional to the distance
between S(u, v) and the centroid of the curve A (u, v, dl).
When di converges towards zero, H (u, v, dl) converges to-
wards the continuous mean curvature H(u,v). The scale-
dependent version of the bending energy can be written as :
2
(u,v) fN(u,v,dl) S(m,n)ds

/ / dit T d [y 48

Again this functional provides a way to measure smooth-
ness on surfaces without requiring to have twice differentia-
bility everywhere on the surface.




Su,v) N(u,v,dl)

Figure 1: Definition of the curve N'(u, v, dl) located at the
geodesic distance dl from point S(u, v)

3.4 Extension to other dimensions

In [5] Chen et al.have studied differential problems defined
on hypersurfaces, i.e. on n-manifolds of IR"**. In particu-
lar, they have studied the following functionals :

B(S) =M, = [ |H|Pda
Q

where H = ) k; is the manifold mean curvature (k; is a
principal curvature). The first variation when p # 1 and
n#1lis:

8E(S) = \/|9apl(pA*HP~! + n?(p — 1)HP™
_9pHP 'R)N

where |gag| is the determinant of the metric tensor, A* is the
generalized Laplace-Beltrami operator and R is the scalar
curvature definedas R = 3, . kik;

It first appears that H,, is scale invariant only if p = n.
Furthermore, it can be shown can hyperspheres and hyper-
planes verify 6 E(S) = O if p = n. Therefore, we can claim
that [, ||H||"dA is a smoothness measure for n-manifolds
withn > 1.

4 Algebraic Smoothness Functionals
4.1 Enclosed Area

The first algebraic functional that we can associate with a
planar contour is the signed area .A enclosed that a curve C :

B(C) = A(C) = % /C (wdy — ydz)

When a contour is open with end points pg and p; then
A(C) is equal to the sum of the corresponding closed con-
tour area when a straight line is drawn between pg and p;
and the area of triangle (Opi1po) (O is the reference frame
origin).

The functional LA(C) is not a smoothness measure since
it is a signed functional and since it is obviously not size
invariant. Its first variation simply writes as :

ds

4.2 lsoperimetric Ratio

We first propose to the use the isoperimetric ratio as a
smoothness measure :

47| A(C
_ i) o

In fact, in many textbooks, the isoperimetric ratio is often
written as the inverse of equation 9. Indeed, for compu-
tation stability, we prefer to divide by the contour length
which is greater than zero for non-degenerate curves rather
than dividing by the enclosed area which may be zero even
for non-degenerate curves. Therefore, unlike previous func-
tionals, this isoperimetric ratio must be maximised and not
minimized. Jacob Steiner in the middle pf the XI1X*"* cen-
tury, has proved that from all planar curves, circles max-
imise the isoperimetric ratio among all closed curves :

E(C)

AT A(C) < L2

This can be proved also by looking at the first variation of
this functional :

ds 1 2Ak

For closed planar curves, therefore, the isoperimetric ra-
tio is a smoothness measure since it is invariant to the appli-
cation of rotations, translations and scale changes.

However, for open curves, two problems arise. First, the
isoperimetric ratio depends on the position of the curve with
respect to the origin of the reference frame. Therefore, it is
no longer invariant to translation. To solve this problem,
we propose to compute the enclosed area .4(C) of an open
contour as the enclosed area of the closed contour build by
linking the two end points with a straight line (see figure 2).

Second, straight lines minimize the isoperimetric ratio
whereas circles maximize it. Therefore, the opposite value
of the isoperimetric ratio should be considered for open
curves.

The isoperimetric ratio easily generalizes itself to tridi-
mensional surfaces :

_367V(S)?

E(S) = Area(S)3

where V(S8) is the volume enclosed by the surface defined
asanalgebraicinvariant (V(S) = 1 [ [, (zdydz+ydydz+
zdzdy) ) and Area(S) is the area of the surface S.



Figure 2: (Left) Geometrical definition of .4(C) on open
contours; (Right) Translation invariant definition of A(C)

Similarly, spheres are known to maximize the isoperimet-
ric ratio of closed surfaces. The associated first variation is :

_ JIN —p38mY(S) (1 _3HM) N

SE(S) Area(S)3 Area(S)

For open surfaces (surfaces with end contours such as cylin-
ders ), to obtain a translation invariant functional it is nec-
essary to close each end contour by a surface. The natural
choice is to close each end contour with a minimal surface,
surface minimizing the area of all spanned surfaces. How-
ever, in practice, defining these surfaces is known to be a
non-trivial task, even if efficient iterative algorithms have
been proposed [12] to find triangulated approximations of
these surfaces. Therefore, we can consider that this isoperi-
metric ratio is not suited for the smoothness measure of
open surfaces.

4.3 Moment Invariants

Moment invariants have been widely used in computer vi-
sion for object recognition tasks. In particular, several au-
thors have reported systematic methods to build moment in-
variants for any given transformation group [11]. In this
paper, we only present smoothness measures based on the
basic geometric moments, even if more sophisticated mo-
ments such as Zernike moments could be also used. The
geometric moments are defined on any type of manifolds,
curves, surfaces or volumes. If D is the parameterization
space of the manifold, then the geometric moments on IR?
are defined as :

Mpq :/ 2Pyldzdy
D

If we write 7 = o andy = oL as the centroid of the
manifold, then the centered geometrlc moments fi,,q are :

Hpq = /D(x —7)P(y — ) 'dzdy

The first two moments that are invariant with respect to ro-
tations, translations and scales are :

2 2
oF = Pao + po2  moo(mao + Mmo2) — Mgy — mig
! Mo m?

00

(120 = p1og)® + dy1ay
L -

P2 = mgg

An infinite number of moment invariants involving geomet-
ric moments of higher order can also be derived. In this
paper, we only study functionals related to @7 defined on
contour C or the area enclosed by C if the contour is closed.

4.4 Contour moment invariants

In this section, we consider the different geometric moments
of a two-dimensional contours :

mM®=éﬂ®¢®w

Thus mgo is the contour length £ and C = (Zao, Z—%)T

is the contour centroid. The first variation of the geometric
moments is :

ds P~ 1q9
S mpq(C) = == ( pr’ Y

d
— —(xPy?T
du qxpyq—l > du (.’I,' ) )

The first variation of ¢¥ is then computed from the previous
equation :

51(0) = 2 o (2(C(u) ~0)- N -
k(C(u) —C)? — kLd)N

For a straight line £ = 0 and (C(u) — C) - N = 0 which
implies that 6% = 0. For a circle also, (C(u) —C) = rN
and ¢ = r which also implies that 63 = 0. Therefore,
©5(C) can be considered as a valid smoothness measure that
can be computed on closed and open contours.

45 Enclosed area moment invariants

By using Stoke’s theorem, we can transform an integral over
the area enclosed by a contour into an integral over a con-
tour :

/((wy)da:Jerydy / aQ aP

— — —)dzdy
9y

Therefore, the moments m,,, on the enclosed area can be
computed as :

1 q+1 p+1
Mpe(C) = 5 /C(_l"p Y dx + a y?dy)

2 g+1 p+1
The associated first variation takes the simple form :

dmpe(C) = —Z—prqu



and the first variation of ¢ (C) is then :

561(€) = = 3 ((€(w) =T — 24%67) N

We have verified that 65 (C) = O for all circles. However,
this functional cannot be used to evaluate the smoothness of
open contours (artificially closed by drawing a line between
their two end points) since straight lines do not zero §¢7(C).

5 Discussion

5.1 Comparison between the different

smoothness measures

We have found four different classes of smoothness mea-
sures associated to the bending energy, the isoperimetric ra-
tio and the moments computed on the manifold itself or its
enclosed volume. We have first noticed that two of these
functionals can only be computed on closed contours (see
table 1). Also these two functionals are only valid for con-

Closed Opened
Contours | Contours
Normalized Bending Energy * *
Isoperimetric Ratio *
Contour Moment Invariants * *
Area Moment Invariants *

Table 1: Properties of different contour smoothness mea-
sures.

tours of IR? whereas the other two smoothness measures can
be computed for contours of any codimension d (d > 1).
Despite their restricted domain of application, the isoperi-
metric ratio and the enclosed area moment invariants have
the advantage of being sensitive to the presence of con-
tour self-intersections. Therefore, when smoothing a con-
tour with the pde % = 6E(C(u,t)), these two func-
tional should be more likely to avoid the creation of self-
intersections than the other two functionals.

For contours, the four smoothness measures are global in
the sense that they cannot be broken-up into the smooth-
ness measures of its different parts. However, we have seen
that for surfaces of higher dimensions, it is always possi-
ble to find a local geometric smoothness measure based on
surface integrals of mean curvature. We believe that local
functionals correspond more closely to the intuitive notion
of smoothness than global functionals. For instance when
smoothing a surface, it is natural to consider that the con-
tour evolution at a point does not depend on the contour
shape far away from this point. When using algebraic mea-
sures, each contour point is smoothed based on the position

of the contour centroid which completely depends on the
global contour shape.

Finally, we have showed that it is possible to define scale-
dependent geometric smoothness functionals. These func-
tionals have the advantage of not requiring highly differen-
tiable contours and surfaces.

5.2 Intrinsic Smoothing Filters

In this paper, we have systematically derived the first varia-
tion of all functionals since it can be used to smooth con-
tours or surfaces through the associated pde % =
0E(C(u,t)). Also the first variation is used to find the min-
imal curves or surfaces of that functional. In fact, for many
applications in computer vision (image enhancement, image
segmentation,. . .), only the first variation of the functional
is of practical use.

Therefore, it is also important to study curve or sur-
face pde’s that do not correspond to the minimization of
a global functional but that have also some remarkable in-
variance properties. From a general differential equation
W = B(C)N, the curve evolution is invariant to ro-
tations and translations if 8(C) is itself invariant to these
transformations. The invariance to changes of scale is veri-
fied if 3(aC) = o3(C). Also, it is possible to verify if lines
and circles are optimal curves if 3(C) = 0. Therefore, we
can extend the notion of smoothness measures to the notion
of intrinsic smoothing filters by requiring that these filters
follow the criteria defined in section 2.2.

Obviously there are many possibilities for defining intrin-
sic smoothing filters. For instance, Delingette [6] has pro-
posed to use the second derivative of curvature as the gov-
erning equation for smoothing contours :

aC(u,t) d%k

at  ds?

This local filter has been also extended to include a scale
factor :

C(u,t) 1 [ 1 /S+d’
5 _W<2_dl - k(u)du — kds | N

Also in [7, 14] Gage and Sapiro have introduced two
global intrinsic smoothing filters that have the property to
keep the enclosed area constant during their evolution :

aC(u,t) 27
ot (k f) N

o) ()

These non-local flows cannot be applied to open contours.



5.3 Implementation issues

In this section, we shortly discuss the implementation issues
of the pde’s associated to the smoothness measures that have
been presented in ths paper. In particular, each contour or
surface can be represented using an implicit or explicit rep-
resentation.

Implicit framework cannot easily represent open contours
(or surfaces) since the zero level-sets are closed contours.
Furthermore, it is well-suited for representing hypersurfaces
but not manifolds of codimension greater than 1 (even if re-
cent work has been done in this direction). Finally, despite
numerous optimization schemes, it requires more compu-
tations than Lagrangian-based approaches since it requires
the update of a n + 1-manifold for computing the evolution
of a n-manifold.

However, Eulerian methods have also several advantages.
First of all, they do not require any explicit parameteriza-
tions of shapes. The second advantage of Eulerian meth-
ods is to naturally handle topology changes whereas the de-
tection and processing of self-intersections on explicit sur-
faces has only been reported in the case of deformable con-
tours [6] at a cost of greater implementation complexity.

For the implementation of the pde’s associated to these
smoothness measures, two additional elements should be
taken into account. First of all, many of these functionals are
global and therefore require that some global contour para-
meters are evaluated. Extracting these parameters (such as
contour length or enclosed volume) on implicit representa-
tions often requires an explicit extraction of these contours,
through an isocontour extraction method, but also requires
in some cases to find a suitable parameterization.

The second specificity is that the pde % =
8E(C(u,t)) corresponds to the gradient descent of a func-
tional and therefore it can be implemented using the finite
element method rather than the finite differences method.
The advantage of the finite element method for instance us-
ing the Galerkin approximation is that it only requires to
discretise the functional rather than its first variation.

6 Conclusion

In this paper, we have introduced four classes of smooth-
ness functionals either based on geometric or algebraic in-
variants. In general, geometric smoothness measures lead to
local functionals (except for planar contours). Using a lo-
cal functional gives more intuitive results when smoothing
shapes with the associated flow.

To further compare these measures it is necessary to
implement them for planar contours and tridimensional
surfaces. As a representation, we propose to use non-
parametric surfaces meshes (polygons and triangulations).

If algebraic functionals can be easily discretized, it is not the
case of geometric functionals. To do so, we plan to expand
the approach proposed by Pinkall et al. [12] to curvature
integrals.
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