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Abstract

Simplex meshes are simply connected meshes that
are topologically dual of triangulations. In a pre-
vious work, we have introduced the simplex mesh
representation for performing recognition of par-
tially occluded smooth objects[3]. In this paper, we
present a physically-based approach for recovering
three-dimensional objects, based on the geometry of
simplex meshes. Elastic behavior is modelled by lo-
cal stabilizing functionals, controlling the mean curva-
ture through the simplex angle extracted at each ver-
tex. Those functionals are viewpoint-invariant, intrin-
stc and scale-sensitive. Unlike deformable surfaces de-
fined on reqular grids, simplex meshes are highly adap-
tive structures, and we have developed a refinement
process for increasing the mesh resolution at highly
curved or inaccurate parts. Furthermore, operations
for connecting simplex meshes are performed to re-
cover complex models from parts with simpler shapes.

1 Introduction

The emergence of high resolution three-dimensional
images either in the form of range data or voxel im-
ages, enforces the need for general shape reconstruc-
tion techniques. The difficulty stems from the neces-
sary flexibility of object reconstruction systems to in-
clude a wide variety of man-made or natural shapes.
Flexibility should be achieved both in terms of geom-
etry and topology.

This paper presents a shape reconstruction al-
gorithm that offers both geometric and topological
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adaptability. We use a simply connected mesh or sim-
plex mesh as a surface representation in a deformable
model fitting approach.

2 Simplex Meshes
2.1 Topology

A simplex mesh has constant vertex connectivity.
In order to represent three dimensional surfaces, we
make use of 2-simplex meshes where each vertex is
connected to three neighboring vertices. The structure
of a simplex mesh is dual of the structure of a trian-
gulation (see figure 1). However, this correspondance
exists only in terms of topology but not in terms of ge-
ometry. In another words, we cannot associate an un-
derlying triangulation to given simplex mesh and con-
versely. Therefore, the simplex mesh representation
has different geometric properties than triangulations
that make them better suited for surface reconstruc-
tion. However, both representations are general since
they can represent all types of orientable surfaces.

We have coined the word simplexr mesh in order to
stress the existence of a 3-simplex, a tetrahedron, at
ecach vertex. The structure of a simplex mesh is the
one of a simply connected graph and does not in it-
self constitute a new surface representation. The main
contribution of this paper, however, is to exhibit the
topological and geometric properties inherent to those
meshes and demonstrate their relevance for object re-
coustruction as well as object recoguition.

We define a contour on a simplex mesh as a closed
polygonal chain consisting of neighboring vertices on
the simplex mesh. We restrict a contour to not inter-
sect itself. Contours are deformable models as well,
and they are handled independently of the simplex
mesh where they are embedded. In terms of surface
topology, contours on a 25M can be classified in two



Figure 1: A 2-simplex mesh and its dual triangulation.

categories depending whether they are "dividing” or
not. The combination of surface and contour defor-
mation enables the recovery of objects with complex
topology.

2.2 Mesh Transformation

Simplex Meshes as well as triangulations locally
adaptive meshes. We define at set of four indepen-
dent transformations {TZ, T2, T2,T?} for achieving
the whole range of possible mesh tranformations. The
first two transformations are FEulerian and therefore
do not change the mesh topology. They consist in
inserting or deleting edges in a face. The last two
transformations correspond to either connecting two
faces or cutting a mesh along a contour[2]. When the
contour is dividing, the cutting operation results in
splitting the mesh into two parts. Otherwise, it re-
sults in decreasing the genus of the mesh.

2.3 Geometry

We introduce the notion of Sitmplex Angle on a sim-
plex mesh, that generalizes in many ways, the angle
used in planar geometry. In the following sections, we
will describe how this angle is linked to the mean cur-
vature of a surface and how a shape description of a
mesh may be uniquely determined.

2.3.1 Simplex Angle

Let M be an oriented simplex mesh of IR®. Let
P; € TR’ be a vertex of a 2-simplex mesh, and
(P, (iy» Pn,(iys Pay(iy) its three neighbors. The three
neighboring points define a plane P; and its normal
If 51 is the circumscribed circle at the
three neighboring vertices (Pu, (i), Pn, i), Pn,(i)) ver-
tices of radius r; and S5 be the circumscribed sphere
at the four vertices (P;, Py, (i), Pn,(i)> Pny(iy) of ra-

vector IV;.

dius R;, then the simplex angle at vertex P;, ¢; =

L(P;, Py, (iys Pny(iys Py iy) s defined as:
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The simplex angle ¢; is independent of the position
of Pn iy Pr,(5)s Pry(s) on the circle S; and of P; on
a hemisphere of S5. It is null when P; and its three
neighbors are coplanar. The simplex angle ¢; can be
easily computed by counsidering an inversion of center
P;. More details on the simplex angle definition and
properties can be found in [2].

We then define the notion of discrete mean curva-
ture H; on a simplex mesh as the inverse of the radius
of the circumscribed sphere:
sign(Pi Py, sy - Ni)  sin(y;)

H; = R - = . (2)

We justify this definition by demonstrating that the
mean curvature at a point on a three dimensional sur-
face is the inverse radius of the sphere that best ap-
proximate the surface at that point [2].

2.3.2 Metric Parameters

In addition to the simplex angle, we introduce two ad-
ditional parameters called metric parameters {e1;, €2;}
that describe how a vertex is located with respect to
his 3 neighbors. If we consider the orthogonal projec-
tion F; of P; on the plane defined by its 3 neighbors,
then F; may be written as a weighted average of the
3 neighboring points:

F; = €1iPn sy + €2iPn, i) + €3:Pny(i) (3)
€17+ €y +ez=1 (4)

The position of a vertex P; is completely deter-
mined by the position of its 3 neighbors and the knowl-

edge of (€14, €1, ) :

P; = €1 Py, iy + €2:Pn, iy + €3:Pnyiy + L7, d;. (Pz)
(
where d; is the distance between F; and the center
of the circumscribed circle C; and where L(r;, d;, ;)
is a function described in [2].
The 3n values {(€1s, €24, ;) } of a simplex model M
counsisting of n vertices completely describe the model
shape, up to an isometry and scale.

\_/s



3 Smoothness and Shape Control
3.1 Equations of Motion

We propose a modeling scheme based on de-
formable and adaptive mesh. The dynamics of each
vertex is given by a Newtonian law of motion:

&2 P; aP, .
dr2 = _’Vﬁ +Fint+Fewt (6)

m

where m is the mass unit of a vertex and v is the
S
damping factor. Fj,: contrains either the shape of a

mesh to be smooth whereas Fe ; constrains the mesh
to be close from some three-dimensional data.

3.2 Internal Forces

Internal forces determine the response of a
physically-based model to external constraints. In this
paper, we do not derive the internal force expression
from an almost quadratic smoothness energy as in
[4][1]- Instead, we chose to minimize a local energy
S = %LP,,;PZ-"z. P is computed from equation 5 with
a value of ¢ = ¢*. The choice of p* determines the
types of constraints enforced on the mesh:

Normal Discontinuity We set ¢ = ¢;. The sur-
face can freely bend around vertex P;.

Normal Continuity constraint We have simply
¢y = 0. Hence, the internal force is: Fj,; =
wi(€1i Py, iy + €2i Pryiy + €3: Py iy — B5).

Mean Curvature Continuity Constraint ¢} is
chosen such that the mean curvaturein P;, HY, is
the weighted average of the mean curvature in a
neighborhood N™(P;) : Hf = 37 nr(p, €ij * Hj.
7 is the size of the neighborhood on which the
smoothing is performed. This parameteris called
the rigidity and it effects the dynamics of the sur-
face model.

Shape Constraint Given the constant ¢! by setting
x 0 . . L ]

o7 = ¢, we constrain the simplex angle at P;

to Y. In this case, since we are using constant
metric parameters, this amounts to constraining

the shape of the mesh up to an isometry and scale.

The expression of those internal forces has the ad-
vantages of being intrinsic , viewpoint invariant and
scale dependant. Similar type of constraints with sim-
ilar formulation hold for contours.

3.3 External Forces

In a surface reconstruction scheme based on de-
formable models, external forces constrain the close-
ness of fit to some three dimensional data. At each
vertex P; , the closest point M¢y(;) on the data is com-
puted and the force is computed as:

| PiM o |l

—

Fopt = BiG (PiM i) -Ni)N; (7)

G(z) is the stiffness function that is constant between
0 and 1 and rapidly decreases at values greater than
1. D corresponds to the maximum distance at which
a data point strongly attracts a vertex, and it is com-
puted as a fraction of the overall data diameter. In-
deed, in order to avoid the effect of outliers, the mesh
model is only attracted toward data points that are
relatively close.

The computation of the closest point depends on
the data type. For structured range data, or volu-
metric images, it is computed in a O(1) complexity by
projecting the normal line on the image. For scattered
data points, we use a kd-tree structure to get the data
points located inside a sphere of radius D and centered

on P;.

4 Topology Control
4.1 Refinement

We introduce an algorithm for automatically in-
creasing the mesh resolution at parts of high curvature
or at parts whose distance to the range data is higher
than a threshold. The refinement process is completed
in an iterative way. First, we evaluate, for every face
model, a criterion measuring the need for refinement.
Then, faces whose criterion exceeds a given threshold,
are refined and the mesh is deformed during a con-
stant number of iterations. The refinement process is
repeated until all faces criteria are below the thresh-
old. This approach has the advantage of recovering
models satisfying both geometric constraints (regular-
ity and closeness of fit) and topological constraints
(optimal vertex spacing).

The criterion is computed as the face area multi-
plied by three dimensionless coefficients. The first one
is the measure of Gaussian curvature on the face. It
can be computed as the area of a spherical polygon on
the Gauss sphere [2]. The second coefficient is the ra-
tio of the distance to the closest data point and the ref-
erence distance D. The third coefficient measures the



elongation of a face in order to refine in priority large
elongated faces. The threshold has the dimension of
a surface area and therefore the refinement process is
guaranteed to stop since the faces area decrease at ev-
ery iteration. In order to keep the number of vertices
per face as close as possible to six, we either use a T2
operation or a TZ operation [2] depending whether the
face has more than five vertices or not.

4.2 Building Models from Parts

Recovering a complex model by deforming and re-
fining a simple primitive is a difficult task since the
mesh would have to automatically change its genus
and avoid numerous local minima. Moreover, current
range techniques cannot acquire a complex shaped ob-
ject within a single image. A more natural approach
for recovering complex objects, consists in connect-
ing separately built models, corresponding to approx-
imately convex subsets. In this framework, different
meshes are fit on different subsets of a same objects.
Then two meshes are connected with a single transfor-
mation operation and the zone around the connection
is smoothed to remove the normal and curvature dis-
continuities.

Figure 2: upperleft Six initial meshes. upper right
Resulting hand model after connecting the finger models
to the palm model. lower left Face model after refine-
ment. lower right Rendered face model.

&

Figure 3: A mechanical part with a genus of one was
created from range data

5 Results

We have applied the simplex mesh modeling
on a variety of structured and unstructured three-
dimensional datasets. The recovery of three-
dimensional objects from range data proceeds in two
stages. In a first stage, the model is initialized as
one of four primitives with a limited number of ver-
tices. We use a high value of the rigidity parameter
to obtain a smooth and stable deformation toward the
image data. However, the resulting model tends to be
inaccurate at locations of high curvature. In a second
stage, we apply the iterative refinement process over
the whole mesh or over selected parts while decreas-
ing the rigidity parameter to its minimum. A new
equilibrium is reached when highly curved parts are
sufficiently refined and when vertices closely approxi-
mate the raw data.
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