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ABSTRACT

We propose a methodology for animating complex models based on simplex mesh represen-
tation and deformation. A simplex mesh is characterized by a connectivity between vertices
of three and can be obtained by duality from a triangulation. In addition to their generality of
representation, simplex meshes have a compact and unambiguous shape description, related
to the notion of mean curvature.

We devised a physically-based metamorphism algorithm that rests on the intrinsic shape
representation of these meshes. This algorithm handles transformations between objects of
different topology or boundary conditions. Various simplex mesh shapes were extracted from
range images or some triangulated data and then metamorphosed by applying generalized
mesh transformations.
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1 INTRODUCTION

Physically based techniques use a large set of nodes to represent objects which makes them
well suited for generating complex shapes. Each node is moved independently according
to Newton’s law of motion. A “cohesion” force is used to correlate the displacements of
neighboring nodes thereby constraining the freedom of the surface. Physically based modeling
gives the model a dynamic behavior resulting in a more intuitive interaction.

First introduced by Terzopoulos, Kass and Witkin[10][20] to extract contour or axial-
symmetric surfaces from video images, elastically deformable models have been extensively
used both in computer vision and computer graphics[4][6]. The equations of motion are
derived by minimizing quadratic elastic energies such as the bivariate generalized spline
functionals[18], through some variational principals. Solutions are computed over time by us-
ing finite differences with explicit [6] or semi-implicit[4] schemes, or finite-element analysis[2].
External constraints have been designed to fit range-data[6][20], to enhance the user inter-
face or to simulate physical phenomena such as object contact, viscoelasticity or animated
characters.

Though appealing for their clay-like behavior, elastic models are difficult to manipulate
because they do not respond to global constraints. Shaping an object with local constraints
such as assigning node positions or normal orientations requires too many operations and
is practically ineffective. Welch and Witkin[21] proposed a framework where curves can be
attached to a tensor-product spline surface while minimizing some objective function. Curves



provide a natural boundary condition of surface models and handling curves instead of surfaces
leads to improved interfaces since three-dimensional curves can be directly input.

Our modeling system is physically-based as well, but a different surface representation
is introduced. Simplex meshes are general enough to represent surfaces of all topology and
boundary conditions. In particular they overcome the pole problem that arise when repre-
senting a closed object with tensor-product splines. Moreover, we can add or remove nodes
from the mesh structure in a natural manner without perturbing the mesh continuity and con-
nectivity. Internal constraints may be defined in terms of intrinsic parameters without great
computational cost. Unlike most elastic deformable models algorithms, internal constraints
are achieved through the minimization of some local energy. Therefore, we can consider a sim-
plex mesh as a network of independant particles with fixed connectivity. Global interaction
is handled though contours similarly to Welch and Witkin[21].

Section 2 introduce the concept of simplex mesh while Sections 3 and 4 describe surface
and contour internal constraints. Range data interaction and mesh transformation operations
are discussed in Sections 5 and 6.

2 SIMPLEX MESH

2.1  Definition

Among all the possible surface representations, polyhedra are of wide use in computer graph-
ics. Most polyhedral representations employ either triangular or rectangular patches. Tri-
angulation handles planar patches, therefore, surface normals may be computed along the
surface without ambiguity. On the other hand, rectangular grids can be interpreted as a
tensor product of two splines which decreases the complexity of the representation. Both
representations share the same geometric property as to yield a regular tessellation of the
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Figure 1: (a) Dual of triangulation; (b) the three regular tessellation of plane

However, there is a third regular tessellation pattern (see Figure 1(b)) based on hexagons
which can be developed from the duality of regular triangulation. The duality of polyhedra
associates faces with vertices and edges with edges and plays an important role in the field of
regular polytopes.

We introduce another powerful polyhedral representation of three-dimensional surfaces
which is characterized by a connectivity between vertices that is equal to three and that are
dual triangulations (see Figure 1 (a)). We coined the word “Simplex Mesh” to describe a
mesh representing a surface in dimension n for which each node is linked to n neighbors.
Therefore in a simplex mesh, we can define around each vertex a n-simplex made of n + 1



nodes. In particular, for a three-dimensional surface, a tetrahedron, the 3-simplex, is defined
at each node. Table 1 summarizes the connectivity of the three representations and their dual
nature.

Vertex to Vertex | Face to Face Regular
Connectivity Connectivity Tessellation
Triangulation n >3 3 Equilateral Triangles
Rectangular Grid 4 4 Squares
Simplex Mesh 3 n>3 Regular Hexagons

Table 1: Properties of triangulation, rectangular grid and simplex mesh

We will consider only closed meshes for which the three-connectivity is valid at each node.
The Euler relation links the number of vertices V', the number edges F. the number of faces
F and the genus g of the surface :

F-Y=2%(1-g) E=% (1)
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A simplex mesh M is fully described by its n vertices { P;} and by the 3n/2 vertex to vertex
relations {(P;, P;)}. From this, vertex to face and edge to face relations can be derived and
each face can be consistently oriented. We will write N;(z) as the index of the ;' (7 = 1,2,3)
neighbor of node number ¢, (: = 0,..,n — 1) so that Py, ()> PN (i), P, (i) are the three nodes
connected to P;.

The advantage of the simplex-mesh is that a normal vector can be defined at each node
by considering the normal at the plane defined by its three-neighbors. Furthermore we can
associate each tetrahedron with a circumscribed sphere which provides a measure of mean
curvature of the surface. This is in contrast to triangulated mesh that provide a measure of
gaussian curvature through the spherical-excess of dihedral angles[11].

Simplex meshes like triangulations can represent all orientable surfaces. This is in contrast
with rectangular grids that exhibits poles for closed surfaces of genus 0.

Simplex-meshes have a vertex to vertex connectivity of three but each face consists of a
variable number of vertices. We define a p-face as a face consisting of p vertices. Meshes
whose faces have the same number of vertices are called regular. If the surface has one
handle (genus strictly positive), it is possible to build a regular hexagonal simplex-mesh with
a variable number of nodes. On the other hand, for closed surface without handles, there are
only three regular models : tetrahedron, cube and dodecahedron.

Another advantage of simplex meshes is the possibility of introducing the notion of End
or “empty face”. A face is labeled as an end when we want to create a hole in the surface.
The numbers of ends and handles are powerful characteristics for classifying surfaces. For
example, a cylinder has two ends while a sphere has none; both have no handles. On the
other hand, a torus has one handle but no ends.

Precise rendering of simplex meshes is difficult since each face is actually wedged and
normals are impossible to define at each face. The current solution is to build a triangulated
model by associating the center of a p-face with each vertex. The face center is computed as
the centroid of the p vertices which tends to flatten the overall shape.



2.2 Equation of Motion

The dynamics of each vertex is given by a newtonian law of motion:

PP, dP,
e T T

t Foy 4 Fry (2)

where m is the mass unit of a node and ~ is the damping factor. F;m is the force created to
make the surface continuous while F.,; corresponds to external constraints defined by either
the user or some three-dimensional data.

Time is discretized as t; = o+ ¢ * At and Equation (2) is integrated over time using finite
differences with explicit scheme. A more stable though more complex implementation would
use semi-implicit schemes[4]. If P! is the position of vertex i at time ¢ then the discretized
law of motion is :

P = (1= 3) (P = P o Fu o+ Foae )

F;m and F;;;t are computed at time 7.

3 SHAPE FUNCTIONALS

The internal forces of a physically-based model determines the model’s response to external
constraints. Such response should be both intuitive and invariant by isometries.

Researchers have proposed a wide variety of elastic energy terms. Energies proportional to
the squared curvature[12][9][1] have the advantage of being physically meaningful but they do
not accept circles[5] or spheres as optimum. Moreton et al.[14] introduced a fairness measure
proportional to the squared derivative of curvature which yields spheres, tori and cylinders
as optimum shape.

Curvature-based energies lead to complex non-linear expressions of F;m. Linear elastic
energies where the curvature is approximated by second order derivatives have been exten-
sively used in the computer-aided-geometric design field[7] as well as for deformable modeling
[21][2][6][20]. In the generalized formulation, the energy is composed of a stretching term and
a bending term. Some weights can be adjusted to take into account surface discontinuities and
normal discontinuities. Linear elasticity has proved to be efficient but there is no guarantee
that fair shapes will be delivered since they are not expressed in terms of intrinsic parameters.
They have a tendency to consistently flatten high curvature parts and do not accept circles
or spheres as optimum/[5].

Our framework does not derive F;m from the minimization of some global elastic energy.
Instead we associate with each node P; a local energy S; that characterizes the state of local
tetrahedron (Pi,PNl(i),PNQ(i),PN3(Z')). More precisely the position of P; can be determined
from the position of its three neighbors by the relation:

P; = 1PN, (i) + €2 Pn, iy + €30 P,y +L (i, ds, &) N; (4)
F

where

o ["1is the foot of P,.



r; is the radius of the circle circumscribing ( Py, iy, Prg (iys P, (i))-

d; 1s the distance between F' and the circle’s center.

@; 1s the simplex angle at P;.

L(r;,d, ¢;) is the function described in appendix A.

—

o N; is the normal vector at plane (P, (i), Pn,(i), Pna())-

Figure 2 shows the relation in the local tetrahedron:

PNZ(i)” ~

F=e9j. PNy() + £9;.PN() + £3;.PN4()
€1j + &+ €3; =1

Figure 2: Curvature definition for a simplex angle ¢;

The simplex angle ¢; characterizes the mean curvature at P;. With each node P; we
associate a simplex angle ¢ for which the local tetrahedron (PZ',PNl(i),PN2(Z'),PN3(Z»)) s In
its rest position. ¢} corresponds to the natural state of the local tetrahedron or its state of
minimum energy. If we write P~ as the position of node F; if the simplex angle was ¢} then
the energy S; of the local tetrahedron is:

Si=2PP?  (0<a;<0.5) (5)

F;m is the gradient of this energy and since P* is independant of F;:

Fow=a; PPF (0< a; <0.5) (6)

In this framework each node can be seen as an independant particle that interacts with its
three neighbors and their surrounding nodes. Interacting sets of particles have been used in
computer graphics to model viscous fluids [13] or thermoplasticity[19]. Szeliski[17] used parti-
cles that tended to align their orientations to interpolate 3D data without a priori knowledge
of connectivity or topology. There is one important difference between simplex mesh and
particles system in that simplex meshes constrain nodes connectivity to three which restricts
the generality of representation but leads to smoother shapes and more efficient computation.

Different constraints are set depending on the computation of ¢7. We define three types
of constraints applicable to any part of a simplex mesh.



The first constraint enforces smoothness along the surface and corresponds to a default
option when no underlying shape is known. Resulting surfaces are piecewise C'? continuous
and their fairness is guaranteed since the laplacian of mean curvature over the mesh is null:
AH = 0. Spheres, cylinders, cones satisfy this equation as well as minimal surfaces for which
H = 0. Minimal surfaces are of great interests in computer-aided design since they minimize
the surface area spanned between two curves.

The second constraint is related to the notion of rest shape to which the model converges
when no external constraints are applied. A representation of simplex meshes invariant by
rotation, translation and scale is used to describe the underlying shape.

The third constraint concerns the adding of surface normal discontinuities in order to
model sharp edges or conic points.

4 CONTOURS

4.1 Definition

A contour C attached to a mesh M is defined as a set of nodes {Pr;)}, (¢ = 0,1) such that:
o L(—1)=L(),L(I+1)=L(0)
o Wi, 3j. L(i+ 1) = N;(L(1))

L \V/Z,\V/],PL(Z) 7£ PL(])

Therefore, C is a closed curve with consecutive nodes connected in mesh M. The third
condition states that C does not self-intersect (see Figure 3). When a contour encloses a
p-face, the face is labelled as an end and the surface is trimmed along the contour. A contour
is managed as an entity independantly from the mesh it is attached to. A node is attached
to no more than one curve.

End

Contour

SNesS

Figure 3: Two contours attached to a simplex mesh.

A contour is handled independently of the surface mesh and is also subjected to internal
and external constraints. The only difference in terms of implementation is that internal



force F;m at each node Pp ;) is computed in order to ensure the elastic behavior of the contour
instead of the surface model.

We propose an elastic functional that does not entail any shrinking effect and that exhibits
stable behavior. Under this internal constraint contours are smoothed and converge toward
their stable shape, circles. The expression of Fine is a generalization of functionals described
in [5] and previous section.

4.2 Boundary Conditions

Boundary conditions describe how contours are embedded inside a mesh and are therefore
important control parameters for shaping a model. The simplex mesh provide a simple way
of set boundary conditions by controlling simplex angles ¢r,;) at each node of curve { P }.
The underlying assumption is that smoothness forces apply to surface nodes located around
each contour. We defined two types of surface-contour constraints:

Curvature Constraint : Mean curvature is constrained at nodes surrounding a contour.

Tangent Constraint : The angle between the tangent plane and the contour normal as mea-
sured around the contour tangent vector, intuitively corresponds to the angle between
the surface and contour. This angle can be controlled through the value of ¢r;

Figure 9 shows a vase created from a cylinder and five contours. Two contours are defined
by interpolation of four non-coplanar points and have tangent constraints of 7/4 and —x /4
respectively while the three others are circles with null curvature constraints. Tangent con-
straints guarantees a C'! continuity across a contour while curvature constraints leads to C'°
continuity only.

5 DATA CONSTRAINT

Three dimensional ranging device have gained popularity in computer graphics for building
realistic models of existing objects. Physically based modeling systems are well suited for
this task since data is often noisy or incomplete. The fitting process is performed by a
potential field that drags the surface model close to the three dimensional data while the
interpolating capability results from the internal smoothness constraints. Local minima may
arise especially when models are initialized far from the data. We avoid this problem by
interactively positionning and scaling the initial mesh as to get a reasonable estimate of the
object shape. The mouse may be used also to drag a mesh out of a local minimum.

We follow a similar formulation as in [6] where the potential field has a limited range. For
each mode P; we determine the closest point in the data structure Py and compute the
attracting force as:

= | PiPeigy || ~ 3\ A
Fope = B:G (T() (PiPcgiy -Ni) N (7)

where ZVZ is the surface normal at P; and G/(x) is the function of Figure 4. D is the maximum
distance at which some data points attracts a node point and is computed as a function of
the overall mesh size. The function G/(x) is designed such that the force is linear when data is



within a distance D of the surface model but decreases sharply otherwise. A bounded range
potential field is important in order to limit the influence of outliers or to models objects with
narrow shapes. In order to get a smooth deformation in presence of sparse data, the force is
projected on the normal surface vector.

The search for the closest point Pgy(;) is theoretically in O(m?) for a m X m range image
but we were able to decrease the complexity to O(m) by restricting the search along one
image line.

G (x)

Figure 4: Function G(x).

6 MESH TRANSFORMATION

6.1 Definition

A mechanism for mesh refinement is important to provide the maximum of flexibility to a
modeling system. Simplex mesh structures can be locally altered without exhibiting any
irregularity in the mesh connectivity. Therefore, nodes may be added or deleted locally
without perturbing geometric continuity and a mesh is handled as an indefinitely expendable
surface.

Ty

E
/ - 2
Tz
E;

T1= Edge Removal To= Face Splitting

T3: Handle Creation / Mesh Fusion T4: Handle Removal / Mesh Sectioning

Figure 5: The four basic mesh transformations



We define four basic mesh transformation operations (see Figure 5). The first two, 77 and
T, are the inverse of each other and can be interpreted as, respectively, edge removal and
face splitting operations. These transformations do not change the mesh topology but instead
decrease or increase the density of nodes. T3 is interpreted as a handle creation operation if
both faces belong to the same mesh or as a mesh fusion operation otherwise. In the latter
case the number of handles of the resulting mesh is the sum of the two handle numbers.
Ty amounts to cutting a mesh along a contour and results in either removing a handle or
sectioning a mesh into two parts.

The general mesh transformation T' that transforms a mesh My into M5 is an ordered
set of the four basic operations :

T = {Tf(o), Ts1y, s Tf(q)} with  f(i) € {0,1,2,3,4}
A transformation from My to My is:
I = {Trnu(s(a)s Trno(sa=1)) - Lo 0))}
where Inv(x) a function defined as:
Inv(l)y=2 Inv(2)=1 Inv3)=4 Inv(4)=3

In particular, there are two important macro-transformations, 75 and Ty that respectively
increase and decrease locally the mesh resolution by duplicating and removing a face (see
Figure 6). Both can be decomposed into combinations of Ty and T5.

Ts
—_—

Tsg = Face Duplication

TG
—_—

Tg = Face Removal

Figure 6: Mesh resolution transformations

7 EXAMPLES

We present two examples of models build from different range images. The three dimensional
data with associated texture were provided by a Cyberware digitizer[16]. The modeling
process can be decomposed into two stages. In the first stage, the model is initialized as a
generic shape, either an ellipsoid, a cylinder or a plane, and then fit to the range data. In the
second stage the mesh is refined as parts of high curvature and is eventually attached with
another simplex mesh.

The first example shows how to build a hand model given two range images, one for
each side of the hand (see Figure 10). The palm and fingers are first modeled separately



and then connected to each other with several T5 operations. We then compensate the finger
displacement between two images by rigidly moving eighteen contours to their correct position
while constraining the surface to keep the same curvature. The final model has about 8000
nodes and uses the texture of the two range data.

The second examples combines six range images of some body parts taken either from a
mannequin or from a real person (see Figure 11). Junctions between the several meshes are
smoothed until they reaches C'* continuity.

8 INTERFACE

We designed an interface that provides the ability to interactively select a node, a face or a
part of a mesh and then assign it some property. In addition to setting internal and external
constraints, user may “nail” some nodes or use the mouse to drag both surface and contour
nodes. Viewing point as well as contours and surfaces may be rotated, translated or scaled.
Range images can be displayed as well providing a quick way to check the goodness of fit.

Constraint visualization is possible by attaching color patches to each node. Computa-
tional time is proportional to the number of mesh nodes but is, in most cases, small enough
to provide real time feedback.

9 ANIMATION

9.1 Metamorphism

We combine two important properties of simplex mesh, their intrinsic shape representation
and their mesh transformation operations in order to transform an object A into an object
B (see Figure 13). A simplex mesh shape is fully described by the 3n values {ey;, €2;, ¢} (¢ =
0,..,n) and its mesh structure. If model A has shape {e, €2, ¢} (i = 0,..,n) and model B
has shape {eﬁ, egj, qﬁf}(j =0,..,m), we can transform A into B by first applying a generalized
mesh transformation 74—z and then assigning the 3m shape parameters to each node. The
internal constraint force F},; brings the mesh to its rest shape that corresponds to the shape of
object B. Since shape is described independantly of scale, we can render object deformations

with a constant volume or constant area.

In the current status, all objects are either extracted from a range image or from some
triangulated data. Given a simplex mesh representing an object A, we fit the mesh on object
B and modify its structure in order have a precise rendering of the object. We record and
store the list of basic transformations as the generalized mesh transformation 7T'4_.z. Future
extension would directly compute T4_z from the two simplex meshes without having the
fitting stage.

9.2 Articulated simplex mesh

Rotational joints are widely used especially to animate human parts models. A common
approach is to consider hierarchical layered models with the lowest layer representing the
bones and the upper layer the human skin[8][3]. Bones are rigidly rotated around some



predefined axis while the skin is of elastic nature. Interaction between layers constrains the
skin to closely surrounds the bones.

Layered models are closely related to the human physiology, but some magic parameters
tune-up is necessary to render realistic animation. We propose an algorithm that simply and
efficiently animates articulated simplex meshes. A joint is uniquely defined by two contours,
one face and two vertices (see FigureT).

Face
Moving
contour

Reference
contour

2 nodes defining
axis of rotation

Figure 7: Rotational joint definition

The first contour is the moving contour where the surface is articulated. A contour splits a
mesh into two parts and therefore a face indicates which part of a mesh is supposed to rotate.
The two vertices defined the axis of rotation and the rotation angle is measured between the
two segments that join the center of the moving contour to respectively the center of the
face and the center of the second contour called refence contour. When the user changes the
articulation angle of 66, all nodes on the moving side of the articulation contour are rotated
of the same amount 60 while the contour is rotated around its center of the amount 66/2.
This relation indicates that the contour bisects the angle between the moving part and the
reference part which in general gives a natural effect. Surfaces nodes are constrained to keep
constant curvature which results in a natural smoothing of the joint. More realistic effects
such as the formation of wrinkles could be rendered by setting tangent end conditions at the
moving contour instead of curvature constraints.

We have build a twenty degrees of freedom articulated hand from the model shown in
Figure 10. We created four joints per finger following the same taxonomy as [15]. Joints are
created fully interactively by selecting the five items. Figure 12 shows the model with the
twenty articulations as seen from the interface. User may select each joint and set its rotation
angle.

10  CONCLUSION

In this paper we have presented a physically based modeling system that represents three-
dimensional surfaces as simplex meshes. By combining the notion of ends, mesh transforma-
tions, contours, smoothness and curvature constraints, our system’s framework gives the user
a large freedom of action at a local as well as a global level. Range images are handled as ad-
ditional shape constraints and resulting models may be merged to render realistic images. An



interactive interface that provides the ability to select a node, a face or a part of a mesh and
to assign it some property was designed. We have developed in this perspective an animation
scheme directly related to simplex mesh structures that simulates a rotational joint at a given
contour. A twenty degrees of freedom hand model was thus created from the mesh as Figure
12. Current limitations include the lack of a continuous surface representation associated
with a simplex mesh and a computational cost too high for interactively manipulating large
models.

Appendix A

The relation between L,r;, d;, ¢; is shown in Figure (8). If we write 6y as LUP,F and 0y as
LV P I then :

tan(f0y) = (”zd") tan(fy) = —(”"]:d")

Since ¢; = 7 — 0y — Oy,

tan(fy) + tan(6y)

—tan(¢;) = tan(fy + v) = 000y

Finally,

L(ri,d;, ¢;) =

e=1 if |é] <2
e=—1 if |6l > /2

Figure 8: Computation of L(r;,d;, ¢;)
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Figure 9: Vase created from a cylinder with five contours

Figure 10: (a) Initialization of palm and fingers models; (b) All meshes are fit to the first
range image; (¢) Final model; (d) Texture display



Figure 11: Depth Cued, Solid and textured display of bust model.

Figure 12: Articulated hand Figure 13: Metamorphism



