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Abstract

In this paper, we describe the basic components of a
surgery simulator prototype developed at INRIA. After a
short presentation of the geometric modeling of anatomical
structures from medical images, we insist on the physical
modeling components which must allow realistic interac-
tion with surgical instruments. We present three physical
models which are well suited for surgery simulation. Those
models are based on linear elasticity theory and finite ele-
ments modeling. The first model pre-computes the deforma-
tions and forces applied on a finite element model, therefore
allowing the deformation of large structures in real-time.
Unfortunately, it does not allow any topology change of
the mesh therefore forbids the simulation of cutting during
surgery. The second physical model is based on a dynamic
law of motion and allows to simulate cutting and tearing.
We called thismodel “ tensor-mass’ sinceit is anal ogousto
spring-mass models for linear elasticity. This model allows
volumetric deformations and cuttings, but hasto be applied
to alimited number of nodesto runin real-time. Finally, we
propose a method for combining those two approachesinto
a hybrid model which may allow real time deformationsand
cuttings of large enough anatomical structures. This model
has been implemented in a simulation system and real-time
experiments are described and illustrated.

1. Introduction

The most recent major advance in the craft of surgery
was the development of laparoscopic surgery. In this type
of surgery, abdominal operations such as hepatic surgery
are accomplished through small incisions rather than a large
one that might be a foot long. The abdomen is blown up
with gas so that there is open space inside. A video cam-
era is introduced into the abdomen through one of the small

incisions. The video image is magnified and transmitted to
a high resolution monitor, allowing the surgeon to see the
abdominal anatomy with great clarity. The surgical opera-
tion is then performed inside the abdomen using long and
narrow scissors and clamps that are introduced through the
other incisions. Thus, laparoscopic surgery allows surgeons
to perform less traumatizing operations, the drawback of
this technique being essentially for the surgeon who needs
to learn and adapt himself to this new type of surgery. In
this context, surgical simulation systems could be a great
help in the training process.

There are several key problems in the development of a
surgical simulator [2]. First of all, a model of the target
organ(s) is required. This model should define both geo-
metrical and physical characteristics of the organ(s). The
geometry is usually obtained from various medical images
modalities, while the deformable nature of the soft tissues
are determined — when it is possible — through biomechan-
ical studies. However, the computation of the shape and
deformable behavior of an organ is not sufficient. Another
very important requirement in surgery simulation concerns
real-time interaction. Real-time interaction requires that
any action from the operator generates an instantaneous re-
sponse from the stimulated organ, whatever the complexity
of its geometry. It means that we must be able to interac-
tively deform or cut a virtual organ and eventually feel its
reaction in real-time by the introduction of force feedback
devices. A good balance between surgical realism and in-
teractive rates of simulation is one of the most challenging
problems in surgical simulation.

After a presentation of different techniques used to rep-
resent deformable objects, we will focus on the follow-
ing problems: real-time computation methods and topol-
ogy change. Both problems will be discussed in the frame-
work of linear elasticity theory. After a short recall of a pre-
viously published [14] pre-computed real-time linear elas-
tic model, we introduce a formulation of an elastic model



allowing topology changes. Finally, we present a hybrid
model combining both approaches and we conclude with
an application on hepatic surgery.

2. Deformable models

Terzopoulos [32], Waters [34] and Platt [28] showed
the advantages of the physically-based models on previous
computer animation techniques. In surgery simulation, a
great interest has been given to mass-spring models due to
their simplicity of implementation and their relatively low
computational complexity [6, 27, 24, 25]. For instance,
Kuehnapfel and Neisius [24] present a simulation of en-
doscopic surgery based on a surface mass-spring model.
Although in this case the interactions are driven by instru-
ments with motion sensors, no force feedback is used. The
simulation system developed by Gibson et al. [20] takes into
account the volumetric nature of organs with a deforma-
tion law derived from a mass-spring model. While these
approaches allow interactive rates, they exhibit a lack of re-
alism since they represent a solid as a discrete set of masses.

On the other hand, the continuum mechanics theory
establishes a set of relationships between the shape of a
body, constraints and internal deformations within this solid
and the external forces applied to it. In particular, the
use of elastic solids is widely described in the literature
[4, 30, 11, 31]. Generally, various modifications and simpli-
fications —e.qg. linearisation — are introduced to reduce com-
putation time or to induce a particular behavior, as it is usu-
ally the case in surgical simulation. Indeed, non-linear elas-
tic models have been used recently for solving inverse prob-
lems [33], but they are not well suited for real-time compu-
tation. Actually, whatever the approach taken, it usually
reflects a need for defining compromises between medical
realism and real-time constraints. For instance, Bainville
[4] defines the evolution of a set of rigid and deformable
solids under the influence of various forces. In this case,
the deformation law is represented by a hyper-elastic quasi-
static model, associated to a finite element method for the
numerical resolution. Unfortunately, the computation times
makes this approach unpractical for real-time surgical sim-
ulation.

Our method is, to some extent, based on the opposite rea-
soning. We will start with a simple model - in order to ob-
tain optimal computation times - and then we will propose
some improvement in order to take into account additional
characteristics and medical aspects. Since we don’t know
the exact nature of the deformation law of most soft tissues,
we have based our method on a linear elastic modeling of
the soft tissues. Such a model is indeed a good approxi-
mation of a large number of materials when the range of
displacements remains small.

The problem of computing time reduction has been stud-

ied by Bro-Nielsen and Cotin [9] using a condensation tech-
nigque [35] applied to a finite element method. With such an
approach, the computation time required for the deforma-
tion of a volumetric model can be reduced to the compu-
tation time of a model only involving the surface nodes of
the mesh. In [14] we have also proposed a method for real-
time interaction with a volumetric deformable model of an
organ. This method, based on a set of pre-computed equilib-
rium solutions is very efficient while no topology changes
are performed.

But topology changes usually occur when the tissue
model is submitted to cutting or tearing operations. These
changes make useless the methods based on any kind of
pre-computing of the inverse of the stiffness matrix since
the mesh modification induces a modification of this matrix
[13]. The challenge is then to be able to propose a formu-
lation of a deformable elastic model allowing real-time de-
formations and cutting. A few number of researchers have
focused on tissue cutting in the framework of surgery simu-
lation. Song and Reddy [30] have described a technique for
cutting linear elastic objects defined as finite element mod-
els. However, this technique was only applied to very sim-
ple two dimensional objects. Another approach, well suited
to this kind of problem, consists in using mass-spring mod-
els. By construction, these models can be easily modified to
allow topology changes. However, they exhibit non realistic
behavior during deformation or cutting operation. Finally,
geometric models defined implicitely [10] have been pro-
posed for the simulation of tearing but without any real-time
constraints.

3. Linear eadticity

A key issue that a surgical simulator must address is to
realistically model the behaviour of soft tissues in real-time.
A survey of soft tissue modeling can be found in [17]. How-
ever, we briefly describe the simplest biomechanical model:
the linear elastic model.

The physical behavior of a soft tissue model may be con-
sidered as linear elastic if the displacements applied to it
remain small [19, 26] (less than 10% of the mesh size); as
the displacements increase, the linear elastic approximation
becomes less and less valid. In particular, several biological
materials are nearly incompressible since they are mainly
comprised of water. Such behavior cannot be modeled with
linear elasticity, the integration of force feedback in the sim-
ulation limits the range of deformations to small deforma-
tions. This is because the force in the surgeon’s hand will
increase as he increases the deformation, thus preventing
large deformations. Consequently, the deformation remains
reasonably small. Another interest of linear elasticity is
the possibility to compute any mesh deformation from the
knowledge of a finite set of elementary deformations, as we



will see in the next section.

First, we define a reference volumetric anatomical model
Minitial COrresponding to its rest position. Under external
constraints, for instance a surgical instrument, the anatomi-
cal model M ;411 is deformed. We represent the deforma-
tion of a volumetric model from its rest shape with a dis-
p|aC€rTEnt vector U(x,y,z) for ((L’,y,Z) € Minitial and
we write Mdeformed = Minitial + U(x,y,z) The dis-
placement vector U(z, y, z) has three components:

u(z,y, z)
v(z,y,2)
w(x,y,z)

U(‘,I/.7y7 Z) =

The displacement vector U(x, y, z) does not character-
ize the deformation of the anatomical model. For instance,
under a translation T of the model M, the displacement
vector is U(z,y,z) = T, but the model does not yield
any deformation. For a linear elastic material, the elastic
energy Weiqstic Measuring the amount of deformation of
M deformed, 1S defined as [12]:

A
WEiastic = 5(751“E)2 + ptrE? (1)

where

e the 3 x 3 symmetric matrix £ (known as the Green-St
Venant strain tensor) is defined as :

E= %(VU +vu’) )

e )\ and p are the Lamé coefficients characterizing the
stiffness of a material.

Equation 1, known as Hooke' slaw, shows that the elastic
energy of a deformable object is a quadratic function of the
displacement vector.

In the following sections, we will consider the frame-
work of finite elements and assume that the object is repre-
sented by a conformal tetrahedral mesh. It is then possible
to compute at each node 7 a force F; corresponding to the
derivation of the elastic energy with respect to the node po-
sition P; : -

_ Elastic
Fi= oP; @)

Because the elastic energy is quadratic with respect to
the displacement vector, the forces F; are linear functions
of the displacement vectors of each node P ;. Therefore, it
can be shown that minimizing the elastic energy of a three-
dimensional object requires the solution of a linear system
of the form :

[Klu=f

where :

¢ [K] isthe rigidity matrix representing the topology and
stiffness of the discretized object

e u represents the displacement of all nodes

e f combines all external forces and boundary condi-
tions.

In sections 4 and 5, we study successively a quasi-static
and a dynamic model to compute the deformation of an elas-
tic object and the resulting forces. Finally, we show in sec-
tion 6 an hybrid approach which combines the advantages
of each model for surgery simulation.

4. Quasi-static pre-computed linear elastic
model

As stated in the introduction, surgical simulation re-
quires visual feedback and, eventually, force feedback, i.e.
an update frequency of about 60Hz for the display and
300Hz for the forces. When solving a problem of lin-
ear elasticity with a finite element method, the number of
mesh vertices has a direct impact on the size of the matri-
ces involved in the linear system [KJju = f. This implies
that even using more powerful computers, only deformable
models with a small number of vertices could be simulated.
However, most anatomical structures have a rather complex
geometry and cannot be realistically described with such a
limited number of vertices.

In order to speed up the interaction rate, we take advan-
tage of the following properties: the linearity and the super-
position principle. We give here a very general description
of the method, an extensive description can be found in [14].
We first introduce a volumetric deformable model with the
following properties:

1. The model follows the linear elastic biomechanical
model.

2. This model deforms under some boundary condi-
tions expressed in terms of imposed displacements and
forces.

3. The model evolves in a quasi-static state: the posi-
tion of the model at time ¢ + 1 is the solution of the
static problem with boundary conditions given at time
t. This assumption of quasi static evolution, made in
many situations [3, 23, 7, 21], considers as negligeable
the effect of the acceleration and speed in the compu-
tation of the deformation. This assumption has several
advantages, in particular a simplification of the prob-
lem to be solved but also a suppression of the oscil-
lations in the vicinity of the equilibrium as well as a
reduction of the complexity of the processing of the
contacts between objects.



Figure 1. Deformation of plate represented as
a pre-computed linear elastic model : (left)
initial position (right) deformed position

Then, interactive rates of deformation can be obtained in
a two-step method:

1. A pre-processing stage is required in order to to com-
pute a set of elementary deformations of the model.

2. The deformation can be computed in real-time as a
linear combination of elementary deformations. The
computation time is a linear function of the number of
surface nodes.

We use an iterative method (conjugate gradient) to solve
each linear system. During the simulation, very limited
computations are performed to get the exact deformation
of the anatomical object. An update rate of 500Hz has been
reached with a mesh having nearly 8000 tetrahedra. We
have developed an hepatic surgery simulator [15, 1] includ-
ing a force feedback device, based on this linear elastic soft
tissue model.

The pre-processing stage can take between a few minutes
and several hours depending on the size of the model and
on the desired precision. This is not a problem since this
preprocessing is done once for all.

5. Dynamic linear elastic model or tensor-mass
system

5.1. Motivations

The main drawback of the previous approach is the im-
possibility to change the topology of the mesh in real-time
since it induces a modification of the stiffness matrix and
by the way requires a new pre-processing stage. Moreover,
without pre-processing, it is no longer possible to solve ex-
actly and in real-time the equation [K]Ju = f with a time-
varying matrix [K], even with meshes of a few hundred
nodes.

An alternative we propose in this section is to consider
the evolution of a physical dynamic model which can be

approximately solved by an efficient real-time iterative ap-
proach. This approach allows to deal with meshes of rea-
sonable size (more than 1000 nodes for a frame-rate sim-
ulation), and provides a good approximation to the exact
static equation.

The physical model is based on the Newtonian law of
motion of each mesh point P; :
°P;  dP;

az
where F; is obtained from the derivation of the elastic en-
ergy given by equation 3.

In the sequel of this section, we present the computa-
tion of F, within the framework of finite element modeling
and the numerical integration scheme. We then compare
our approach with the spring-mass formulation, and present
simulation results.

+F, (4)

m;

5.2. Definition of a dynamiclinear elasticfinite ele-
ment model

We assume that we have a conformal tetrahedral mesh (
as defined in finite element theory) describing the geometry
of the considered anatomical structure. We denote M ;pitial
the mesh at its rest position and P? the initial position of
each vertex. We then proceed in 3 steps :

1. We first define the interpolation equations giving the
displacement vector at a point (z,y, z) inside a tetra-
hedron T7; as a function of the 4 displacement vectors
of the 4 vertices of T;.

2. We write the elastic energy of a tetrahedron as a func-
tion of the 4 displacement vectors of the 4 vertices of
T;.

3. We compute the elastic force F'; acting on a vertex P;

5.2.1 Displacement vector equation

Given a deformed model M geformea, We define the dis-
placement vector for each point of the mesh by linearly
interpolating the displacement P?P; of the vertices inside
each tetrahedron.

More precisely, if we write T'; the tetrahedron defined by
the four vertices T (j) , 7 = 0, ..., 3, in their rest position,
then the vector displacement is defined as :

Az, y, 2 Zb z,Y,%

where b;(x,y,z) are the barycentric coordinates of the
point (z,y, z) inside the tetrahedron T’;. Since the barycen-
tric coordinates b, (x, y, z) are linear with respect to the co-
ordinates (z,y, z), the matrix E(z,y, z), defined in equa-
tion 2, is constant for each point of the tetrahedron T'; since

7.0 Pri)



it is related to the derivatives of the displacement vector.
Appendix ?? provides more details on the formulation of
the shape functions b, (z, v, z).

5.2.2 Elastic energy

If we associate with each tetrahedron T its linear elas-
tic properties, i.e. the two Lamé coefficients A, and p;,
then using equation (1), we can express the elastic energy
Weiastic(T;) of the tetrahedron T'; as a quadratic function
of the coordinates of {Pr,(;)} (see appendix ?? for more
details). The total elastic energy Wgiastic (Madetormed) Fe-
quired to deform Mpitiar INt0 10 Maeformea iS the sum of
the elastic energy of each tetrahedron.

5.2.3 Linear Elastic Force

Given the expression of the elastic energy, we derive the
force F; applied on a vertex P; with the relation:

aWElastic (Mdeforlned) _ Z

F,=—
oP;

. oP;
T;€L(1)
where L(3) is the set of tetrahedra adjacent to vertex P ;.

Within the tetrahedron T3, the force Fr,(;) applied on
vertex P, ;) takes the following form:

3

Fr.() = > KRIPE 0 Pry i
k=0

where [KJ.Tk‘] are 3 x 3 stiffness matrices that can be com-
puted as follow:
Given a tetrahedron T7; and its four vertices
0 0 0 i
P 0y PT(1)7P T.(2)» P1,(3)» We compute the six tensors

[K;.l;(] as follows:

)\iMkM]-T + 1 MGMYT + 1 (M;My,) [Id33]

KT =
[Kic] 36V (T;)
®)
with
1 00
[Id3x3]=10 1 0
0 0 1

Moreover, equation (5) induces the following relation-
ship: [Kyj] = [KJ?;(‘]T

It is important to notice that these stiffness matrices only
depend on the material characteristics within a tetrahedron —
through the Lamé coefficients A; and u; — and the geometry
of the tetrahedron T7; at its rest shape.

For a given vertex P ;, the elastic force F'; is therefore the
sum of all contributions F 7, ;) from all adjacent tetrahedron

. aWElastic (T] )

T;. We can therefore express the elastic force F; as:

F, = [KiPP, + > [Ky|P)P, (6)
JEN(P;)

where [Kj;] is the sum of tensors [K;fj] associated to the

tetrahedra adjacent to P;, [Kj;] is the sum of tensors [K;?]
associated to the tetrahedra adjacent to edge (7, ;) and
N(P;) is the list of P; neighbors.

5.3. Data structure

Given a tetrahedral mesh of a solid — in our case an
anatomical structure — we build a data structure incorpo-
rating the notion of vertices, edges and tetrahedra. For each
vertex, we store the adjacency with tetrahedra, the current
position P;, the rest position P{ and the tensor [Kj;]. For
each edge, we store the two adjacent vertices as well as the
tensor [Kj;]. Finally for each tetrahedron, we store a ref-
erence to its four vertices and its six edges as well as the
Lamé coefficients \;, u; and the four vectors M ; defined in
equation ?? (see appendix ?7?).

5.4. Numerical integration

We use a Newtonian differential equation (4) as the equa-
tion governing the motion of our linear elastic model. This
equation is related to the differential equation found in con-
tinuum mechanics [5] :

MU +CU+ KU =R 7)

Following finite elements theory, the mass M and damp-
ing C matrices are sparse matrices that are related to the
stored physical properties of each tetrahedron. In our case,
we consider that M and C are diagonal matrices, i.e. that
mass and damping effects are concentrated at vertices. This
simplification called mass-lumping decouples the motion of
all nodes and therefore allows to write equation 7 as the set
of independent differential equations (4) for each vertex.

Furthermore, we choose an explicit integration scheme
where the elastic force is estimated at time ¢ in order to
compute the vertex position at time ¢ + 1 :

m; i ) t+1 _ 2m; (mi i ) t—1
_ pttl — 2 ipt_ p!
(Aﬁ SAL) Taeti\ae Taa)

The key advantage of this explicit integration scheme is that
no rigidity matrix inversion is required for updating each
vertex. Therefore, after modifying the mesh topology, equa-
tion 8 is used to update the vertex position without any ad-
ditional computation apart from the update of local tensors
[K;;] (see section 5.5). On the contrary, using an implicit
integration scheme would have entailed the inversion of the



rigidity matrix every time the mesh topology is altered. A
discussion about explicit versus implicit schemes has been
also proposed in [8].

Explicit schemes are only conditionnaly stable are there-
fore they tend to converge more slowly than implicit
schemes. In order to obtain a stable scheme, the time step
used for the numerical integration must be small enough.
The critical time step is related to the highest eigenvalue of
the rigidity matrix and the local mass and damping values
(see [5] for more details). To optimize the time step, we use
constant values of the mass and damping values. Indeed,
in [8], Bro-Nielsen proposed to use mass and damping val-
ues proportional to the volume of each tetrahedra. This ap-
proach leads to ill-conditionned iterative scheme (with low
time-step) when dealing with meshes having tetrahedra of
different size. In our case, the choice of the time-step is
only related to the stiffness of the soft tissue material inde-
pendently of the elements size.

Finally, we use a fourth order Runge-Kutta method [29]
for discretizing the time domain instead of the Euler Method
of equation 8. This method requires to evaluate four times
the forces applied to P; in order to compute the next posi-
tion P;(t + 1). However, we have compared this approach
with the Euler method which only requires one evaluation
of forces. Our conclusion is that the Runge-Kutta method
allows the use of larger time steps — about ten times larger
— than the Euler method. Consequently, the fourth order
Runge-Kutta method leads to a speed-up factor of about
two. This is particularly interesting when deforming stiff
material requiring small time steps.

5.5. Simulation of cutting and tearing

One of the basic task in surgery simulation consists in
cutting and tearing soft tissue. With the dynamic linear elas-
tic model, those task can be achieved in real-time.

We simulate the action of an electric scalpel — a bipolar
cauttery instrument — on soft tissue by successively remov-
ing tetrahedra at places where the instrument is in contact
with the anatomical model. This approach implies that for
realistic simulation, the tetrahedra must be relatively small
at the regions where the cutting may occur. Furthermore,
in order to keep the mesh conformal, additional tetrahedra
may be automatically removed after checking the local ver-
tex and edge adjacency.

When a collision between the instrument and a tetrahe-
dron is detected, the local deformation tensors associated
with the tetrahedron are computed and then subtracted to
the current deformation tensors at the edges and vertices of
the tetrahedron. Since the update of the tensors is only local,
this is performed in a very efficient manner. For instance,
when removing the tetrahedron T7;, ten update operations

are performed :

[Kj5] = [K;5] — [K]]]

i (K] = (K] = [K ;]

Finally, we update the list of displayed triangles if the
tetrahedron is located at the border of the volumetric model.
By locally updating the tensors, the tissue has exactly the
same behavior as if we had removed the corresponding
tetrahedron at its rest position. Because of the volumetric
continuity of finite element modeling, the deformation of
the tissue remains very natural during the cutting.

In addition to cutting, we can simulate the tearing of soft
tissue. The tearing occurs at places where normal stress and
shearing are too high. The basic algorithm is to compute
a local deformation criterion measure for each tetrahedron.
If this criterion is greater than a threshold, then the tetra-
hedron is automatically removed and the tensors are locally
updated. We have implemented three geometric criteria for
detecting highly deformed tetrahedra. Those criteria are the
relative variation of volume, the mean relative elongation
of the six edges and the maximum relative elongation of the
edges.

5.6. Spring-Mass model ver sustensor-mass model

In a classical approach, a vertex P ; in a spring-mass sys-
tem, is submitted to an elastic force:
PP,
Fi= > k(PP - 1Y) 5= 9)
ey PP
JEN(P;)

where N (P;) is the set of vertices P; adjacentto P, k;; is
the stiffness coefficient between vertices P; and P}, I{; is
the rest length between P; and P .

We have shown that a vertex in our dynamic linear elastic
model is submitted to the force of equation 6. Because of
the similarity of the two approaches, we have coined the
word Tensor-mass in order to describe this dynamic linear
elastic model.

By comparing equations 6 and 9, it is clear that both
dynamic models have the same computational complexity
which is linear in the number of edges. In practice, we were
able to reach an update frequency of 40 Hz with a tetrahe-
dral mesh having 760 vertices and about 4000 edges?® and
similar results were obtained for a spring-mass system. The
linear elastic model does not require any square root evalu-
ation, but slightly more information must be pre-computed
than for spring-mass systems.

However, both approaches substantially differ in terms
of biomechanical modeling. Spring-mass systems consti-
tute a discrete representation of an object and their behav-
ior strongly depend on the topology of the spring network.

1These computing times where obtained on a 233 Mhz DEC Alphasta-
tion.



When a spring is removed or added it may change drasti-
cally the elastic behavior of the whole system.

Conversely, our finite elastic model is a continuous rep-
resentation of the object and its behavior is independent of
the mesh topology (it mostly depends on the mesh resolu-
tion). This implies that when the mesh is cut, continuous
and natural behavior of the tissue is simulated.

Because all biomechanical data related to biological soft
tissue are formulated as parameters of the continuum me-
chanics (such as Young modulus or Poisson coefficients),
it is a priori very difficult to model realistic soft tissue de-
formations with a spring-mass system. However, several
authors [22, 18] have developed genetic or simulated an-
nealing algorithms to identify springs parameters (stiffness
and damping) given the deformation of an object.

Finally as previously mentioned, the linear elastic model
is only valid for small displacements. For instance, if a rigid
transformation is applied to the rest shape M ;,.::4:, then the
forces applied to all vertices will not be null. On the con-
trary, a spring model under the same displacement would
not deform, since the length of the springs are preserved
under a rigid transformation.

We summarize the comparison between those three soft
tissue models in table 1.

Pre-computed | Tensor-Mass Spring-Mass
Efficiency +++ + +
Realism + + -
Cutting Simulation - ++ +
Large Displacements - - +

Table 1. Comparison between the three soft
tissue models : pre-computed quasi-static,
tensor-mass and spring-mass models

5.7. Examples

We present two examples of tensor-mass deformation. In
figure 2 we show a volumetric plate being cut and fixed at its
four corners. The cutting consists in removing interactively
tetrahedra. As more and more tetrahedra are removed, one
can see that the deformation of the overall plate is modified.
The plate model consists of 759 vertices and 2212 tetrahe-
dra.

In figure 3, we show a cylinder that is deformed under the
action of gravity. Based on the relative change of volume,
the tearing algorithm removes automatically the tetrahedra
where the relative change of volume becomes greater than
a given threshold. The cylinder consists of 248 vertices and
889 tetrahedra.

Figure 2. Cutting of a plate by removing tetra-
hedra. The plate deforms itself during the
cutting operations.

Figure 3. Fracture of a cylinder under the
action of gravity



6. Hybrid elastic model for surgery simulation
6.1. Mativations

We have previously described two linear elastic models
that have the following properties :

1. The quasi-static pre-computed elastic model is ex-
tremely efficient but does not allow topology change
(cutting, tearing) (see section 4).

2. The dynamic elastic model (or tensor-mass model)
requires more computation but authorizes topology
change (see section 5).

In this section, we propose to combine those two ap-
proaches in order to optimize the trade-off between com-
putation time and visual realism of the simulation.

The key idea consists in considering two different types
of anatomical models inside a surgical simulator :

e The anatomical structures where the surgery occurs.
On these structures, tearing and cutting need to be sim-
ulated. In many cases, surgical procedures are stan-
dardized and therefore, it is possible to foresee where
the surgery should occur. In general, it corresponds to
pathological structures and only represent a small sub-
set of the structures that need to be visualized inside a
simulator.

e The anatomical structures that only needs to be visual-
ized or deformed that greatly contribute to the realism
of the simulation but where surgery does not occur.

The former type of anatomical structures are good candi-
dates for being modeled as tensor-mass models whereas the
latter should be modeled with a pre-computed linear model.

However, this approach is really optimal when different
parts of the same anatomical structure can be modeled either
as a pre-computed elastic model or a tensor-mass model.
This allows to decrease the number of tensor-mass elements
to its minimum and therefore to increase the interactivity of
the overall simulation.

In the next sections, we describe how to connect those
two linear elastic models in order to represent a global de-
formable object. We have called hybrid elastic model the
combined model.

6.2. Hybrid elastic model

We consider a hybrid elastic model Myyp,.0 Whose
elements are of two different types. We denote as
M dynamic the set of tensor-mass elements and we denote
as Mquasi—static the set of pre-computed linear elastic ele-
ments. Therefore a hybrid elastic model may be composed

Connection Node

Pre-computed
Linear Elastic
Y Model

Tensor-Mass
Model

/

(a) (b)

Figure 4. (a) The definition of the connection
nodes in a hybrid elastic model; (b) A hybrid
elastic model with only 4 connection nodes.

of several pieces of tensor-mass models each corresponding
to a structure directly involved in surgery. Since M qynamic
is connected to M qyqsi-—static they share common vertices
or connection nodes. Those connection nodes constitute ad-
ditional boundary conditions for both elastic models. As
seen in figure 6.2, the two models may not be completely
connected along their common boundaries. In fact, in or-
der to reduce the number of tensor-mass elements, it is pos-
sible to associate a fine pre-computed elastic model with
a coarse tensor-mass model. As shown in figure 6.2 (b),
this incomplete connection entails some visual artifacts due
to the non-continuity between the two parts. However, if
the connection part between the two elastic models is never
seen by the user, a different mesh resolution may be used.

Since both linear elastic models follow the same physical
law, the combination of those 2 models should behave ex-
actly as a global linear elastic model. To achieve this goal,
the additional boundary conditions imposed at the connec-
tion nodes must be consistent in terms of forces and dis-
placements for both elastic models.

Boundary Conditions Pre-computed | Tensor-Mass Model
Applied Forces No Yes
Constrained displacement Yes Yes

Table 2. Natural boundary conditions for the
quasi-static and dynamic linear elastic mod-
els

We have shortly summarized the “natural” boundary
conditions for both elastic models in table 2. Since the
pre-computed model only supports displacement boundary
conditions, M qynamic Must impose the displacements of
the connection nodes whereas M yq5i—static IMpOses the
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Figure 5. The interaction loop for a hybrid
elastic model.

force acting on the connection nodes.

Figure 5 summarizes the computation loop of a hybrid
model. The pre-computed elastic model M qyqsi—static 1S
updated based on the imposed displacements on its bound-
ary. The imposed displacement may come from the user
interaction (action of a surgical tool for instance) and from
the connection nodes with a tensor-mass model. At this
stage, the displacement of all surface nodes and the force
applied on nodes where a displacement has been imposed
are quickly computed on M qyqsi—static- In particular, the
forces applied to each connection node are computed.

After updating M quasi—static; We update Myynamic
based on the forces imposed on the connection nodes and
the displacements imposed by the user interaction. The po-
sition and forces are computed for all nodes including the
connection nodes. Again, the new positions of the con-
nection nodes constitute new displacement constraints for
Mquasi—static-

In figure 6, we show an example of a hybrid cylinder
model deforming under the action of gravity forces. The
figure shows the different steps of deformation and, on the
right, the steady state reached by the model. At the equilib-
rium the forces applied to all connection nodes are zero and
the displacement vector stabilizes to a constant value.

In this example, both quasi-static and dynamic models
have exactly the same Lamé coefficients. We have verified
that the steady state reached by the hybrid model is the same
as the steady state that would have reached a single quasi-
static or dynamic elastic model.

Figure 6. Deformation of a hybrid elastic
model under gravity forces : the upper cylin-
der consists of a pre-computed linear elastic
model whereas the lower part consists of a
tensor-mass model. The leftmost figure cor-
responds to the initial position of the mesh
and the rightmost figure to the steady state.

6.3. Surgery smulation on hybrid elastic models

We now demonstrate the efficiency of our approach for
performing surgery simulation. We have chosen to sim-
ulate an hepatectomy consisting in removing an anatomi-
cal segment of a liver ( in this case the segment number 6
as defined by Couinaud[16]) . The complete mesh of the
liver contains 1537 vertices and 7039 tetrahedra (see figure
7 right). About 18% ( 280 vertices and 1260 tetrahedra)
of the liver hybrid mesh is modeled as tensor-mass system
(see figure 7 left) and the remaining as pre-computed linear
elastic model.

The surgery simulator consists of two force-feedback
systems simulating the elongated surgical instruments used
in laparoscopy. Those force-feedback devices are driven by
a PC computer that is linked to a powerful computer (SGI
Onyx2 Infinite Reality with 2 processors). On that com-
puter, the collision detection is performed as well as the an-
imation of the hybrid elastic model.

In figure 8, we show different stages of the hepatectomy
simulation. With those two virtual instruments, it is possi-
ble to push any part of the liver (either represented with a
quasi-static or dynamic model) and to cut any elements of
the dynamic model located in the bottom part of the screen.
The first six pictures show the deformation of the model
when the tool collides with the dynamic model. Since both
models have the same elastic characteristics, it is not pos-
sible to visually distinguish the interface between the two
different elastic models. The last six pictures show the cut-
ting of the liver segment by removing additional tetrahedra.
One can notice that each part of the hybrid model naturally
deforms itself during the resection simulation.



Figure 7. Top : the hybrid liver model seen in
wireframe. The upper mesh corresponds to
the pre-computed quasi-static elastic model
whereas the bottom mesh corresponds to the
tensor-mass model. Bottom : the hybrid liver
model seen in flat shading. The connection
nodes ensure the visual continuity between
the two elastic models.
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Figure 8. Deformation and cutting of the hy-
brid elastic model.



7. Conclusion

We have presented three different soft tissue models
based on linear elasticity. The first model, introduced
in[14], is extremely efficient but do not allow the simulation
of cutting. The second model called “tensor-mass model”
allows to simulate the dynamics of soft tissue, similarly to
spring-mass models. Tensor-mass models are well suited
for the simulation of tearing and cutting, but a limited num-
ber of elements (around one thousand) is allowed for real-
time simulation. Finally, we have proposed hybrid elastic
models that combine both previously described elastic mod-
els therefore enabling to cut and deform large anatomical
structures.

We are currently improving the biomechanical model by
modeling anisotropic and non-linear elastic behavior un-
der large displacements. We are also investigating sev-
eral speed-ud algorithms based on parallel-computation and
mesh adaptation. To enhance visual and haptic realism,
it will also be necessary to take into account the contact
with neighboring organs and to obtain precise biomechani-
cal characteristics of the liver.
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