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Abstract

In this paper, we describe the latest developments of the minimally invasive hepatic surgery

simulator prototype developed at INRIA. A key problem with such a simulator is the physical

modeling of soft tissues. We propose a new deformable model based on non-linear elasticity,

anisotropic behavior, and the finite element method. This model is valid for large displace-

ments, which means in particular that it is invariant with respect to rotations. This property

improves the realism of the deformations and solves the problems related to the shortcomings

of linear elasticity, which is only valid for small displacements. We also address the problem of

volume variations by adding to our model incompressibility constraints. Finally, we demon-

strate the relevance of this approach for the real-time simulation of laparoscopic surgical ges-

tures on the liver.
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1. Introduction

A major and recent evolution in abdominal surgery has been the development of

laparoscopic surgery. In this type of surgery, abdominal operations such as hepatic

resection are performed through small incisions. A video camera and special surgical
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tools are introduced into the abdomen, allowing the surgeon to perform a procedure

less invasively. A drawback of this technique lies essentially in the need for more

complex gestures and in the loss of direct visual and tactile information. Therefore

the surgeon needs to learn and adapt himself to this new type of surgery and in par-

ticular to a new type of hand-eye coordination. In this context, surgical simulation
systems could be of great help in the training process of surgeons.

Among the several key problems in the development of a surgical simulator [1,2],

the geometrical and physical representation of human organs remain the most im-

portant. The deformable model must be at the same time very realistic (both visually

and physically) and very efficient to allow real-time deformations. Several methods

have been proposed: spring-mass models [3,4], free-form deformations [5], adaptive

sampling of non-linear elastic models [6], or various finite element methods [7–12].

In this paper, we propose a new real-time deformable model based on non-linear
elasticity and a finite element method. We first introduce the linear elasticity theory

and its implementation through the finite element method, and we then highlight its

shortcomings when the ‘‘small displacement’’ hypothesis does not hold. Then we fo-

cus on our implementation of St. Venant–Kirchhoff elasticity and incompressibility

constraints.
2. Shortcomings of the linear elasticity model

Linear elasticity is often used for the modeling of deformable materials, mainly

because the equations remain quite simple and the computation time can be opti-

mized.

The physical behavior of soft tissue may be considered as linear elastic if its dis-

placement and deformation remain small [13,14] (typically less than 10% of the mesh

size). We represent the deformation of a volumetric model from its rest shape Minitial

with a displacement vector Uðx; y; zÞ for ðx; y; zÞ 2 Minitial and we write Mdeformed ¼
Minitial þUðx; y; zÞ.

From this displacement vector, we define the linearized Green–St. Venant strain

tensor (3� 3 symmetric matrix) El and its principal invariants l1 and l2:
El ¼ 1
2
ðrUþrUtÞ; l1 ¼ trEl; l2 ¼ trE2

l ; ð1Þ
where rU is the 3� 3 gradient matrix and trEl is the trace of the matrix El.

The linear elastic energy WLinear, for homogeneous isotropic materials, is defined

by the following formula (see [15]):
WLinear ¼
k
2
ðtrElÞ2 þ ltrE2

l ¼
k
2
ðdivUÞ2 þ lkrUk2 � l

2
krotUk2; ð2Þ
where k and l are the Lam�ee coefficients characterizing the material stiffness, divU is

the divergence of the vector field Uðx; y; zÞ, krUk2 is the square norm of the gradient

matrix, and rotU is the rotational matrix of the vector field Uðx; y; zÞ.
Eq. (2), known as Hooke’s law, shows that the elastic energy of a deformable ob-

ject is a quadratic function of the displacement vector.
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2.1. Finite element method

Finite element method is a classical way to solve continuum mechanics equations.

It is a mathematical framework allowing to discretize a continuous variational prob-

lem [16]. We chose to use P1 finite elements, where the elementary volume is a tetra-
hedron with a node defined at each vertex (Fig. 1). At each point Mðx; y; zÞ inside

tetrahedron Ti, the displacement vector is expressed as a function of the displace-

ments Uk of vertices Pk. For P1 finite elements, interpolation functions Kk are linear

(fKk; k ¼ 0; . . . ; 3g are the barycentric coordinates of M in the tetrahedron):
Uðx; y; zÞ ¼
X3

j¼0

UjKjðx; y; zÞ; Kjðx; y; zÞ ¼ aj � X þ bj

aj ¼
ð�1Þj

6V ðTiÞ
ðPjþ1 � Pjþ2 þ Pjþ2 � Pjþ3 þ Pjþ3 � Pjþ1Þ;
where � stands for the cross product between two vectors and V ðTiÞ is the volume of

the tetrahedron.

Using this equation for the displacement vector U leads to the finite element for-

mulation of linear elastic energy in the tetrahedron Ti [8]:
WLinearðTiÞ ¼
X3

j;k¼0

Ut
j½B

Ti
jk �Uk;

BTi
jk ¼ k

2
ðaj � akÞ þ

l
2
½ðak � ajÞ þ ðaj:akÞId3�;

ð3Þ
where ½BTi
jk � is the tetrahedron contribution to the stiffness tensor of the edge ðPj;PkÞ

(or of the vertex Pj if j ¼ k), faj; k ¼ 0; . . . ; 3g are the shape vectors of the tetra-

hedron and � stands for the tensor product of two vectors, which gives a (3� 3)

matrix: u� v ¼ uvt. Id3 is the (3� 3) identity matrix.

Finally, to obtain the force FTi
p applied by the tetrahedron Ti on the vertex Pp, we

derive the elastic energy with respect to the vertex displacement Up:
Fig. 1. P1 finite element.
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FTi
p ¼ 2

X3

j¼0

½BTi
pj �Uj: ð4Þ
We have been using this linear elasticity formulation for several years through two

deformable models, the pre-computed model [7] and the tensor-mass model [8,17].

Furthermore, it can be extended to anisotropic linear elasticity [9,18], which allows

to model fiber-reinforced materials, very common within biological tissues (tendons,
muscles, etc.), or other anatomical structures like blood vessels.

2.2. The problem of rotational invariance

The main limitation of the linear model is that it is not invariant with respect to

rotations. When the object undergoes a rotation, the elastic energy increases, leading

to a variation of the volume (see Fig. 2). In the case of a global rotation of the object,

we could solve the problem with a specific change of the reference frame.
But this solution proves itself to be ineffective when only one part of the object un-

dergoes a rotation (which is the case in general). This case is presented by the cylinder of

Fig. 3: the bottom face is fixed and a force is applied to the central top vertex. Arrows

show the trajectory of some vertices, which are constrained by the linearmodel tomove

along straight lines. This results in the distortion of themesh. Furthermore, this abnor-
Fig. 2. Global rotation of the linear clastic model (wireframe).

. Successive deformations of a linear clastic cylinder. (a) and (b): side view. (c) and (d): top view.
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mal deformation is not the same in all directions since the object only deforms itself

in the rotation plane (Fig. 3(c) and (d)). This unrealistic behavior of the linear elastic

model for large displacements led us to consider different models of elasticity.
3. St. Venant–Kirchhoff elasticity

A model of elasticity is considered as a large displacement model if it derives from

a strain tensor which is a quadratic function of the deformation gradient. Most com-

mon tensors are the left and right Cauchy–Green strain tensors (respectively

B ¼ r/r/t and C ¼ r/tr/, / being the deformation function).

The St. Venant–Kirchhoff model is a generalization of the linear model for large

displacements, and is a particular case of hyperelastic materials. The basic energy
equation is the same (Eq. (2)), but now E stands for the complete Green–St. Venant

strain tensor:
E ¼ 1
2
ðC � IÞ ¼ 1

2
ðrUþrUt þrUtrUÞ: ð5Þ
Elastic energy, which was a quadratic function of rU in the linear case, is now a

polynomial of order four with respect to rU:
W ¼ k
2
ðtrEÞ2 þ ltrE2

¼ k
2

ðdivUÞ
�

þ 1

2
krUk2

�2
þ lkrUk2 � l

2
krotUk2

þ lðrU : rUtrUÞ þ l
4
krUtrUk2; ð6Þ

W ¼ WLinear þ
k
2
ðdivUÞkrUk2 þ k

8
krUk4 þ lðrU : rUtrUÞ þ l

4
krUtrUk2;
where WLinear is given by Eq. (2), and A : B ¼ trðAtBÞ ¼
P

i;j aijbij is the dot product of
two matrices.

In [9,18], we have generalized linear elasticity to materials having a different be-

havior in one given direction. These materials, called ‘‘transversally isotropic’’ mate-

rials, can also be modeled with St. Venant–Kirchhoff elasticity by adding to the

isotropic elastic energy of Eq. (6), an anisotropic contribution which penalizes the
material stretch in the direction given by unit vector a0:
WTrans iso ¼ W þ kL � k
2

�
þ lL � l

�
ðat0Ea0Þ

2
; ð7Þ
where kL and lL are the Lam�ee constants along the direction of anisotropy a0.

3.1. Finite element modeling

With the notations introduced in Section 2.1. we express the St. Venant–Kirchhoff

elastic model with finite element theory as:



310 G. Picinbono et al. / Graphical Models 65 (2003) 305–321
W ðTiÞ ¼
X
j;k

Ut
j BTi

jk

h i
Uk þ

X
j;k;l

Uj � CTi
jkl

� �
ðUk �UlÞ þ

X
j;k;l;m

DTi
jklmðUj �UkÞðUl �UmÞ;

ð8Þ

where the terms BTi

jk , C
Ti
jkl, and DTi

jklm, called ‘‘stiffness parameters,’’ are given by:

• BTi
jk is a (3� 3) symmetric matrix (which corresponds to the linear component of

the energy):
BTi
jk ¼ k

2
ðaj � akÞ þ

l
2
½ðak � ajÞ þ ðaj � akÞId3�

þ kL � k
2

�
þ lL � l

�
ða0 � a0Þðaj � akÞða0 � a0Þ;
• CTi
jkl is a vector:
CTi
jkl ¼

k
2
ajðak � alÞ þ

l
2
½alðaj � akÞ þ akðaj � alÞ�

þ kL � k
2

�
þ lL � l

�
ða0 � a0Þðaj � akÞða0 � a0Þal;
• and DTi
jklm is a scalar:
DTi
jlkm ¼ k

8
ðaj � akÞðal � amÞ þ

l
4
ðaj � amÞðak � alÞ

þ kL � k
8

�
þ lL � l

4

�
ða0 � ajÞða0 � akÞða0 � alÞða0 � amÞ:
• The last term of each stiffness parameter represents the anisotropic behavior of the
material.

The force applied at each vertex Pp inside a tetrahedron is obtained by derivation

of the elastic energy W ðTiÞ with respect to the displacement Up:
FpðTiÞ ¼ 2
X
j

½BTi
pj �Uj

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
F
p
1
ðTiÞ

þ
X
j;k

2ðUk �UjÞCTi
jkp þ ðUj:UkÞCTi

pjk

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
F
p
2
ðTiÞ

þ 4
X
j;k;l

DTi
jklpUlU

t
kUj

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
F
p
3
ðTiÞ

:

ð9Þ
The first term of the elastic force (Fp
1ðTiÞ) corresponds to the linear elastic case

presented in Section 2.1. The next part of the paper deals with the generalization

of the tensor-mass model to large displacements.

3.2. Non-linear tensor-mass model

The main idea of the tensor-mass model is to split, for each tetrahedron, the force

applied to a vertex in two parts—forces created by the vertex displacement and

forces produced by the displacements of its neighbors:
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F
p
1ðTiÞ ¼ 2½BTi

pp�Up þ 2
X
j 6¼p

½BTi
pj �Uj: ð10Þ
This way we can define for each tetrahedron a set of local stiffness tensors for vertices

ðfBTi
pp; p ¼ 0; . . . ; 3gÞ and for edges ðfBTi

pj ; p; j ¼ 0; . . . ; 3; p 6¼ jgÞ. By doing this for
every tetrahedron, we can accumulate on vertices and edges of the mesh the corre-

sponding contributions to the global stiffness tensors:
Bpp ¼
X

Ti2NðvpÞ
BTi

pp; Bpj ¼
X

Ti2NðEpjÞ
BTi

kl :
These stiffness tensors are computed when creating the mesh and are stored for each

vertex and edge of the mesh.

The same principle can be applied to the quadratic term (Fp
2ðTiÞ of Eq. (9)) and the

cubic term (F
p
3ðTiÞ) (see Appendix A). The former brings stiffness vectors for vertices,

edges, and triangles, and the latter brings stiffness scalars for vertices, edges, trian-

gles, and tetrahedra. Table 1 summarizes the stiffness parameters stored on each geo-
metrical primitive of the mesh.

Given a tetrahedral mesh of a solid—in our case an anatomical structure—we

build a data structure incorporating the notion of vertices, edges, triangles, and tet-

rahedra, with all their neighbors. For each vertex, we store its current position Pp, its

rest position P0
p, and its stiffness parameters. For each edge and each triangle, we

store stiffness parameters. Finally for each tetrahedron, we store the Lam�ee coeffi-

cients k and l (and kL, lL, and a0 if the model is anisotropic), the four shape vectors

ak, and the stiffness parameters.
During the simulation, we compute forces for each vertex, edge, triangle, and tet-

rahedron, and we use a Newtonian differential equation to update the vertex posi-

tions:
mi
d2Pi

dt2
¼ ci

dPi

dt
þ Fi: ð11Þ
1

e of the stiffness parameters on the mesh

ness parameters

ibution

Tensors Vectors Scalars

ex Vp Bpp Cppp Dpppp

e Epj Bpj Cppj Cjpp Djppp Djjjp Djpjp

Cjjp Cpjj Dpjjp Djjpp

ngle Fpjk Cjkp Djkpp Djpkp Dpjkp

Ckjp Djjkp Djkjp Dkjjp

Cpjk Dkkjp Dkjkp Djkkp

ahedron Tpjkl Djklp Djlkp Dkjlp

Dkljp Dljkp Dlkjp
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This equation is related to the differential equations of continuum mechanics [19]:
M€UUþ C _UUþ FðUÞ ¼ R: ð12Þ

Following finite element theory, the mass M and damping C matrices are sparse

matrices which are related to the stored physical properties of each tetrahedron. In

our case, we consider that M and C are diagonal matrices, i.e., that mass and

damping effects are concentrated at vertices. This simplification called mass-lumping

decouples the motion of all nodes and therefore allows us to write Eq. (12) as the set

of independent differential equations for each vertex.

Furthermore, we choose an explicit integration scheme where the elastic force is

estimated at time t in order to compute the vertex position at time t þ 1:
mi

Dt2

�
� ci
2Dt

�
Ptþ1

i ¼ Fi
2mi

Dt2
Pt

i �
mi

Dt2

�
þ ci
2Dt

�
Pt�1

i :
One of the basic tasks in surgery simulation consists in cutting soft tissue. With

our deformable model, this task can be achieved efficiently. We simulate the action

of an electric scalpel on soft tissue by successively removing tetrahedra at places

where the instrument is in contact with the anatomical model.

When removing a tetrahedron, 280 floating numbers update operations are per-

formed to suppress the tetrahedron contributions to the stiffness parameters of the

surrounding vertices, edges, and triangles (see Appendix B). By locally updating
stiffness parameters, the tissue has exactly the same properties as if we had removed

the corresponding tetrahedron at its rest position. Because of the volumetric conti-

nuity of finite element modeling, the tissue deformation remains realistic during the

cutting.
4. Incompressibility constraint

Living tissue, which is essentially made of water, is nearly incompressible. This

property is difficult to model and leads in most cases to instability problems. This

is the case with the St. Venant–Kirchhoff model: the material remains incompressible

when the Lam�ee constant k tends towards infinity. Taking a large value for k would

force us to decrease the time step and therefore to increase the computation time.

Another reason to add an external incompressibility constraint to our model is re-

lated to the model itself: the main advantage of the St. Venant–Kirchhoff model is

to use the strain tensor E which is invariant with respect to rotations. But it is also
invariant with respect to symmetries, which could lead to the reversal of some tetra-

hedra under strong constraints.

We choose to penalize volume variation by applying to each vertex of the tetra-

hedron a force directed along the normal of the opposite face Np (see Fig. 4), the

norm of the force being proportional to the square of the relative volume variation:
Fp
incomp ¼ signðV � V0Þ

V � V0
� �2

N
!

p: ð13Þ

V0



Fig. 4. Penalization of the volume variation.
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Since the volume V is proportional to the height of each vertex its opposite triangle,
when V is greater than V0 then the force Fp

incomp tends to decrease V by moving

each vertex along the normal of its opposite triangle. These forces act as an artificial

pressure inside each tetrahedron. This method is closely related to Lagrange multi-

pliers, which are often used to solve problemof energyminimization under constraints.
5. Results

In the first experiment, we wish to highlight the contributions of our new deform-

able model in the case of partial rotations. Fig. 5 shows the same experience as the

one presented for linear elasticity (Section 2.2, Fig. 3). On the left we can see that the

cylinder vertices can now follow trajectories different from straight lines (Fig. 5(a)),

leading to much more realistic deformations than in the linear (wire-frame) case (Fig.

5(b) and (c)).

The second example presents the differences between isotropic and anisotropic

materials. The three cylinders of Fig. 6 have their top and bottom faces fixed, and
Fig. 5. (a) Successive deformations of the non-linear model. Side (b) and top (c) view of the comparison

between linear (wireframe) and non-linear model (solid rendering).



Fig. 6. Deformation of tubular structures with non-linear transversally isotropic elasticity.
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are submitted to the same forces. While the isotropic model on the left undergoes a

‘‘snake-like’’ deformation, the last two, which are anisotropic along their height, stif-

fen in order to minimize their stretch in the anisotropic direction. The rightmost
model, being twice as stiff as the middle one in the anisotropic direction, starts to

squeeze in the plane of isotropy because it cannot stretch anymore.

In the third example (Fig. 7), we apply a force to the right lobe of the liver (the

liver is fixed in a region near the center of its back side, and Lam�ee constants are:

k ¼ 4� 104 kg/cm2 and l ¼ 104 kg/cm2). Using the linear model, the right part of

the liver undergoes a large (and unrealistic) volume increase, whereas with non-linear

elasticity, the right lobe is able to partially rotate, while undergoing a much more re-

alistic deformation.
Adding the incompressibility constraint on the same examples decreases the vol-

ume variation even more (see Table 2), and also stabilizes the behavior of the de-

formable models in strongly constrained areas.
Fig. 7. Linear (wireframe), non-linear (solid) liver models, and rest shape (bottom).



Table 2

Volume variation results. For the cylinder: left, middle, and right stand for the different deformations of

Figs. 3 and 5(a)

Volume variations (%) Linear Non-linear Non-linear incomp.

Cylinder left j middle j right 7 j 28 j 63 0.3 j 1 j 2 0.2 j 0.5 j1
Liver 9 1.5 0.7

Fig. 8. Simulation of laparoscopic liver surgery.
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The last example is the simulation of a typical laparoscopic surgical gesture on the

liver. One tool is pulling the edge of the liver sideways while a bipolar cautery device

cuts it. During the cutting, the surgeon pulls away the part of the liver he wants to

remove. This piece of liver undergoes large displacements and the deformation ap-
pears fairly realistic with this new non-linear deformable model (Fig. 8).

Obviously, the computation time of this model is larger than for the linear model

because the force equation is much more complex (Eq. (9)). With our current imple-

mentation, simulation frequency is five times slower than with the linear model. Nev-

ertheless, with this non-linear model, we can reach a frequency update of 25Hz on

meshes made of about 2000 tetrahedra (on a PC Pentium PIII 500MHz). This is suf-

ficient to reach visual real-time with quite complex objects, and even to provide a re-

alistic haptic feedback using force extrapolation as described in [9].
6. Optimization of non-linear deformations

We have shown in this paper that non-linear elasticity allows us to simulate much

more realistic deformations than linear elasticity as soon as the model undergoes



Fig. 9. Adaptable non-linear model deformation compared with its rest position (wireframe).

Fig. 10. Deformation of the adaptable non-linear model for several values of the threshold.
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large displacements. However, non-linear elasticity is more computationally expen-

sive than linear elasticity. Since non-linear elastic forces tend to linear elastic forces

as the maximum vertex displacement decreases to zero, we propose to use non-linear

elasticity only at parts of the mesh where displacements are larger than a given

threshold, the remaining part using linear elasticity. Thus, we have modified the
force computation algorithm in the following manner: for each vertex, we first com-

pute the linear part of the force, and we add the non-linear part only if its displace-

ment is larger than a threshold.

Fig. 9 shows a deformation computed with this optimization (same model as in

Fig. 7). This liver model is made of 6342 tetrahedra and 1394 vertices. The threshold

is set to 2 cm while the mesh is about 30 cm long. The points drawn on the surface
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identify vertices using non-linear elasticity. With this method, we reach an update

frequency of 20Hz instead of 8Hz with a fully non-linear model.

The same deformation is presented in Fig. 10 for different values of the threshold.

With this method, we can choose a trade-off between the bio-mechanical realism of

the deformation and the updating frequency of the simulation. The diagram on Fig.
11 shows the update frequencies reached for each value of the threshold, in compar-

ison with the fully linear and the fully non-linear models. Even when the threshold

tends towards infinity, the adaptable model is slower than the linear model, because

the computation algorithm of the non-linear force is more complex. Indeed, the com-
Fig. 11. Updating frequencies of the adaptable model for several values of the threshold.

Fig. 12. Surgery simulation using adaptable model.
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putation of non-linear forces requires to visit all vertices, edges, triangles, and tetra-

hedra of the mesh, whereas only vertices and edges need to be visited for the linear

model.

For the simulation example of Fig. 8, this optimization allows to reach update fre-

quencies varying between 50 and 80Hz, depending on the ratio of points using non-
linear elasticity (Fig. 12). The minimal frequency of 50Hz is reached at the end of the

simulation, when all vertices of the resected part of the liver are using large displace-

ment elasticity (on the right of Fig. 12).

In general, two strategies can be used to set the value of this threshold. In the first

strategy, the threshold is increased until a given update frequency is matched as dem-

onstrated previously. The second strategy is physically motivated and sets the thresh-

old to 10% of the typical size of the mesh since it corresponds to the extent of

displacement where linear elasticity is considered as a valid constitutive law.
7. Validation

The liver is filled with blood (near 50% of its global weight), which implies that ex

vivo liver tissues should not behave like in vivo tissues. Therefore, to validate our

biomechanical liver model, we would have to compare it against in-vivo deforma-

tions of a real liver. Currently, such an experiment raises several technical and ethical
difficulties. For the same reasons, the elastic properties of the liver (Young modulus

and Poison ratio) must be measured in vivo, or using complex in vitro experimental

protocols. In both cases, the results obtained by several teams [20–22] have shown a

strong variability in the parameters estimation.

In the framework of real-time surgery simulation, we essentially need to build soft

tissue models that behave realistically. Therefore, we are currently relying on the

feedback from surgeons experimenting the simulator to validate the behavior of

our liver model. They consider that this St. Venant–Kirchhoff non-linear elastic
modeling of soft tissues is sufficient for most simulation purposes.
8. Conclusion

We have proposed in this paper a new deformable model based on large displace-

ment elasticity, a finite element method, and a dynamic explicit integration scheme.

It solves the problem of rotational invariance and takes into account the anisotropic
behavior and the incompressibility properties of biological tissues. Furthermore we

have optimized the computation time of this model by computing the non-linear part

of the force only for the parts of the mesh which undergo ‘‘large displacements.’’

Including this model into our laparoscopic surgery simulator prototype improves

its bio-mechanical realism and thus increases its potential use for learning and train-

ing processes.

Our future work will focus on improving the computation efficiency with a new

formulation of large displacement elasticity. Also, we plan to include vessels net-
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works inside hepatic parenchyma and introduce, besides our geometric and physical

models, a preliminary physiological model.
Appendix A. Non-linear force equation

Eq. (9) gives the force applied by tetrahedron Ti on vertex Pp. To build the cor-

responding tensor-mass model, we need to split this equation (i.e., to split the sums)

into different forces, respectively, computed on vertex Pp, on edges (Pp, Pj), on tri-
angles (Pp;Pj;Pk), and the tetrahedron Ti. Then, we add the contributions of all ad-

jacent tetrahedra, to obtain the equation which gives the force applied on vertex Pp

as a function of the displacements of its neighbors:
Fp ¼ 2½Bpp�Up þ ½2ðUp �UpÞ þ ðUp �UpÞId3�Cppp þ 4DppppUpU
t
pUp|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðVertex contributionÞ

þ
X

edgesðp;jÞ
2½Bpj�Uj þ 2½ðUj �UpÞ þ ðUj �UpÞId3�Cppj

n

þ 2ðUp �UjÞCjpp þ 2ðUj �UjÞCjjp þ ðUj �UjÞCpjj

þ 4½Djpppð2UpU
t
pUj þUjU

t
pUpÞ þ DjjppUpU

t
jUj

þðDjpjp þDpjpjÞUjU
t
jUp þDjjjpUjU

t
jUj

o
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðEdge contributionÞ

þ
X

facesðp;j;kÞ
2½ðUk �UjÞCjkp þ ðUj �UkÞCkjp þ ðUj �UkÞCpjk �

n

þ 4½ðDpjkp þDjpkpÞðUjU
t
kUp þUkU

t
jUpÞ þ 2DjkppUpU

t
jUk

þ ðDkjjp þDjkjpÞUjU
t
jUk þDjjkpUkU

t
jUj

þðDjkkp þDkjkpÞUkU
t
kUj þDkkjpUjU

t
kUk�

o
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðFace contributionÞ

þ
X

tetraðp;j;k;lÞ
4½ðDjklp þDkjlpÞUlU

t
jUk þ ðDjlkp þDljkpÞUkU

t
jUt

n

þðDkljp þDlkjpÞUjU
t
kUl�

o
:|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðTetrahedron contributionÞ
Appendix B. Update operations when removing a tetrahedron from the mesh

When we remove a tetrahedron form the mesh, we need to update stiffness param-

eters of 4 vertices, 6 edges, and 4 faces, which means 280 floating number operations

(see Table 1):
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4ð1 tensorþ 1 vectorþ 1 scalarÞ þ 6ð1 tensorþ 4 vectorsþ 5 scalarsÞ
þ 4ð3 vectorsþ 9 scalarsÞ ¼ 280 real numbers:
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