
Removing Tetrahedra from manifold

tetrahedralisation : application to real-time

surgical simulation

C. Forest ∗, H. Delingette, N. Ayache

Epidaure Laboratory, INRIA, 2004 route des lucioles, BP 93, 06902 Sophia
Antipolis, France

1 Introduction

1.1 Simulation of cutting

In a general-purpose surgery simulator, it is important to model the action of
different types of surgical instruments. The complexity of the simulation not
only depends on the nature of this action (suturing, grasping, cutting,...) but
also on the nature of the anatomical structures on which they apply. Typically,
among the different structures, one can distinguished between vessel models,
surfacic structures (membranes) and volumetric structures (parenchymatous
organs).

This paper is related to the simulation of cutting instruments (electric lancet,
scalpel, cavitron) on volumetric tissues. Cutting tissue is one of the most
challenging action to simulate, at least for two reasons. First, it involves the
modification of topology of meshes, which in itself may be a complex task.
Second, it makes most soft tissue deformation algorithms not compatible with
real-time requirements.

In general, the implementation of cutting in a surgery simulator first consists in
defining a surface of cut created by the motion of a cutting instrument. Then,
the cut is simulated by creating a “trench” at the intersection between the sur-
face of cut and the tridimensional structures. Algorithms for simulating the cut
of surfaces have been proposed by many authors[BSM+02,VHM+99,SHS01,NvdS02].
The simulation of cutting volumetric meshes, in particular tetrahedral meshes,

∗ Corresponding author: Clement.Forest@ircad.u-strasbg.fr

Preprint submitted to Elsevier Science 29 July 2004



(a) (b)

(c) (d)

Fig. 1. Different strategies for cutting a triangulated mesh. The cut path is drawn
with a dash line. (a) The original mesh; (b) Subdivision strategy; (c) Vertex pro-
jection strategy; (d) “Refine and Remove” strategy.

leads to more complex algorithms [BG00,MK00] due to a greater combinatorial
complexity.

In figure 1, we have pictured three different strategies for cutting a triangulated
mesh (the same strategies apply for a tetrahedral mesh). A common strategy
(Figure 1 (b)) consists in subdividing cells (here triangles) along the cut line
or surface [BG00,MK00,VHM+99,NvdS01]. The drawback of this approach is
that it tends to create a large number of little and badly-shaped triangles or
tetrahedra which increases the time of computation and may cause instabili-
ties. Recently Nienhuys [NvdS02] has proposed another strategy (Figure 1 (c))
where vertices are projected along the cut surface thus limiting the creation
of new elements. However, the algorithm only applies for surface meshes and
not for volumetric meshes.

We propose a third strategy consisting of the refinement followed by a removal
of the elements located near the surface cut (see Figure 1 (d)). This approach
has the advantage of generating high-quality elements but with the drawback
of creating cuts that are not very smooth.

In the context of an hepatectomy simulator developped in the Epidaure Project
at Inria Sophia-Antipolis, we found this third approach to be acceptable. In-
deed, in this case, the cut surface is in general rather irregular. Furthermore,
it simulates quite well the action of an ultrasonic lancet (ie. cavitron) which
fragilizes and destroys the hepatic parenchyma. The implementation of the
third cutting strategy for a tetrahedral mesh requires two basic algorithms : a
local refinement algorithm and a tetrahedron removal algorithm. The former

2



algorithm is based on edge splitting [FDA02] although there exists alternative
algorithms[PBKD02].

The latter algorithm describing the removal of tetrahedra from a tetrahedral-
isation is the focus of this paper. Although this algorithm may seem trivial at
first, it turns out to be rather complex when adding the constraint that the
mesh must be a manifold.

1.2 Motivations for keeping a manifold mesh

A manifold tetrahedralisation mesh is formally defined in section 2. In essence,
a volumetric mesh is a manifold if it has everywhere a thickness strictly greater
than zero. When removing a single surface tetrahedron, namely a tetrahedron
that has at least one face on the mesh surface, from a tetrahedral mesh, it
often creates topological singularities where the mesh has zero thickness. This
paper describes an algorithm for removing a single surface tetrahedron while
preserving the manifold property of the mesh.

In fact the manifold property is required for performing many low level tasks
on tetrahedralisation such as :

• Computing vertex normal on the mesh surface. This is especially
useful for the visual rendering of mesh surfaces with Gouraud shading or
PN-Triangles [VPBM01] but also for haptic rendering;

• Mesh smoothing. Many algorithms such as Laplacian smoothing [PS03]
are based on the relative position of a vertex with respect to its neighbors.
If the link of a vertex is composed of several connected components then
Laplacian smoothing may easily create self-intersections;

• Mesh subdivision. Subdivision surface and volume [Qin00] algorithms
only apply on manifold meshes;

• Finding all adjacent vertices to a given vertex. If there are no con-
straints on the topological nature of the link of a vertex, then one has to
use redundant data structure to find vertices adjacent to a given vertex.

Note that the finite element method does not require a tetrahedral mesh to
be a manifold. However, non manifold meshes often lead to ill-conditioned
linear systems of equations. Furthermore, as experimented in previous im-
plementations, if the manifold property is not enforced on a finite element
tetrahedralisation, it is common to observe instabilities around topological
singularities.

Finally and most importantly, it turns out that manifold tetrahedralisations,
where the link of each vertex is simply connected, are well-suited for determin-
ing vertex adjacencies with a minimum amount of information. We have taken

3



advantage of this fact to propose an efficient tetrahedralisation data structure.

2 Manifold Tetrahedralisation

2.1 Topological description of tetrahedralisations

We first introduce, in a strict topological way, the notions of tetrahedralisation.

Definition 1 (Vertex) Vertices are the basic elements of a tetrahedralisa-
tion.

Definition 2 (Tetrahedron) A tetrahedron is defined by an oriented 4-
tuple of four different vertices. Two tetrahedra T1(va, vb, vc, vd) and T2(ve, vf , vg, vh)
are identical if there is an even permutation that transforms (va, vb, vc, vd) to
(ve, vf , vg, vh). If two tetrahedra share the same vertices and if there is an odd
permutation between one and another, then they are said to have a different
orientation. 1

Definition 3 (Edge and Triangle) If T (v0, v1, v2, v3) is a tetrahedron, the
sets {vi, vj} and {vi, vj, vk} are called respectively edges and triangles of the
tetrahedron.

Definition 4 (Oriented Triangle) If {v1, v2, v3} is a triangle then the ori-
ented triplet (v1,v2,v3) is called oriented triangle. The oriented triangle (v1,v2,v3)
is said to be even oriented according to the tetrahedron T (v0,v1,v2,v3) and odd
oriented according to the tetrahedron T (v0, v1, v3, v2).

Definition 5 (Adjacency) Adjacency is a reflexive property which is set
between a tetrahedron, a triangle or an edge, and one of its subset (triangles,
edges or vertices). This definition can be extended in the case of two tetrahedra
sharing a common triangle.

Definition 6 (Tetrahedralisation) A topological tetrahedralisation is com-
posed of a set V of vertices and a set T of tetrahedra with the restrictions that
a given oriented triangle has at most two adjacent tetrahedra, one odd oriented
and one even oriented.

Furthermore, we define the notions of surface, neighborhood, connectivity and

1 Therefore, an oriented tetrahedron (va, vb, vc, vd) has 12 equivalent representation:
(va, vb, vc, vd), (va, vc, vd, vb), (va, vd, vb, vc), (vb, vc, va, vd), (vb, va, vd, vc), (vb, vd,
vc, va), (vc, va, vb, vd), (vc, vb, vd, va), (vc, vd, va, vb), (vd, vc, vb, va), (vd, vb, va, vc) and
(vd, va, vc, vb).

4



link. These notions are required for the definition of the manifold property.

Definition 7 (Neighborhood) The neighborhood of a vertex is the set of
all tetrahedra adjacent to that vertex. The neighborhood of an edge is the set
of all tetrahedra adjacent to that edge.

Definition 8 (Surface of a tetrahedralisation) We define the surface of
a tetrahedralisation as the set of all triangles adjacent to exactly one tetra-
hedron. A vertex or an edge belongs to that surface if it is adjacent to one
triangle of that surface. A vertex that is not on the surface is said to be an
inner vertex.

Definition 9 (Link of a vertex) The link of a vertex is the set of all tri-
angles opposite to that vertex in one of its adjacent tetrahedra.

Definition 10 (Connectivity) A set of tetrahedra is connected through its
triangles if it is possible to link each pair of tetrahedra in the set with a set of
adjacent tetrahedra of that set.

2.2 Definition of manifold tetrahedralisations

The notion of manifold meshes has been mainly studied in the case of trian-
gulated surfaces [GTLH01] but very few papers have focused on volumetric
tetrahedral meshes.

Only authors that have addressed the problem of cutting into tetrahedral
meshes have reported problems with preserving the manifold nature [NvdS01,BdC00]
of those meshes, but without really addressing the issue.

Definition 11 (Manifold with boundaries) A subset M of R3 is called a
3-manifold with boundaries if and only if the neighborhood of every vertex is
homeomorphic either to the open ball S2 or to the half ball S2+ (if the point is
on the surface).

It is important to note that there is a clear distinction between the notion
manifold and that of embedding : a 3-manifold mesh may not be embedded in
R3 (if it has self intersections) and an embedded volumetric mesh in R3 may
not be manifold.

Definition 12 (Manifold tetrahedralisation) A topological tetrahedralisa-
tion is manifold if and only if the link of every inner vertex is homeomorphic to
a sphere and the link of every surface vertex is homeomorphic to a half-sphere.

Corollary 13 According to the Euler-Poincaré formula, the number of ver-

5



tices V , edges E and triangles F of the link of an inner vertex of a manifold
tetrahedralisation follows the relation : V − E + F = 2 while those related to
the link of a surface vertex is : V − E + F = 1

In the case of a tetrahedralisation embedded in R3, the conditions to obtain a
manifold mesh can be simplified. Indeed, if the mesh is embedded, the link of a
vertex is already homeomorphic to a sphere (otherwise, if the link of an inner
vertex has non-zero genus, the mesh would not be embedded). Similarly, we
can analyse the link of surface vertices in an embedded tetrahedralisation by
projecting it on the unit sphere S2. We can also define the manifold property
by looking at the neighborhhod of each surface vertex :

Proposition 14 An embedded tetrahedralisation is manifold if and only if the
neighborhood, within the surface, of every surface vertex is homeomorphic to
a disc.

Indeed, the neighborhood of an inner vertex in an embedded tetrahedrali-
sation is a closed subset of R3 and therefore trivially verifies the manifold
property [Hof89]. Only the neighborhood of surface vertices must be checked,
which can be stated as follows :

Corollary 15 An embedded tetrahedralisation is manifold if and only if the
neighborhood, within the surface, of every surface vertex is connected and if
each surface edge is adjacent to exactly two surface triangles.

Definition 16 (Singularities) If the neighborhood of a vertex is not con-
nected (i.e. if its neighborhood has several connected components), then the
tetrahedralisation is said to have a topological singularity located on that
vertex. If an edge on the mesh surface is adjacent to more than two surface
triangles, then the tetrahedralisation is said to have a singularity located on
that edge.

Corollary 17 A consequence of the above definitions is that an embedded
tetrahedralisation is manifold if and only if it has no singularities located on
its surface.

3 Tetrahedron Removal Algorithm

3.1 Problem position

In the context of a laparoscopic simulator, we simulate the action of an ultra-
sonic lancet (cavitron) on the liver parenchyma. The liver is represented as a
tetrahedralisation and the tip of the instrument as a cylinder. After perform-

6



Success

Remove T

Failure

Is T
removable

? T has exactly two triangles
on the surface

T has exactly one triangle on the surface and at least
one opposite edge is also on the surface

while none of this triangle opposite edges are on the surface
T has exactly one triangle on the surface

for
removable
set of size

<10

Look

no set
found

Remove T
Split edge

Remove T
Split edge(s) Remove set

set
found

no

yes

 

Fig. 2. Description of the tetrahedron removal algorithm.

ing a collision detection followed by a surface contact computation [FDA04],
the collided tetrahedra are eventually refined and those tetrahedra still inter-
secting the tip of the instrument are candidates for removal. These tetrahedra
are always lying on the mesh surface.

3.2 Strategy for solving topological singularities

The input of our algorithm consists in one single tetrahedron to be removed.
The first step consists in testing whether or not that tetrahedron can be re-
moved without creating any singularity. Should a singularity arise at an edge,
then a simple solution based on edge splitting can be found Otherwise, the
algorithm proceeds by determining a small set of tetrahedra containing the
target tetrahedron, that can be removed without creating any singularity. In
some cases no removable set can be found and then the removal operation is
considered to be unsuccessful (see figure 2).

It should be emphasized that removing topological singularities in triangula-
tions is much easier than removing singularities in tetrahedralisations. Indeed,
in the former case, one can proceed by splitting the mesh around singularities
at vertices and edges. This approach is not applicable in the latter case since
the link of a vertex cannot be easily split between a right and a left part.

3.3 Testing removability

A basic component of our algorithm is to test whether a single tetrahedron, or
a set of tetrahedra, can be removed without causing any topological problem.

7



3.3.1 Case of a single tetrahedron

Testing the removal of a single tetrahedron is quite straightforward. Let T be
the tetrahedron to be removed:

(1) if T has no faces on the surface of the tetrahedralisation (T is then inside
the mesh), it is safely removable if and only if none of its four vertices
are part of the mesh surface. Actually we only try to remove surface
tetrahedra (see part 3.1) and therefore this case will not be discussed any
further;

(2) if T has exactly one triangle on the surface of the tetrahedralisation, it
is safely removable if and only if the vertex opposite to that triangle is
not on the surface. The case where that opposite vertex belongs to the
surface can be decomposed into four sub-cases according to the number
of edges in T , opposite to that surface triangle, that belong to the surface
(see figure 3):
b. no surface edge;
c. exactly one surface edge;
d. exactly two surface edges;
e. all three edges are one the surface.

The removal of a tetrahedron corresponding to sub-case b creates a sin-
gularity located on the vertex opposite to T surface triangle. The removal
of a tetrahedron corresponding to case c, d, or e creates singularities at
surface edges.

(3) if T has exactly two triangles on the surface (T makes an angle in the
surface), it is safely removable if and only if the edge opposite to those
two triangles does not belong to the surface (see figure 4 (a) and (b)).
Otherwise the removal of the tetrahedron creates a singularity located on
that edge;

(4) if T has three or four triangles on the surface (pyramid lying on the
mesh or single floating tetrahedron) it can always be safely removed (see
figure 4 (c) and (d)).

The only implementation issue for this test is to determine whether or not a
given vertex or edge is on the mesh surface. This can be performed efficiently
if all surface vertices edges and triangles are marked as such.

3.3.2 Case of a set of tetrahedra

Testing the removal of a set of tetrahedra is obviously more computationally
expensive. Since we are dealing with a tetrahedralisation embedded in R3,
we only have to check for the occurence of singularities on surface edges and
vertices (see property 15). Let T be the set of tetrahedra to be removed. The
test is performed in three stages:

8



(a) (d)(b) (c) (e)

Fig. 3. Examples of tetrahedra with one single triangle belonging to the surface of
the tetrahedralisation.

(d)(c)(b)(a)

Fig. 4. Examples of tetrahedra with 2, 3 or 4 triangles belonging to the surface of
the tetrahedralisation.

(1) retrieving the sets Tv, Te and Tt of respectively all vertices, edges and
triangles lying on the surface of T ;

(2) testing each edge in Te by counting the number of triangles in Tt adjacent
to that edge;

(3) testing each vertex of Tv by retrieving all triangles in Tt adjacent to that
vertex and checking if those triangles are connected by their edges.

3.4 Algorithm Description

Lets T be the tetrahedron to be removed. The outcome of the test presented
in section 3.3 is one of the four cases:

• the tetrahedron is removable;
• the tetrahedron is not removable and exactly two of its triangles belong to

the tetrahedralisation surface (edge singularity);
• the tetrahedron is not removable, exactly one of its triangles belongs to the

tetrahedralisation surface and so does at least one of that triangle opposite
edges (edge singularity-ies);

• the tetrahedron is not removable and exactly one of its triangles belongs to
the tetrahedralisation surface but none of that triangle opposite edges do
(vertex singularity).

If T appears to be removable it is simply removed. Otherwise we proceed
according to three remaining cases.

9



Fb
V1

Fa

F1F2

V2

V1a
V1b

V2a

Fa Fb

V2b

Fig. 5. Removing a singularity for a tetrahedron with exactly two triangles on the
surface.

 

V1

V0

V0

V1a
V1b

(a)

 

V1

V0

V2

V2a

V0a

V1a

V2b
V1b

V0b

(b)

 

V1a

V3c
V1b

V2a V2c

V2b

V0c
V0a V0b

V0

V1
V3

V2

(c)

Fig. 6. Removing edge singularities for a tetrahedron with exactly one triangle on
the surface.

3.4.1 Edge singularity: tetrahedron with exactly two surface triangles

Let T be a tetrahedron with exactly two surface triangles as shown in Fig-
ure 5. It is possible to suppress that singularity by simply splitting that edge
since T divides the edge neighborhood into two connected components. The
split operation then consists in separating those two connected components
by creating two additional vertices and one additional edge (see figure 5).

3.4.2 Edge singularity(-ies): tetrahedron with exactly one surface triangle

Let T be a tetrahedron having exactly one surface triangle and at least one
of its opposite edges on the surface (see Figure 6). Those edges divide the
neighborhood of their vertices into several connected components.

a. if exactly one edge of T adjacent to that vertex belongs to the surface,
then the singularity can be suppressed by splitting the other vertex of
that edge;

b. if exactly two edges of T adjacent to that vertex belong to the surface,

10



then the singularity can be suppressed by splitting those two edges;
c. if the three edges of T adjacent to that vertex belong to the surface, then

that singularity can be suppressed by splitting those three edges.

3.4.3 Vertex singularity: tetrahedron with exactly one surface triangle

Let T be a tetrahedron having exactly one surface triangle but with none of its
opposite edges on the surface (see Figure 8). Then, there is no simple splitting
operation possible to suppress the singularity. Our strategy is to determine
a set Tremovable containing T that can be removed. There are obviously many
possible removable sets, the most trivial one being the whole mesh. Therefore,
we need to give additional criteria for defining the optimal set Tremovable:

• minimize the size of Tremovable, i.e. the number of tetrahedra to remove.
Indeed, it is very reasonable to restrict as much as possible the side effect
of preserving the manifold nature of the mesh. In the context of surgery
simulation, it simply avoids to remove a large volume each time the action
of the ultrasonic lancet is simulated. Note that we could have replaced this
criterion by minimizing the overall volume of Tremovable rather than its size;

• restrict the tetrahedra of Tremovable to be adjacent to at least one of the
four vertices of T . The motivations are twofold. First, we want Tremovable to
be located around T to enforce the visual realism of the cutting. Second,
we want to limit the computation time of Tremovable since we are targeting
real-time applications.

Unfortunately, limiting spatially the search of Tremovable implies in some cases
the absence of solutions. Figure 7 shows an example in 2D for such case. For
tetrahedralisation, the occurence of such cases is very rare. When the search
fails, an empty set is outputted Tremovable = {}.

Instead of testing blindly for a removable set, it is worth looking at the link
of the problematic vertex (see figure 8). Figure 9(a) shows a typical flattened
map of the link at such a vertex. The removal of target tetrahedron would
create a hole in the vertex link which will no longer be homeomorphic to a
half sphere. Our approach is to remove that additional hole by searching a
path starting from the removed tetrahedron and moving towards the border
of the vertex link. This search is performed in a breadth-first manner in order
to get the shortest path and is further arbitrarily limited to a depth of 10
in order to restrict the computational time. When a path is determined, the
removal of the corresponding set is tested and, upon success that set Tremovable

is given as a result of the algorithm.

If the test fails, we use an additional heuristics. It appears to be often the
case that the path found divides the adjacency of one of the tetrahedron ver-
tices into two connected components (see figure 9(b)). Therefore, we also test

11



Triangle t
removable set
Smallest

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

Fig. 7. Example of a manifold triangulation where it is not possible to find a set of
triangles adjacent to triangle t, that can be removed without creating any singular-
ities.

Fig. 8. (Left) A tetrahedron with a single triangle on the mesh surface and having
its opposite vertex also on the surface. (Right) The link of that vertex.

(a)

Connected
component 2

Connected
component 1

(b)

Fig. 9. (a) Flattened map of the link of the vertex displayed in figure 8. Because of
the manifold property of the mesh, we know that the link of a vertex that lies on
the surface is homeomorphic to a half sphere and therefore can be flattened. The
border edges correspond to the edges opposite to the vertex in the mesh surface
(the bottom of the half sphere on figure 8). (b) example of a path dividing a vertex
link in two connected components.

the removability of the given path extended with each of the two connected
components. If one of that two sets appears to be actually removable it is tem-
porarily stored and will be eventually used if we no smaller set is determined
later on. If no paths nor extended paths are found then we output an empty
set Tremovable = {}.

12



Note that one could always remove tetrahedron T , by refining the singular
vertex and by removing both the refined tetrahedron and the refined vertex
adjacency (see [FDA02] for more details). However, in practise, we chose not
to use such algorithm because it creates ill-shaped tetrahedra of small size.
Instead, we found that if tetrahedron T cannot be removed at a given time t,
it is very likely to become removable later on, once a neighboring tetrahedron
has been removed. This empirical property is very important in the context of
surgical simulation and explains why the user can always resect the selected
piece of tissue.

(1) (2)

(3) (4) (5)

Fig. 10. Five tetrahedral meshes used for the tests.

4 Evaluation of the algorithm

4.1 Descriptions of the tests

In order to evaluate the performance and suitability of this algorithm, we have
removed one-by-one several tetrahedra from different meshes and evaluated the
percentage of resolved cases and the average size of the removed sets. To be
more significant, if a non-removable tetrahedron is encountered several times
it is taken into account only once.

The different meshes are (see figure 10):

13



(1) a simple cylinder;
(2) a thin sheet with an average thickness of two tetrahedra;
(3) a coarse mesh of a liver (3970 tetrahedra);
(4) a locally refined mesh of the same liver (8454 tetrahedra);
(5) a locally refined mesh of a liver (9933 tetrahedra for a third of the liver)

obtained by applying an edge split algorithm.

The result appears to be quite stable from one mesh to the other independently
of its number of tetrahedra removed, of its geometry or of the quality of its
tetrahedra..

4.2 Occurrence of topological singularities

number of % of removable % of singularities

Mesh operations tetrahedra on edges on vertices

1 278 83 14 3

2 358 72 24 4

3 418 81 16 3

4 693 83 14 3

5 1881 83 15 2

The table above lists for each type of mesh the occurence of edge and vertex
singularities when removing a tetrahedron lying on the mesh surface. The
three leftmost figures sum up to 100%. Except for the thin sheet the ratio
of non removable tetrahedra is nearly 20%. However, one would only remove
those tetrahedra than do not create singularities, then the occurence of non-
removable tetrahedra would drastically increase until no surface tetrahedra can
be removed any longer. This shows that if the manifold nature of the mesh is
to be enforced, it is mandatory to cope with the presence of singularities as
proposed in the algorithm described above.

4.3 Performance for vertex singularities deletion

The majority (80%) of the topological problems encountered are caused by
edge singularities and can be solved with the simple splitting method pre-
sented in section 3.4. For the remaining 20% we propose to determined a small
removable set as described at the end of section 3.4. Globally that method is
rather efficient since it solves more than 97% of the cases. Note also efficiency

14



of the extended path heuristics that solves most of the remaining pathological
cases.

% of solved cases % of un- average size of removed set

Mesh simple path extended solved cases simple extended global

1 100 0 0 4.7 - 4.7

2 94 6 0 4.3 4.0 4.3

3 84 16 0 4.6 5.0 4.7

4 78 16 6 6.3 4.3 6.0

5 86 7 7 5.5 8.6 5.7

4.4 Evaluation of the strategy

General Problematic tetrahedra

Mesh % of removal average size % of removal average size

unsolved of removed set unsolved of removed set

1 0 1.1 0 1.4

2 0 1.1 1.0 1.3

3 0 1.1 2.5 1.4

4 0.15 1.1 3.4 1.5

5 0.15 1.1 1.8 1.4

This table lists the percentage of cases solved and the average number of
tetrahedra removed during one operation. Almost 99.8% of the tetrahedra can
be removed successfully. We consider that an average of 0.2% of unremovable
tetrahedra is a rather good result for a cutting strategy. Furthermore, when
simulating the action of an ultrasonic lancet, the typical number of tetrahedra
to be removed in a single time step stands between 4 and 6, and therefore the
probability to end-up with no removable tetrahedra decreases exponentially.

4.5 Real-Time Computation

The proposed algorithm is largely compatible with real-time requirements.
Indeed, the average time for removing one tetrahedron (in non trivial cases)

15



Fig. 11. Examples of volumetric cuts performed with our tetrahedron removal algo-
rithm.

is less than 0.2 millisecond on a Pentium III computer. Unsurprisingly, the
worst case is reached when the search of a removable set is performed with
the maximum depth. For a depth of 10 tetrahedra, the algorithm can take up
to 5 ms whereas with a depth of 8, it goes down to 3 ms. There is therefore
a trade-off between the efficiency of the algorithm and its maximum time of
computation.

5 Conclusion

We have presented a tetrahedron removal algorithm that guarantees the preser-
vation of the manifold nature of a tetrahedral mesh. This method, rather
simple to implement, does not significantly worsen the geometric quality of
tetrahedra. Furthermore it is a rather efficient algorithm since it can solve
almost 99.8% of all requested removal.

This algorithm has been implemented in an hepatectomy simulator, providing
an acceptable solution for resecting the hepatic parenchyma. We believe the
proposed algorithm can still be improved, for instance, by finding additional
alternatives to the breadth-first search described in section 3.4.3. In some con-
figurations where several edges are part of the surface, a vertex split-based
solution could be advantageous if one does not have to deal simultaneously
with several vertex singularities. Also, testing for a removable set of tetrahedra
might be improved by only looking at the link of edges or vertices where sin-
gularities occur. Another field of investigation is the application of the “refine

16



and remove” strategy to obtain finer and more regular cut surfaces.

6 Bibliography

References

[BdC00] François Boux de Casson. Simulation dynamique de corps biologiques
et changements de topologie interactifs. Thèse de science, Université de
Savoie, Chambéry (FR), December 2000.

[BG00] Daniel Bielser and Markus H. Gross. Interactive simulation of surgical
cuts. In Proc. Pacific Graphics 2000, pages 116–125. IEEE Computer
Society Press, October 2000.

[BSM+02] C Bruyns, S Senger, A Menon, S Wildermuth, K Montgomery, and
R. Boyle. Survey of interactive mesh cutting techniques and a new
method for implementing generalized interactive mesh cutting using
virtual tools. Journal of Visualization and Computer Animation, 13(1),
2002.

[FDA02] Clément Forest, Hervé Delingette, and Nicholas Ayache. Cutting
simulation of manifold volumetric meshes. In Medical Image Computing
and Computer-Assisted Intervention (MICCAI’02), volume 2488 of
LNCS, pages 235–244, Tokyo, September 2002. Springer.

[FDA04] Clément Forest, Hervé Delingette, and Nicholas Ayache. Surface contact
and reaction force models for laparoscopic simulation. In International
Symposium on Medical Simulation, June 2004.

[GTLH01] André Guéziec, Gabriel Taubin, Francis Lazarus, and Bill Horn. Cutting
and stitching: Converting sets of polygons to manifold surfaces. IEEE
Trans. on Visualization and Computer Graphics, pages 136–151, 2001.

[Hof89] Christoph M. Hoffmann. Geometric and solid modeling: an introduction.
Morgan Kaufmann Publishers Inc., 1989.

[MK00] Andrew B. Mor and Takeo Kanade. Modifying soft tissue models:
Progressive cutting with minimal new element creation. In MICCAI,
pages 598–607, 2000.

[NvdS01] Han-Wen Nienhuys and A. Frank van der Stappen. Supporting cuts and
finite element deformation in interactive surgery simulation. In Medical
Image Computing and Computer-Assisted Intervention (MICCAI’01),
pages 145–152. Springer, October 2001.

[NvdS02] Han-Wen Nienhuys and A. Frank van der Stappen. Interactive cutting
in triangulated surfaces, a delaunay approach. In Procs. of the

17



Fifth International Workshop on Algorithmic Foundations of Robotics
(WAFR’02), December 2002.

[PBKD02] Celine Paloc, Fernando Bello, Richard I. Kitney, and Ara Darzi. Online
multiresolution volumetric mass spring model for real time soft tissue
deformation. In Medical Image Computing and Computer-Assisted
Intervention (MICCAI’02), volume 2489 of LNCS, pages 219–226.
Springer, September 2002.

[PS03] Giuseppe Patanè and Michela Spagnuolo. Triangle mesh duality:
Reconstruction and smoothing. In Mathematics of Surfaces: 10th
IMA International Conference, volume 2768 of LNCS, pages 111–128.
Springer-Verlag, November 2003.

[Qin00] Hong Qin. Fem-based dynamic subdivision surfaces. 8th Pacific
Conference on Computer Graphics and Applications, pages 184–191,
October 2000. ISBN 0-7695-0868-5.

[SHS01] D. Serby, M. Harders, and G. Székely. A new approach to cutting into
finite element models. In Medical Image Computing and Computer-
Assisted Intervention (MICCAI’01), pages 425–433. Springer Verlag,
October 2001.

[VHM+99] Gerrit VoSS, James K. Hahn, Wolfgang Muller, , and Robert W.
Lindeman. Virtual cutting of anatomical structures. In Medicine Meets
Virtual Reality (MMVR ’99). IOS Press, January 1999.

[VPBM01] A. Vlachos, J. Peters, C. Boyd, and J. Mitchell. Curved PN triangles.
In Proc. 17th Annu. ACM Sympos. Comput. Geom., August 2001.

18


	Introduction
	Simulation of cutting
	Motivations for keeping a manifold mesh

	Manifold Tetrahedralisation
	Topological description of tetrahedralisations
	Definition of manifold tetrahedralisations

	Tetrahedron Removal Algorithm
	Problem position
	Strategy for solving topological singularities
	Testing removability
	Algorithm Description

	Evaluation of the algorithm
	Descriptions of the tests
	Occurrence of topological singularities
	Performance for vertex singularities deletion
	Evaluation of the strategy
	Real-Time Computation

	Conclusion
	Bibliography
	References

