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Abstract— Medical Image Analysis plays a crucial role in the

diagnosis, planning, control and follow-up of therapy. To be com-

bined efficiently with medical robotics, Medical Image Analysis

can be supported by the development of specific computational

models of the human body operating at various levels. We

describe in this article a hierarchy of these computational models,

including the geometrical, physical and physiological levels, and

illustrate their potential use in a number of advanced medical

applications including image guided, robot-assisted and simulated

medical interventions. We conclude this article with scientific

perspectives.

Index Terms— Computational Models, Medical Robotics, Med-

ical Image Analysis, Anatomical Models, Biomechanics, Physio-

logical Models, Brain-shift, Augmented Reality, surgery simula-

tion

I. INTRODUCTION

Medical Imaging can be used for the planning and control

of the motion of medical robots. Examples include the use of

pre-operative images and geometric reasoning for path plan-

ning, the combined use of pre-operative and intra-operative

images to control a surgical procedure with augmented reality

visualization, or the simulation of surgical interventions on

virtual organs built from pre-operative images and atlases with

realistic visual and force feedback.

Such procedures require the use of advanced medical image

analysis methods and the development of a hierarchy of so-

called computational models of the human body [1]. These

computational models aim at reproducing the geometrical,

physical and physiological properties of human organs and

systems at various scales (see Figure 1). They can be used

in conjunction with medical images and robotics to actually

enhance the possibilities of image analysis and robot control.

The purpose of this article to describe first a hierarchy of

levels of these computational models, and then to illustrate

their potential use for medical robotics applications.

The first level is mainly geometrical and addresses the

construction of digital static descriptions of the anatomy, often

based on medical imagery. The techniques for segmenting

and reconstructing anatomical and pathological structures from
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Fig. 1. Hierarchy of computational models of the human body (from [2])

medical images have been developed for the past 15 years and

have brought many advances in several medical fields includ-

ing computer-aided diagnosis, therapy planning, image-guided

interventions, drug delivery, etc. An distinctive achievement of

computational anatomy has been carried out by the ”Visible

Human Project” [3] which provided the first digital multimodal

anatomical representation of the full human body.

A second level of modeling describes the physical properties

of the human body, involving for instance the biomechanical

behavior of various tissues, organs, vessels, muscles or bone

structures [4].

A third level of modeling describes the functions of the

major biological systems [5], [6] (e.g. cardiovascular [7], [8],

respiratory [9], digestive, hormonal, muscular, central or pe-

ripheral nervous system, etc.) or some pathological metabolism

(e.g. evolution of inflammatory or cancerous lesions [10],

formation of vessel stenoses [11], [12], etc.). Such physiolog-

ical models often include reactive mechanisms while physical

models only provide a passive description of tissues and

structures. A fourth level not depicted in Figure 1 would be

cognitive, modeling the higher functions of the human brain.

Each model is specified by a number of parameters and a

related task consists in studying the variability of those pa-

rameters across a given population. Thus, statistical modeling

of those computational models can be seen as an orthogonal

modeling activity that aims for instance at finding the local

or global similarities and dissimilarities of a structure or a

function between two populations [13], [14], [15]. Statistical

findings may also be used to calibrate, refine or constrain [16]

a given model. At the basis of this activity is the growing avail-

ability of large databases of subjects and patients including

biomedical signals and images as well as genetic information.

There is an additional dimension associated with a given

model : the scale at which the anatomical, physical or physi-

ological structure is described. With the development of new

imaging modalities, it is now possible to observe the shape

or function of most structures at the macroscopic (tissue),

microscopic (cellular) levels and even in such cases to reveal

the metabolic activity a the nanoscopic (molecular) scale.

There is a distinction between generic and specific models.

Generic models are useful for teaching [17] and for training [2]

medical residents, especially when they include a variability

study between normals and pathological subjects. There is also

a growing need for patient-specific models whose parameters

are adjusted to the actual geometrical, physical or physiologi-

cal [18] properties of the considered patient. This is motivated

by the evolution of medical practice toward more quantitative

and personalized decision processes for prevention, diagnosis
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and therapy.

In the next sections, following our proposed hierarchy

(geometrical, physical, physiological), we describe a number

of computational models used for image-guided, robot-assisted

and simulated medical interventions before proposing some

perspectives and challenges for future research.

II. GEOMETRICAL MODELING

A. Extracting anatomical information from images

Medical images are the primary source of information for

the reconstruction of the human anatomy and are particularly

well suited for the creation of patient-specific models. They

can be generated by various imaging systems (MR, CT, US)

and may have different dimensions (2D, 3D or 3D+t). The

extraction of the geometrical description from those images

requires the application of image segmentation algorithms that

can generate a large variety of geometrical description of the

targeted structure. The nature of the geometrical representation

largely depends on the application. For instance, the volume

rendering of a patient anatomy only requires to label the

voxel belonging to the region of interest and to define its

opacity function. For image-guided therapy a surface mesh of

the structure is often sufficient while other therapy planning

applications may need the definition of a volumetric mesh

based on tetrahedra or hexahedra [19].

There exist many pitfalls when creating meshes from med-

ical images. For instance, the transformation of a segmented

image into a surface mesh often requires using the Marching

Cube algorithm [20] which tends to create a large number of

poorly shaped triangles. Mesh decimation [21] is then applied

to drastically reduce the number of elements and improve their

shapes. Other meshing techniques [22] are being developed

that aim at directly producing a small number of well-shaped

triangles from isosurfaces.

For volumetric meshes, the quality of the elements is

especially of great importance since it influences the time

of convergence and even the convergence of the simulation.

Even if hexahedral meshes usually lead to more accurate

results than tetrahedral meshes [23] for the same number of

nodes, their grid topology makes them ill-suited to represent

complex shapes, unless a gross approximation of the surface

is tolerated. The construction of patient-specific volumetric

meshes can be produced from images in two ways. The first

approach is bottom-up and consists in automatically filling a

triangulated surface with tetrahedra [24], [25] or generating

hexahedra from a set of voxels. The second approach is

top-down and relies on a registration technique to deform a

generic tetrahedral [26] or hexahedral mesh [27] towards the

segmented region in the image. The deformation of a generic

model serves to automatically label mesh parts corresponding

to specific boundary conditions, or specific material proper-

ties [26].

B. Hepatic Surgery Planning

Many state-of-the-art medical applications in clinical use

rely on static anatomical models. For instance, we have

developed [28] an automated hepatic surgery planning system

that helps surgeons to choose a surgical strategy. This system

can be used on a laptop during the intervention to improve the

control of skill.
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To acquire a knowledge of the patient anatomy, radiologists

use CT-scans, which are acquired 60 seconds after the intra-

venous injection of a contrast medium. Theses images allow

the visualization of hepatic tumors and contrasted vessels as

well as the liver. We have developed a method which provides

the segmentation of the following abdominal structures from a

high resolution CT-scan within 15 minutes : skin, bones, lungs,

heart, aorta, spleen, kidneys, gallbladder, liver, portal vein and

hepatic tumors greater than 5 mm diameter (see Figure 2).

Note that other hepatic surgery planning systems [29], [30]

have also been proposed.

Fig. 2. Reconstructed liver from the patient CT scan image (from [28]).

C. Augmented Reality

Anatomical models are important not only for planning a

therapy but also for guiding the execution of that therapy.

This requires the additional task of relating the pre-operative

plan coordinate system to the physical space where the patient

actually lies. When the therapy is robot-assisted, this geometric

correspondence and the anatomical knowledge of surgical

field can be used to optimize the port placement [31] or to

define safety zones [32] where the tip of the robot should not

move. Similarly, Augmented Reality provides a convenient and

efficient steering of the gesture by overlaying the pre-operative

information onto real intra-operative views of the patient [33].

Augmenting the surgeon’s view with this information may lead

to a better understanding of the pathology and decision process

during the intervention [34]. By tracking also the surgical tools

in real time, or by robotizing them [35], one can also guide

surgeons more efficiently along the planned path toward the

virtual target.

Most applications developed so far are dedicated to neuro-

surgery and orthopedic surgery, since bones offer very reliable

landmarks to register the virtual patient to the real one [36],

[37], [38]. More recently, techniques based on the specific ge-

ometry of the intra-operative acquisition device were proposed

for the chest or the abdomen, for instance to superimpose

fluoroscopic images onto video images of the patient [39].

Other examples are given by the use of semi-transparent

mirrors to display ultrasound [40], [41] or CT slices [42],

in such a way that images appear naturally registered to the

patient.

However, these augmented reality techniques only superim-

pose intra-operative images onto video images of the patient.

To display pre-operative information, one needs to register

those images to the patient geometry. For instance, we have

developed [43] an augmented reality system for needle in-
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Fig. 3. (Left) Augmented reality based on 3D radio-opaque markers; (Right) Augmented view of patient at the tip of the needle (from [43]).

sertion guidance in hepatic radio-frequency ablation. This

system superimposes in real-time 3D reconstructions from CT

acquisitions and a virtual model of the needle on real video

views of the patient, thanks to the 3D/2D registration of radio-

opaque markers stuck on the patient skin (see Figure 3).

D. Registration : a central issue

A careful evaluation of the performances of the registration

algorithm [44] is essential for augmented reality since some

pre-operative information is used as a substitute for hidden

information in video images: a registration error may lead

the surgeon to miss the real target, with potential collateral

damages.

Registration is basically an optimization procedure which

aims at finding the best transformation parameters. It can

be evaluated in terms of robustness, precision and accuracy.

First, one can distinguish between gross errors (convergence

to wrong local minima) and small errors around the exact

transformation. Robustness is the ability to converge to the

right minimum, and may be quantified by the size of the

basin of attraction, or the probability of false positives. Small

errors around the right transformation might have a system-

atics trend (a bias), in which case the variance around the

mean (characterizing the precision or reproducibility) is much

smaller than the variance w.r.t. the ground truth (characterizing

the accuracy). This distinction is important as one most

often misses the ground truth to evaluate the performances

of registration algorithms. In that case, one is left with the

quantification of the precision, which can be significantly

smaller than the real accuracy [45]. Accuracy is an important

concern in image guided therapy, and is indeed difficult to

evaluate [46]. In some cases, however, one can certify the

quality of the registration result in real-time, which allows to

dynamically adapt the surgical procedure in order to reach the

maximal safety [47].

In terms of routine use of guidance systems in clinics,

robustness can be even more important than accuracy, as rare

but large errors may lead to much more dramatic consequences
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than a slightly larger average error. As a perfect robustness

is not achievable, fault detection is thus of the upper impor-

tance. However, this is a very difficult problem: thanks to

his anatomical interpretation of the image, a human observer

immediately sees when the registration grossly fails, whereas

the algorithm only knows that it is in a local minimum of a

cost functional! Thus, providing a friendly user interface for

the clinician to supervise and possibly interact to correct the

registration results is often the key for the use of image guided

systems in clinical environments [48].

Last but not least, registration algorithms have to be real-

time in the image guided surgery context. By real-time,

one means that the computation time should be significantly

shorter than the typical motion time (a few minutes for the

brain shift, a few tenths of second for the beating heart),

the limiting factor being often the acquisition of the intra-

operative images (e.g. 2 minutes for open MR in brain-shift

compensation). In some cases, one might find some theoretical

approximations that drastically speed-up the algorithm [49].

However, one relies in most cases on the parallelization of the

algorithm in order to reach a computation time compatible

with the clinical constraints [50], [51].

III. BIOMECHANICAL/PHYSICAL MODELING

Anatomical models only provide a static geometrical repre-

sentation of the patient anatomy and do not take into account

the deformation of soft tissue that may occur before or during

therapy. To address this issue, it is necessary to add a biome-

chanical model that can estimate soft tissue deformations

under the application of known forces or displacements. The

additional complexity of modeling may be used to improve

the pre-operative planning of a therapy [52], [53] or to

provide advanced surgical gesture training as illustrated in the

sections below. Note that there are also important research

efforts involving physical but non-mechanical phenomena for

instance for the planning of radiotherapy or radiofrequency

ablation [54].

A. Brain-Shift modeling in neurosurgery

The brain shift that occurs during a neuro-surgical in-

tervention is the main source of intra-operative localization

inaccuracies of pathologies (cerebral tumors,. . .). Indeed, a

neurosurgeon establishes the surgical plan based on a pre-

operative MR image : any non-rigid motion of the brain

between the pre-operative and the intra-operative configuration

may lead to an error in the localization of the target. This

clinical problem has motivated the study of the biomechanical

behavior of the brain [55]. To model the brain motion after

opening the dura, a number of authors [56], [57] have made

the hypothesis that the loss of cerebro-spinal fluid causes a

pressure field along the gravity direction (Archimedes princi-

ple). Furthermore, anatomical constraints (falx cerebri, skull)

of the deformation field can be enforced with a biomechanical

model of the brain discretized as a tetrahedral mesh since

the relevant anatomical information can be extracted from

MR images and enforced on the mesh. The predictive power

of some models has been shown for instance for methods

extrapolating displacement fields [57], [58] from the cortex

surface. Also, partial validation of brain shift models may be

carried out [59] by comparing computed displacements with
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those observed from intra-operative MR images.

Conversely, it interesting to stress that when validated,

those biomechanical models can be used to register pre-

operative and intra-operative MR images [57], [60] of the

same patient in an efficient (near real-time) and realistic way.

Thus modeling brain tissue deformation leads to solving both

direct (or predictive) and inverse (or estimation) problems and

we propose to describe this global interaction as coupling

biomechanical models with medical images.

B. Surgery Simulation

Surgery simulation aims at reproducing the visual and haptic

senses experienced by a surgeon during a surgical procedure,

through the use of computer and robotics systems. The medical

scope of this technology is linked with the development of

minimally invasive techniques especially videoscopic surgery

(endoscopy, laparoscopy,...) and possibly telesurgery. Because

of the limitations of current training methods, there is a large

interest in developing video-surgery simulation software for

providing efficient and quantitative gesture training systems.

Indeed, such systems should bring a greater flexibility in the

training by providing scenarios including different types of

pathologies. Furthermore, by creating patient-specific models,

surgery simulation allows surgeons to verify, optimize and

rehearse the surgical strategy of a procedure on a given patient.

Building a surgical simulator requires the real-time and

realistic simulation of soft-tissue deformations. More precisely

the required refresh rate for user interaction is 30 Hz for visual

feedback and more than 500 Hz for force-feedback, although

the latter constraint can be alleviated with the addition of a

local haptic model [61], [62]. Authors have proposed several

soft tissue models trying to combine realism with efficiency.

Discrete models such as spring-mass models are simple to

implement but generally fail to produce realistic deforma-

tions [63].

Combining finite element modeling and continuum mechan-

ics has also been a popular approach which has provided ad-

vanced soft tissue simulation. Linear elasticity provides a sim-

ple and realistic framework when soft tissue undergoes small

deformations. By exploiting the principle of superposition, one

can precompute [2], [64], [65] the displacement field produced

by applying a set of surface forces for an anisotropic and

inhomogeneous material. This very efficient scheme (leading

to a 500 Hz refresh rate or more) is however not compat-

ible with mesh topological changes that are involved when

simulating tissue resection. Tensor-mass models [66] provide

realistic volumetric deformations while authorizing topological

changes (cuttings) with a complexity similar to spring-mass

models.

To handle large deformations, one must introduce non-linear

elastic models with the drawback of larger computational cost.

To reach real-time computation, authors have proposed non-

linear tensor-mass models [2], [67], multigrid [68] and co-

rotational approaches [69] each having its advantages and

limitations in terms of computational efficiency, topological

adaptation and deformation realism. Similarly, meshless meth-

ods [70] are an interesting alternative to finite element methods

where the location and the number of nodes can be optimized.

An important issue related to those models is the estimation
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of material properties such as the Young Modulus for linear

elastic material or the stress-strain relationship for hyperelastic

ones. There are three different sources of rheological data : ex-

vivo testing where a sample of a tissue is positioned inside a

testing rig [71], [72]; in-vivo testing where a specific force and

position sensing device is introduced inside the abdomen to

perform indentation [73], [74]; Image-based elastometry from

ultrasound, Magnetic Resonance Elastometry [75], [76] or CT-

scan imaging.

There is no consensus on which method is best suited

to recover meaningful material parameters. For instance, the

rich perfusion of the liver affects deeply its rheology (the

liver receives one fifth of the total blood flow at any time)

and therefore it is still an open question whether ex-vivo

experiments can assess the property of living liver tissue,

even when specific care is taken to prevent the swelling or

drying of the tissue. Conversely, data obtained from in-vivo

experiments should also be considered with caution because

the response may be location-dependent (linked to specific

boundary conditions or non-homogeneity of the material) and

the influence of the loading tool caliper on the deformation

may not be well understood. Furthermore, both the respiratory

and circulatory motions may affect in-vivo data.

Another difficult task when implementing a surgical sim-

ulation includes the detection and computation of collisions

between a deformable model and rigid bodies [62] or between

several deformable bodies [78] (see Figure 5).

Fig. 5. Simulation of an intervention on a human intestine [78] that involves

complex handling of self-collisions (courtesy of M-P. Cani).

IV. PHYSIOLOGICAL MODELING

Up to now, we showed that geometrical and physi-

cal/biomechanical modeling of the human body provide rep-

resentations allowing geometric reasoning, navigation, and

various forms of simulated interactions including deforming

and cutting soft tissues with realistic visual and haptic feed-

back. However the tissues and organs still behave like passive

material, and it is necessary to go one step further to model the

active properties of living tissues and the dynamic nature of

normal or pathological evolving processes. We illustrate this

level of modeling with two examples related to the modeling

of the electro-mechanical activity of the heart and the growth

of brain tumors. Additional examples related to the modeling

of physiological flows can be found in [11], [12], [79].

A. Cardiac modeling

During the past 5 years, a scientific INRIA consortium

regrouping internal and external research teams1 has devel-

oped an electro-mechanical model of the cardiac ventricles

1cf. CardioSense3D URL http://www.inria.fr/CardioSense3D/
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Fig. 4. (Left) A force feedback system suited for surgery simulation; (Right) View of the simulated hepatic resection involving linear-elastic materials

(from [2], [64], [66] and [77], [62]).

for medical purposes. The model reproduces the electrical

depolarization and repolarization of the cardiac tissues through

a set of macroscopic reaction-diffusion equations initially

proposed by Fitzugh and Nagumo [80] and further refined by

Aliev and Panvilov [81]. This electrical activity, which can be

synchronized with the actual ECG (electro-cardiogram) of the

patient, creates a mechanical contraction followed by an active

relaxation which are modeled by a set of partial differential

equations initially proposed by Bestel, Clement and Sorine

[82].

It was shown in [8] that this model could be interactively

adjusted to the actual geometrical, mechanical or electrical

properties of patient’s heart through the use of conventional

or tagged MR images and some in vivo electrophysiological

measurements. The average direction of the myocardium fibers

is also integrated into this model, because it plays an important

role in both the electrical and mechanical modeling. Even more

interestingly, the model can then be used to study the effect of

modifying locally some electrical or mechanical properties in

order to better predict the effect of a therapy or the evolution

of a pathology [83], [84] (see Figure 6).

We believe that this kind of models of a dynamic organ

could be used in the future to better plan or train a number of

medical skills for instance in radiofrequency ablation proce-

dure, for the positioning of stimulation probes of pacemakers,

and maybe in the long term future to simulate beating heart

with the potential use of robotics [85].
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Fig. 6. Predicting the effect of pathologies with an electro-mechanical model of the heart [8]; (Left) Definition of a basal left epicardial infarcted zone (no

conduction and no contraction in that area) shown in blue; (Right) Curves of ejected volume during a cardiac cycle without (dashed) and with (solid) infarct.

The ejection fraction decreases from 65% to 55%.

B. Tumor growth

The second example is related to the modeling of the

growth of brain tumors. A joint action between INRIA, a Nice

Hospital (Centre Antoine Lacassagne) and the Brigham and

Women’s hospital (Boston) has led to the development of a

three level model [86].

The first level includes the geometrical model of a patient’s

head, including the skull, the brain parenchyma (grey and

white matter) and the Cerebro-Spinal Fluid (CSF). The shape

of each region is acquired through a conventional MR exam.

In addition, the direction of the main white matter fibers is

also acquired either through Diffusion Tensor Imaging (DTI),

or using average directions provided by a brain atlas. A second

level includes the modeling of the biomechanical properties of

the brain tissues. Because we are considering small deforma-

tions only, this model is a linear elastic one, and implements

the boundary conditions imposed by the bony (skull) and fluid

(ventricles) structures surrounding the brain parenchyma. The

third level is an evolution model of the tumoral tissues, which

is based on a set of reaction-diffusion equations describing the

proliferation and diffusion of malignant cells [87].

An original point is the coupling of the third level with the

previous two levels in order to create a realistic deformation

of the brain tissues (also called mass effect) produced by the

tumor growth. The direction of the white matter fibers plays an

important role in the highly anisotropic diffusion of cancerous

cells (see Figure 7).

We believe that this type of model will prove to be quite

useful to predict the evolution of a pathology from a number

of observations made at a limited number of time points. It

will help the guidance of medical strategies (e.g. radiother-

apy, surgery) in predicting more precisely the boundaries of
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(a) (b) (c)

Fig. 7. (Top) Overview of the evolution model of cancerous cells which takes

into account the anisotropic diffusion along white matter fibers; (Bottom)

Result of the tumor growth simulation on a brain slice; (a) Initial MR T2

image of the patient with lines of constant tumor density; (b) View of the

corresponding MR T2 slice (after rigid registration) six months later; (c) Lines

of constant tumor density predicted by the tumor growth model [86] after 6

months of evolution.

pathological tissues.

V. SUMMARY AND PERSPECTIVES

We have shown in this article how computational models

of the human body could be used in conjunction with medical

imaging techniques to assist in the preparation, simulation and

control of medical interventions. A key point is the possibility

offered by these models to actually fuse the geometrical,

physical, and physiological information necessary to provide

a thorough and reliable analysis of the complex and multi-

modal biomedical signals acquired on each patient, possibly

at various scales.

We list below some research topics that should open new

perspectives in improving medical practice :

• Statistical Analysis. The development of large databases

of medical images should further improve the robustness

and accuracy of the previously discussed computational

models, and therefore the performances of image-guided

intervention or simulation systems.

• Soft Tissue Modeling. The development of sophisticated

ex-vivo and in-vivo indentation devices should lead to

a better understanding and new mathematical models of

the mechanical behavior of human organs. In the context

of surgery simulation, further optimization in soft tissue

deformation is required to simulate a whole surgical

intervention and not only a series of surgical tasks.

• Real-time Coupling of Models with Observations. This

requires very fast inversion of realistic computational

models. This will improve robot-assisted image-guided

therapy in the presence of patient motion (brain shift,

respiration, cardiac motion, etc). Figure 8 previews the

combination of augmented reality (geometrical models)

with medical robotics.

• Miniaturized Robotics The advances in robotics research,

in particular the design of new generations of highly

accurate, easy-to-use miniature robotic guidance systems

(e.g. the spine-assist system [88]) might also contribute

to the successful combination of computational models

and medical imaging.

• Microscopic Imaging. New in vivo microendoscopy tech-
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Fig. 8. By combining Augmented reality (left) and robotics (right) accuracy of image guided surgery may be improved and this may lead to additional levels

of surgical automation (from [34]).

niques [89], [90] providing structural information on the

tissues at the cellular level should also open, combined

with robotics and computational models, new avenues for

improving diagnosis and therapy.
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