
Decimation of Isosurfaces with Deformable

Models

H� Delingette

I�N�R�I�A�
����� Sophia�Antipolis Cedex� BP �	� France

Abstract

For many medical applications including computer�assisted surgery� it is nec�

essary to perform scienti�c computations� such as mechanical deformation� on

anatomical structure models� Such patient�based anatomical models are often ex�

tracted from volumetric medical images as isosurfaces� In this paper� we introduce

a new algorithm for the decimation of isosurfaces based on deformable models�

The method emphasizes the creation of mesh of high geometric and topological

properties well suited for performing scienti�c computation� It allows a close con�

trol of the distance of the mesh to the isosurface as well a the overall smoothness

of the mesh� The isosurface is stored in a data�structure that enables the fast

computation of the distance to the isosurface� Finally� our method can handle

very large datasets by merging pieces of isosurfaces�

� Introduction

Isosurfacing is a popular technique for reconstructing models from volumetric
images such as CT�scan images� The main advantage of the Marching Cubes
�MC� algorithm over the contour�based reconstruction of Boissonnat ��� is that
it achieves an automatic extraction of isosurfaces with subvoxel accuracy	 inde�
pendently of the complexity of the object topology�

As computer�assisted procedures are being introduced in today
s surgery	
the need for scienti�c computation of anatomic models is increasing� Today	
the computation of mechanical resistance are already performed in orthopedics
surgery for bones� However	 the MC algorithm generates a triangulation that is
not suited for scienti�c computation due to the very large number of triangles
and the poor mesh quality�

��� Previous Work

Most decimation methods of isosurfaces have focused on the level of decimation
achieved by the algorithm as well as the time of computation needed to achieve
this decimation� A �rst class of methods	 such as Shroeder ��
�	 remeshes a subset
of the original mesh vertices to achieve a level of decimation� Similarly	 Hoppe ���
minimizes a functional in order to select the local mesh transformation�

A second class of decimation algorithms moves vertices in order to optimize
some geometric constraint� For instance	 Gourdon ��� uses a curvature criterion
to remove edges or vertices� Gu�ziec ��� decimates isosurfaces while preserving
the overall enclosed volume of the isosurface�

Finally	 a third class of algorithms performs the decimation while extracting
the isosurface� Shu ���� applies the MC algorithm at increasing resolutions of
the image	 and adapt the voxel size as a function of the isosurface curvature�
Similarly	 Shekhar ���� uses octrees to decimate �at areas of isosurfaces�

��� Originality and Contributions

Unlike previous work	 our method creates meshes satisfying prescribed geometric
and topological criteria such as its distance to the isosurface� Unlike previous
approaches	 we introduce an additional constraint on the smoothness of the
decimated mesh� Smoothness control is achieved by representing the mesh as a
deformable model�

Furthermore	 we introduce a data�structure for storing isosurfaces that allow
an e�cient computation of distance to the isosurface� Finally	 since isosurfaces
can have more than � million polygons	 we introduce a mechanism for decimating
pieces of isosurfaces and subsequently merging decimated mesh together�

� Decimation with Deformable Models

��� Description of the Algorithm

The basic algorithm consists of the following stages � after the extraction of the
isosurface	 we initialize a deformable model as a dual mesh of the isosurface tri�
angulation� This mesh is then decimated by selecting edges in a random manner�
For each edge	 we apply a removal edge test followed by edge swap tests on the
neighboring edges� At each step	 we evaluate if the resulting mesh still satis�es
geometric and topological constraints�

��� Deformable Models as Simplex Meshes

The originality of this algorithm stems from the use of a deformable model as
the representation of isosurface� The deformable models framework has been
introduced by Kaas	 Witkin and Terzopoulos in their seminal paper on active
contours ���� In this paper	 we use simplex meshes as deformable models for
the representation of isosurfaces� An extensive description of the simplex mesh
deformable models can be found in ���� Simplex meshes have the property of
being simply connected �� neighbors for each vertex � and have a dual structure
of triangulations �see �gure ��a���

Unlike most deformable surface models	 simplex meshes are not parametric
models and therefore can handle all types of topology� Furthermore	 simplex
meshes include the notion of deformable contour which is useful to represent the
boundary of isosurfaces�

With the duality between triangulations and simplex meshes	 a simplex mesh
can be created from any type of isosurface	 as can be seen in �gure ��b�� One
mesh is created for every connected component�

a�
b�

Q (P)
0

i Q (P)
i

1
Q (P)

i

2

Pi Pi
Pi

c�

Fig� ��
a� The duality principle between a triangulation and a simplex mesh�
b�
Example of an isosurface and the resulting simplex mesh�
c� Description of a neigh�
borhood Qsi�Pi�

A vertex Pi of a deformable model is moved according to the law of motion �

m
d�Pi

dt�
� ��

dPi

dt
�Fint �Fext ���

Fint is the internal force consisting in smoothing the mesh� The smoothness
constraint applied on the mesh is the simplex angle regularity constraint� The
simplex angle describes the local curvature of the mesh and the force Fint is
linked with the variation of curvature on the mesh� An important parameter is
the rigidity parameter si that controls the extent of the neighborhood Qsi�Pi�
on which the smoothing is performed� The neighborhood Qsi�Pi� is de�ned re�
cursively as shown in �gure � �c��

Fext on the other hand	 is proportional to the distance of Pi to the isosurface�
If Mi is the closest point of the isosurface from Pi	 then the external force is

simply � Fext � �i
��

PiMi� �i is the sti�ness parameter that controls the trade�o�
between smoothness and closeness to the isosurface� The section ��� describes
how to compute the closest isosurface point Mi�

� Representation of Isosurfaces

��� Isosurface Data Structure

We represent an isosurface with a data structure that is a trade o� between a
surface triangulation and a regular grid data structure� Surface meshes such as
triangulations	 are commonly used representation of surfaces that are well suited
for representing complex shapes� However	 computing intersections or closest
points with triangulations is of high complexity and cannot be done e�ciently�

Regular grids on the other hand are e�cient data structure for the com�
putation of intersection or closest point because of the direct spatial indexing�
However	 the representation of objects as sets of voxels or cuberilles does not

provide subvoxel accuracy and is not accurate enough for most applications in
computer assisted surgery�

Isosurfaces are computed with a subvoxel accuracy with the MC algorithm ����
We actually use the implementation of Nielson ��� that guarantees the topological
closure of isosurfaces� In most implementations	 the extraction of an isosurface
can be decomposed into the computation of the intersection of the isosurface
with each voxel� The isosurface is then represented as a set of polygons whose
vertices belong to voxel edges� Because those polygons may not be planar	 we
choose to tessellate the polygons into triangles if the a number of vertices per
polygon is greater than ��

Since the edges of the triangulation of an isosurface are either inside a voxel
or on a face of voxel	 we store the triangulation in a voxel�based data structure�
The data structure is brie�y described in �gure � �a�� In each voxel intersecting
the isosurface	 we store the list of triangles lying inside the voxel� Since every
vertex belongs to at most � voxels	 we build a separate vertex table and we
reference vertices inside a isosurface voxel with their index entry into that table�

Original Image Hash Table

Chained Lists

isosurface voxe

a�

Normal Line

P
i

Isosurface
Voxel

M
i

b�

Fig� ��
a� The data structure for storing isosurfaces�
b� The computation of the
intersection point Mi

The isosurface voxels are stored in a hash table with three indexes �one
index for each dimension of the image� whose size depends on the amount of
memory available� In general	 we use a ��� ��� �� hash table corresponding to
a reasonable trade o� between computing time and memory size�

To �nd if voxel �r� c� d� intersects the isosurface	 we �rst compute the three
indices of the hash table	 and then browse the double chained lists of isosur�
face voxels� In practice	 this data structure enables a very fast computation of
intersection with the isosurface�

��� Computing the isosurface point Mi

Given a vertex Pi	 we need to compute its closest point Mi on the isosurface�
The computation of the true closest point is time consuming since it requires

the computation of the distance to all vertices	 edges and triangles in the neigh�
borhood of Pi�

We choose instead to compute the isosurface point Mi as the intersection of
the isosurface with the normal line at Pi� The reasons are threefold� First	 the
mesh is in general very close to the isosurface and therefore the normal at Pi is
close to the normal at the isosurface� That means that the intersection point is	
in general	 very close to the true closest point� Second	 because Mi is located on
the normal line	 the resulting external force Fext is directed along the normal
which ensures smooth deformation of the mesh� Finally	 the computation of the
intersection point Mi can be done very e�ciently�

Figure � �b� illustrates the algorithm for the search of Mi� Starting from the
voxel containing Pi	 we scan the neighboring voxels along the normal line using
a tridimensional line�scanning algorithm� For each voxel	 we test if the voxel
intersects the isosurface	 in which case	 we check if the normal line intersects the
triangles of the isosurface voxel� We only test a few voxels on the normal line
since Pi is close to the isosurface�

��� Cutting and Merging Isosurfaces

When processing large isosurfaces	 we need a method for decimating only sub�
parts of the original isosurface and then sewing the di�erent pieces into a single
mesh� Because isosurfaces are stored as set of voxels	 they can be easily merged
or cut along the three orthogonal planes of the original image� To cut an isosur�
face along a plane	 we split the isosurface voxels into two sets according to their
relative position with the plane� We only need to rebuild the vertex table and
update the vertex indices inside each isosurface voxels� Similarly	 to merge two
isosurfaces	 we �nd the common vertices and then rebuild the hash table as well
as the vertex table� Examples of cutting and merging of isosurfaces are provided
in �gure � �a��

� Decimation of Simplex Meshes

��� Geometric and Topological Quality of a Mesh

Scienti�c computation such as the computation of heat transfer	 mechanical de�
formation or �ow requires geometric meshes of high quality in order to guarantee
the convergence and stability of algorithms� There are many ways to measure
the quality of a mesh � a complete survey is provided in ���� The mesh resulting
from our decimation method satis�es the three criteria �

�� Isosurface Distance Criterion� This criterion controls the maximum dis�
tance of vertices and face centers to the isosurface�

�� Geometric Criterion� In simplex meshes	 each vertex has three neighbors�
If we project a vertex Pi on the triangle made by its three neighbors	 we can
compute the barycentric coordinates ���

i
� ��

i
� ��

i
� of the projection of Pi in the

triangle �see �gure � �a��� We guarantee that each barycentric coordinate is

greater than a given threshold �in general
���� This threshold controls also
the minimum angle between vertices�

�� Topological Criterion� The topological criterion is related with the num�
ber of vertices per face� This number should be as close as possible to �� The
topological criterion for an edge is equal to the absolute value of the di�er�
ence between the number of vertices of the two adjacent faces of an edges
and the number of vertices of the two opposing faces �see �gure ��b��� We
constrain all mesh edges	 to have a topological criterion less than a threshold
T �T � ���

a�

T = | N + N - N - N |

N
1

N
3

N
2

N
4

1 2 43

b�

T
2
2

T
2
1

e

e1 e2

c�

T
2

7

d�

Fig� ��
a� The barycentric coordinates ���i � �
�

i � �
�

i � of the projection Fi�
b� The topo�
logical criterion of an edge�
c� The edge removal and edge swap
d� operators�

In addition to those criteria	 two parameters in�uence the decimation of the
mesh � the rigidity parameter si and the external force parameter �i�

��� Decimation Scheme

After the creation of the simplex mesh from the isosurface	 we proceed by �rst
applying to all edges	 the edge swap test	 because the initial mesh created from
the MC algorithm is	 in general	 of poor topological quality� The edge swap
test tries to swap edges adjacent to large or small faces while satisfying both
geometric and distance criteria�

In a second stage	 all edges are labeled as unprocessed� We then iteratively
pick at random	 edges labeled as unprocessed and apply the edge removal test�
If the test fails	 the edge is labeled as processed� Otherwise	 the edge is removed	
thus creating a face with more vertices� We then apply a set edge swap tests
on edges belonging to the newly created face� The purpose is to decrease the
topological criterion of those edges and therefore increase locally the topological
quality of the mesh� Once all neighboring edges have been submitted to the edge
swap test	 the edges that have failed the edge swap test are labeled as processed
while the others are labeled as unprocessed� We proceed until all edges are labeled
as processed� n�

��� Edge Swap Test

The edge swap test is performed with the help of the operator T �

�
as described

in �gure � �d�� After swapping the edge	 the test consists in locally deforming

the mesh according to the law of motion described in equation �� The number
of vertices depends on the neighborhood size si� The external force parameter
�i as well as si control the resulting local deformation of the mesh� Applying
few iterations �� iterations in general�	 we check if the moved vertices verify
the geometric and distance criterion� If not	 all vertices are moved back to their
position before deformations	 we swap back the edge and label it as processed�
If all vertices satisfy both criteria	 we label all adjacent vertices as unprocessed�

��� Edge Removal Test

The edge removal test is similar to the edge swap test� We remove the edge
with the operator T �

�
described in �gure � �c�� This operator is Eulerian since

it does not change the genus or Euler number of the mesh� The mesh is then
locally deformed as for the edge swap test	 and consequently we test if the moved
vertices verify the geometric and distance criterion� If the test is negative	 we
apply the operator T �

�
	 reverse of operator T �

�
	 that recreates the previously

removed edge�

��� Decimating Large Isosurfaces

One important drawback of the MC algorithm is that it generates a large number
of triangles even in presence of �at surfaces� As large volumetric images are
becoming more and more frequent	 it is important that our algorithm can handle
large datasets� However	 since we are storing in memory the isosurface as well as
the mesh	 our algorithm cannot accept large datasets �with more than �

vertices� on a �� megabytes memory machine�

Given an isosurface	 our program computes the minimum number of isosur�
face pieces	 based on the memory available on the machine� In addition to the
number of planes of cut	 we need to know along which direction �there are three
possible directions� we should slice the isosurface� We select the the direction of
cut that minimizes the number of isocontours resulting from the intersection be�
tween a plane and the isosurface� The isosurface is then sliced along the preferred
direction into a set of isosurfaces of smaller size�

Each connected component of isosurface is decimated separately with the
same criteria� An automatic merging algorithm sews neighboring meshes to�
gether� Two meshes are connected with a topological operator applied on two
contours� Once two corresponding isocontours are merged	 we smooth the mesh
around the junction and increase the topological quality of the meshes by swap�
ping selected edges� Figure ��a� shows an isosurface representing a vessel after
slicing along � isocontours� There are � connected components that have been
decimated and merged automatically�

� Results

The �rst example demonstrates the importance of controlling the smoothness of
the mesh during decimation� Figure ��b� shows an isosurface of a cube having

large step e�ects due to the MC algorithm� Figure ��c� shows a decimated mesh
with a distance criterion equal to �
� of the isotropic voxel size� The resulting
reduction factor is �
�� We have used a high rigidity parameter si � � and a low
sti�ness parameter �i � ���	� The recovered model has smoothly approximated
the cube shape�

a�
b�
c�

Fig� ��
a� Four simplex meshes are merged by connecting corresponding contours�
b�
The isosurface of a cube�
c� The smoothed decimated mesh�

a�
b�

Fig� ��
a� The decimated mesh of a brain ventricle�
b� Details of the decimation

The second example shows the decimation of an isosurface with parts of high
curvature� The brain ventricle of �gure � �a� has been decimated from an iso�
surface with �

 triangles� The isosurface had a lot of step artifacts since it
was extracted from a binary image� The distance threshold was equal to �
� of
the maximum voxel size� The mesh reduction was only of ��� because of the
highly curved areas� We used a low rigidity value si � � and a large sti�ness pa�
rameter �i � ��	� The topological threshold was T � �� The decimated simplex
mesh has been triangulated and displayed in �gure ��b�� Because of the duality
relationship between simplex meshes and triangulations	 the associated triangu�
lation has the same high geometric quality as the original mesh	 and satis�es the
distance criterion� The computation time was � hours on a DEC Alphastation
�

���� without slicing the isosurface�

Number of triangles Decimation rate

Distance
 ��� �	��� ���
Distance
 	�� ����� ���

Table �� Decimation of the portal vein with two di�erent distance criteria�

The third example shows the decimation a portal vein �see �gure ��� The
original isosurface had ��� ��� triangles� We obtain a decimation rate of �� �
with a distance criterion of �
� of the maximum voxel size� Since voxels are
anisotropic � ����� ����� ����	 it actually represents �
 � of the pixel size� The
isosurface was cut into two pieces creating � di�erent connected components�
Table � summarizes the results obtained with this isosurface�

Fig� �� The decimated isosurface of a portal vein with �	��� triangles with a decimation
rate of ���

Figure � shows the layout of triangles of the decimated mesh� The vertices
are concentrated at parts of high curvature� This is because in those areas	 a
vertex cannot be removed without noticeably increasing the local mesh distance
to the isosurface�

� Conclusion and Perspectives

We are currently using the decimation method proposed in this paper for vi�
sualization and computation purposes� In particular	 it is used for generating
patient�based models suitable for a surgical simulator� In the future	 we would
like to improve the speed of computation of our algorithm and to increase the
smoothness control over the mesh�

Acknowledgment

We are grateful to J� Marescaux	 J�M� Cl�ment and V� Tassetti from IRCAD

�Institut de Recherche sur les Cancers de l
Appareil Digestif	 Strasbourg	 France�
for their help in extracting the portal vein model� We thank Dr Kikinis from the
Brigham and Women
s Hospital	 �Boston	 USA�	 for providing the model of the
ventricle�

a�
b�

Fig� 	�
a� Details of the decimated triangulation with a distance criterion of ��� of
the voxel size�
b� same as
a� with a distance of 	���

References

�� M� Bern and D� Eppstein� Mesh generation and optimal triangulation� In D� Du
and F� Hwang� editors� Computing in Euclidean Geometry� volume �� pages �	����
World Scienti�c Publishing Co� �����

�� J� Boissonnat and B� Geiger� Three dimensional reconstruction of complex shapes
based on the delaunay triangulation� In R� Acharya and D� Goldgof� editors� SPIE
Conference on Biomedical Image Processing and Biomedical Visualization� volume
����� San Jose� CA� Feb� ���	�

	� H� Delingette� Simplex meshes� a general representation for 	d shape reconstruc�
tion� Technical Report ����� INRIA� Mar� �����

�� A� Gourdon� Simpli�cation of irregular surfaces meshes in 	d medical images� In
First International Conference on Computer Vision� Virtual Reality and Robotics
in Medicine� pages ��	����� Nice� France� Apr� �����

�� A� Gueziec and D� Dean� The wrapper � A surface optimization algorithm that pre�
serves highly curved areas� In Visualisation In Biomedical Computing �VBC�����
volume �	��� pages �	������ Rochester� USA� Sept� ����� SPIE�

�� H� Hoppe� T� DeRose� T� Duchamp� J� McDonald� and W� Stuetzle� Mesh opti�
mization� In Computer Graphics �SIGGRAPH����� pages ������ Anaheim� July
���	�

�� M� Kass� A� Witkin� and D� Terzopoulos� Snakes� Active contour models� Inter	
national Journal of Computer Vision� ��	���		�� �����

�� W� Lorensen and H� Cline� Marching cubes� a high resolution 	d surface construc�
tion algorithm� ACM Computer Graphics �SIGGRAPH�
��� �����	����� �����

�� G� Nielson and B� Hamann� The asymptotic decider� Resolving the ambiguityin
marching cubes� Visualisation���� pages �	���� Oct� �����

��� W� J� Schroeder� J� Zarge� and W� Lorensen� Decimation of triangles meshes� In
Computer Graphics �SIGGRAPH��
�� volume ��� ACM� Aug� �����

��� R� Shekhar� E� Fayyad� R� Yagel� and J� Cornhill� Octree�based decimation of
marching cubes surfaces� In Visualisation���� San Francisco� Sept� �����

��� R� Shu� Z� Chen� and M� Kankanhalli� Adaptive marching cubes� The Visual
Computer� ����������� �����

