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Hôpital Saint Joseph

Gilly - Belgique

e-mail : Jimena.Costa@sophia.inria.fr, Herve.Delingette@sophia.inria.fr

Abstract. The delineation of anatomical structures based on images of the lower
abdomen in the frame of dose calculation for conformational radiotherapy is very
complex to automatize. We present here the first results of a semi-automatic de-
lineation of the bladder in tomodensitometric (CT) images. The method we have
used is based on deformable templates whose deformation is guided by the im-
age and by the user as well, in case the latter desires to correct the automatic
delineation.
In order to validate our approach, we use a set of CT images that have been
segmented by medical experts. These hand-made contours act in fact as ”ground
truth”, allowing for an objective evaluation of the performance of our algorithm.

Abstract. La délinéation de structures anatomiquesà partir d’images ḿedicales
du petit bassin reste une tâche tr̀es complexèa automatiser dans le cadre du
calcul de dose en radiothérapie conformationelle. Nous présentons ici, les pre-
miers ŕesultats concernant la délinéation semi-automatique dans des images to-
modensitoḿetriques (Scanner X) de la vessie. La méthode utiliśee repose sur des
structures d́eformables dont la d́eformation est guid́ee par l’image, mais aussi par
l’utilisateur s’il désire corriger la d́elinéation automatique.
Pour calibrer cet algorithme, nous utilisons un jeu de plusieurs images scanners
qui ontét́e d́elinées par des experts médicaux. Ces contours tracés manuellement
servent en effet de ”v́erité terrain” permettant unéevaluation objective de la per-
formance de notre algorithme.



1 Introduction

Image segmentation denotes the technique of extraction of image structures (regions
or objects) so that the outlines of these structures will coincide as accurately as pos-
sible with the physical 3D object outlines. Image segmentation is an essential step for
many advanced imaging applications; accurate segmentation is required for volume de-
termination, surgery and radiotherapy planning among others. In particular, accurate
segmentation in conformational radiotherapy allows for a better conformation of the
high-dose volume to the target volume, with normal tissue avoidance and the subse-
quent potential benefit of both reduced normal tissue toxicity and dose escalation to the
tumour.

Image segmentation approaches may be performed in one of these ways:

Manual segmentation methods, which, given normal image resolution, usually suffer
from potentially large inter- and intra-expert variability in the resulting delineations.

Fully automatic segmentation methodsare usually not robust due to image complexity
and the variety of image types and interpretation.

Semi-automatic segmentations methodscombine the benefit of both manual and au-
tomatic segmentation techniques. Any remaining errors introduced by automatic
segmentation methods may be corrected by manual editing. In this work, a method
based on deformable templates is shown.

We present here a semi-automatic segmentation method. We approach the issue of
boundary finding as a process of fitting a series of deformable templates to the contours
of anatomical structures. We choose simplex meshes (introduced in [4]) to model the
templates, owing to their fairly simple geometry, which facilitates the incorporation of
deformation constraints. An initial simplex mesh undergoes both global and local de-
formations to fit the boundaries of a given anatomical structure in a set of tomodensito-
metric (CT) images, and the result can later be interactively modified and/or corrected
by the user. We apply our method to the segmentation of the bladder, then comment on
the results and finally present our conclusions and future work.

2 Materials

Our work was based on the following materials:

2.1 Images

We performed our tests on tomodensitometric (CT) images of the lower abdomen of 6
different patients.

2.2 Contours

We were provided with a set of 2D contours corresponding to each slice of the structures
of interest. These contours have been hand-delineated by Dr. William Wibault, at the
Gustave Roussy Institute, and Dr. Ann Egelmeers, at Saint Joseph Hospital (Belgium),
who used Dosisoft software for that purpose.



2.3 Reconstruction

In order to validate our approach, we reconstructed 3D models of the series of 2D
contours we had received (some examples can be seen in Figure 1). This process of
reconstruction comprises the following stages:

(1) Choose the contours that correspond to the structure of interest.
(2) For each slice’s contour, fill the background and foreground with different colors.
(3) Extract the isosurface that corresponds to the target structure (for example, the blad-

der) and store the resulting model.

We work with 3D segmentation instead of 2D because, as we will explain in the
following sections, a set of slice by slice contours can lead to an irregular and unrealistic
3D delineation.

Fig. 1. Some of the reconstructed 3D models from a set of 2D contours of the bladder.

3 Method

3.1 Motivation - Manual Structure Delineation

Because of the difficulty to accurately and reliably delineate structures in medical im-
ages, this task has traditionally been assigned to human operators. However, given the
improvements achieved over the past years by imaging tools (commercial MR scan-
ners now routinely resolve images at millimetric resolution, digital cameras can con-
vert histological sections into million-pixel images) the manual segmentation phase has
become an intensive and time-consuming task. A trained operator typically has to go
through around 80 256x256 images, slice by slice, to extract the contours of the target
structures, one after the other. This manual editing is not only tedious but particularly
prone to errors, as assessed by various intra or inter-operator variability studies ([2], [9],
[6] and others).

Manual editing thus suffers from many drawbacks:



– The results are often difficult if not impossible to reproduce. Even experienced op-
erators display significant variability with respect to their own previous delineation
for difficult structures, (see Figure 2).

– For 3-D delineation, editing tools usually display 3D data in the form of a 3 syn-
chronized, 2D orthogonal views (sagittal, coronal and axial) onto which the opera-
tor draws the contour of the target structure. The output data therefore consists of
a series of 2D contours from which a continuous 3D surface has to be extracted.
This is a non-trivial post-processing task, itself prone to errors. Moreover, since the
operator has to mentally reconstruct the 3D shape of the structure from a series of
2D views, inter-slice inconsistencies and bumps are inevitable. More robust seg-
mentation methods can usually be derived from true 3D structure models in that
they can ensure globally smoother and more coherent surfaces across slices.

Fig. 2. Variability in the delineation of the peripheral zone of the prostate in 5 repeated segmen-
tations by the same expert. The various colors in the prostate boundary indicate the 5 different
delineations that were performed.

3.2 Deformable Templates

Many deformable surface representations have been proposed for model-based seg-
mentation of medical images ([8]). Among existing representations, we use the discrete
simplex meshes ([3], [5]) for their simple geometry and their ability to define shape
constraints in a computationally efficient manner.

Simplex Meshes Simplex meshes are discrete model representations (set of vertices
and edges) with prescribed vertex connectivity. They are curves or surfaces that evolve
in a 2-D or 3-D space to get to delimit an anatomical (or pathological) structure. To en-
code the structure surfaces, we use 2-simplex meshes: each vertex is then connected to
exactly three neighbors (see Figure 3). This inherent geometric simplicity greatly eases
the imposition of constraints to bias the segmentation process. Additionally, ”zones”
(subsets of vertices with their associated edges) can be defined on the simple meshes



to further specify the constraints. We have focused on devising a segmentation system
where maximum use is made of the available medical expertise, concerning the shape
of the structures, their appearence, etc.

Fig. 3. A simplex mesh. In this case, it is the average mesh of all the reconstructed 3D models of
the bladder, and is used as the initial mesh in our segmentations.

Deformable models are thus a recipient that stores a priori information about the
geometry and the apparence of anatomical structures.

Initial model - An average mesh In order to aid in the segmentation process, we
wished to use an initial model that was as close as possible to the structure of interest
(in our case, the bladder). Given the high variability of this anatomical structure, we de-
cided to base our initialization on the 3D models we reconstructed from the 2D contours
we had been provided with. For that purpose, and once a 3D mesh was constructed from
each set of 2D contours for each bladder, we computed an average mesh taking all of
them into account, and used this mesh as the initial approximation to the segmentation
solution.

Computation of Simplex Mesh parameters using Fuzzy K MeansThe Fuzzy K
Means algorithm is a clustering algorithm which classifies input data according to a set
of characteristics (as described in [7], [1], [10], and many others). In our case, we were
interested in obtaining a set of classes that roughly separated the structures of interest
(i.e., the bladder) from the other structures in our CT images. Thus we could obtain
intensity ranges in which our structures of interest reside, and use these ranges to guide
our deformable model.

In our approach, we have used the resulting classification of the Fuzzy K Means al-
gorithm to automatically establish a range of intensities for the bladder’s upper portion,
lower portion and exterior part, and we have used these results to guide the evolution of
our simplex meshes.

Evolution of Simplex Meshes Once the average mesh has been computed and its
parameters have been established, we must define the laws that govern its deformation.



In our case, the evolution of the model is guided by the simultaneous optimization of
two criteria. The first one is a measure of the geometric regularity of the model, using
for example local curvature measures. The second one measures the distance of each
mesh vertex to the closest apparent boundary of the structure of interest in the image.
These methods are very effective. Our initial model (see Figure 3)is an average of 6
hand-made segmentations, which is initialized in an approximative manner around the
region of interest. The model then evolves from this initial position to automatically
improve the fit to the boundary of the region to be detected.

A reasonable expectation for the accuracy of the algorithm is that it be no worse
than what is manually achievable.

The evolution of deformable models is generally based on the hypothesis that the
contours that delimit the sought structures correspond to a global or local minimum of
an energy function. We propose an evolution scheme that allows to better control the
deformations of the model, and thus permits a less accurate initialization of the model
and the segmentation of noisy data, thanks to a hierarchical deformation scheme.

We use a ”coarse to fine” approach to combine a global deformation procedure that
limits the model shape variations and a local deformation component to match small
shape variations (see [10]).

Global deformations:This type of deformation takes into account every vertex of the
model, thus making the deformation less sensitive to noise, but, if used alone, it
may be too constrained to allow for a sufficient variation of the model in order to
reconstruct the data in a satisfying way.

Local deformations:Here, the modifications of the surface take place locally at each
vertex of the deformable model, and only a limited neighbourhood of that vertex
is considered. These deformations allow for very localised variations in the surface
and therefore the potential segmentation of noise present in the data. The model
gets close to the data, but it has a very poor geometric quality.

We use a hierarchical approach that progressively increases the number of degrees
of freedom of the transformation. This approach results in a global positioning of the
model over the bladder image in the first place, and a progressive refinement and adap-
tation to smaller variations in the structure (local deformation).

3.3 Hierarchical approach

Among the anatomical structures of the lower abdomen, we chose to start by segment-
ing the bladder, which can be found quite clearly in the tomodensitometric images. We
will continue with the other, more ”evident” structures of the lower abdomen (rectum,
femoral heads, etc.), and then, by computing the statistical relationship of their position
with respect to that of less visible strucures (such as the prostate), we will expect to be
able to segment the latter, even if their visibility is limited.

3.4 Segmentation of the bladder

The bladder is an organ that presents a very high variability in size, shape, color (see
Figure 5) and contrast among different patients, and even within the same patient at



different times of the day. It can be seen as an almost spherical structure of good con-
trast, such as in Figure 6, or as a structure of low contrast, as in Figure 9, and even as
a structure of inhomogenous gray level, with two marked regions (the lower and upper
portions, such as in Figure 4).

Fig. 4. In this image, the bladder shows a marked intensity variation between its lower and upper
portions.

Fig. 5. Variations in shape and size of the bladder of different patients.

To account for the potential variations in the gray levels of the upper and lower
portions of some of the bladder images, we have divided our mesh also into an upper
and lower halves, so that each portion can evolve independently, guided by different
intensity parameters.

The parameters (intensity ranges) for both portions, and for the background as well,
were computed using the Fuzzy K Means algorithm. Since the resolution of the CT
images is quite good, the Fuzzy K Means algorithm can be expeted to show (and in fact
it does) a very good convergence rate.

The images were pre-processed with a gaussian filter to decrease the noise level.
The initial model was computed as the average of the 3D models which were recon-

structed from the sets of 2D hand-made bladder contours provided by the experts.



Once the parameters for the region-based algorithm had been calculated, we initial-
ized our average model of the bladder and began the rigid transformations that globally
placed the mesh as accurately as possible over the bladder found in the CT. As we men-
tioned before, this step makes the whole procedure less prone to the influence of noisy
data and outlier points.

After this step, the mesh progressively began to undergo more local deformations,
which allowed it to adapt itself to smaller variations in the data.

4 Preliminary results

We present here the results of two segmentation processes.

Fig. 6. The first bladder example. In this image, the bladder has a homogenous intensity in its
interior.

As can be seen in Figure 6, the bladder has a uniform color and also has an inter-
esting contrast with respect to its background. It was segmented using the algorithm
described in the previous section, and the same laws of motion were applied to both the
upper and the lower portion of the simplex mesh. Figure 7 shows the image’s histogram.
The resulting segmentation can be seen in Figure 8; it has a high accuracy and is readily
at the level of a hand-made segmentation by an expert.

The second bladder is shown in Figure 9. This is clearly not a very well contrasted
image, and, furthermore, the bladder shows different gray levels at its top and bottom
portions. However, our segmentation algorithm performed well, as can be seen in Fig-
ure 10 as compared to the manually segmented result.

Concerning bladders which showed greater variations between their upper and lower
portions, the deformable model had sometimes trouble adapting to both regions at a
time, and fitted very well one of the portions but failed to fit the other portion in a
satisfying manner.
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Fig. 7.The (smoothed) histogram for the first example. We can see 3 peaks: from left to right, they
represent the outer background of the bladder (dark), the upper portion of the bladder (slightly
lighter), and the lower portion together with the bones (the lightest structures in the image).

Fig. 8. The resulting segmentation for the first bladder image (left), and the hand-made segmen-
tation by an expert.



Fig. 9. The second bladder example. As we see, there is a considerable lack of contrast, which
would make the manual delineation very difficult.

Fig. 10.The resulting segmentation for the second bladder image (left) and the hand-made seg-
mentation by an expert



5 Conclusion and future work

In this paper we have shown that segmentation of bladder in tomodensitometric im-
ages can be performed using deformable surfaces. The model provides enough intrinsic
(shape) and extrinsic (grey-level range) prior knowledge on the data, to constrain the
deformations properly even in the presence of poorly contrasted or noisy images. We
are now focusing on improving the model for the cases in which the contrast between
the different portions of the bladder is high. We will then continue to segment the dif-
ferent structures near the prostate (femoral heads, rectum) that can be well detected and
provide statistical information about the position of the prostate.

Prior smoothing of the image reduces the noise level and improves the region de-
tection. The Fuzzy K Means algorithm provides a good base for the computation of
intensity parameters for the model. The average model of the bladder proved to be an
effective initialization for the algorithm. The model-based segmentation enables an ac-
curate delineation of the bladder, comparable to hand made segmentation by an expert.

Although further work will be done concerning the adaptability of the model to
images in which the bladder’s interior shows high variability in its intensity, simplex
meshes have shown to be a promising approach to address the issue of bladder seg-
mentation. We are encouraged to test this method’s performance in the segmentation of
other structures of the lower abdomen as well.
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