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ABSTRACT 2 PREVIOUS WORK ON BLADDER SEG-

MENTATION
We are interested in the fully automatic delineation of the ] ) ) o )
bladder in CT images in the frame of dose calculation forl he segmentation of pelvic structures is a difficult task since
conformational radiotherapy. To this end we fit a series oft involves soft tissues that present a very large variability in
3D deformable templates to the contours of anatomical stru@&nape, size [2] and intensity, the latter depending on the pres-
tures. The novelty of our approach resides in the ability t®Nc€ (partial or total) or absence of a contrast agent.
automatically adapt to different kinds of bladder images (ho- Semi—automatic or interactive approaches for bladder seg-
mogenous, non—homogenous, contrasted or non—contrastedjentation allow the pratician to have better control over the
The adaptation of the algorithm to inhomogeneities within thesegmentation process [3, 4]. However, they remain time con-
bladder improves the accuracy of the segmentation. We vasuming and, especially for large databases, an automatic ap-
idate our approach on a database of tomodensitometric (CPyoach is desirable.
images of the lower abdomen of male patients.

2.1 Non-rigid registration approaches

1 Introduction
These methods have been tested for CT bladder segmenta-

An essential part of the conformal treatment planning protion (see [5] for a combined segmentation and registration ap-

cedure is the segmentation of target volumes and organs ptoach). However, the considerable inter and intra—patient

risk in CT images. Bladder and rectum are considered as theriation in soft tissue (slimmer and less slim patients, fill-

organs at risk that should be protected against high dose @{g of the bladder at the moment of the CT scan, presence of

radiation during treatment of prostate cancer. contrast agent) may cause nearby structures to undergo "un-
Because of the difficulty to accurately and reliably delin-natural” deformations necessary for the atlas to adapt to each

eate structures in medical images, this task has traditionallyatient’s specific bladder shape.

been assigned to medical experts. However, manual editing is

not only tedious but particularly prone to errors, as assesseéti2 Mathematical morphology approaches

by various intra or inter-operator variability studies [1]. ,
Our aim is the development of an automatic method forMathematlpal morphologgpproaches are useful for bladder
segmentation, for several reasons: the topology of the shape
time interval between imaging and treatment f knqwn, the methods are easier to automate, and they can
' be quickly tuned and computed. However, they are quite de-
We approach the issue of boundary finding as a process gkndent on the quality of the image. Variations of these ap-
fitting a series of deformable templates to the apparent corsroaches for bladder segmentation have been tested in [6] and

tours of anatomical structures. We choose simplex meshgg) (region growing based algorithms) and in [8] (watershed
to model the templates, owing to their fairly simple geomeased algorithm).

try, which eases the incorporation of deformation constraints.

Given the high variability of soft tissues, a locally affine regis- 3 shape deformation approaches

tration algorithm based on the more stable pelvic bone struc-

tures is first applied to place the images within the same fram8hape deformatioapproaches include geometric [9, 10] and
of reference. An initial simplex mesh then undergoes bottparametric [11] deformable models. They are quite flexible,
global and local deformations to fit the boundaries of a patiensince shape priors may be incorporated [9, 12, 2, 13, 3, 10],
specific approximation of the target organ. The segmentatioan atlas can serve as initialization [14], they can be made to
is then refined by deforming the model on the tomodensitofollow fuzzy criteria [11], and they allow for more than one
metric image itself. The result can later be interactively modstructure to evolve simultaneously (e.g. the prostate and blad-
ified and/or corrected by the user. We apply our method to thder, as in [2]). However, they often require either training [13]
segmentation of the bladder. or user interaction [9, 3].



zone and a less contrasted "upper” zone).
3.3 Initial structure approximation

A binary approximation of the structure is then computed. In
order to obtain this approximation, we apply a modified ver-
= sion of seeded region—growing that incorporates mathemati-
'] cal morphology operations. A region growing algorithm with

Fig. 1. Different types of bladders make the segmentation taslPrOgreSSiV?Iy laxer i!’lclusion C_riteria apd a closing opgration
challenging. From left to right, homogenous contrasted bladdedS Successively applied to the image, in order to obtain a se-

non—homogenous bladder and homogenous non—contrasted bladdi§S of rough partial segmentations of the bladder that even-
(sagittal views). tually include it entirely. The morphological closing with a

sufficiently large structuring element together with the eval-
3 METHOD uation of a stop criterion at each iteration allow us to avoid
The bladders that appear in the CT images used in the pré8leakage” of the region growing segmentation into surround-
viously cited approaches are homogenous and mainly noriRg structures (in particular, "thin” structures such as the sem-
contrasted. The interaction of an expert is often required einal vesicles).
ther for initialization, or to choose patient—specific parame- In the case of bladders showing the presence of a contrast
ters. The novelty of our approach resides in the automatiagent, a region is progressively grown using a highly con-
initialization method (seed voxel detection) and the abilitytrasted voxel located within a zone of low intensity variability
to adapt to different bladder images (homogenous intensitgs seed point. Since the location of the contrast agent is influ-
with high contrast, homogenous intensity with low contrastenced by gravity, it tends to gather in the lower portion of the
or non—homogenous intensity with different contrast zones)ladder. Therefore, we subsequently look for a potential "up-
A new histogram—based external force is also introduced. per”, non—contrasted region by looking for a seed point with
3.1 Outline similar characteristics to the first one (but different intensity
) range), near the upper part of the contrasted zone. If such
Our approach is three—fold. It incorporatesn—rigid regis-  a point is not found, the bladder is labeled as homogenous,
tration based on surrounding bone structures to provide a reéand the segmentation of the contrasted zone is taken as an ap-
liable spatial initializationmathematical morphologgased  proximation of the whole bladder. On the other hand, if an
operations to compute a good initialization of the underlyingupper region seed point is found, the bladder is classified as
structure andleformable model® refine and smooth the seg- non-homogenous and a progressive region growing sequence
mentation while enforcing model constraints and forbiddings run for the upper part. The progression for different types
segmentation "leakage” to neighboring soft tissue structuresof bladders is illustrated in Figure 2.
First, the bladder is located and classified as homogenous The process of progressive region growing provides us
or non-homogenous, contrasted or non—contrasted (Figure 3ith the intensity based characteristics, such as mean and co-

Then, the segmentation begins by computing an approXimamariance matrix, that characterize each zone of the bladder.
tion of the structure through mathematical morphology oper- . .
ations. A simplex mesh is deformed to fit this :':1pproximation,3'4 Mesh deformation: binary stage
and is later refined and smoothed using the bladder in the CThe binary approximation computed in the previous step serves
image itself. We are working on using these robust bladdeto guide the preliminary stages of deformation (both global
segmentations for segmenting the prostate. and local) of a simplex mesh.

A hierarchical approach is used: The initial mesh under-
goes rigid and affine transformations that globally place the
In order to put the CT images in a common reference framemesh as accurately as possible over the binary approximation
locally—affine registration [15] is performed on the pelvic boneyt the bladder. After this step, the mesh begins to progres-
structures (since they show lower variability than smooth tissjyely undergo globally-constrained deformations [16], which
sues) and then interpolated to the other structures in the inlow it to adapt itself to smaller variations in the data.
age. This allows us to perform the same cropping process on The initial mesh deformation over a binary approximation
all the images to drastically reduce the computation time angs the target structure makes the whole procedure more robust
also reduce or eliminate potential distractions for the algoin the presence of noisy data and outlier points in the origi-

rithm (i.e., surrounding organs). We also determine whethega| image. Further details on the deformation process can be
the bladder shows the presence of a contrast agent or n@gund at [17].

based on a threshold on the highest voxel intensity found e ,

among soft tissues. Later, the bladder will be labeled as ho>> Automatic division of the mesh into zones

mogenous (one zone of homogenous grey—level values) &m order to account for the high variability of the target struc-
non—-homogenous (two main zones: a very contrasted "lowerture, we adjust the deformable model to the type of bladder

3.2 Preliminary processing



If we assume that the norma(u) atS(u) is oriented out-
wards, the boundary surfacg(u) can be computed at each
iteration asS(u) + s, n with:

v=L
Sx = arg Emin Z Go(lv=s])*f(Z(S(u)+v n), u, o, sgn(v—s))

[(-LsL] —~

: . wheres is the position of each vertex of the final mesh
One seed point.  Two seed points.  One seed point. we want to evaluate; is the position of the voxels along the
~ normal of the mesh at vertex and f (i, 4, o, sgn) is a con-
fidence estimation. This confidence is a piecewise constant
function that serves to increase or decrease the energy term,
depending on the values of two expressiqrféfg(;‘ﬂ| <2
andsgn(v — s). For example, if the first term is false (i.e., the
voxel's intensity is not compatible with the intensities found
_ SR T inside the structure) and the second termis true (i.e. the voxel
Fig. 2. Progression of modified region growing algorithms for dif- is located inside the mesh), a positive penalization value is
ferent types of bladders (sagittal views). Seed points are indicated lydded to the energy term. Functiéh defines a weight for
arrows. The end result in each case will be the initial approximationhe voxels that are taken into account at each iteration step;
that guides the first stages of the model deformation. it may be a Gaussian p.d.f., a generalized rectangle function,
present in the image: or a combination of the two. The parameters are fully ad-
For non—homogenous bladdefEhe initial simplex mesh justable, to penalize more (or less) a non-homogeneity inside
is divided into three zones. A Chamfer distance map is comihe structure or zone. If needed, at the end of the automatic
puted with respect to the segmented upper and lower zone¥€gmentation process the results may be manually improved
These distance maps are used to assign each vertex to upgdf,an expert.
middle or lower zone. Each portion of the model will evolve

e
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under different forces, according to the characteristics of th: Toiess I
target structure in the nearby region. E(s(u))= Zei = 1_8< " s(u= current surface Lstu)
For homogenous bladdersSince the whole bladder has - e : point 1
similar intensity properties, the mesh will deform itself glob- T T Force
ally under the same rules. Therefore, no zone division it > Vo
E(si)= Zei = '4 o8 i= potential target it
needed. e sy _ il
——el=-1 point =g
3.6 Mesh deformation: gray—scale stage Tow TR T .
B E(s(u))® JE e
Once the mesh properly delineates the binary approximatio - bladder o - bladder
of the bladder, the segmentation is refined guided by the reg = ° 1
istered image itself and a histogram based force that we hay i E) @ —s* o
devised to this end. Fig. 3. Image voxels that are mistakenly included in the segmen-

We propose an extended framework of deformable-modehtion (inside the mesh) are heavily penalized (energy equals +10 in
based image segmentation where the sought active contothis example). Voxels that are correctly included or excluded in the
or surfaceS(u)) results from the minimization of an energy. segmentation have negative energy. The mesh will be pulled towards
The surfaceS is pulled both towardsSs, a "smooth” sur-  the potential surface that has minimal energy.
face that lies in the vicinity o§(u) (for regularization pur-
poses) andS;, an estimated target surface corresponding t(f1 RESULTS AND PERSPECTIVES
the boundaries of an anatomical structure in an image. The method has been tested in a database of CT images show-

We propose distogram-baseépproach for estimating ing both homogenous and non—homogenous bladders. Figure
Si(u) given S(u) and I[x]. In this method, the boundary 4 shows some quantitative measures of the results. The sen-
points are assumed to be the ones for whichink&le voxels sibility and the positive predictive value of the automatic seg-
have a high probability of belonging to the inside region whilementation with respect to the expert delineation have an aver-
the outside voxelfiave a low probability of belonging to the age of 0.894 and 0.8695 respectively, with standard deviations
inside region of 0.0658 and 0.0721. The mean robust Hausdorff distance is

Rather than basing the segmentation on an intensity rangef 3.34 mm with a standard deviation of 1.0855 mm. The
we rely on the histogram of the interior of the current targetsegmentation process on a registered image takes less than a
structure, making no assumption on the intensities found iminute on a standard laptop computer. Some example results
surrounding organs or on previous cases (training data).  can be seen in Figure 5.



I 'H Sensib. PPV RHD I 'H Sensib. PPV RHD
1 NH 094 0.73 2.7 11 H 0.75 0.98 5.7
2 H 096 0.80 3.0 12 H 093 0.86 3.3
3 H 087 081 3.7 13 H 091 0.95 53
4 NH 094 0.81 4.0 14 H 092 0.92 2.0
5 H 097 0.78 3.0 15 H 0.88 0.97 2.7
6 NH 0.93 0.81 3.0 16 H 091 0.95 2.0
7 NH 0.94 0.89 2.0 17NH 0.84 0.93 3.7
8 H 092 079 4.0 18 NH 0.91 0.90 2.0
9 H 097 088 23 19NH 0.83 0.86 4.0
10 H 0.80 0.94 4.7 20 H 0.76 0.83 3.7

Fig. 4. Sensibility, Positive Predictive Value and robust Hausdorff
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images.,” inCVBIA Yanxi Liu, Tianzi Jiang, and Changshui
Zhang, Eds. 2005, vol. 3765 bécture Notes in Computer Sci-
ence pp. 251-260, Springer.

D. Freedman and T. Zhang, “Interactive graph cut based seg-
mentation with shape priors,” i8VPR '05 Washington, DC,
USA, 2005, vol. 1, pp. 755-762, IEEE Computer Society.

C.C. Lee and P.C. Chung, “Identifying abdominal organs using
robust fuzzy inference model,” IEEE International Confer-
ence on Networking, Sensing and ContMlashington, DC,
USA, 2004, vol. 2, pp. 1289-1294, IEEE Computer Society.

distance (95% quantile, all values in mm.) of the automatic seg-[5] G. Unal and G. Slabaugh, “Coupled pdes for non-rigid reg-

mentation with respect to the ground truth in homogenous (H) and

non-homogenous (NH) bladder images.

Fig. 5. Segmentation results (sagittal and 3D views). In the non
homogenous case (middle image), the 3 zones of the mesh (upper,
middle and lower) can be seen.

The results are quite good, despite the variable quality of

[6] J. Camapum, A. Silva, A. Freitas, et al.,

[7]

(8]

[10]

both the images and the expert segmentations. The modifidH

region growing algorithm provides a good initialisation for

both homogenous and non-homogenous bladders, while the
mesh deformation steps improve or correct the final segmen-

tation and apply a shape regularization as well.

(12]

The automatic segmentation is sometimes misled by a fuzzy
bladder—prostate interface, which causes a "leakage” of the

model into the latter and, consequently, an increased distan
with respect to the expert delineation. We are able to par-
tially avoid this by imposing strong regularization constraints

] D. Freedman, R.J. Radke, T. Zhang, et al.,

on the model, but, as a side effect, the mesh is preventgaa)

from attaining high—curvature zones within the bladder. To

address both problems and further improve the results, we are
working on the simultaneous segmentation of the prostate and

bladder with non—overlapping constraints on the models.

The work described in this article was performed in the framework of the European

Integrated Project MAESTRO which is granted by the European Commission.

5 References

[1] D.C. Collier, S.S.C. Burnett, M. Amin, et al., “ Assessment

istration and segmentation,” iBVPR '05 Washington, DC,
USA, 2005, vol. 1, pp. 168-175, IEEE Computer Society.

“Segmentation of
clinical structures from images of the human pelvic area,” in
SIBGRAPI 04 Washington, DC, USA, 2004, pp. 10-16, IEEE
Computer Society.

M. Mazonakis, J. Damilakis, H. Varveris, et al., “Image seg-
mentation in treatment planning for prostate cancer using the
region growing technique,Br J Radiol vol. 74, no. 879, pp.
243-8, March 2001.

G. Bueno, M. Fisher, K. Burnham, et al., “Automatic segmen-
tation of clinical structures for rtp: Evaluation of a morphologi-
cal approach.,” ilMedical Image Understanding and Analysis
2001, pp. 73-76.

F. Gibou, D. Levy, C. Grdenas, et al., “Partial differential
equations—based segmentation for radiotherapy treatment plan-
ning.,” Mathematical biosciences and engineeringl. 2, no.

2, pp. 209-226, 2005.

R.E. Broadhurst, J. Stough, S.M. Pizer, et al., “Histogram
statistics of local model-relative image regions.,” DI$SCVY
Ole Fogh Olsen, Luc Florack, and Arjan Kuijper, Eds. 2005,
vol. 3753 ofLecture Notes in Computer Sciengm. 72-83,
Springer.

G. Bueno, A. Marinez-Albah, and A. Adn, “Fuzzy-snake
segmentation of anatomical structures applied to ct images.,”
in ICIAR (2), Aurélio C. Campilho and Mohamed S. Kamel,
Eds. 2004, vol. 3212 ofecture Notes in Computer Science
pp. 33-42, Springer.

S.D. Fenster, C.B.G. Kuo, and J.R. Kender, “Nonparametric
training of snakes to find indistinct boundaries,"NtMBIAQ1,
2001.

“Model-based
multi-object segmentation via distribution matching,” in
CVPRW '04 Washington, DC, USA, 2004, vol. 1, p. 11, IEEE
Computer Society.

X. Ripoche, J. Atif, and A. Osorio, “A 3d discrete deformable
model guided by mutual information for medical image seg-
mentation,” inProceedings of the Medical Imaging Conference
2004 2004, SPIE.

] O. Commowick, V. Arsigny, J. Costa, et al., “An efficient lo-

(16]

of consistency in contouring of normal-tissue anatomic struc{17]

tures. ,” Journal of Applied Clinical Medical Physicsol. 4,
no. 1, 2003.

[2] M. Rousson, A. Khamene, M. Diallo, et al.,

“Constrained

surface evolutions for prostate and bladder segmentation in ct

cally affine framework for the registration of anatomical struc-
tures,” inISBI 2006 Crystal Gateway Marriott, Arlington, Vir-
ginia, USA, April 2006, pp. 478-481.

J. Montagnat and H. Delingette, “Globally constrained de-
formable models for 3d object reconstruction8ignal Pro-
cessingvol. 71, no. 2, pp. 173-186, December 1998.

J. Costa, H. Delingette, J.-C. Diaz, et al., “Towards an auto-
matic delineation of lower abdomen structures for conforma-
tional radiotherapy based on ct images,” Rmoceedings of
the 4&mes jourges scientifiques de la Sét Francaise de
Physique Mdicale (SFPM 2005)une 2005.



