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Abstract— We present a new algorithm to register 3D pre-
operative Magnetic Resonance (MR) images to intra-operative
MR images of the brain which have undergone brain shift. This
algorithm relies on a robust estimation of the deformation from
a sparse noisy set of measured displacements. We propose a
new framework to compute the displacement field in an iterative
process, allowing the solution to gradually move from an ap-
proximation formulation (minimizing the sum of a regularization
term and a data error term) to an interpolation formulation (least
square minimization of the data error term). An outlier rejection
step is introduced in this gradual registration process using a
weighted least trimmed squares approach, aiming at improving
the robustness of the algorithm. We use a patient-specific model
discretized with the finite element method (FEM) in order to
ensure a realistic mechanical behavior of the brain tissue.

To meet the clinical time constraint, we parallelized the slowest
step of the algorithm so that we can perform a full 3D image
registration in 35 seconds (including the image update time) on a
heterogeneous cluster of 15 PCs. The algorithm has been tested
on six cases of brain tumor resection, presenting a brain shift of
up to 14 mm. The results show a good ability to recover large
displacements, and a limited decrease of accuracy near the tumor
resection cavity.

Keywords: Non-rigid registration, intra-operative magnetic reso-
nance imaging, finite element model, brain shift

I. I NTRODUCTION

A. Image-Guided Neurosurgery

The development of intra-operative imaging systems has
contributed to improving the course of intra-cranial neuro-
surgical procedures. Among these systems, the 0.5T intra-
operative magnetic resonance scanner of the Brigham and
Women’s Hospital (Signa SP, GE Medical Systems, Figure
1) offers the possibility to acquire256× 256× 58 (0.86 mm,
0.86 mm, 2.5 mm) T1 weighted images with the fast spin echo
protocol (TR = 400, TE = 16 ms, FOV = 220x220 mm) in 3
minutes and 40 seconds. The quality of every256× 256 slice
acquired intra-operatively is fairly similar to images acquired
with a 1.5T conventional scanner, but the major drawback of
the intra-operative image remains the slice thickness (2.5 mm).
Images do not show significant distortion, but can suffer from

artifacts due to different factors (surgical instruments, hand
movement, radio-frequency noise from bipolar coagulation).
Recent advances in acquisition protocol [1] however make it
possible to acquire images with very limited artifacts during
the course of a neurosurgical procedure.

Fig. 1. The 0.5 T open magnet system (Signa SP, GE Medical Systems) of
the Brigham and Women’s Hospital

The intra-operative MR scanner enhances the surgeon’s
view and enables the visualization of the brain deformation
during the procedure [2], [3]. This deformation is a conse-
quence of various combined factors: cerebro spinal fluid (CSF)
leakage, gravity, edema, tumor mass effect, brain parenchyma
resection or retraction, and administration of osmotic diuretics
[4]–[6]. Intra-operative measurements show that this defor-
mation is an important source of error that needs to be
considered [7]. Indeed, imaging the brain during the procedure
makes the tumor resection more effective [8], and facilitates
complete resections in critical brain areas. However, even if
the intra-operative MR scanner provides significantly more
information than any other intra-operative imaging system,
it is not clinically possible to acquire image modalities like
diffusion tensor MR, functional MR or high resolution MR
images in a reasonable time during the procedure. Illustrated
examples of image guided neurosurgical procedures can be
found on the SPL web-site.1

Non-rigid registration algorithms provide a way to over-
come the intra-operative acquisition problem: instead of time-

1http://splweb.bwh.harvard.edu:8000/pages/projects/
mrt/mrt.html
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consuming image acquisitions during the procedure, the intra-
operative deformation is measured on fast acquisitions of intra-
operative images. This transformation is then used to match
the pre-operative images on the intra-operative data. To be
used in a clinical environment, the registration algorithm must
hence satisfy different constraints:

• Speed. The registration process should be sufficiently fast
such that it does not compromise the workflow during the
surgery. For example, a process time less than or equal
to the intra-operative acquisition time is satisfactory.

• Robustness. The registration results should not be altered
by image intensity inhomogeneities, artifacts, or by the
presence of resection in the intra-operative image.

• Accuracy. The registration displacement field should re-
flect the physical deformation of the underlying organ.

The choice of the number and frequency of image acquisitions
during the procedure remains an open problem. Indeed, there
is a trade-off between acquiring more images for accurate
guidance and not increasing the time for imaging. The optimal
number of imaging sessions may depend on the procedure
type, physiological parameters and the current amount of
deformation. Other imaging devices (stereo-vision, laser range
scanner, ultrasound...) could be additionally used to assist the
surgeon in his decision. Those perspectives are currently under
investigation in our group [9].

In this paper, we introduce a new registration algorithm
designed for image-guided neurosurgery. We rely on a biome-
chanical finite element model to enforce a realistic deformation
of the brain. With this physics-based approach,a-priori knowl-
edge in the relative stiffness of the intra-cranial structures
(brain parenchyma, ventricles...) can be introduced.

The algorithm relies on a sparse displacement field es-
timated with a block matching approach. We propose to
compute the deformation from these displacements using an
iterative method that gradually shift from an approximation
problem (minimizing the sum of a regularization term and a
data error term) towards an interpolation problem (least square
minimization of the data error term). To our knowledge, this
is the first attempt to take advantage of the two classical
formulations of the registration problem (approximation and
interpolation) to increase both robustness and accuracy of the
algorithm.

In addition, we address the problem of information distri-
bution in the images (known as the aperture problem [10] in
computer vision) to make the registration process depend on
the spatial distribution of the information given by the structure
tensor (see Section II-A.5 for definition).

We tested our algorithm on six cases of brain tumor resec-
tion performed at Brigham and Women’s hospital using the
0.5 T open magnet system. The pre-operative images were
usually acquired the day before the surgery. The intra-operative
dataset is composed of six anatomical256 × 256 × 58 T1
weighted MR images acquired with the fast spin echo protocol
previously described. Usually, an initial intra-operative MR
image is acquired at the very beginning of the procedure,
before opening of the dura-mater. This image, which does
not yet show any deformation, is used to compute the rigid
transformation between the two positions of the patient in any

pre-operative image and the image from the intra-operative
scanner.

B. Non-Rigid Registration for Image-Guided Surgery

1) Modeling the Intra-Operative Deformation:Because of
the lower resolution of the intra-operative imaging devices,
modeling the behavior of the brain remains a key issue to intro-
ducea priori knowledge in the image-guided surgery process.
The rheological experiments of Miller significantly contributed
in the understanding of the physics of the brain tissue [11].
His extensive investigation in brain tissue engineering showed
very good concordance of the hyper-viscoelastic constitutive
equation with in vivo and in vitro experiments. Miga et
al. demonstrated that a patient-specific model can accurately
simulate both the intra-operative gravity and resection-induced
brain deformation [12], [13]. A practical difficulty associated
with these models is the extensive time necessary to mesh
the brain and solve the problem. Castellano-Smith et al. [14]
addressed the meshing time problem by warping a template
mesh to the patient geometry. Davatzikos et al. [15] proposed
a statistical framework consisting of pre-computing the main
mode of deformation of the brain using a biomechanical
model. Recent extensions of this framework showed promising
results for intra-operative surgical guidance based on sparse
data [16].

2) Displacement-Based Non-Rigid Registration:In this pa-
per, we propose a displacement-based non-rigid registration
method consisting in optimizing a parametric transformation
from a sparse set of estimated displacements.

Alternative methods include intensity-based methods where
the parametric transformation is estimated by minimizing a
global voxel-based functional defined on the whole image. It
should be noted that although these algorithms are by nature
computationally expensive, the work of Hastreiter et al. [17]
based on an openGL acceleration, or the work of Rohlfing
et al. [18] using shared-memory multiprocessor environments
to speed up the free form deformation-based registration [19]
recently demonstrated that such algorithms could be adapted
to the intra-operative registration problem.

The following review of the literature is purposely restricted
to registration algorithms based on approximation and inter-
polation problems in the context of matching corresponding
points using an elastic model constraint.

a) Interpolation: Simple biomechanical models have
been used to interpolate the full brain deformation based
on sparse measured displacements. Audette [20] and Miga
et al. [21] measured the visible intra-operative cortex shift
using a laser range scanner. The displacement of deep brain
structures was then obtained by applying these displacements
as boundary conditions to the brain mesh. A similar surface
based approach was proposed by Skrinjar et al. [22] and
Sun et al. [23] imaging the brain surface with a stereo
vision system. Ferrant et al. [24] extracted the full cortex
and ventricles surfaces from intra-operative MR images to
constrain the displacement of the surface of a linear finite
element model. These surface-based methods showed very
good accuracy near the boundary conditions, but suffered from



3

as lack of data inside the brain [6]. Rexilius et al. [25] followed
Ferrant’s efforts by incorporating block-matching estimated
displacements as internal boundary condition to the FEM
model (leading to the solution presented in Section II-C.2).
However the method proposed by Rexilius was not robust to
outliers. Ruiz-Alzola et al. [26] proposed through the Kriging
interpolator a probabilistic framework to manage the noise
distribution in the sparse displacement field computed with
the block matching algorithm. Although first results show
qualitative good matching, it is difficult to assess the realism
of the deformation since the Kriging estimator does not rely
on a physical model.

b) Approximation:The approximation-based registration
consists in formulating the problem as a functional minimiza-
tion decomposed into a similarity energy and a regularization
energy. Because its formulation leads to well posed problems,
the similarity energy often relies on a block (or feature)
matching algorithm. In 1998, Yeung et al. [27] showed impres-
sive registration results on a phantom using an approximation
formulation combining ultrasound speckle tracking with a
mechanical finite element model. Hata et al. [28] registered
pre-operative with intra-operative MR images using a mutual
information based similarity criterion (see Wells et al. paper
for details about mutual information [29]) and a mechanical
finite element model to get plausible displacements. He could
perform a full image registration using a stochastic gradient
descent search in less than 10 minutes, for an average error of
40% of true displacement. Rohr et al. [30] improved the basic
block matching algorithm by selecting relevant anatomical
landmarks in the image and taking into account the anisotropic
matching error in the global functional. Shen et al. [31]
investigated this idea of anatomical landmarks and proposed
an attribute vector for each voxel reflecting the underlying
anatomy at different scales. In addition to the Laplacian
smoothness energy, their energy minimization involves two
different data similarity functions for pushing and pulling the
displacement to the minimum of the functional energy.

II. M ETHOD

We have developed a registration algorithm to measure
the brain deformation based on two images acquired before
and during the surgery. The algorithm can be decomposed
into three main parts, presented in Figure 2. The first part
consists in building a patient specific model corresponding
to the patient position in the open-magnet scanner. Patient-
specific in this algorithm’s context refers to having a coarse
finite element model that approximately matches the outer
curvature of the patient’s cortical surface and lateral ventricular
surfaces. The second part is the block matching computation
for selected blocks. The third part is the iterative hybrid solver
from approximation to interpolation.

As suggested in Figure 2, a large part of the computation can
be done before acquiring the intra-operative MR image. In the
following section, we propose a description of the algorithm
sequence, making a distinction between pre-operative and
intra-operative computations. Indeed, since the pre-operative
image is available hours before surgery, we can use pre-
processing algorithms to:

• segment the brain, the ventricles and the tumor.
• Build the patient-specific biomechanical model of the

brain based on the previous segmentation.
• Select blocks in the pre-operative image with relevant

information.
• Compute the structure tensor in the selected blocks.

Block matching

Segmentation
Rigid registration

Biomechanical model
construction

Sparse displacement
Block selections

algorithm
Iterative hybrid

computation
Structure tensor

algorithm field computation
Dense displacement Mesh construction

field estimate

Computed before the acquisition of the image to be registered
Computed after the acquisition of the image to be registered

Fig. 2. Overview of the steps involved in the registration process.

Note that the rigid registration between the pre-operative
image and the intra-operative image is computed before the
acquisition of the image to be registered, after the beginning
of the procedure. Indeed, the rigid motion between the two
positions of the patient is estimated on the first intra-operative
image acquired at the very beginning of the surgical procedure,
before opening the skull and the dura.

After the first intra-operative acquisition showing defor-
mations, it is important to minimize the computation time.
As soon as this image is acquired, we compute for each
selected block in the pre-operative image the displacement
that minimizes a similarity measure. We chose the coefficient
of correlation as the similarity measure, also providing a
confidence in the measured displacement for every block.

The registration problem, combining a finite element model
with a sparse displacement field, can then be posed in terms
of approximation and interpolation. The two formulations
however come with weaknesses, further detailed in Section II-
C.1. We thus propose a new gradual hybrid approach from the
approximation to the interpolation problem, coupled with an
outlier rejection algorithm to take advantage of both classical
formulations.

A. Pre-Operative MR Image Treatment

1) Segmentation:We use the method proposed by Mangin
et al. [32] and implemented in Brainvisa2 to segment the brain
in the pre-operative images (see Figure 3). The tumor segmen-
tation is extracted from the pre-operative manual delineation
created by the physician for the pre-operative planning.

2) Rigid Registration:We match our initial segmentation
to the first intra-operative image (actually acquired before the
dura mater opening) using the rigid registration software de-
veloped at INRIA by Ourselin et al. [33], [34]. This software,
also relying on block matching, computes the rigid motion
that minimizes the transformation error with respect to the
measured displacements. Detailed accuracy and robustness
measures can be found in [35].

2http://www.brainvisa.info/
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3) Biomechanical Model:The full meshing procedure is
decomposed into three steps: we generate a triangular surface
mesh from the brain segmentation with the marching cubes
algorithm [36]. This surface mesh is then decimated with
the YAMS software (INRIA) [37]. The volumetric tetrahedral
mesh is finally built from the triangular one with another
INRIA software: GHS3D [38]. This software optimizes the
shape quality of all tetrahedra in the final mesh.

The mesh generated has an average number of 10,000 tetra-
hedra (about 1700 vertices), which proved to be a reasonable
trade-off between the number of degrees of freedom and the
number of matches (about 1 to 15, see Section II-C.2 for a
discussion about the influence of this ratio).

We rely on the finite element theory (see [39] for a complete
review of the finite element formalism) and consider an incom-
pressible linear elastic constitutive equation to characterize the
mechanical behavior of the brain parenchyma. Choosing the
Young modulus for the brain tissueE = 694Pa and assuming
slow and small deformations (≤ 10%), we have shown that the
maximum error measured on the Young modulus with respect
to the state of the art brain constitutive equation [11] is less
than 7% [40]. We chose a Poisson’s ratioν = 0.45, modeling
an almost incompressible brain tissue. Because the ventricles
and the subarachnoid space are connected to each other, the
CSF is free to flow between them. We thus assume very soft
and compressible tissue for the ventricles (E = 10Pa and
ν = 0.05).

4) Block Selection:The relevance of a displacement esti-
mated with a block matching algorithm depends on the exis-
tence of highly discriminant structures in this block. Indeed,
an homogeneous block lying in the white matter of the pre-
operative image might be similar to many blocks in the intra-
operative image, so that its discriminant ability is lower than
a block centered on a sulcus. We use the block variance
to measure its relevance and only select a fraction of all
potential blocks based on this criterion (an example of 5%
block selection is given in Figure 3).

The drawback of this method is a selection of blocks
in clusters where overlapping blocks share most of their
voxels. We thus introduce the notion of prohibited connectivity
between two block centers to prevent two selected blocks
to be too close to each other. We implemented a variety of
connectivity criteria, and obtained best results using the 26
connectivity (with respect to the central voxel), preventing
two distinct blocks of7 × 7 × 7 voxels to share more than
42% overlapping voxels. Note that this prohibited connectivity
criterion leads to a maximum of 30,000 blocks selected in an
average adult brain (≈ 1300 cm3) imaged with a resolution of
0.86 mm× 0.86 mm× 2.5 mm. Note also that the7× 7× 7
blocks used in this paper are about three times longer in the
Z direction because of the anisotropic voxel size.

In addition, to anticipate the ill-posed nature of finding
correspondences in the tumor resection cavity, we performed
the block selection inside a mask corresponding to the brain
without the tumor.

5) Computation of the Structure Tensor:It has been pro-
posed in the literature to use the information distribution
around a voxel as a mean of selecting blocks [26] or as

an attribute considered for the matching of two voxels [31].
Recent works assess the problem of ambiguity raised by
the anisotropic character of the intensity distribution around
a voxel in landmark matching-based algorithms: edges and
lines lead respectively to first and second order ambiguities,
meaning that a block correlation method can only recover dis-
placements in their orthogonal directions. Rohr et al. account
for this ambiguity by weighting the error functional related to
each landmark displacement with a covariance matrix [30].

In this paper, we consider the normalized structure tensor
Tk defined in the pre-operative imageI at positionOk by:

Tk =
G ∗ (∇I(Ok))(∇I(Ok))T

trace [G ∗ (∇I(Ok))(∇I(Ok))T ]
(1)

∇I(Ok) is the Sobel gradient computed at voxel positionOk,
and G defines a convolution kernel. A Gaussian kernel is
usually chosen to compute the structure tensor. In our case,
since all voxels in a block have the same influence, we use
a constant convolution kernelG in a block, so that each
(∇I(Ok))(∇I(Ok))T has the same weight in the computation
of Tk.

This positive definite second order tensor represents the
structure of the edges in the image. If we consider the clas-
sical ellipsoid representation, the more the underlying image
resembles to a sharp edge, the more the tensor elongates in
the direction orthogonal to this edge (see image D of Figure
3). The structure tensor provides a three dimensional measure
of the smoothness of the intensity distribution in a block and
thus a confidence in the measured displacement for this block.
In Section II-C, we will see how to introduce this confidence
in the registration problem formulation.

B. Block Matching Algorithm

Also known as template or window matching, the block
matching algorithm is a simple method used for decades in
computer vision [41], [42]. It makes the assumption that a
global deformation results in translation for small parts of
the image. Then the global complex optimization problem
can be decomposed into many simple ones: considering a
block B(Ok) in the reference image centered inOk, and a
similarity metric between two blocksM(B(Oa), B(Ob)), the
block matching algorithm consists in finding the positionsO′

k

that maximize the similarity:

arg max
O′

[M (B (Ok) , B (O′
k))] (2)

Performing this operation on every selected block in the pre-
operative image produces a sparse estimation of the displace-
ment between the two images (see Figure 4). In our algorithm,
the block-matching is an exhaustive search performed once,
and limited to integral voxel translation. It is limited to the
brain segmentation, thus restricting the displacements to the
intra-cranial region.

The choice of the similarity function has largely been
debated in the literature, we will refer the reader to the article
of Roche et al. [43] for a detailed comparison of them. In
our case, the mono-modal (MR-T1 weighted) nature of the
registration problem allows us to make the strong assumption
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A B

C D

Fig. 3. Illustration of the pre-operative processes. (A) pre-operative image.
(B) segmentation of the brain and 3D mesh generation (we only represent the
surface mesh for visualization convenience). (C) Example of block selection,
choosing 5% of the total brain voxels as blocks centers. Only the central
voxel of the selected blocks is displayed. (D) Structure tensor visualization
as ellipsoids (zoom on the red square), the color of the tensors demonstrates
the fractional anisotropy.

of an affine relationship between the two image intensity
distributions. The correlation coefficient thus appears as a
natural choice adapted to our problem:

c =
∑

X∈B(BF (X)−BF )(BT (X)−BT )∑
X∈B BF (X)BT (X)−BFBT

(3)

WhereBF andBT denote respectively for the block in the
floating and in the reference image, andB for the average
intensity in blockB. In addition, the value of the correlation
coefficient for two matching blocks is normalized between 0
and 1 and reflects the quality of the matching: a value close to
1 indicates two blocks very similar while a value close to 0 for
two blocks very different. We use this value as a confidence in
the displacement measured by the block matching algorithm.

C. Formulation of the Problem: Approximation Versus Inter-
polation

As we have seen in Section I-B, the registration problem
can be either formulated as an approximation, or as an
interpolation problem. In this section, we will show how
to formulate our problem in both terms and describe the
associated advantages and disadvantages.

1) Approximation:The approximation problem can be for-
mulated as an energy minimization. This energy is composed
of a mechanical and a matching (or error) energy:

W = UTKU︸ ︷︷ ︸
Mechanical energy

+(HU −D)TS(HU −D)︸ ︷︷ ︸
Matching energy

(4)

Fig. 4. Block matching-based displacements estimation. Top left: slice of the
pre-operative MR image. Top right: intra-operative MR image. Bottom: the
sparse displacement field estimated with the block matching algorithm and
superposed to the gradient of the pre-operative image (5% block selection,
using the coefficient of correlation). The color scale encodes the norm of the
displacement, in millimeters.

with:

• U the mesh displacement vector, of size3n, with n
number of vertices.

• K the mesh stiffness matrix of size3n×3n. Details about
the building of the stiffness matrix can be found in [44].

• H is the linear interpolation matrix of size3p× 3n. One
mesh vertexvi, i ∈ [1 : n] corresponds to three columns
of H (columns[3∗ i+1 : 3∗ i+3]). One matching point
k (ie one block centerOk) corresponds to three rows of
H (rows [3 ∗ k + 1 : 3 ∗ k + 3]). The 3× 3 sub-matrices
[H]ki are defined as:[H]kcj

= diag(hj , hj , hj) for the
four columnscj , j ∈ [1 : 4] corresponding to the four
pointsvcj of the tetrahedron containing the center of the
block Ok, and [H]ki = 0 everywhere else. The linear
interpolation factorhj , j ∈ [1 : 4] are computed for the
block centerOk inside the tetrahedron with:

h1

h2

h3

h4

 =


vx

c1
vx

c2
vx

c3
vx

c4

vy
c1

vy
c2

vy
c3

vy
c4

vz
c1

vz
c2

vz
c3

vz
c4

1 1 1 1


−1 

Ok
x

Ok
y

Ok
z

1

 (5)

• D the block-matching computed displacement vector of
size 3p, with p number of matched points. Note that
HU −D defines the error on estimated displacements.

• S the matching stiffness of size3p× 3p.
Usually, a diagonal matrix is considered in the matching
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energy aiming at minimizing the sum of squared errors. In
our case, this would lead toS = α

p I. I defines the identity
matrix, α defines the trade-off between the mechanical
energy and the matching energy, it can also be interpreted
as the stiffness of a spring toward each block matching
target (the unit ofα is N.m−1). The 1

p factor is used
to make the global matching energy independent of the
number of selected blocks.

We propose an extension to the classical diagonal stiffness
matrix S case, taking into account the matching confidence
from the correlation coefficient (Equation 3) and the local
structure distribution from the structure tensor (Equation 1) in
the matching stiffness. These measures are introduced through
the matrixS, which becomes a block-diagonal matrix whose
3× 3 sub-matricesSk are defined for each blockk as:

Sk =
α

p
ckTk (6)

The influence of a block thus depends on two factors:

• the value of the coefficient of correlation: the better the
correlation is (coefficient of correlation closer to 1), then
the higher the influence of the block on the registration
will be.

• The direction of matching with respect to the tensor of
structure: we only consider the matching direction co-
linear to the orientation of the intensity gradient in the
block.

The minimization of Equation 4 is classically obtained by
solving ∂W

∂U = 0:

∂W

∂U
=

[
K +HTSH

]
U −HTSD = 0 (7)

Leading to the linear system:[
K +HTSH

]
U = HTSD (8)

Fig. 5. Solving the registration problem using the approximation formulation
(shown on the same slice as Figure 4). Left: dense displacement computed as
the solution of Equation 8. Right: gradient of the target image superimposed
on the pre-operative deformed image using the computed displacement field.
We can observe a systematic error on large displacements.

Solving Equation 8 forU leads to the solution of the
approximation problem. As shown on Figure 5, the main
advantage of this formulation lies in its ability to smooth the
initial displacement field using strong mechanical assumptions.
The approximation formulation however suffers from a sys-
tematic error: whatever the value chosen forE and α, the
final displacement of the brain mesh is a trade-off between
the pre-operative rest position and the measured positions

so that the deformed structures never reach the measured
displacements (visible on Figure 5 for the ventricles and
cortical displacement).

Fig. 6. Solving the registration problem using the interpolation formulation
leads to poor matches. Top left: intra-operative MR image intersecting the
tumor. Top right: result of the registration of the pre-operative on the intra-
operative image using the interpolation formulation (Equation 14). Middle
left: estimated displacement using the block matching algorithm (same slice).
Middle right: norm of the recovered displacement field using the interpolation
formulation. Bottom: zoom on the registration displacement field around the
tumor region (red box) indicates disturbed displacements.

2) Interpolation: The interpolation formulation consists in
finding the optimal mesh displacementsU that minimize the
data error criterion:

arg min
U

(HU −D)T (HU −D) (9)

The vertex displacement vectorU satisfying Equation 9 is then
given by:

U =
(
HTH

)−1
HTD (10)

In this paper, the possible values forD are restricted to
integral voxel translations. However the displacement of a
single vertex depends on all the matches included in the
surrounding tetrahedra, so that its displacement is a weighted



7

combination of all these matches. The mesh thus also serves
the function of regularization on the estimated displacements.
Therefore, if the ratio of the number of degrees of freedom
(U ) to the number of block displacement (D) is small enough
(typically < 0.1), sub-voxel accuracy (with respect to the
”true” transformation) can be expected, even with integral
displacements. Conversely, if the previous ratio is greater than
or close to one, the regularization due to the limited number
of degrees of freedom is lost, and the transformation can be
discontinuous because of the sampling effect. Using a refined
mesh could thus induce an additional displacement error (up
to half a voxel size), and makes this method inappropriate to
estimate brain tissue stress. The ratio used for this paper is
about 15 matches per vertex.

Solving Equation 10 without matches in a vertex cell, lead to
an undetermined displacement for this vertex. The sparseness
of the estimated displacements could thus prevent some areas
of the brain from moving because they are not related to any
blocks. One way of assessing this problem is to take into
account the mechanical behavior of the tissue. The problem
is turned into a mechanical energy minimization under the
constraint of minimum data error imposed by Equation 10.
The minimization under constraint is formalized through the
Lagrange Multipliers stored in a vector̃F :

W̃ = UTKU + F̃THT (HU −D) (11)

The Lagrange multiplier vector̃F of size 3n can be interpreted
as the set of forces applied at each vertex U in order to
impose the displacement constraints. Note that the second term
F̃THT (HU −D) is homogeneous to an elastic energy. Once
again, the optimal displacements and forces are obtained by
writing that ∂W̃

∂U = 0 and ∂W̃
∂F̃

= 0. One then obtain:

KU +HTHF̃ = 0 (12)

HTHU −HTD = 0 (13)

A classic method is then to solve :[
K HTH

HTH 0

] [
U

F̃

]
=

[
0

HTD

]
(14)

The main advantage of the interpolation formulation is an
optimal displacement field (that minimizes the error) with
respect to the matches. However, when matches are noisy or
-worse- when some of them are outliers (such as in the region
around the tumor on Figure 6), the recovered displacement is
disturbed and does not follow the displacement of the tissue.
Some of the mesh tetrahedra can even flip, modeling a non dif-
feomorphic deformation. This transformation is obviously not
physically acceptable, and emphasizes the need for selecting
mechanically realistic matches.

D. Robust Gradual Transformation Estimate

1) Formulation: We have seen in Section II-C that the
approximation formulation performs well in the presence of
noise but suffers from a systematic error. Alternatively, solving
the exact interpolation problem based on noisy data is not
adequate.

We developed an algorithm which takes advantage of both
formulations to iteratively estimate the deformation from the
approximation to the interpolation based formulation while
rejecting outliers. The gradual convergence to the interpolation
solution is achieved through the use of an external forceF
added to the approximation formulation of Equation 8, which
balances the internal mesh stress:[

K +HTSH
]
U = HTSD + F (15)

This forceFi is computed at each iterationi to balance the
mesh internal forceKUi. This leads to the iterative scheme:

Fi ⇐ KUi (16)

Ui+1 ⇐
[
K +HTSH

]−1 [
HTSD + Fi

]
(17)

The transformation is then estimated in a coarse to fine
approach, from large deformations to small details up to the
interpolation. We propose in appendix a proof of convergence
of the algorithm toward the interpolation formulation.

This new formulation combines the advantages of robust-
ness to noise at the beginning of the algorithm and accuracy
when reaching convergence. Because some of the measured
displacements are outliers, we propose to introduce a robust
block-rejection step based on a least-trimmed squares algo-
rithm [45]. This algorithm rejects a fraction of the total blocks
based on an error functionξk measuring for block k the
error between the current mesh displacement and the matching
target:

ξk = ‖Sk [(HU)k −Dk]‖ (18)

Dk, (HU)k and [(HU)k −Dk] respectively define the mea-
sured displacement, the current mesh-induced displacement
and the current displacement error for the blockk. ξk is
thus simply the displacement error weighted according to the
direction of the intensity gradient in blockk. However, our
experiments showed that the block matching error is rather
multiplicative than additive (i.e. the larger the displacement
of the tissue, the larger the measured displacement error).
Therefore, we modifiedξ to take into account the current
estimate of the displacement:

ξk =
‖Sk [(HU)k −Dk]‖
λ ‖(HU)k‖+ 1

(19)

λ is a parameter of the algorithm tailored to the error distribu-
tion on matches. Note that a log-error function could also have
been used. With such a cost function, the rejection criterion is
more flexible with points that account for larger displacements.
The matricesS andH now have to be recomputed at each
iteration involving an outlier rejection step.

The number of rejection steps based on this error function,
as well as the fraction of blocks rejected per iteration are
defined by the user. The algorithm then iterates the numerical
scheme defined by Equations 16 and 17 until convergence.
Figure 7 gives an example of the registered image and the
associated displacement field at convergence. The final regis-
tration scheme is given in Algorithm 1.
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Fig. 7. Solving the registration problem using the proposed iterative approach
(Algorithm 1). Top left: result of the registration of the pre-operative on the
intra-operative image using the iterative formulation (same slice as Figure 6).
Top right: norm of the recovered displacement field. Bottom: zoom on the
registration displacement field around the tumor region (red box) indicates
realistic displacements.

2) Parameter setting:We used7× 7× 7 blocks, searching
in a 11 × 11 × 25 window (we used a larger window in the
direction of larger displacement: following gravity as observed
in [46]) with an integral translation step of1× 1× 1.

Although the least trimmed squares algorithm is a robust
estimator up to 50% of outliers [45], we experienced that a
cumulated rejection rate representing 25% of the total initial
selected blocks is sufficient to reject every significant outlier.
Figure 8 shows the evolution in the ouliers rejection scheme.
A variation of ± 5% does not have a significant influence
on the registration. Below 20%, a quantitative examination
of the matches reveals that some outliers could remain. Over
30%, relevant information is discarded in some regions, the
displacement then follows the mechanical model in these
regions.
λ defines the breakup point between an additive and a

multiplicative error model: with displacements less (respec-
tively more) than1

λ mm, the model is additive (respectively
multiplicative). This value thus has to be adapted to the
accuracy of the matches, which is closely related to the noise
in images. The value ofλ has been estimated empirically:
1
2 gave best results, but we encountered significant changes
(average difference on the displacement of2×10−2 mm, stan-
dard deviation of4 × 10−2 mm and maximum displacement
difference of1.1 mm on the dataset) for variations of lambda

Algorithm 1 Registration scheme
1: Get the number of rejection stepsnR from user
2: Get the fraction of total blocks rejectedfR from user
3: for i = 0 to nR do
4: Fi ⇐ KUi

5: Ui+1 ⇐
[
K +HTSH

]−1 [
HTSD + Fi

]
6: for all Blocks k do
7: Compute error functionξk
8: end for
9: Reject fR

nR
blocks with highest error functionξ

10: RecomputeS, H, D
11: end for
12: repeat
13: Fi ⇐ KUi

14: Ui+1 ⇐
[
K +HTSH

]−1 [
HTSD + Fi

]
15: until Convergence

Fig. 8. Visualization of the block-rejection step on the same patient as Figure
6 (2.5% of blocks rejected per iteration). Left: initial matches. Middle: after 5
iterations (12.5% rejection). Right: final selected matches after 10 iterations of
block rejection (25% of the total blocks are rejected). The region around the
tumor seems to have a larger rejection rate than the rest of the brain (especially
below the tumor). A closer look at this region (bottom row) reveals that lots
of matches around the tumor point toward a wrong direction.

up to± 1
10 .

The last parameter is the matching stiffnessα. Even if it
does not influence the convergence, its value might indeed
disturb the rejection steps if the convergence rate is too
slow. The largest displacements could indeed be considered as
outliers if the matching energy does not balance fast enough
the mechanical one. Therefore we chose a matching stiffness
α = trace(K)

n , reflecting the average vertex stiffness (note that
this value does not depend on the number of vertices used to
mesh the volume), so that at least half of the displacement is
already recovered after the first iteration. Experiments showed
that the results are almost unchanged (max. difference< 0.1
mm) whenα is scaled (multiplied of divided) by a factor of
5.

3) Implementation Issues and Time Constraint:The me-
chanical system was solved using the conjugate gradient (see
[47] for details) method with the GMM++ sparse linear system
solver3. The rejected block fraction for 1 iteration was set to
2.5% and the number of rejection steps to 10. The following

3http://www.gmm.insa-tlse.fr/getfem/gmm_intro
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computation times have been recorded on the first patient of
our database, using a Pentium IV 3Ghz machine running the
sequential algorithm:

• Block matching computation7−→ 162 sec.
• Building matrices S, H, K and vector D7−→ 1.8 sec.
• Computing external force vector (Equation 16)7−→ 7×

10−2 sec / iteration.
• Solve system (Equation 17)7−→ 9×10−2 sec / iteration.
• Blocks rejection7−→ 12× 10−2 sec / iteration.
• Update H, S, D7−→ 25× 10−2 sec / iteration.

Most of the computation time is spent in the block matching
algorithm. We developed a parallel version of it using PVM4

able to run on an heterogeneous cluster of PCs, and taking
advantage of the sparse computing resource available in a
clinical environment. This version reduced the block matching
computation time to 25 seconds on an heterogeneous group
of 15 PCs, composed of 3 dual Pentium IV 3Ghz, 3 dual
Pentium IV 2Ghz and 9 dual Pentium III 1Ghz. Similar
hardware is widely available in hospitals and additionally
very inexpensive compared to high-performance computers.
The full 3D registration process (including the image update
time) could thus be achieved in less than 35 seconds, after
15 iterations of the algorithm. We think that this time is
compatible with the constraint imposed by the procedure.

III. E XPERIMENTS

We evaluated our algorithm on 6 pairs of pre and intra-
operative MR T1 weighted images. For every patient, the
intra-operative registered image is always the last full MR
image acquired during the procedure (acquired one to four
hours after the opening of the dura). The skin, skull, and
dura are opened, and significant brain resection was performed
at this time. The 6 experiments have been run using the
same set of parameters. Figure 9 presents the 6 pre-operative
image registrations compared with the intra-operative images
on the slice showing the largest displacement (which does
not necessarily show the resection cavity)5. Pre-operative,
intra-operative and warped images are shown on corresponding
slices after rigid registration.

The registration algorithm shows qualitatively good results:
the displacement field is smooth and reflects the tissue behav-
ior, the algorithm can still recover large deformations (up to
14mm for patient 5). We wish also to emphasize the fact that
the algorithm does not require manual interaction making it
fully automatic following the intra-operative MR scan.

We can observe that the quality of the brain segmentation
has a direct influence on the deformed image, for example
patient 3 of Figure 9 had a brain mask eroded on the frontal
lobe which misses in the registered image. The deformation
field however should not suffer from the mask inaccuracy,
since the brain segmentation is not directly used to guide the
registration. The assumption of local translation in the block-
matching algorithm seems to be well adapted to the motion of

4http://www.csm.ornl.gov/pvm/
5More result images can be seen on the web site:

http://splweb.bwh.harvard.edu:8000/pages/ppl/oclatz/
registration/results.html

Fig. 9. Result of the non-rigid registration of the pre-operative image on
the intra-operative image. For each patient: (top left) pre-operative image;
(top right) intra-operative image; (bottom left) result of the registration:
deformation of the pre-operative image on the intra-operative image; (bottom
right) gradient of the intra-operative image superimposed on the result image.
The enhanced region on patient’s 4 image indicates that the resection is
incomplete. The white dotted line shows where the outline of the tumour is
predicted to be after deformation (top right). It shows a reasonable matching
with the tumor margin in the deformed image (bottom right).

the brain parenchyma. It shows some limitations for ventricles
expansion (patient 4 and 6 of Figure 9) or collapse (patient 5
of Figure 9), where the error is approximately between two
and three millimeters.

The accuracy of the algorithm has been quantitatively
evaluated by a medical expert selecting corresponding feature
points in the registration result image and the target intra-
operative image. This landmark-based error (not limited to
in-plane error) estimation has been performed on every image
for 9 different points. Figure 10 presents the measured error
for the 54 landmarks as a function of the displacement of the
tissue and Figure 11 presents the measured error for the 54
landmarks as a function of the distance to the tumor. Table I
gives the global values of the registration error.

The error distribution presented on figure 10 looks un-
correlated to the displacement of the tissue. This highlights
the potential of this algorithm to recover large displacements.
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All patients Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6
Max. displacement (mm) 13.18 6.73 4.10 7.77 5.74 13.18 4.60
Mean displacement± std. dev. (mm) 3.77±3.3 3.63±2.4 2.41±1.9 2.89±3.0 2.71±1.9 8.06±4.5 2.36±1.3
Mean error± std. dev. (mm) 0.75±0.6 0.73±0.8 0.69±0.6 0.45±0.5 0.58±0.5 0.88±0.8 1.16±0.5
Max. error (mm) 2.50 2.50 1.92 1.21 1.21 2.10 1.88
Mean relative error (%) 19 20 28 15 21 10 49

TABLE I

QUANTITATIVE ASSESSMENT OF THE REGISTRATION ACCURACY.

Landmark-Based Evaluation of the Registration Error as a Function 
of the Estimated Tissue Displacement
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Fig. 10. Measure of the registration error for 54 landmarks as a function of
the initial error (i.e. as a function of the real displacement of tissue, estimated
with the landmarks).

Landmark-Based Evaluation of the Registration Error as a Function 
of the Distance to the Tumor  
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Fig. 11. Measure of the registration error for 54 landmarks as a function of
the distance to the tumor margin.

Whereas the error is limited (table I: 0.75 mm in average, 2.5
mm at maximum), Figure 11 shows that the error somewhat in-
creases when getting closer to the tumor. Because a substantial
number of matches are rejected as outliers around the tumor,
the displacement is more influenced by the mechanical model
in this region. The decrease of accuracy may be a consequence
of the limitation of the linear mechanical model. However,
the proposed framework is suitable for more complexa priori
knowledge on the behavior of the brain tissue or the tumor.

IV. CONCLUSION

We presented in this article a new registration algorithm
for non-rigid registration of intra-operative MR images. The
algorithm has been motivated by the concept of moving
from the approximation to the interpolation formulation while
rejecting outliers. It could easily be adapted to other interpo-
lation methods, e.g. parametric functions (splines, radial basis
functions ...) that minimize an error criterion with respect to
the data (typically the sum of the squared error).

The results obtained with the six patients demonstrate the
applicability of our algorithm to clinical cases. This method
seems to be well suited to capture the mechanical brain
deformation based on a sparse and noisy displacement field,
limiting the error in critical regions of the brain (such as in
the tumor segmentation). The remaining error may be due to
the limitation of the linear elastic model.

Regarding the computation time, this algorithm successfully
meets the constraints required by a neurosurgical procedure,
making it reliable for a clinical use.

This algorithm extends the field of image guided therapy,
allowing the visualization of functional anatomy and white
matter architecture projected onto the deformed brain intra-
operative image. Consequently, it facilitates the identification
of the margin between the tumor and critical healthy structures,
making the resection more efficient.

In the future, we will explore the possibility to extend the
framework developed in this paper to other organs such as the
kidney or the liver. We also wish to adapt multi-scale methods
to our problem, as proposed in [48], to compute near real-time
deformations. In addition, we will investigate the possibility
to include more complexa priori mechanical knowledge in
regions where the linear elastic model shows limitations.
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APPENDIX

We propose in this appendix the proof of convergence of
the numerical scheme of Equation 17 toward the interpolation
formulation of Equation 9. All theorems used in this appendix
can be found in [49]. We start with classical results from the
finite element theory, the stiffness matrixK is positive semi
definite:

K ≥ 0 (20)
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and assuming that we have more than 3 spring constraints on
the mesh, the matrixK +HTSH is positive definite:

K +HTSH > 0 (21)

in addition sinceHTSH is symmetric with all coefficients
> 0, it is positive semi-definite:

HTSH ≥ 0 (22)

From Equation 20 and Equation 22 we can write ( [49] p166):

K +HTSH −K ≥ 0 or: K +HTSH ≥ K (23)

and combining with Equation 21 leads to:

K +HTSH > K (24)

We call ξi and ψi (i ∈ [1 : 3 ∗ n]) the eigenvalues of
respectivelyK + HTSH andK sorted in decreasing order.
The numerical scheme of Equation 17 can be written as:[

K +HTSH
]
Ui+1 = HTSD +KUi (25)

SinceK + HTSH is non singular, we can write the system
in the formUi+1 = AUi +B:

Ui+1 =
[
K +HTSH

]−1
KUi +

[
K +HTSH

]−1
HTSD

(26)
This system converges if and only if the eigenvaluesφi of[
K +HTSH

]−1
K satisfy: ∀i, 0 ≤ |φi| < 1. From 20 and

21 we can write:∀i, φi ≥ 0 ( [49] p227). Moreover,K +
HTSH > K ≥ 0 induces that the largest eigenvalueφmax of
([K + HTSH]−1K) satisfiesφmax < 1 ( [49] p171) which
concludes the proof of convergence (again, for more than 3
non-collinear matches).

Now that we proved the convergence, one can have
the equation of the displacement field U after convergence
(Ui+1 = Ui):[

K +HTSH
]
U = HTSD +KU (27)

which implies that:[
HTSH

]
U = HTSD (28)

Equation 28 is exactly the solution of the matching energy
minimization (Equation 4), meaning that the proposed scheme
solves the interpolation problem.
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3D magnetic resonance images to structural representations of the
cortex topography using topology preserving deformations,”Journal of
Mathematical Imaging and Vision, vol. 5, no. 4, pp. 297–318, 1995.

[33] S. Ourselin, X. Pennec, R. Stefanescu, G. Malandain, and N. Ayache,
“Robust registration of multi-modal medical images: Towards real-time
clinical applications,” INRIA, Research report 4333, 2001. [Online].
Available: http://www.inria.fr/rrrt/rr-4333.html

[34] S. Ourselin, R. Stefanescu, and X. Pennec, “Robust registration of
multi-modal images: towards real-time clinical applications,” inMedical
Image Computing and Computer-Assisted Intervention (MICCAI’02),
ser. LNCS, T. Dohi and R. Kikinis, Eds., vol. 2489. Tokyo: Springer,
September 2002, pp. 140–147.

[35] S. Ourselin, “Recalage d’images médicales par appariement de régions
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