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ABSTRACT

Several nonrigid registration algorithms have been pro-
posed for inter-subject alignment, used to construct statisti-
cal atlases and to identify group differences. Assessment of
the accuracy of nonrigid registration algorithms is a essen-
tial and complex issue due to its intricate framework and its
application-dependent behavior. We demonstrate that the dif-
fusion MRI provides an independent means of assessing the
quality of alignment achieved on the structural MRI. Diffu-
sion tensor MRI enables the comparison of the local posi-
tion and orientation of regions that appear homogeneous in
conventional MRI. We carried out inter-subject alignment of
conventional T1-weighted MRI with three different registra-
tion algorithms. Consequently, we projected DT-MRI of each
subject through the same inter-subject transformation. The
quality of the inter-subject alignment is assessed by estimat-
ing the consistency of the aligned DT-MRI using the Log-
Euclidean framework.

1. INTRODUCTION

Image registration is currently used routinely in clinical en-
vironment. The fusion of information coming from differ-
ent imaging modalities has revealed to be a powerful tool for
a number of medical applications: radiotherapy, minimally
invasive procedures, surgical navigation, robot-assisted inter-
ventions, pre-operative simulation, surgical planning, etc. The
medical imaging research community has devoted substan-
tial efforts to study the rigid and nonrigid registration prob-
lem. However, the complexity associated with the nonrigid
registration makes it still an open and application-dependent
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problem [1]. Previous validation studies have used synthetic
phantoms or landmarks correspondence to validate registra-
tion algorithms. Synthetic phantoms provide a ground truth
but do not reflect the real variability observed across patients
and volunteers. Landmark detection is difficult, usually time
consuming and subject to inter-rater variability. Conventional
inter-subject registration algorithms are usually based on struc-
tural Magnetic Resonance Images (MRI).

In this paper we propose a method to assess alignment of
structural MRI using the additional information carried out by
Diffusion Tensor MRI (DT-MRI). DT-MRI provides an inde-
pendent and higher dimensional means of assessing the qual-
ity of the achieved registration. It enables the comparison
of the local position and orientation of regions of white mat-
ter that appear homogeneous in conventional MRI. We per-
formed inter-subject alignment of conventional T1-weighted
MRI using three different registration algorithms. The DT-
MRI of the same subjects were then projected using their re-
spective computed transformations. The quality of the inter-
subject alignment is assessed by estimating the deviation to
the mean of the aligned DTI-MRIs using the recently pro-
posed Log-Euclidean framework [2]. Using this approach,
the tensor space is converted into a vector space allowing for
group statistics (mean and variance) of the aligned tensors.

2. MATERIALS AND METHODS

2.1. Data

In this work a dataset of nine volunteers was considered. For
each of them high-resolution MRI was acquired using a 3T
Signa System (GE Medical Systems, Milwaukee, WI). The
acquired sets of images included the following: line scan dif-
fusion images (TR/ TE = 93/55ms, field of view [FOV] =
270cm, matrix size = 256×256) using a b = 1000s/mm2, 1
baseline (b = 5s/mm2) and 6 noncollinear and noncoplanar
directions, 60 contiguous 2-mm-thick axial sections for each



direction; and MPRAGE 3D T1-weighted (TR/TE = 8/3.2
ms, inversion preparation time = 725ms, postdelay time =
1400ms, FOV = 240cm, matrix size = 256×256), 124 con-
tiguous 1.3-mm-thick sagittal sections.

2.2. Evaluation Strategy

A first rigid registration was carried out for each subject be-
tween the diffusion baseline image and the structural MRI to
compensate for subject movement in the scanner. This es-
timated intra-subject transformation was then applied to the
diffusion tensors (see Section 2.4 for details on the tensor re-
orientation).

Figure 1 gives an overview of the evaluation procedure we
used.

For the inter-subject alignment, a T1-weighted MRI of a
randomly chosen subjectT1ref was used as a reference and
all the otheri subjectsi = 1 . . . N were registered to this
reference. Three different registration methods were eval-
uated: affine, B-Splines [3] and Demons[4]. The transfor-
mationsTRK,i estimated with each registration method were
applied to the DT-MRI as described in Section 2.4. An aver-
age tensor̄DLOG was computed at each voxel using the Log-
Euclidean framework (Section 2.5). Using the same frame-
work, the standard deviation among subjects and around the
mean tensor was computed for every voxel (Section 2.5). This
provides a global consistency measure for the quality of the
registration algorithm tested. Additionally, the histogram of
this error as a function of the quantized fractional anisotropy
(FA) of the reference subject is computed to evaluate this er-
ror in regions with differing tissue structure.

(a) Intra-subject alignment T1w-DT MRI

(b) Inter-subject alignment and evaluation procedure

Fig. 1. Flowcharts of the intra- and inter-subject alignment
and evaluation strategy of different registration algorithms us-
ing the Log-Euclidean framework.D∗

i andDi stands for the
original DT-MRI and the DT-MRI rigidly registered with the
corresponding T1-weighted respectively.

2.3. Registration Algorithms

2.3.1. Affine

A ITK [5] implementation is used. The mutual information
[6] between the images to be registered is maximized by opti-
mizing the 12 degrees of freedom (translation, rotation, scal-
ing and shearing). The registration scheme uses a coarse-
to-fine multiresolution approach and a Powell’s optimization
method.

2.3.2. B-Splines

A ITK [5] implementation of the free-form deformation algo-
rithm (FFD [3]) is used. After affine initialization of the trans-
formation, a displacement field modelled as a linear combina-
tion of B-splines is estimated by maximization of the mutual
information between the images to be registered. A regular
grid of uniformly distributed control points and a gradient de-
scent optimizer were used. A coarse-to-fine pyramidal based
approach was employed. At each pyramidal level, both the
resolution of the images and the number of control points in
each dimension were doubled. Different spacings between
control points were tested to study the influence of the pa-
rameters on the tensor consistency. In this work, spacings of
40.3, 17.9, 11.5 and8.5mm were tested (which corresponds
to 5× 7× 7, 10× 14× 14, 15× 21× 21, and20× 29× 29
grids of control points uniformly distributed).

2.3.3. Demons

A ITK [5] implemented multiresolution intensity-based algo-
rithm proposed by Thirion [4], based on the concept of optical
flow is used. The image alignment is approached as a diffu-
sion process. The object boundaries in the reference image
are viewed as semi-permeable membranes. The moving im-
age is considered as a deformable grid, and diffuses through
these interfaces driven by the action of effectors, called demons,
situated within the membranes. The smoothness of the dis-
placement field is controlled by filtering at each iteration with
a Gaussian function of standard deviationσ. In this study
σ values of 0.5, 1.0, 2.0 and 3mm were tested to study the
influence of the filtering on the results.

2.4. Reorientation of the Tensors

Unlike the univariate scalar intensity images (such as T1- and
T2-weighted images), tensors are structured data and must be
moved and reoriented according to the corresponding tissue
deformation. It is usually assumed that the nature of the ten-
sor should not change with the transformation [7]. Therefore,
only a local rotationR should be applied to the original tensor
D to compute the transformed tensorD′: D′ = RT DR.

Assuming a transformationT that displaces a pointx of
the moving image to the positionx′ of the reference image
(x′ = T (x)), the local rotation matrix is computed using a



polar decomposition of the Jacobian matrixJ = ∇(T ) [7].
The Polar Decomposition theorem states that any nonsingu-
lar square matrixJ can be decomposed into a rigid rotation
componentR and a deformation componentU : J = UR.

2.5. Log-Euclidean Metrics and Measures of Tensor Con-
sistency

Processing DT-MRI data has recently become of great impor-
tance in medical imaging. However, comparing tensors has
revealed to be a difficult task. Euclidean metrics leads to sim-
ple computations but they can produce null or negative eigen-
values when performing operations on tensors. In addition,
Euclidean averaging of tensors can also lead to aswelling ef-
fect, inducing artificially bigger (larger determinant) tensors
than the originals [2]. Those cases are physically unrealistic.

Affine-invariant Riemannian metrics [8] have theoretical
properties that overcome these problems but introduce a high
computational cost. The Log-Euclidean framework [2] pro-
vides a powerful tool that allows fast computations on the
tensor domain. Statistics are facilitated in this space, since
computation is performed in the same way as in the Euclidean
space. For details about the calculation of the matrix loga-
rithm of a tensor see [2]. Using this framework we can com-
pute the average tensor image of all the registered DT images
using a given registration method (see section 2.2). At each
voxel, an average tensor is computed as follows:

D̄LOG = exp(
1
N

N∑
i=1

log(Di)) , (1)

whereDi stands for the registered tensor of subjecti and
N stands for the number of subjects. Since we are interested
in the consistency of the tensors after registration the standard
deviation, called error, is computed as:

Error =

√√√√Trace(
1

N − 1

N∑
i=1

AAT ) , (2)

whereA = log(Di)−log(D̄LOG). log(D̄LOG) andlog(Di)
are expressed with the6 × 1 vectorial representation. This
produces a scalar consistency -or error- measure at each im-
age voxel.

3. RESULTS

A color map of the consistency measure at each voxel is de-
picted in Figure 2 for the affine registration, B-splines al-
gorithm with spacing between control points of8.5mm and
demons algorithm with regularization Gaussian filtering of
σ = 1mm. The same axial slice of the 3D images is shown
for the three algorithms output.

To study independently different tissues, the FA of the
reference subject was quantized. The average error was also

computed for every histogram bin and for every registration
method. Figure 3 shows the distribution of the error for the
different methods and parameters as a function of the frac-
tional anisotropy of the reference subject. Only the voxels
belonging to the brain were considered using a segmentation
mask generated with Brain Extraction Tool (BET) [9].

A global consistency measure was computed for each method
and each set of parameters as the mean and unbiased standard
deviation of the error within the brain. These results are pre-
sented in Table 1.

The results showed that the best non-linear method (B-
splines) provides a reduction of the mean global error by 16.25%
and a reduction of the standard deviation of this error by 29.88%
compared to affine registration. The mean global errors of
the best B-splines and the best demons algorithms are com-
parable. However, the standard deviation of the error for the
B-splines method showed a reduction by 7.22% compared to
the demons method.

(a) (b) (c)

Fig. 2. Error to the Log-Euclidean average tensor at each
voxel using different registration algorithms. (a) Affine (b)
B-splines with20 × 29 × 29 control-points (c) Demons with
Gaussian filtering ofσ = 1.0mm.

Fig. 3. Histogram of the error to the Log-Euclidean average
tensor using different methods and parameters. The error is
represented as a function of the quantized FA of the reference
subject.



Methods mean± std (log(10−3mm2s−1))

Affine 0.4105 ± 0.1650

B-splines 5x7x7 0.3620± 0.1357

B-splines 10x14x14 0.3487± 0.1198

B-splines 15x21x21 0.3454± 0.1162

B-splines 20x29x29 0.3438 ± 0.1157

Demonsσ=3.0 0.3605± 0.1406

Demonsσ=2.0 0.3515± 0.1320

Demonsσ=1.0 0.3453 ± 0.1247

Demonsσ=0.5 0.3658± 0.1394

Table 1. Global error statistics. Mean and unbiased standard
deviation of the error for the whole brain volume given by
each method and set of parameters.

4. DISCUSSION AND CONCLUSIONS

The global increase in the error with high FA values can be
explained, since the more anisotropic the tensor is, the bigger
the error for the same angular misalignment gets. Moreover,
since diffusion coefficients are coded as signal loss in diffu-
sion weighted images, the regions with high FA values have
a smaller signal to noise ratio, which causes the tensors to be
less accurately estimated.

For the B-splines algorithm, the increase of the flexibil-
ity of the transformation (by increasing the number of con-
trol points) is consistently associated with a decrease of the
mean error and standard deviation. This is explained by the
good mathematical properties (C2 continuity) of the vector
field modelled by B-splines functions.

The demons algorithm shows a higher sensitivity to the
parameters. By decreasing theσ of the gaussian filtering reg-
ularization, the elasticity is increased and smaller mean errors
are obtained. However, for smallσ values, the transformation
is not sufficiently constrained leading to local misalignments.
This induces a re-increase of the error.

Smallest error results are obtained for the B-splines method
with spacing of8.5mm (20x29x29 grid) and for the demons
method with aσ = 1.0mm. Figure 3 shows that for FA<0.3,
which correspond approximately to grey matter, the B-splines
algorithm performs slightly better than the demons in terms
of mean error and reversely for FA>0.3, which corresponds
approximately to white matter. However, for any FA the vari-
ance of the error for the demons algorithm is worse compared
to the B-splines algorithm. As the grey matter is globally less
contrasted and has a more complex structure (gyri) than the
rest of the brain on the structural MRI, the regularization of
the transformation plays a crucial role. White matter has more
structural information and so we need a more precise point-
to-point localization. In summary, the B-splines method is

globally better in terms of mean error while demons regis-
tration is locally better for regions with high FA. However,
demons registration is prone to have large local mismatch in
some locations as shown by the increase in the standard devi-
ation of the error for any FA.

The evaluation procedure we propose here is a general
method to assess registration algorithms and to find the opti-
mal parameters. Classical registration evaluation procedures
were only based on structural MRI scalar images (1 grey value
per voxel). The use of DT-MRI consistency measures pro-
vides an independent 6th order comparison means (6 inde-
pendent tensor coefficients per voxel) to evaluate the quality
of alignment achieved by different methods. This has allowed
us to rank the different registration methods and to character-
ize performances of particular parameter settings.
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