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Abstract

Traditionally, segmentation and registration have been solved as two independent problems, even though it is often the case that the
solution to one impacts the solution to the other. In this paper, we introduce a geometric, variational framework that uses active contours
to simultaneously segment and register features from multiple images. The key observation is that multiple images may be segmented by
evolving a single contour as well as the mappings of that contour into each image.
   2003 Elsevier Science B.V. All rights reserved.
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1 . Introduction examples of this strategy, as well as registration methods
that compare medialness properties of segmented

Segmentation and registration have been established as anatomies (Yushkevich et al., 1999). In contrast to feature-
important problems in the field of medical image analysis based registration methods, a second class of methods,
(Ayache, 1995; Cline et al., 1990; Grimson et al., 1994; referred to as ‘intensity-based’ segmentation methods,
Vannier et al., 1985). Traditionally, solutions have been require no a priori segmentation, which makes them an
developed for each of these two problems in relative attractive proposition. Some of the most frequently used
isolation from the other, but with increasing dependence objective functions in such registration frameworks are:
on the existence of a solution for the other. In the rest of normalized cross-correlation (Lemieux et al., 1994), en-
this section, we discuss the interdependence of segmenta- tropy of the difference image (Buzug et al., 1997), pattern
tion and registration solutions and introduce our motivation intensity (Weese et al., 1997b), gradient correlation
for a method that simultaneously estimates the two. (Brown, 1996) and gradient difference (Penney et al.,

1998). Mutual-Information was introduced as a particularly
1 .1. Dependence of registration on segmentation effective intensity-based metric for registration of medical

imagery (Collignon et al., 1995; Wells et al., 1995), and its
A large class of registration solutions, referred to as applicability has been repeatedly demonstrated for solving

‘feature-based’ methods, require that some features be rigid-body (6 degrees of freedom) registration problems.
identified or segmented in the images prior to their No such consensus, feature-based or intensity-based, seems
registration. These features may be identified using low- to have been reached for the domain of non-rigid registra-
level methods such as edge-detection, or segmented using tion.
higher level methods that are customized for specific
anatomical structures. Contour- and point-based techniques1 .2. Dependence of segmentation on registration
(Tang et al., 2000; Weese et al., 1997a,b; Yaniv, 1998) are

The dependence of segmentation on registration is
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segmentation methods. In these low-level segmentation ences therein). A variety of active contour models have
methods, the algorithm designers typically use information been proposed since the introduction of the ‘snake’ meth-
synthesized from their knowledge of several example data odology in the mid-1980s (Kass et al., 1987). These
sets to set the parameters of their segmentation algorithms, original models utilized parametric representations of the
but no explicit process of registering those data sets to a evolving contour. Shortly thereafter, using the level set
common reference frame is carried out prior to segmenta- methodology of Osher and Sethian (1988), more geometric
tion. These methods may process a single channel input techniques (such as those presented in (Malladi et al.,
image using image-processing techniques such as thres- 1995)) began to arise based upon the theory of curve
holding, connectivity analysis, region-growing, morpholo- evolution. An important class of these geometric models
gy, snakes, and Bayesian MAP estimation. Or, they may was derived via the Calculus of Variations to obtain
process multi-channel data in which the channels are evolution equations which would minimize energy func-
naturally registered because they are acquired simultan- tionals (or ‘objective functions’) tailored to features of
eously. interest in the image data. An in-depth discussion of

While it is easier to get started in segmentation using variational image segmentation methods, as well an exten-
these methods because there is no need to solve the sive list of references, may be found in the book (Morel
cumbersome registration problem a priori, efforts in low- and Solimini, 1995). The model that will be presented in
level segmentation of medical imagery often conclude that this paper certainly fits within the context of these geomet-
‘model-based’, higher level information such as the shape, ric variational approaches. However, we will exploit the
appearance, and relative geometry of anatomy needs to be calculus of variations to address not only the problem of
incorporated into the solution in order to complete the image segmentation, but simultaneously the problem of
segmentation task (Baillard et al., 2000; Cootes et al., image registration as well.
1994; Kapur et al., 1998; Staib and Duncan, 1992; Szekely Most of the early active contour models for image
et al., 1996). And it is in the building of these models of segmentation, such as (Caselles et al., 1993, 1997; Cohen,
anatomy that registration plays a key role. Individual data 1991; Kass et al., 1987; Malladi et al., 1995; Tek and
sets need to be registered to a common frame of reference, Kimia, 1995; Yezzi et al., 1997), were designed to capture
so that statistics about their shape, appearance, or relative localized image features, most notably edges. As such,
geometry can be gathered. these have come to be known as ‘edge-based’ models. In

The work presented in this paper is motivated by the medical imaging and many other important applications
desire to interleave the process of segmentation and where consistently strong edge information is not always
registration so that both solutions may be built simul- present along the entire boundary of the objects to be
taneously and hence to eliminate the need to completely segmented, the performance of purely edge-based models
deliver one solution before being able to start on the other. is often inadequate. In recent years, a large class of
This challenge has been approached with a min–max region-based models (such as Chakraborty et al., 1996;
entropy-based framework to segment and register portal Chan and Vese, 1999; Paragios and Deriche, 1999;
images to CT (Bansal et al., 1999), and with the ATM Paragios et al., 2002; Ronfard, 1994; Samson et al., 1999;
SVC algorithm which applies an iterative sequence of Yezzi et al., 1999) have utilized image information not
elastic warping of the input to an already segmented model only near the evolving contour but also image statistics
in order to automate the classification of normal and inside and outside the contour (in many ways inspired by
abnormal anatomy from medical images (Warfield et al., the ‘Region Competition’ algorithm presented by Zhu and
2000). A novel extension to level set representations and Yuille (1996)) in order to improve the performance.
active contour models by incorporating shape priors (Chen There are still many cases in which both edge- and
et al., 2001; Paragios and Rousson, 2002; Paragios et al., region-based active contour models have difficulty yielding
2002) have also been recently introduced, which correct segmentations of images that present rather subtle
frameworks could potentially be used to address our information about portions of the object to be captured.
proposed task. Significant improvement may be obtained in such cases by

The focus of this paper is to introduce a geometric, combining information from images of the same object
variational, active contour framework that allows us to acquired using different modalities (CT and MR, for
interleave powerful level-set-based formulations of seg- example). However, to utilize the joint information, the
mentation with a feature-based registration method. various images must be correctly aligned to each other or

‘registered.’ If this can be done prior to segmenting any of
the images, thenregistration can assist segmentation.

2 . Background on active contours It is equally true, on the other hand, thatsegmentation
can assist registration. It is typically much easier to align

Active contours have been utilized extensively for two images if the boundary of a common object or some
problems including image segmentation, visual tracking, other set of common point features have have been
and shape analysis (see Blake and Isard, 1998 and refer- accurately detected in both images beforehand. The images
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may then be registered by point feature or contour match- Our problem, then, is to find both a mappingg (which we
ing. Furthermore, there may be cases in which registration will refer to from now on as the registration) and a contour

ˆis impossible (at least rigid registration) without some level C such thatC andC 5 g(C) yield desirable segmentations
ˆof segmentation. This is the case when two (or more) ofI and I, respectively. In this manner, the segmentation

images contain multiple common objects which may not and registration problems become coupled very naturally.
be related by a single global mapping between the image We will make use of the following additional notation.

ˆ ˆdomains. For example, an X-ray image of the femur and T, N andT, N will denote the unit tangents and normals to
ˆ ˆtibia may not be globally registered to a CT image of the C andC, respectively. In the same manner, dx will denote

ˆfemur and tibia if the knee is bent differently in the two the area measure dx (of V ) pushed forward (ontoV ) by g,
ˆimages. Yet it is certainly possible to choose a registration and ds will denote the arc length measure ds (of C) pushed

ˆwhich aligns the two femoral bones or a different registra- forward (ontoC ) by g. The relationships between these
ˆ ˆtion which aligns the two tibial bones. In either case, measures are given by dx5ig9i dx and by ds 5 ig9T i ds.

though, it is necessary to segment the desired object from Finally, letC ,V andC ,V denote the regions insidein out
ˆ ˆˆ ˆboth images in order to perform the registration. and outside the curveC and let C ,V and C ,Vin out

ˆNext, we outline a geometric, variational framework for denote the regions inside and outside the curveC.
simultaneously segmenting and registering common ob-
jects in two or more images (the technical discussion will 3 .2. Energy functional
consider just two images, but the approach is easily
adapted to multiple images). While our methodology is If we were charged with the task of segmenting imageI

ˆquite general and may certainly utilize any number of and I separately (i.e., without enforcing a relationship
ˆsegmentation energy functionals, we focus our attention between C and C ), then we might choose from any

around region-based energy functionals; in particular, we number of geometric energy-based active contour models
will utilize the (Mumford and Shah, 1989) energy pre- and would certainly be free to utilize two different models

ˆsented in (Chan and Vese, 1999). if the characteristics of imageI and I were sufficiently
different. Let us refer to the energy functionals associated
with these two models asE and E , respectively.1 2

In order to discuss the problem in more detail, we must3 . General framework
choose a specific form forE and E . Because of their1 2

wider capture range and greater robustness to noise, we
In this section we outline the general framework for

prefer to focus our discussion around region-based energy
joint registration and segmentation via active contours. In

functionals rather than edge-based energy functions; al-
Section 4, we will address rigid registration with scaling as

though, a similar development can be followed for almost
a special case. Our model will be derived first for the

any class of geometric active contour energies (even more
two-dimensional case, and then the corresponding three-

sophisticated models that incorporate both edge and region
dimensional active surface model will be presented. We

measurements, shape priors, anatomical constraints, and
begin by establishing some basic notation.

other considerations).
A general class of region-based energies exhibit the

following form:3 .1. Notation and problem statement

2 2ˆˆLet I: V ,5 → 5 and I : V ,5 → 5 denote two E (C)5E f (x)dx1 E f (x) dx, (1)1 in out
images that contain a common object to be registered and C Cin out2 2segmented, and letg: 5 → 5 be an element of a finite
dimensional groupG with parametersg , . . . ,g . We will ˆ ˆ1 n ˆE (C )5E f (x) dx1 E f (x) dx, (2)2 in outˆˆdenote byx[V the image of a pointx[V underg (i.e.,

ˆ ˆC Cin outx̂5g(x)), and we will denote the Jacobian matrix ofg by
g9 and its determinant (which we assume is positive) by where the integrandsf andf depend onI and where thein out

ˆ ˆ ˆug9u. integrandsf and f depend onI. If we introduce anin out
Our goal may be stated as follows. We wish to find a artificial time variable, we obtain the following gradient

ˆclosed curveC ,V which captures the boundary of an evolutions forC and C :
ˆˆobject in imageI, and another closed curveC ,V which ≠C ≠C ˆ ˆ ˆ] ]5 ( f 2 f )N and 5 ( f 2 f )N. (3)captures the boundary of the corresponding object in image in out in out≠t ≠tˆ ˆI. If C andC were independent, this would simply be two

For example, the piecewise-constant segmentation modelˆsegmentation problems. However, we will relateC and C
of Chan and Vese (1999), which the authors utilized forthrough a mappingg [G.
the experiments in this paper, favors a curve which yields

C[g(C). the least total squared error approximation of the image by
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one constant inside the curve and another constant outside by considering only one mappingg, which requires us to
the curve. This yields the following particular choices for arbitrarily place the unknown curve in one of the two

ˆ ˆ image domains.f , f , f and f ,in out in out

2 2f 5 (I 2 u) , f 5 (I 2 v) ,in out 3 .3. Gradient flows
2 2ˆ ˆˆ ˆˆ ˆf 5 (I 2 u ) and f 5 (I 2 v ) ,in out

The most straightforward method for minimizingE(C,
where u and v denote the mean values ofI inside and g) is to start with an initial guess for bothC andg and then

ˆˆ ˆoutsideC and whereu andv denote the mean values ofI evolve the contourC and the registration parametersg ,1
ˆinside and outsideC. g , . . . ,g using a gradient flow.2 n

By combining the selected energy functionals and The gradient evolution for the curveC may be obtained
ˆenforcing the relationshipC 5 g(C), we may formulate a immediately by noticing that (5) has the same form as (1,

joint energy that depends ong and C. 2). Thus, its gradient flow has the same form as (3).
Simple substitution yieldsE(g, C)5E (C)1E (g(C))1 2

≠C ˆ]5 ( f 1 ug9uf + g)N,5E f (x) dx1 E f (x) dx ≠tin out

C Cin out ˆ ˆ ˆwhere f 5 ( f 2 f ) and f 5 ( f 2 f ).in out in out

ˆ ˆ1E f (x) dx1 E f (x) dx. (4) This flow, by itself, however, is not guaranteed to keep thein out

evolving curve smooth. Thus, as is standard in mostˆ ˆC Cin out

geometric active contour models, we will add a curvature
We may re-express this energy using integrals only over (k) term to the gradient flow (which arises if we add an arc

1the spaceV, which contains the contourC, as follows: length penalty to our energy functional) in order to
regularize the curve evolution:

ˆE(g, C)5E ( f 1 ug9uf + g)(x) dxin in
≠C

C ˆin ]5 ( f 1 ug9uf + g)N 2kN. (6)
≠t

ˆ1 E ( f 1 ug9uf + g)(x) dx. (5) The gradient evolutions for the registration parametersout out

ˆC g , . . . ,g depend upon the geometry of the curveC andout 1 n

are given byNow that task is to chooseg and C in order to minimize
ˆ(5). In doing so, we simultaneously segment bothI and I dg ˆ≠E ≠xi ˆ ˆ] ] ] ˆ ˆ5 5E , f(x )N dsK Lˆvia C andC as well as register the detected features (which dt ≠g ≠gi i

Ĉare guaranteed to have the same detected shape since the
ˆ ≠contoursC and C will not be deformed independently) to ˆ ˆ]5E g(x), f(g(x))N ig9T i dsK L≠geach other through the mappingg. i

C

≠ 21ˆRemarks. Obviously a weighted combination ofE andE ]5E f(g(x)) g(x), Jg9J N dsK L1 2 (7)≠giwould be more general and useful in the event that one C

image is easier to segment than the other. However, to ≠ˆ ]5E f(g(x)) g(x), Adj[ g9]N dsK Lkeep the development as clean and simple as possible, we ≠gi
Cwill not include such weights. (We will follow a similar

≠ 21 Tconvention of ignoring weighting coefficients when we add ˆ ]5E f(g(x)) g(x), ((g9) ug9u) N ds.K L≠gcurvature terms to the upcoming gradient flows.) A more i
C

significant point, though, is that (5) does not allow the
(The last few steps use the fact thatregistration g to be directly influenced byE . This is a1

21result of our arbitrary choice to let the unknown curveC g9T Jg9J Adj[ g9]ˆ ]] ]] ]]]N 5 J 5 N 5 N,live in the domainV of image I. A more symmetric S Dig9T i ig9T i ig9Niarrangement would involve utilizing a separate domain for
C and two mappingsg [G andg [G to mapC into V whereJ denotes the 908 rotation matrix and where Adj[g9]1 2

ˆ 21 TandV, respectively. Then the actual registration between denotes the adjunct matrix ofg9 given by ((g9) ug9u) ).
21ˆtheV andV would be given byg + g . Once again, we In the 3D case, whereS denotes an active surface (in2 1

ˆhave chosen to keep the presentation as simple as possible place of the active contourC) and whereS denotes the
ˆtransformed surfaceS 5 g(S), the registration evolution has

ˆ1 the following similar form (where dA and dA denote theThe ‘circle’ operation in this equation stands for the standard symbol
ˆof function composition and does not indicate a dot product. Euclidean area measures ofS and S and whereT and Tu v
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ˆdenote orthonormal tangent vectors such thatT 3 T 5 between the two contoursC andC rather than the betweenu v
ˆN): the entire image domainsV andV. Thus, while our model

philosophically generalizes in this manner, we feel it is
ˆ≠E ≠x practically better suited for rigid, affine, and other finalˆ ˆ ˆ] ] ˆ5E , f(x )N dAK L≠g ≠gi i dimensional forms of registration. In the remainder of this

Ŝ
paper we will develop and demonstrate the rigid and affine

≠ ˆ ˆ cases.]5E g(x), f(g(x))N ig9T 3 g9T i dAK L u v≠gi
S

≠ Tˆ ]5E f(g(x)) g(x), ((g9)ug9u N dA.K L 4 . ‘Affine’ registration≠gi
S

Notice that the gradient curve evolution (6) forC andThe last step uses the fact that
the gradient direction (7) for the vector of registration

g9T 3 g9T Adj[ g9](T 3T ) Adj[ g9]Nu u u v parametersg , . . . ,g both depend upon the Jacobian,g9ˆ 1 n]]]] ]]]]] ]]]]N 5 5 5 .
ig9T 3 g9T i ig9T 3 g9T i ig9T 3 g9T i of the registration mapg. In the special case whereG isu v u v u v

the group of rigid-body motions following a (possibly
3 .4. The infinite dimensional (non-rigid /non-affine) case nonuniform) scaling operation, then we may representg by

a rotation matrixR, a scaling matrixM and a displacement
So far, we have considered finite dimensional registra- vector D:

tion in the development of this coupled model. We will
g(x)5RMx 1D. (10)continue to develop specific finite dimensional cases

(namely rigid and affine) in the following sections and Note, the fully affine case could be obtained by incorporat-
demonstrate these cases in our experiments. However, ating an additional shearing matrix into the above formula-
the helpful suggestion of the reviewers, we wish to take a tion. In the case described by (10), the Jacobian ofg is
moment to discuss how our approach may be formulated independent ofx and is simply the product of the rotation
mathematically in the infinite dimensional case (i.e. neither and scaling matricesR and M. The determinant of this
rigid nor affine). The philosophy remains the same, namely product equals the determinant of the scaling matrix,m 5
we consider a single underlying contourC and a mapping uMu5 (M M ), thereby greatly simplifying both (6) andx yg which, when applied to the contourC, yields a second (7):

ˆcontourC 5 g(C). However, if the mappingg is arbitrary,
ˆ ≠Cthen the coupling betweenC andC is effectively nonexis- ˆ]5 ( f(x)1mf(g(x)))N 2kN, (11)ˆ ≠ttent. To see this, consider choosingC independently ofC

ˆin order to minimize the second termE (C ) in (4) while C2 dg ≠g(x)i 21ˆis chosen to minimize the first termE . Once the optimalC ] ]]5E f(g(x)) , mRM N ds. (12)K L1 dt ≠giˆand C are chosen in this manner, the two contours may C
ˆ‘artificially’ be coupled by choosingg such thatC 5 g(C).

4 .1. The 2D caseWe therefore see that without imposing some structure on
g, we are back to segmenting each image independently.

In two dimensions, the rotation matrixR depends upon aWe may impose a ‘soft’ structure ong by penalizing the
single angleu, the scaling matrix depends upon twovariation of g along the curve. For example, suppose we
scaling factorsM and M , and the displacement vectorDx ygive a completely general formg(C)5C 1T whereT is a
depends upon two offsetsD and D in the x and yx ytranslation vector which varies from point to point along
directions, respectively:the curve. In this case, the variation ofT may be penalized

by adding the following regularizing termE to (4): cosu sinu M 0 D3 x x
R5 , M 5 , D 5 .F G F G F G2 sinu cosu 0 M Dy yb 2]E 5 E iTsi ds. (8)3 2 The partial derivatives ofg(x) needed in (12) with respect

C
to these five registration parameters are given by

Computing the first variation ofE andE with respect to2 3
2 sinu cosu M 0 x≠g(x) xT yields the following gradient flow forT :

]]5 ,F GF GF G2 cosu 2 sinu 0 M y≠u y2
≠T ≠ Tˆ ˆ] ]5 fN 1b . (9) ≠g(x) ≠g(x)2 1 0≠t ≠s ]] ]]5F G, 5F G,

≠D 0 ≠D 1x y
Note that a significant sacrifice is made by replacing the

≠g(x) ≠g(x)x 0explicit parametric structure ofg with this softer penalty ]] ]]5R , 5R .F G F G0 y≠M ≠Mx yterm E in that the registration is now only defined3
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4 .2. The 3D case where m 5 uMu5 (M M M ) and H and dA denote thex y z
ˆmean curvature and area element of the surfaceS (N andN

In three dimensions, we evolve a surfaceS rather than a denote the unit normal ofS andS 5 g(S) just as in the 2D
curve C and our registrationg now represents a mapping case for curves).

3 3from R to R . However, for the case of our special affine
registration, g still has the form of (10). The rotation
matrix R can be represented by a product of three separate5 . Results
rotation matricesR , R and R which cause rotationsa b g

around thex-, y- and z-axis, respectively. We refer to the In this section, we report segmentation/ registration
corresponding angles as roll (a), pitch (b ) and yaw (g ). results from three experiments on MRI/CT and one on
The scaling matrixM contains three componentsM , M MR/MR images of the head and the spine. The firstx y

and M and the translation vectorD depends upon three experiment was performed in 2D, while the second, thirdz

offsets D , D and D in the x, y and z directions, and the fourth ones were performed in 3D. In the 2Dx y z

respectively: experiment, corresponding slices between the MR and the
CT were chosen manually, and used as input for our

R5R R R ,g b a algorithm. In the 3D experiments, a pair of 3D MR and CT
or a pair of MR scans was used as input, without any1 0 0
attempt to manually initialize the registration. In all fourR 5 0 cosa 2 sina ,F Ga
cases, validation is performed by visual inspection of the0 sina cosa
results. Quantitative analysis of the algorithm performancecosb 0 sinb
is done in the following section.R 5 0 1 0 ,b 3 4

2 sinb 0 cosg
5 .1. 2D MR-CT head experiment

cosg 2 sing 0
R 5 sing cosg 0 ,g Input: In this experiment, the input consists of two 2D3 4

0 0 1 images of the head. The first input image is a single, axial
cross-section from a 3D, gradient echo MRI scan (top rowM 0 0 Dx x
of Fig. 1), and the second image is the (manually chosen)0 M 0 DM 5 and D 5 .y y
corresponding cross-section from a 3D CT scan (bottom3 4 3 40 0 M Dz z row of Fig. 1).

Goal: The goal of the joint segmentation-registrationThe partial derivatives ofg(x) with respect to these nine
experiment is to simultaneously segment the skin surfaceregistration parameters are given by
and register the two slices.

≠g(x) Initialization: A curve is initialized on the MR image,]] 95R R R Mx1D,g b a≠a such that it lies within the head images. This initial curve
≠g(x) is shown in the left column of Fig. 1. We choose initial
]] 95R R R Mx1D,g b a registration parameters such that they map this initial curve≠b

inside the head of the CT image but clearly not at the≠g(x)
]] 95R R R Mx1D, ‘corresponding location’.g b a≠g

Outcome: The final joint segmentation is shown in the
1 0 0 right column of Fig. 1. Notice that the contour accurately≠g(x) ≠g(x) ≠g(x)

]] ]] ]]5 0 , 5 1 , 5 0 , outlines the skin surface in both the MR and CT imagesF G F G F G≠D ≠D ≠Dx y z0 0 1 and also that as the contour evolves (left to right) within
the MR image (top), its rigid transformation into the CTx 0 0≠g(x) ≠g(x) ≠g(x) image (bottom) is also evolving.0 y 0]] ]] ]]5R , 5R , 5 .F G F G F G≠M ≠M ≠Mx y z0 0 z
5 .2. 3D MR-CT spine experiment

These derivatives are utilized to update the registration
parameters via the coupled flow for the surfaceS and the Input: In this section, we present results from two
registrationg according to the following equations (analo- similar experiments. In both cases, the input consists of a
gous to (11) and (12) for the 2D case): 3D CT and a 3D MR data volume of the spine. In the first

experiment, the acquisition orientation was sagittal while≠S ˆ]5 ( f(x)1mf(g(x)))N 2HN, in the second it was axial. The results are shown from a≠t
sagittal view in both cases.dg ≠g(x)i 21ˆ] ]]5E f(g(x)) , mRM N ,K L Goal: The goal of the joint segmentation-registrationdt ≠gi

S experiment is to segment a single vertebra while comput-
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Fig. 1. Registration/segmentation of 2D MR/CT head data: initial (left), intermediate (middle) and final (right) results. The top row shows the evolving
contour overlaid on the MR slice, and the bottom row shows it overlaid on the CT slice. Note that the rightmost column shows that the contour has
correctly identified the skin boundary in both the CT and the MR.

ing the rigid transform that registers the two corresponding and the top rows of the bottom section of Fig. 3. The initial
vertebrae in the different modalities. Note that the two registration parameters map this initial surface into the
spine images could not be registered, as a whole, by a neighborhood of the same vertebra in the CT image, but
single rigid transform. not exactly to the corresponding position.

Initialization: A surface is initialized within one of the Outcome: The segmentation component of the result is
vertebrae in the MR slice (shown in the first row of Fig. 2) shown in the last rows of Figs. 2 and 3. Notice, that in both

Fig. 2. Registration/segmentation of MR and CT Spine Images: initial (top) and final (bottom) results of Experiment 1. The left column shows MR
cross-sections of the spine, and the right column shows CT slices of the same subject. In the top row, the initial contour is located inside the vertebraof
interest, overlaid on both the MR and the CT acquisitions. Note the poor contrast around the vertebra of interest in the MR image, as well as the fact that
the transform between the two spine volumes is not rigid (the spine curves differently in the two images). The bottom rows show the cross-section of the
final surface, which has captured the boundary of the vertebra in the MR and CT scans.
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Fig. 3. Registration/segmentation of 3D CT and 3D MR spine images. Experiment 2. The figure shows the evolving 3D surface.

cases, the contour accurately outlines the boundary of the 5 presents a set of two axial MR slices taken from the two
vertebra in both of the MR and the CT slices. By different datasets (from different views).
segmenting/ registering each vertebra in this manner, the Goal: The goal of the joint segmentation-registration
change in the curvature of the spine could be estimated experiment is to segment the surface of the ventricle while
between two scans. A 3D model of the developing surface registering the two 3D data sets.
has also been constructed for the second experiment (first Initialization: A surface is initialized such that it
row of Fig. 3). The results of these experiments best contains the ventricle in the MR images. This initial
illustrate the power of our joint segmentation/ registration surface is shown in the top left corner of Fig. 5.
procedure. Outcome: The segmentation component of the result is

presented in two different forms in Fig. 5. The first row
presents the evolving 3D surface at the initial, at an

5 .3. 3D CT-MR head experiment
intermediate and at the final stages of the experiment. The
second row demonstrates cross-sections of the surface

Input: In this experiment, the input consists of two 3D
overlaid on axial MR slices. In this row, the first column

data sets of the head, one MR, one CT. Each data set
shows the initial, the second column an intermediate, and

contains 23 slices of size 2563256. The middle row of
the third column the final state of the surface model

Fig. 4 shows an axial slice from the MR data set, and the
intersected with the MR slices. This experiment is an

bottom row shows the corresponding slice from the CT
excellent example for a scenario where it is essential to

data set.
recover not only a rigid-body movement, but the scaling

Goal: The goal of the joint segmentation/ registration
parameters of the transformation, too.

experiment is to segment the 3D skin surface while
registering the two 3D volumes.

Initialization: A surface is initialized such that it lies
6 . Validation experiments

outside the head in the MR image. This initial surface is
shown in the top left corner of Fig. 4.

6 .1. Images used for validation
Outcome: The segmentation component of the result is

presented in two different forms in Fig. 4. The first row
In the following validation experiments, we use a set of

(images a–c) presents the evolving 3D surface at the
synthetic images, which are displayed in Fig. 6. Besides

initial, at an intermediate and at the final stages of the
the original binary image (‘Original Image’), we created

experiment. The second and third rows demonstrate cross-
two other images by adding different amounts of Gaussian

sections of the surface overlaid on axial MR and CT slices,
noise to the former. In both cases the distorting noise is

respectively. In each row, the first column shows the
zero-mean, and one has 0.05 variance while the other has

initial, the second column an intermediate, and the third
0.5. In the case of Image A, we also applied a rigid

column the final state of the surface model intersected with
transformation to one of the objects present.

the MR and CT slices.

6 .2. How registration is aided by segmentation
5 .4. 3D CT-MR ventricle experiment

In order to demonstrate in what manner segmentation
Input: In this experiment, the input consists of two MR results aid the registration procedure, we ran two different

3D data sets of the same patient, taken 1 month apart. The types of experiments. The first experiment demonstrates
data volumes are of different dimensionality and their the fact that without segmentation some of the above-
voxels are also of different scales. The second row of Fig. introduced images cannot be successfully registered. That
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Fig. 4. Registration/segmentation of 3D MR and CT head images: initial (left), intermediate (middle) and final (right) results. The top row (a–c) shows the
evolving surface. The bottom two rows shows cross-sections of the evolving surface overlaid on an MR (d–f) and CT slice (g–i), respectively.

is true, for example, in the case of Image A and Image B. segmentation algorithm on the input images, which was
Given that the rigid transformation should not be applied targeted to the objects whose position difference was to be
to the whole input images, but merely to certain parts of it, recovered. In addition, we also added a regularization term
the registration results are incorrect. We ran registration to the segmentation algorithm. That improved the quality
experiments implementing a joint entropy minimization of segmentation results on the noisy inputs by making the
objective function with a stochastic gradient descent resulting boundaries smoother (see the input images on
optimization, but the registration error was always greater Fig. 7). Using these segmented contours as registration
than 15 mm. inputs, a matching rigid transformation could more accu-

In the second set of experiments, we used the same input rately be computed. The average error of the registration
images as above. This time, however, we first ran a experiments was (4.2544, 1.2305) mm, respectively, in the
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Fig. 5. Registration/segmentation of 3D MR ventricle images: initial (left), intermediate (middle) and final (right) results. The top row shows the evolving
surface. The bottom row presents cross-sections of the evolving surface overlaid on the MR slices from the two different volumes.

x andy directions. We should note though that the success object become (see Fig. 8). Sharp corners of the targeted
of the algorithm is largely affected by the accuracy of the objects are often cut off, which can lead to significant
segmentation quality. Although the higher the regulariza- degradation of the registration results.
tion term we add to the segmentation algorithm, the Thus we can conclude that registration algorithms do
smoother but less precise the boundaries of the targeted benefit from segmentation results in certain applications.

Fig. 6. Synthetic images serving as inputs to the validation experiments. In the case of Image A, the added Gaussian noise is zero-mean with 0.05 variance
and in the case of Image B, the noise is zero-mean with 0.5 variance. There is a known rigid transformation applied to the square of Image A.
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Fig. 7. Input images to the registration validation experiment where the objects of interest were pre-segmented. In the case of Image B (right), a
regularization term was added to the segmentation criterion to obtain smoother boundaries.

6 .3. How segmentation is aided by registration strated in Fig. 8, in order to exactly match later the
parameter settings of the segmentation/ registration cou-

We carried out some experiments using the same pled approach.
synthetic datasets in order to demonstrate how segmenta- When, however, these two images were segmented
tion can benefit from the coupled registration process. simultaneously, using segmentation coupled with the regis-

In the first round of experiments, we only carried out the tration process, proper segmentation results could be
segmentation process, separately on the two input images: accomplished (see Fig. 10). After terminating the experi-
Image A and Image B. While in the case of Image A the ments, the contours correctly outlined the borders of
segmentation could be carried out with good results, in the interest. The registration results were within 0.12 mm
case of Image B the segmentation did not succeed because accuracy.
of the high level of noise. The segmentation boundary
remained very rough and numerous short contours were6 .4. Registration accuracy
introduced (see Fig. 9). Note, that in these experiments we
did not use such a powerful regularization term as demon- For the registration validation experiments, we ran three

Fig. 8. Object boundaries with (left) a lower and (right) a higher regularization parameter.
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Fig. 9. Individual segmentation experiments on Image A (first column of images) and Image B (second column of images) separately. Note, the same level
of regularization was used here as later on in the case of the coupled registration and segmentation method (Fig. 10).

different sets of experiments (Experiment I, II, III). The tion parameters were given (see Fig. 11). In each set of
first two sets used synthetic images as inputs: Image A and experiments, we executed the algorithm several times, each
Image B. The third set was run on real MR-CT slices of a time with a different initial contour which was either
head (see Fig. 11). In both cases ground truth transforma- within or outside of the object boundary to be segmented.
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Fig. 10. Registration and segmentation are coupled to obtain the desired task. The images shown in a row were treated together. Note, the same level of
regularization was used here as earlier in the case of the individual segmentation procedures (Fig. 9).
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Fig. 11. CT and MR image slices used as input for the registration validation experiments.

Table 1
Registration accuracy results

Experiments No. of runs Error measures Mean (error) Variance (error)

I 30 Translation (mm) (0.4970, 0.5873) (0.0418, 0.0351)
Rotation (rad) NA NA

II 22 Translation (mm) (0.3432, 0.4586) (0.0426, 0.0261)
Rotation (rad) NA NA

III 16 Translation (mm) (20.0944, 0.0008) (0.1206, 0.0386)
Rotation (rad) 0 0
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