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Abstract

A stochastic finite element framework is presented for the simultaneous estimation of the cardiac kinematic functions and material
model parameters from periodic medical image sequences. While existing biomechanics studies of the myocardial material constitutive
laws have assumed known tissue kinematic measurements, and image analysis efforts on cardiac kinematic functions have relied on fixe
constraining models of mathematical or mechanical nature, we illustrate through synthetic data that a probabilistic joint estimation
strategy is needed to achieve more robust and accurate analysis of the kinematic functions and material parameters at the same time. For
particular a priori constraining material model with uncertain subject-dependent parameters and a posteriori noisy imaging based
observations, our strategy combines the stochastic differential equations of the myocardial dynamics with the finite element method, and
the material parameters and the imaging data are treated as random variables with known prior statistics. After the conversion to state
space representation, the extended Kalman filtering procedures are adopted to linearize the equations and to provide the joint estimates i
an approximate optimal sense. The estimation bias and convergence issues are addressed, and we conclude experimentally that it
possible to adopt this biomechanical model based multiframe estimation approach to achieve converged estimates because of the periodi
nature of the cardiac dynamics. The effort is validated using synthetic data sequence with known kinematics and material parameters.
Further, under linear elastic material model, estimation results using canine magnetic resonance phase contrast image sequences a
presented, which are in very good agreement with histological tissue staining results, the current gold standards.
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1. Introduction the best model parameteg$ in some admissible set so
that the solution to Eq. (1) fog = q* best describes the
Quantitative and noninvasive estimation of cardiac data (the determination of material parameters in biomech-
material properties and regional kinematic functions has anics research)Hunter and Smaill, 1989; Moulton et al.,
significant clinical and physiological implications. In ab- 1995, and/or to determine the best state vectofsin
stract terms, the dynamic system for the biomechanics- some feasible physical space so that the solution to Eq. (1)
based cardiac kinematics and material analysis can befor u=u* best fits the data under the constraints of the

stated as follows: material model (the determination of kinematic parameters
in image analysis) Rapademetris et al., 2002; Shi et al.,

Pau(a) = 11u(c)), (1) ogg ¢ AEVESIRE

with constraining material model parameterskinematics

statesu(q), system differential operator®, and loads/I. 1.1. Cardiac motion analysis

The goals are then to use the noisy and incomplete
observations on the kinematics states to either determine Acute and chronic myocardial ischemia can be identified
and localized through the detection of morphological and

* Corresponding author. Tel+ 852-2358-8529; fax:+ 852-2335-0194.  Kinematic abnormalities of the left ventricle (L\(Lipton
E-mail address: eeship@ust.hKP. Shi). et al.,, 2002). Accordingly, there have been abundant
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efforts devoted to cardiac motion and deformation re- built-in spatiotemporal smod¢#tingand Pelc, 1999)n

covery from medical image sequencg¢®uncan and (Kerwin and Prince, 1999athe stochastic spatial inter-
Ayache, 2000; Frangi et al., 2001, 200®haging-derived polator of universal kriging is combined with the stochastic
sparse salient features of the myocardium have been used temporal filter, the well-known Kalman filter, to form a
to establish correspondences between cardiac image state equation representation, the lgtgoajlegdate
frames, including the use of implanted physical markers model, that permits a recursive solution for estimating a
(McCulloch, 1995; Waldman et al., 1985¢rossings of function in time and space. And iMoEachen et al.,
magnetic resonance imaging (MRI) tag lin@snini et al., 2000, a recursive least-square algorithm based on an
2001; Denney, 1999; Guttman et al.,, 1994; Kerwin and adaptive transversal filter is developed to facilitate the
Prince, 1999b; Kumar and Goldgof, 1994; Moore et al., integration of models for periodicity and proximal smooth-
1992; Osman et al., 2000; Young et al., 199§¢ometri- ness as appropriate using a contour-based description of
cally significant shape landmark@mini and Duncan, the myocardial boundaries, where the multiframe temporal
1992; Kambhamettu and Goldgof, 1994; McEachen and models are based on a sum of sinusoids, and a set of
Duncan, 1997; Shi et al., 2000and integration of MRI correspondences between contours and an associated set of
phase contrast velocitfConstable et al., 1994; Meyer et correspondence quality measures comprise the input to the
al., 1996; Pelc et al., 1995; Zhu et al., 199Rprmally, system.

however, the locations and thus the displacements of these Conjugate to the efforts from the biomechanics com-
detected landmarks are corrupted by noises, and the munity, all image analysis works are based on the premise
recovery of the dense field motion and deformation that mechanical or other constraining models are known as

parameters for the entire myocardium from this sparse set prior information, and the issue is to use these models
of noisy landmark displacements is an ill-posed problem along with the imaging data to estimate the kinematics

and needs additional constraints to obtain a unique solution parameters in some optimal sense. The selection of ar
in some optimal sense. Various strategies have been appropriate model with proper parameters thus largely
proposed with varying degree of success, including notable determines the quality of the analysis results. In practical
examples of mathematically motivated regularization situations, especially for pathological data sets, however, it

(McEachen and Duncan, 1997; Shi et al., 2000; Young et is almost impossible to have thexact patient-dependent

al., 1995), finite element method (FEM) based modal model information a priori.

analysis(Benayoun and Ayache, 1998; Sclaroff and Pent-
land, 1995),deformable superquadri¢®ark et al., 1996), 1.2, Myocardium material characterization
spatiotemporal B-Spline(Huang et al., 1999),Fisher

estimator with smoothness and incompressibility assump- More fundamentally in terms of physiology, it is recog-
tions (Denney and Prince, 19953nd continuum biomech- nized that alterations in myocardial fiber structure and
anics based energy minimizatiofPapademetris et al.,, material elasticity are related to various cardiac pathologies
2002; Papademetris et al., 2001; Shi et al., 1999). (Wickline et al., 1988uming that the kinematic
Because of the periodic nature of the heart motion, the measurements of the heart tissues are known from im-
importance of adopting multiframe analysis is well recog- planted markers or imaging techniques, there have been
nized yet rarely addressed in a systematic fashion many efforts focusing on describing myocardial material
(McEachen et al., 2000While many of the aforemen- characteristics from the biomechanics comn{@Giags et
tioned efforts deal with frame-to-frame motion only, al., 1991),and more recently, from the medical imaging
several attempts do try to track the motion over the entire commufi@yeswell et al., 1994; Hu et al., 2002;
cardiac cycle using explicit temporal modeling and thus Muthupilla et al., 1995).
are of particular relevance to our work. Assuming elliptic In traditional biomechanics efforts of estimating material
trajectories for the cardiac tissue elements, a Kalman filter constitutive laws, regional finite deformations at isolated
framework is constructed to estimate two-dimensional locations are determined by experimental means. For intact
(2D) left ventricular deformation from spline-regularized state, the distributions of stress are determined by the
MRI phase contrast velocity fields that are constrained by three-dimensional (3D) structure of the ventricular walls,
segmented endocardial and epicardial contdisyer et the boundary conditions imposed by cavity and pericardial
al., 1996). MR phase contrast images are also studied pressures and the fibrous valve ring at the base of the
using the Fourier tracking method in frequency domain ventricle, and the mechanical properties of the myofiber
(Pelc et al., 1995; Zhu et al.,, 1997xhere the motion and its inter-connection with collagen in the relaxed and
trajectories are computed as composed of Fourier har- actively contracting (@atesione et al., 1991; Hunter
monics and the tracking results are then fitted into a and Smaill, 1989)Mathematical reasoning is then used to
deformation model. This strategy is later extended to the arrive at some suitable constitutive relationships. A key
dynamic mesh model that expresses complex object mo- drawback of these studies is their limited clinical useful-
tion/deformation in space and time with time-varying ness because of the difficulty to make patient-specific
finite elements and provides a flexible tradeoff between assessment of the entire heart in a noninvasive manner.

analysis accuracy and reproducibility with controllable MRI tagging technique has been used for the noninva-
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sive in vivo study of the mechanics of the entire heart. In
(Creswell et al.,, 1994) and (Moulton et al., 199@
two-dimensional early diastolic finite element (FE) mesh is
constructed with loading parameters measured during MR
imaging. FE solution is performed using small-strain,
small-displacement theory, and corresponding regional
wall strains are computed independently using MR tagging
data. Two unknown parameters are then determined for an
exponential strain energy function that maximizes the
agreement between the observed (from MR tagging) and
the predicted (from FE analysis) regional wall strains.
Recently, an expectation maximization strategy is pro-
posed to estimate the stiffness matrix and the active force
from sparse tagging data in the maximum likelihood sense
(Hu et al., 2002)As the case of traditional biomechanics
strategies, the kinematics in these efforts is assumed
known from MR tagging, and the goal is to use these
kinematic parameters to estimate the material parameters.
Unfortunately, it is well recognized that the recovery of
kinematics from MR tagging is not a solved problem yet,
and constraining models of mechanical nature may be
needed for the kinematics recovery in the first place
(Frangi et al., 2001).

More recently, magnetic resonance elastography (MRE)
techniques have been developed to provide quantitative
images of soft tissue material stiffness by processing the

Because of the periodic nature of the cardiac behavior, we

show experimentally that it is possible to adopt this

physical model based statistical estimation approach,
which is not restricted to any particular imaging data, to
achieve converged estimates.

Our stochastic finite element method based framework
has made contributions in several important aspects.
Coupling the stochastic modeling of the myocardial be-
havior with the finite element method, we can now deal
with noisy imaging data and uncertain constraining materi-

al parameters in a coordinated effort. We believe that this is
the first attempt in image analysis that incorporates uncer-
tain constraining models in the ill-posed recovery prob-
lems. The biomechanically constrained state space repre-
sentation, along with the periodic nature of cardiac image
sequence, makes it possible to jointly estimate the cardiac
kinematics and material properties at the same time by
adopting an extended Kalman filter strategy and by cycli-
cally feeding the updated imaging data constraints until
convergence. In addition to experiments using synthetic
data, very promising results using canine MR images are
presented, which are in very good agreement with TTC-

stained post mortem tissue, the histological gold standard.

displacements resulting from actuating the tissues and2. Methodology

using MR imaging techniques to measure the tissue
displacementgdManduca et al., 2001; Muthupilla et al.,
1995).While very promising in providing in vivo material
parameters directly, this technology is still under early

2.1. Biomechanical model of the myocardium

In order to construct a realistic, yet computationally

development and so far there have been only very limited feasible, analysis framework using the imaging data and

experiments on shallow or exposed static soft tissues suchother available physical measurements such as intra-ven-

as breast and braifManduca et al., 2001No possibility tricular pressure, the structure and material of the left

for in vivo MRE of myocardium is at sight. ventricle should be properly modeled. In general, the heart

is a non-rigid object that deforms over time and has very

complicated material properties in terms of the underlying

constitutive laws(Glass et al., 1991)For computational

simplicity, in our current 2D implementation, we adopt the
In this paper, we present a stochastic finite element linear isotropic continuum material for the myocardium,

framework for the simultaneous joint estimation of the where the stressr and straine relationship obeys the

cardiac kinematics (displacement and strain) and materialHooke’s law,

properties (parameters of constitutive laws) from periodic

medical image sequence. Given the uncertainty of the o =S¢, (2)

material properties for a particular patient and the noisy

nature of the imaging data, we believe that a probabilistic and S is the strain-stress matrix.

joint estimation strategy is needed to achieve robust and For two-dimensional case presented in this paper, as-

optimal estimates for a particular a priori constraining suming the displacement along tkeandy-axis of a point

model with uncertain parameters and a posteriori noisy to beu(x,y) andu(x,y), respectively, the infinitesimal strain

observations on kinematics. The material parameters andtensore of the point can be expressed as

the imaging/image-derived data are treated as random

1.3. Joint estimation of cardiac motion and material
properties

variables with known prior statistics in the dynamic system au

and measurement equations of the heart. In our current X

implementation, the extended Kalman filter (EKF) pro- _ _ 9 3)
cedures are adopted to linearize the augmented state ay

representation of the cardiac dynamics and to provide the au I dv

joint estimates in the minimum-mean-square-error sense. gy  aXx
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Under plane strain condition, matr&can be derived to be study the dynamic structures with uncertainty in their
structure parameters and measurements. In the analysis of

E 1; v 1 v y 8 left ventricle, this framework, based on Ito’s calculus from
S= m 1-2, | (4) a Bayesian point of view(lkeda et al., 1996)can be
0 0 > adopted to give optimal estimates of the LV kinematics

state and myocardial material parameters for a particular a
Here, the Young's modulug and the Poisson’s ratip are priori mechanical model and a posteriori periodic image
two material-specific parameters which will be estimated sequence.
in our framework. It is quite clear from these relationships  |n our 2D implementation, a Delaunay triangulated finite
that the internal stress caused by the deformation is aelement mesh is constructed at the first image frame at end
function of the displacement vector and the material diastole (ED), bounded by automatically segmented endo-
parameters. cardium and epicardium borders using a velocity con-

Ideally, the problem should be tackled in three-dimen- strained front propagation strateong et al., 2002)An

sion to avoid the through-plane motion effect. Further, the jsoparametric formulation defined in a natural coordinate
more realistic model, the transversely isotropic material system is used, where, for tri-nodal linear element, the
(Glass et al.,, 1991which accounts for the preferential basis functions are linear functions of the nodal coordi-
stiffness in the myofiber directions (the fiber stiffness is nates (Bathe and Wilson, 1976)Assuming that the
about 1.5-3 times greater than the cross-fiber stiffness inmaterial parameter€ and » are temporally constant
normal cases), can be easily adopted for 3D analysis if thethroughout the cardiac cycle but are spatially varying, we

myofiber structure is available from the fiber model arrive at the following system dynamics equation for the
(Nielsen et al., 1991pr from diffusion tensor magnetic |eft ventricle:

resonance images (DTMRIjGeerts et al., 2002)A } ,

simplified version of this model was used for frame-to- MU +CU + KU =R, (5)
frame cardiac motion recovery if(Papademetris et al., , .
2002).In the current paper, we use the simple linear model WhereM, C and K are the mass, damping and stiffness

to illustrate the basic ideas and rationales of a novel joint Matrices,R is the load vector, andl is the displacement
estimation strategy. vector. Because the myocardium density is generally

considered to be uniformM is a known function of the
material density and is temporally and spatially constint.

is a function of the material constitutive law, and is related
to the material-specific Young’s modulus and Poisson’s
ratio, which may vary temporally and spatially. In our
framework, these two local material parameters are treated
as random variables with known a priori statistics, and will
be estimated along with the motion parameters. The

2.2. Sochastic finite element method

In biomechanics studies and image analysis of the left
ventricle, the deterministic finite element method has
provided an efficient representation of the complex LV
geometry and a convenient and effective computational

framework (Benayoun and Ayache, 1998; Creswell et al., damping matrixC is frequency dependent, and we assume

1994; Guccione et al.,, 1991; Hunter and Smaill, 1989; I tional Ravleigh d . 6 — oM + BK
Moulton et al., 1995; Papademetris et al., 2002, 2001; park SMall proportional Rayleigh damping wif = a B

et al., 1996; Sclaroff and Pentland, 1995; Shi et al., 1999; N Our implementation(Cook, 1995).Eq. (5) is thus a
YOUI’IILJ ot él 1995) It does not’ howéver havé the ' stochastic differential equation in nature per Ito’s calculus
capability to consider situations where material model (Ik\(/evtla e;«:]llt.,t%)%%)..m out that we intend to use this
parameters, external loads, and kinematic observations w pol u we | u '

should be characterized as stochastic processes. Since thféamework to enforce .certam real physical constra.lnt.s
related to known cardiac pressures. Conceptually, it is

imaging and imaging-derived observations are usually important to note that while the finite element mesh

corrupted by noises of various nature, and the material . : L ) .
parameters vary from one subject to another, especially forprowdes the basis for approximating a continuous spatial
' model of physical nature, the dynamic equation also

pathological situations, it is thus necessary to adopt a ) ) .
strategy which can account for the main sources of provides the basis of an appropriate temporal model for the
matching and predicting of image frames.

uncertainty in the dynamic analysis of the LV.

The stochastic finite element method (SFEM) has been
used for structural dynamics analysis in probabilistic 2.3. Sate space representation
frameworks(Contreras, 1980; Klieber and Tran, 1992; Liu
et al., 1986).In SFEM, structural material properties are Since we have employed the linear material model, the
described by random fields, possibly with known prior dynamics equation (Eg. (5)) can be transformed into a
statistics, and the observations and loads are corrupted by
noises. This way, stochastic differential or difference  ‘piease note that currently we do not consider the temporal dependency
equations are combined with the finite element method to of the material parameters.
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state-space representation of a continuous-time linear
stochastic system, typically seen in control and estimation

literature (Glad and Ljung, 2000)Let the kinematic state
vector x(t) and the material parameter vectbrbe

Ut
o-[0]
o=151 ™
the state space form of Eq. (5) becomes
X(t) = A(0)X(t) + Bow(t), (8)

where the system matrice8, and B,, and the control
(input) termw are derived as

ACZ[—I\;)*lK —|v|r1c]’ ®)
AN

W) = [R(()t) ] :

Obviously, A, and B, relate to the material properties of
the myocardial model, and enforces the external loads.

(10)

(11)

449

where
=il (15)
B=A_'(e" —1)B.. (16)

Eq. (14) describes the relationship between the current
statex(k + 1) and the previous statgk) and inputw(k),

and matricesA and B can be computed using Pade
approximation(Golub and Van Loan, 1983).

In more general form, the continuous-time system with
discrete-time measurements, including the additive, zero-
mean, whiteprocess noise v(t), (E[v(t)] =0, E[v(t)v(s)'] =
Q,([t)é,), independent ofe(t), can be converted to the

discrete-time state equation
X(t + 1) = A@)x(t) + B(@)w(t) + v(t). (17)

Once again, this equation implies that the state vector is a
Markov sequencéBar-Shalom et al., 2001).

2.4. Augmented state space representation

The myocardial dynamics and observations are now
represented by the dynamic system of Egs. (17) and (12).
This representation provides a natural framework for the

An associated measurement equa‘[ion, which describesbiomEChaniCS Study of myocardium material constitutive
the observations provided by the |mag|ng or imaging_ laws with observations/measurements on the kinematic

derived datay(t), can be expressed in the form

y(t) = DX(t) + (1), (12)

whereD is a known measurement matrix designed by the

user, ande(t) is the measurement noise which is assumed
to be additive, zero mean and whiteE[§t)] =0,

E[e(t)e(s)'] = R.(t)d,)- In our case, the imaging data gives
the displacement and velocity information, the same type

of measures as the state vectoiThe D matrix isN X M,

with M the total number of data constraints (displacement

and velocity) andN the dimension of the state vectgy
and is constructed from

states, and for the physically motivated image analysis of
cardiac kinematic properties with assumed biomechanical
constraining models. In practice, however, neither the
kinematics data nor the model parameters are precisely
known. With the SFEM framework where the data and the
model parameters are treated as random variables, possibly
with known or assumed prior distributions, we now are
able to determine the best estimates of the spatial dis-
tributions of the material parameters and the spatial-tempo-
ral kinematics parameters simultaneously.

In order to perform the joint estimation, thaknown
state vectorx is augmented by thainknown material
parameter vectof to form the new state vectar=[x 6] .
Accordingly, Eq. (17) is converted to the new augmented

DU
D= [DU- ] (13) state equation
whereD, and Dy relate to the displacement and velocity z(t + 1) = f(z(t),w(t)) + v4(t), (18)
data, respectively. )
In the image-based analysis of left ventricle, Egs. (8) With
and (12) represent a continuous-time system with discrete- A(0)X(t) + B(0)w(t)
time measurements, or a so-called sampled data systemf(z(t)’w(t)) :[ P ] (19)
The input termw, available from pressure measurements
or computed from the system equation using the initial and y _(t) = [U(t) ] (20)
s 0

boundary conditions, is piecewise constant over the imag-
ing sampling intervall. Implicitly assuming hidden Mar- In a similar fashion, the new augmented measurement
kov model for the state equations, we discretize Eq. (8) equation is derived from Eq. (12):
and arrive at(Bar-Shalom et al., 2001; Glad and Ljung,
2000) y(t) = h(z(t)) + e,(t),
with

X((k + 1)T) = Ax(KT) + Bw(KT),

(21)
(14)
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o) 1 : [X(t) ] o2 Gt)=P (t)H'(HP ®H' +R) . (28)
z(t))=[D O , 22

o) (4) Update the estimate with the measuremertt at
e=| V| (23) 3() =27 (0 + GOEN ~ he ©) (29)

Since we have assumed known Gaussian process and5) Update the error covariance fat
measurement noises, the augmented noises are also Gaus- -

. . L Pt)=( —GMUOH)P (1). 30
sian with distributions ®=( OHP- (30)

_ [ Q, 0] (6) Repeat steps (1)—(5) until convergence.
v(t) ~N(0,Qs), where Q.= [ o ol (24) The needed quantities for Egs. (26)—(30) are defined by
R 0 9
e,(t)~N(O,R,), where R,= [ Oe]' (25) F, = Ef(z(t),w(t))lzz2 = [A(g) I\I/lt] (31)
2.5. Extended Kalman filter for joint state and sy O _
H(Z(t)) = —h(z(t -=[D 0 32
parameter identification (&) Jz ().~ =[D 0], (32)
d -
The joint state and parameter estimation problem can M = 55(A@)X(t) + BOW(D)[,—5. (33)
now be understood as a state estimation problem for the b.(0 P(0
nonlinear system represented by Egs. (18) and (21). Thisp gy = 1(0) 2(0) 34
. \ o ) T : (34)
form of formulation leads to a solution of the filtering P,(0) P4(0)

\rl)vrorll)(le\;/nhiuilri\gbthe gxtﬁr}{ﬁeollinKaerzartli f:]lte; t(hEKF) ITr]ar;:te- q Here, P,(0) is the kinematics state error covariance sub-
ork, Which 1S based on the finearization ot the augmentec i which is related to trustworthiness of the input

j\}ii\rt]enect]u?t;ogls T(t et?Cht tlrme Srgeg' A reé:utrswe r?r?rﬁe?hurqmaging data, P,(0) is the covariance sub-matrix of
. atural block structure can be used to pertorm e . iapiq) parameterg and » with values proportional to
joint state (kinematics) and parameter (material) estima-

tion. and neral analvsis of the algorithm converaen the expected errors in the corresponding parameter to
on, and a general analysis of the aigo CONVETGENCE ansure smooth convergence, d0) is the kinematics-
can be found in(Ljung, 1979).

Lik Tavlor seri W N linearize th tion material correlation sub-matrix with zero entries. Construc-
€ a faylor series, we cal carize e equations ., and implementation of the error covariance matrix is
around the current estimates using the partial derivative of .
X discussed next.
the process and measurement functions to compute the
estimates even in the face of non-linear relationships. The
operation of the EKF is the same one as the linear Kalman
filter, which adopts a form of feedback control in estima-
tion: the filter estimates the process state at some time and
then obtains feedback in the form of measurements. As : .
augmented state error covariance sub-matri¢g$0)

such, t'he. equations for thg EKF iterations fall into two éstate),Pz(O) (state-material correlation) amy(0) (materi-
groups: time update equations and measurement updat . . ) . .
al) are modeled as diagonal matrices with uniform entries

eqqathns. The time update equations are respons@le for(Pl(O) has separate uniform values for displacement data
projecting forward the current state and error covariance

estimates to obtain the a priori estimates for the next time and velocity data when both are available). The motivation

) : to construct non-uniforni®, (0) sub-matrix comes from the
step, while the measurement update equations are respon- . : . -
. . L observation that the filter performance is very sensitive to
sible for the feedback with the a posteriori data, the initial values. Because of the periodic nature of the
Initializing the EKF filter withZ(0) =z, and P(0) = 5, i P

. . : cardiac dynamics, we cyclically feed the updated imaging
the augmented state estimates and their error covariance . : ; . S X

. . . Co and imaging-derived data into the filtering framework until
matrices are computed sequentially in the following itera-

tive fashion: reaching convergence. Casual and improper selections of
(1) Pro'ect.the state from— 1 to t- the initial values oftendestroy the integrity of the finite
) ' element mesh during the filtering process. Further, we

2.6. Construction of augmented state error covariance
matrix

In our earlier implementatiofShi and Liu, 2002)the

Z7 (1) = f(2(t — 1),w(t)). (26) believe that any prior knowledge of the state and material
parameters should enable us to achieve higher filtering
(2) Project the error covariance froti-1 to t: efficiency and more robust results.
The state error covariance sub-matfiy0) is expressed
P~ (t)=FPt - 1)F +Q. (27)  as P,(0)=diagP,,(0),P;;(0)). The first term on the

diagonal is the variance of the displacements, and in our
(3) Compute the Kalman gain &t current in vivo experiment, it is related to confidence



P. Shi, H. Liu / Medical Image Analysis 7 (2003) 445-464 451

measures of the shape-matched boundary point displace- within the search region are also recorded as the basis t

ments. Similarly, the second term, the covariance of the measure the uniqueness of the matching choice. Ideally,

velocity, is related to the confidence measures of the phase the bending energy value of the chosen point should be ai

contrast velocity information from MR imaging and is outlier (much smaller value) compared to the values of the

characterized by the local phase coherence valGésing rest of the candidate points. If we denote the mean value of

et al., 2002). the bending energy measures of all the points inside the
search window except the chosen pointegs,, and the

2.6.1. Confidence measures on shape-matched boundary standard deviation a®.,, we define the unigqueness

displacements measure of the match as

We had previously proposed a strategy for myocardial
boundary motion tracking based on locating and matching m,(¢) =
differential geometric landmark&Shi et al., 2000)Based
on the hypothesis that the LV boundary contours deform as Obviously for both goodness and unique measures, the
little as possible between successive temporal frames,smaller the values the more reliable the match. Combining
bending energy measure is used as the matching criterionthese two together, we arrive atcanfidence measure for
to obtain the point correspondences between contours:  the matched second contour poigitof the first contour

MIN €yend ) =Min [1i(¢) — w ()]’ (35  Pointe:

€hend ~ P bend

. (36)

1

where k(¢) is the curvature for a pointy in the first (&)= ky . +k, ,m (&) k,,+k, m(€) (37)
contour, € the corresponding search region on the second 9 9 ' '
contour, andk,(¢) the curvature of a candidate poigt whereKk, 4, K, ,, k;,, and k,, are normalizing constants
within the search region. Among all the candidate points, such that the confidence measures for all point matches
the one até which yields the smallest bending energy is between contours are in the range of 0-1.
chosen as the matched point, and the bending energy value This process yields a set of shape-based, best-matched
indicates the goodness,(¢) = €,.,{¢,¢) of the match. displacement vectors for each pair of contours, and each

Further, the bending energy measures for all other pointsvector has an associated confidence measure. Elements of

VY

IAELILTI LS TEEL S

object material compositions pressure loading setup

frame #1 frame #5 frame #9 frame #13

Fig. 1. Generation of the 16-frame synthetic data sequence: object material compositions and pressure loading setup (upper row), and tiselsatgcted re
meshes at frame#1, #5, #9 and#13 (lower row). (This figure is available in colour, see the on-line version.)
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the displacement error covariance sub-mat,(0) is estimates near the endocardial and epicardial boundaries
now weighted by (& c(£)). are extremely noisy, and reliable motion information is
only available within the mid-wall region.
2.6.2. Confidence measures on mid-wall MR phase Local phase coherence (LP@QLhung et al., 2002)s
contrast velocity used to assess the reliability of the velocity data at mid-
Phase contrast MRI relies on the fact that a uniform wall. For velocity vegtet s and velocity vectow, of
motion of tissue in the presence of a magnetic field its neighbor e define the LP@() to be

gradient produces a change in the MR signal phase that is,
proportional to velocityPelc et al., 1991)in principle, the f
instantaneous Euclidian velocities for the moving tissue 17&
can be easily obtained for each pixel in an image acquisi- LPC(,) =716 [2 fvsv;) + 8] , (39)
tion. However, because of the relatively large size of the =t

imaging region-of-interest, current phase contrast velocity where the summation is taken over the eight neighbors.

W) = <vev, > o[ [vill (38)
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Fig. 2. Comparison of true and three estimated displacement magnitude distributions for #am#§, #9 and#13. Top row shows the constraining
data positions and the color scale. (This figure is available in colour, see the on-line version.)
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Strain Map Color Scale
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Fig. 3. Comparison of true and three estimated vertical strain distributions for f#®n&op row shows strain map color scale.
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Table 1 « The initial accelerations of all points are estimated from

Kolmogorov—Smimov hypothesis test all previous frames up to thé € 1)th frame of thejth
Uniform Non-uniform EKF loop.

H 1 0 0  If j=1 andi=1, the initial Young’'s modulus and

P value 0.0244 0.6403 0.1038 Poisson’s ratio are set to 75 000 Pa and 0.47, respec-

K-S statistics 0.3429 0.1714 0.2857 tively (Yamada, 1970)Otherwise, we use the values

estimated from all previous frames up to the-(1)th

frame of thejth loop.
Since f(v,v;) is within [-1,1], the LPC value is thus < The initial equivalent total loads are computed from the
within the range of [0,1]. governing equations using all the initial conditions.

In ideal situation, we should expect high LPC values at

the velocity coherent regions of mid-wall myocardium.
Any deviation from high LPC indicates poor quality of the
velocity information. Elements of the velocity error co-
variance sub-matrixP;;(0) now will be weighted by
(1-LPCQ,)).

Boundary conditions. The system equations are modified
to account for the boundary conditions of the dynamic
system. If the displacement of an arbitrary nodal point is
known to beU,=b, say from MR tagging images or
shape-based boundary trackif{®hi et al., 2000),the
constraint kU, =kb is added to the system governing
2.7. Other computational considerations equation, wherek is a large number weighted by the
confidence on the displacement. Other possible strategies
to enforce boundary conditions can be found at many
standard finite element book8athe and Wilson, 1976;
Cook, 1995).

Initial conditions. Let i be the current image frame
number, andj be the current filtering loop number
(because the periodic nature of the cardiac dynamics, we
can loop through the image sequence until convergence):
e If j=1 andi =1, the initial displacements are zero.
Otherwise, the initial displacements are estimated from Error measures of the estimation process. The filtering

all previous frames/loops up to the— 1)th frame of process is optimized by minimizing a set of error residuals,
the jth loop. based on the differences between experimentally measured

* MR phase contrast velocity images at tile frame, if imaging and image-derived data, i.e. mid-wall MR phase
available, provide thex- and y-components of the contrast velocity and MR tagging/shape-tracked displace-
instantaneous velocities for the mid-wall points. For all ment, and those estimated by EKF framework. These
other points, the velocity is estimated from all previous errors are compared to a set of thresholds to determine the
frames up to thei(— 1)th frame of thegjth loop. convergence of the filtering process.
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2.8. Convergence and bias issues method for generatingpproximate optimal estimates for
the nonlinear joint estimation problem, based on first-order

As mentioned earlier, the problem of our joint estima- linearization. An essential difficulty with all approximation
tion of the myocardial kinematics states and material techniques is to establish convergence. Further, for the
parameters is motivated from the need for a material model joint estimation results to be physiologically and clinically
in order to estimate the kinematics states as in the image useful, the bias of the estimates and the convergence of th
analysis efforts, and the need for good states estimates in framework need to be properly addressed.
order to estimates material models in biomechanics In general, the EKF estimates may be biased or di-
studies. The extended Kalman filter provides an efficient ver@ignhg, 1979).The reason for divergence can be

Ground Truth Young’s modulus Ground Truth Poisson’s ratio

AENL*"F

\
\I4

AN N
A/ ANN
A\ 4

estimated Young’s modulus estimated Poisson’s ratio
m 04 0.405 0.41 0415 042 0425 0.43 0435 0.44 0.445
Young’s modulus scale Poisson’s ratio scale

Fig. 5. Ground truth (top row) and EKF estimated (middle row) material parameter distributions for the synthetic data sequence.
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Intensity

X- Velocity

Y- Velocity
frame #1 frame #5 frame #9 frame #13

Fig. 6. Matching EEG-gated canine MR phase contrast intensitglocity andy-velocity image sequences throughout cardiac cycle.

Fig. 7. TTC-stained post mortem myocardium with the infarcted tissue highlighted. (This figure is available in colour, see the on-line version.)
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traced to the lack of coupling between the Kalman gain Further considerations for error covariance matrix.
G(t) and the model parametérin the algorithm. However, = Because the matriXP(t) must be symmetric and non-
global convergence results can be easily obtained bynegative definite, special attentions should be given in its
modifying the coupling termM, such that thath column recursive updating. If round-off errors should produce an
of the new termM} is given by indefinite P(t) matrix at a given step, it is repaired with a
M;\-(i):MEi)_'_kEi)(y(t)_DS\((t)), (40) nearby non-negative definite matrix or througtd — D

_ factorization(Glad and Ljung, 2000).
where k"’ can be derived from the so-called sensitivity
equations of the EKFLjung, 1979).This procedure can be
interpreted as a minimization of the prediction error
associated with the model parameterFurther, the esti- 3. Synthetic and in vivo experiments
mated material paramet@r is biased unless the processes
and measurement noise characteristics are completely3.1. Synthetic computational experiment
known a priori, which is usually not going to be satisfied in

real situations. However, we do want to point out that the As showhign 1, for a rectangular object consisting

cause of the bias does not lie in the EKF method itself, but of two distinguished parts with different makeyiais (

rather comes from imperfect noises assumptions associated 105,an€0.49 for the middle part, an& = 75 and

with the model. In normal practices, manual adjustments of » = 0.4 for the rest), distributed time varying pressure

the noise covariances are often usedutae the filter. The P(k) = 58.2(1— cos(k — 1)7r/n)), wheren = 16 is the total
inclusion of the parameters associated with the Kalman number of sampling framels ianthe kth frame, is

gain can thus be interpreted as automatic tuning of the applied onto the top of the object. Sixteen sampling frames
filter. We are also actively exploring other filtering strate- of the object geometry are acgriged)( along with the

gies which are less sensitive to the knowledge on the noise ground truth kinematic (displacement and strain) distribu-
statistics, such as thd_, filters and the particle filters. tions.

Fig. 8. Phase contrast velocity vectors (scaled for visualization purpose) overlaid on intensity image. (This figure is available in colourndiee the o
version.)
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Using this set of synthetic data sequence, three types of For data fraines5, #9 and#13, Fig. 2 shows the
experiments are then conducted. In the first and second displacement magnitude maps of the ground truth, the KF
experiments, the material parameters are set to be fixed estimated results using uniform material, the KF results
constants and the goals are to recover the motion parame- using non-uniform materials and the EKF joint estimation
ters using Kalman filtering (simply fixes th& vector in results. With the color scale used to accommodate the
Egs. (18) and (21)). The difference is that the first range of the displacement, the experiment results are
experiment uses the same uniform material values- ( visually quite similar to each other. The more sensitive
75y =0.4) for the entire object, an almost universal strain maps, however, exhibit the visible differences
practice in mechanics-based motion analysis efforts between the different experiments, as shigw8,iand
(Papademetris et al., 2002; Shi et al., 199@jile the the results confirm our intuition on the performance
second experiment sets therfect non-uniform values for difference between the three experiments.
the material parameters since we are dealing with known A detailed statistical analysis of the vertical strain
synthetic data. In the third experiment, we use our joint distributions between the estimation results and the truth
extended Kalman filtering strategy to recover the material reveals a more complete story. The Kolmogorov—Smirnov
parameters and the motion parameters simultaneously. test, which is suitable for comparing the distributions of

Intuitively, since its material model parameters are values in two data vetorand X, (Zar, 1999),is
exactly the same as the ones used for data generation, we adopted to compare the true vertical strain and the esti
expect that the Kalman filter with non-uniform model mated ones. The null hypothesis for the K-S tesiis that
values would produce the closest results to the ground (truth)Xan@stimated results) have the same distribu-
truth among the three experiments. The Kalman filter with tion, and the alternative hypothesis is that they have
uniform material settings would produce some errors different distributions. The té¢ssltl if we can reject
because of the mismatch. As for the EKF, we anticipate the hypothesis that the distributions are the same, or is 0 if
that its results are in the middle. we cannot reject that hypothesis. Here we reject the

blowup view

epicardial displacement constrains blowup view

Fig. 9. Boundary displacement constraints.
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hypothesis if the test is significant at the 5% level. From strains, as showiy.id, that the estimated results have

Table 1,we know that while the uniform KF results are not the order of non-uniform KF, EKF, and uniform KF in

of the same distribution as the ground truth =€ 2.4%), terms of their closeness to the true one. The K-S statistic

we cannot make the same conclusion about the non- values, which measure the maximum differences between
uniform KF and the EKF results. It is also obvious from the CDFs, reveal the similar relationshigbie 1.

the cumulative distribution functions (CDF) of the four Overall, we can infer from the strain maps and the K-S
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Fig. 10. With boundary displacement constraints: frame-to-frame displacement maps, deforming myocardial meshes, and cardiac-specific radial,
circumferential, and R—C shear strains with respective to frafie (This figure is available in colour, see the on-line version.)
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tests that the non-uniform Kalman filter with perfect

material parameters gives the best motion estimates. In

practice, however, this kind of prior knowledge is all but

impossible to acquire. On the other hand, EKF does give

better results than the Kalman filter with uniform materi-

als, the typical models used in cardiac image analysis. This
confirms our intentions and validates the needs for adopt-

ing a joint estimation strategy. The estimated material
parameter maps are then showrFig. 5, compared to the

ground truth material parameters used to generate the

synthetic data sequence (sEiy. 1). Visually, it is quite

obvious that overall the estimates from our EKF frame-
work very closely resemble the true material properties.
The errors mostly occur only at the discontinuities of the
material distributions, which are actually expected since
the Kalman filtering strategy is basically low-pass and it

smoothes out the sharp changes. Further, as pointed earlier,
the material characteristics are more valuable and fun-

damental from physiological point of view. The good

agreement between our estimates and the ground truth

indicates the potential of adopting joint estimation strategy.

3.2. In vivo canine imaging experiment

Two kinds of canine imaging sequences are used in the
experiments. The first one uses displacement constraints at

estimated Young’s modulus
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selected sampling points of myocardial boundaries. The
second experiment incorporates mid-tall MRI phase con-
trast velocity information as well as the boundary displace-
ment data. However, we want to point out that the joint
kinematics and material analysis framework is not limited
to any particular types of imaging data. Any imaging/
imaging-derived data with acceleration, velocity and dis-
placement information can be easily used in the framework
without fundamental changes.

3.2.1. Experiment setup and imaging data acquisition

Fasting adult mongrel dog was used for the collection of
the imaging data. A proximal segment of the left anterior
descending (LAD) coronary artery was dissected free for
the placement of a Doppler flow probe, hydraulic and snare
occluders, which enabled the production of a controlled,

graded coronary stenosis.

Magnetic resonance images of a mid-ventricle short axis

slice were collected using cine phase contrast gradient
echo sequence for 16 time frames. The imaging parameter
were: flip angle, TE=34 ms, TR=34 ms, FO\-28

cm, 5 mm skip 0, matrix 25& 128, 4 nex, vene 15
cm/s. The resulting spatial resolution is 1.09 mm/pixel,
and the temporal resolution is 0.03125 s/frame. The

intensity values of the velocity images rangd 5i®io
150 mm/s, with the signs of the value indicating the

FAVAVAVA)

estimated Poisson’s ratio

0.462 0.464 0.466 0.468 0.47 0.472 0.474 0.476 0.478 0.48

Poisson’s ratio scale

Fig. 11. Estimated material parameter distributions (boundary displacement constraints).



P. Shi, H. Liu / Medical Image Analysis 7 (2003) 445-464 461

directions of the velocities. MR phase contrast velocity S

imaging relies on the fact that a uniform motion of tissue ¢ =vyM, =vy J tG(t) dt, (41

in the presence of a magnetic field gradient produces a 0

change in the MR signal phase, that is proportional to

its velocity (Pelc et al., 1991): whereG(t) is the magnetic gradient strength (the gradient
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Fig. 12. With boundary displacement and mid-wall velocity constraints: frame-to-frame displacement maps, deforming myocardial meshes, and
cardiac-specific radial, circumferential, and R—C shear strains with respective to #tam@his figure is available in colour, see the on-line version.)
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waveform),v is the tissue velocityM, is the first moment epicardial displacement constraints throughout the cardiac
of the gradient waveform, TE is the echo delay time, gnd cycle.

is the gyro-magnetic ratio. The gradient waveform can be

mo.dified .to _a!ter the first moment (motiqn sensitivity) 322 Results and discussion

while maintaining the same image localization characteris-

tics. Images acquired with this altered waveform will have With boundary displacement constraints. The top row

a different phase shift due to motion, and the velocity in a Faf. 10 shows the estimated frame-to-frame displace-

particular spatial direction can be estimated by measuring ment maps for selected myocardial frames (the magnitude
the difference in phase shift between two acquisitions with of the displacement vectors are uniformly magnified for
different first gradient moments. Hence, instantaneous visualization purposes), while the second row presents the
velocity maps encoded for motion in all three spatial resulting mesh deformation throughout the cardiac cycle.
dimensions may easily be obtained at multiple time Please note that since the boundary displacements have
instances throughout the cardiac cycle using a phase been filtered by the EKF, they are somewhat different from
contrast cine-MR imaging sequence. the original input constraining displacements. Corre-

Fig. 6 shows the segmented intensity images of the sponding to the highlighted infarct rediamn @f there
ECG-gated MR sequence, as well as the matchingnd are signs of dyskinesias (impairment of voluntary move-
y-phase contrast velocity images over the cardiac cycle. In ments resulting in fragmented or jerky motions) at the
addition, the highlighted histological result of triphenyl lower-right quarter of the myocardium. During the general
tetrazolium chloride (TTC) stained post mortem mid-ven- contraction phase (i.e. fféln® #7), there are little
tricle myocardial slice is shown irFig. 7, where the contracting motion at the infarct zone until frag@. At
infarcted tissue region is marked. the beginning stage of the general expansion stage (frame

From the matching intensity and velocity images, shape- #8 to #9), the infarcted tissues continue their contracting
matched boundary displacemer(iShi et al., 2000)and motion while the other tissues start to expand. The
mid-wall phase contrast velocity are used as the data inputs expansion at the infarct zone does not occur until frame
in the experiments of the estimation framewofkg. 8 #13. From the displacements, the cardiac-specific radial
shows the phase contrast velocity vectors overlaid on (R), circumferential (C), and R—-C shear strain (with
intensity image, andrig. 9 shows the endocardial and respect to fra#fe) are computed, as shown kg. 10.

0
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Young’s modulus scale Poisson’s ratio scale

Fig. 13. Estimated material parameter distributions (boundary displacement and mid-wall velocity constraints).
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However, other than the circumferential stains, the strain than motion parameters, as validated by the TTC-stained
distributions do not exhibit obvious abnormality at the post mortem tissues.

infarct region. Finally, the estimated non-uniform material

parameter distributions are shown kig. 11.While they

appear to be more sensitive than the motion parametersacknowledgements

the current limited results are quite difficult to be meaning-

fully interpreted. This work is supported in part by the Hong Kong

_ _ _ _ Research Grant Council under grant CERG HKUST6057/
With boundary displacement and mid-wall velocity o, and by a HKUST Postdoctoral Fellowship Matching
constraints. Similarly, the top row offig. 12 shows the  Fyng. The authors would like to extend their gratitude to
estimated frame-to-frame displacement maps for the pr Albert Sinusas of Yale University for the canine
myocardial slice, while the second row presents the meShexperiment and imaging data. The valuable comments and

deformation throughout the cardiac cycle. The displace- s,ggestions from the anonymous reviewers are also greatly
ment maps show similar pattern as the previous experi- gppreciated.

ment, and dyskinesias is obvious at the infarct zone once
again. The radial (R), circumferential (C), and R—C shear
strain maps, in contrast to the boundary constraint experi-
ment, show significant differences at the infarct tissues.
Finally, the estimated material parameter distributions are . .

h inFia. 13.Here. these material maps exhibit vastl Amini, A.A.,_ Duncan, JS 1992. Bending and stretching models fo_r _LV
s. own inkig ) ! . p y wall motion analysis from curves and surfaces. Image and Vision
different material parameters at the infarct zone from the  computing 10 (6), 418-430.
normal tissues, and the patterns are in very good agreementmini, A.A., Chen, Y.S., Elayyadi, M., Radeva, P., 2001. Tag surface
with the highlighted histological results of triphenyl tetra- reconstruction and tracking of myocardial beads from SPAMM-MRI
zolium chloride (TTC) stained post mortem myocardium with parametric B-spline. IEEE Transactions on Medical Imaging 20

. . (2), 94-103.
(See.Flg' 7)' often ConS|de.red _the gold-standard. Further' Bar-Shalom, Y., Li, X.R., Kirubarajan, T., 2001. Estimation with Applica-
the infarct zone myocardial tissues are relatively stiffer  ons to Tracking and Navigation. Wiley, New York.
than normal with larger Young’'s modulus values, and they Bathe, K., Wilson, E., 1976. In: Numerical Methods in Finite Element
are more difficult to compress with larger Poisson’s ratios  Analysis. Prentice-Hall, Englewood Cliffs, NJ.
(there is less or no blood supplied to these tissues), both O]cBenayoun, S., Ayache, N., 1998. Dense non-rigid motion estimation in

hich have been observed in bost mortem tissue experi sequences of medical images using differential constraints. Internation-
whi v v np ISsu xperi al Journal of Computer Vision 26 (1), 25-40.

References

ments earlier. Chung, A.C.S., Noble, J.A., Summers, P., 2002. Fusing speed and phase
Compared to the boundary constraint only case, the information for vascular segmentation of phase contrast MR angio-
inclusion of mid-wall velocity dramatically improve the grams. Medical Image Analysis 6, 109-128.

motion and material estimates results using the TTC- Constable, R.T., Rath, K., Sinusas, A., Gore, J., 1994. Development and

taini th id This | t I _, . evaluation of tracking algorithms for cardiac wall motion analysis
staining as the guidance. IS 1S not really surprising given using phase velocity MR imaging. Magnetic Resonance in Medicine

the fact that the phase velocity gives transmural infor- 35 33-42.
mation of the myocardium. Contreras, H., 1980. The stochastic finite element method. Computers and
Structures 12, 341-348.
Cook, R.D., 1995. Finite Element Modeling for Stress Analysis. Wiley,

New York.
i Creswell, L.L., Moulton, M.J., Wyers, S.G., Pirolo, J.S., Fishman, D.S.,
4. Conclusion Perman, W.H., Myers, KW., Actis, R.L., Vannier, MW., Szabo, B.A.,

Pasque, M.K., 1994. An experimental method for evaluating constitu-
We have developed a biomechanically constrained sto- tive models of myocardium in in vivo hearts. American Journal of
; i i i Physiology 267, H853—-H863.

Cha_StIC. finite element . fram.ework . for mult fram.e joint Denney, T.S., 1999. Estimation and detection of myocardial tags in MR
eSt_'matlon of th? Ca,rdlac kinematics and mate”al prop_— image without user-defined myocardial contours. |IEEE Transactions
erties from medical image sequence. Coupling stochastic  on Medical Imaging 18 (4), 330—344.
modeling of the myocardial behavior with finite element Denney, T.S., Prince, J.L., 1995. Reconstruction of 3-D left ventricular
method, this strategy deals with noisy imaging data and motion from planar tagged cardiac MR images: an estimation theoretic
uncertain constraining material parameters in a coordinated _ @PProach. IEEE Transactions on Medical Imaging 14 (4), 625-635.

ffort. We believe that this is the first attempt in image Duncan, J.S., Ayache, N., 2000. Medical image analysis: progress over
€ . . ] . p g ] two decades and the challenges ahead. IEEE Transactions on Pattern
analysis that incorporates uncertain constraining models in Anaiysis and Machine Intelligence 22 (1), 85—106.
the ill-posed recovery problems. The joint estimation Frangi, A.J., Niessen, W.J., Viergever, M.A., 2001. Three-dimensional
strategy offers new possibilities to study myocardial modeling for functional analysis of cardiac images: A review. IEEE
kinematics and material characteristic from a variety of _ Transactions on Medical Imaging 20 (1), 2-25.
. . . . . . . Frangi, A.J., Rueckert, D., Duncan, J.S., 2002. Three-dimensional car-
imaging data, and_ canine |.mag|ng experiments with the diovascular image analysis. IEEE Transactions on Medical Imaging 21
extended Kalman filter algorithm have shown that material (g, 1005-1010.

parameters have better sensitivity for transmural propertiesGeerts, L., Bovendeerd, P., Nicolay, K., Arts, T., 2002. Characterization



464

of the normal cardiac myofiber field in goat measured with MR-
diffusion tensor imaging. American Journal of Physiology 283 (1),
H139-H145.

Glad, T., Ljung, L., 2000. Control Theory. Taylor & Francis, London.

Glass, L., Hunter, P., McCulloch, A., 1991. Theory of Heart. Springer,
New York.

Golub, G.H., Van Loan, C.F., 1983. Matrix Computation. Johns Hopkins
University Press, Baltimore, MD.

Guccione, J.M., McCulloch, A.D., Waldman, L.K., 1991. Passive material
properties of intact ventricular myocardium determined from a cylin-
drical model. Journal of Biomechanical Engineering 113, 42-55.

Guttman, M.A., L Prince, J., McVeigh, E.R., 1994. Tag and contour
detection in tagged MR images of the left ventricle. IEEE Transactions
on Medical Imaging 13, 74-88.

Hu, Z., Metaxas, D., Axel, L., 2002. In vivo strain and stress estimation
of the left ventricle from MRI images. In: Medical Image Computing
and Computer Assisted Intervention, pp. 706—713.

Huang, J., Abendschein, D., Davila-Roman, V.G., Amini, A.A., 1999.
Spatio-temporal tracking of myocardial deformations with a 4-D B-
spline model from tagged MRI. IEEE Transactions on Medical
Imaging 18 (10), 957-972.

Hunter, P.J., Smaill, B.H., 1989. The analysis of cardiac function: a
continuum approach. Progress in Biophysics and Molecular Biology
52, 101-164.

Ikeda, N., 1996. Ito's Stochastic Calculus and Probability Theory.
Springer, Tokyo.

Kambhamettu, C., Goldgof, D.B., 1994. Curvature-based approach to
point correspondence recovery in conformal nonrigid motion. CVGIP:
Image Understanding 60 (1), 26—43.

Kerwin, W.S., Prince, J.L., 1999a. The kriging update model and recursive
space-time function estimation. IEEE Transactions on Signal Process-
ing 47 (11), 2942—-2952.

Kerwin, W.S., Prince, J.L., 1999b. Tracking MR tag surfaces using a
spatiotemporal filter and interpolator. International Journal of Image
System and Technology 10 (2), 128-142.

Klieber, M., Tran, D.H., 1992. The Stochastic Finite Element Method:
Basic Perturbation Technique and Computer Implementation. Wiley,
Chichester.

Kumar, S., Goldgof, D., 1994. Automatic tracking of SPAMM grid and
the estimation of deformation parameters from cardiac MR images.
IEEE Transactions on Medical Imaging 13 (1), 122-132.

Lipton, M.J., Bogaert, J., Boxt, L.M., Reba, R.C., 2002. Imaging of
ischemic heart disease. European Radiology 12, 1061-1080.

Liu, W.K., Belytschko, T., Man, A., 1986. Random field finite element.
International Journal for Numerical Methods in Engineering 23, 1831—
1845.

Ljung, L., 1979. Asymptotic behavior of the extended kalman filter as a
parameter estimator for linear systems. IEEE Transactions on Auto-
matic Control 21 (1), 36-50.

Manduca, A., Oliphant, T.E., Dresner, M.A., Mahowald, J.L., Kruse,
S.A., Amromin, E., Felmlee, J.P., Greenleaf, J.F., Ehman, R.L., 2001.
Magnetic resonance elastography: non-invasive mappings of tissue
elasticity. Medical Image Analysis 5, 237-254.

McCulloch, A.D., 1995. Cardiac mechanics. In: The Biomedical En-
gineering Handbook. CRC Press, Boca Raton, FL, pp. 418—439.

McEachen, J.C., Duncan, J.S., 1997. Shape-based tracking of left
ventricular wall motion. IEEE Transactions on Medical Imaging 16
(3), 270-283.

McEachen, J.C., Nehorai, A., Duncan, J.S., 2000. Multiframe temporal
estimation of cardiac nonrigid motion. IEEE Transactions on Image
Processing 9, 651-665.

Meyer, F.G., Constable, R.T., Sinusas, A.J., Duncan, J.S., 1996. Tracking
myocardial deformation using spatially constrained velocities. |IEEE
Transactions on Medical Imaging 15 (4), 453-465.

Moore, C.C., O'Dell, W.G., McVeigh, E.R., Zerhouni, E.A., 1992.
Calculation of three-dimensional left ventricular strains from bi-planar
tagged MR images. Journal of Magnetic Resonance Imaging 2, 165—
175.

P. Shi, H. Liu / Medical Image Analysis 7 (2003) 445464

oulon, M.J., Creswell, J.J., Actis, R.L., Myers, KW., Vannier, MW.,
Szabo, B.A,, Pasque, M.K., 1995. An inverse approach to determining
myocardial material properties. Journal of Biomechanics 28 (8), 935—
948.
uthpilla, R., Lomas, D.J., Rossman, P.J., Greenleaf, J.F., Manduca, A.,
Ehman, R.L., 1995. Magnetic resonance elastography by direct
visualization of propagating acoustic strain waves. Science 269
(5232), 1854-1857.
ielsdn, P.M., LeGrice, 1.J., Smaill, B.H., Hunter, P.J., 1991. Mathemati-
cal model of geometry and fibrous structure of the heart. American
Journal of Physiology 260 (4), H1365-H1378.
sm@n, N.F., Mcveigh, E.R., Prince, J.L., 2000. Imaging heart motion
using harmonic phase MRI. IEEE Transactions on Medical Imaging 19
(3), 186-202.
apaBemetris, X., Sinusas, A.J., Dione, D.P., Duncan, J.S., 2001. Estima-
tion of 3D left ventricular deformation from echocardiography.
Medical Image Analysis 5, 17-28.
apd&lemetris, X., Sinusas, A.J., Dione, D.P., Constable, R.T., Duncan,
J.S., 2002. Estimation of 3-D left ventricular deformation from
medical images using biomechanical models. IEEE Transactions on
Medical Imaging 21 (7), 786—799.
ark,R., Metaxas, D.N., Axel, L., 1996. Analysis of left ventricular wall
motion based on volumetric deformable models and MRI-SPAMM.
Medical Image Analysis 1, 53-71.
elc,PN.J., Herfkens, R.J., Shimakawa, A., Enzmann, D., 1991. Phase
contrast cine magnetic resonance imaging. Magnetic Resonance
Quarterly 7 (4), 229-254.
elc,PN.J., Drangova, M., Pelc, L.R., Zhu, Y., Noll, D., Bowman, B.,
Herfkens, R.J., 1995. Tracking of cyclical motion using phase contrast
cine MRI velocity data. Journal of Magnetic Resonance Imaging 5,
339-345.
ctaroff, S., Pentland, A.P., 1995. Modal matching for correspondence
and recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence 17 (6), 545-561.
hi,SP., Liu, H., 2002. Stochastic finite element framework for cardiac
kinematics function and material property analysis. In: Medical Image
Computing and Computer Assisted Intervention, pp. 634—641.
Bi, P.,, Sinusas, A., Constable, R.T., Duncan, J., 1999. Volumetric
deformation analysis using mechanics-based data fusion: Applications
in cardiac motion recovery. International Journal of Computer Vision
35 (1), 87-107.
hi, ¥., Sinusas, A., Constable, R.T., Ritman, E., Duncan, J., 2000.
Point-tracked quantitative analysis of left ventricular motion from 3D
image sequences. |IEEE Transactions on Medical Imaging 19 (1),
36-50.

Waldman, L.K., Fung, Y.C., Covell, JW., 1985. Transmural myocardial

deformation in the canine left ventricle: normal in vivo three-dimen-
sional finite strains. Circulation Research 57, 152—-163.
Wkline, S.A., Verdonk, E.D., Wong, A.K., Shepard, R.K., Miller, J.G.,
1992. Structural remodelling of human myocardial tissue after infarc-
tion: quantification with ultrasonic backscatter. Circulation 85, 269—
278.
owg, A.L.N., Liu, H., Shi, P., 2002. Velocity field constrained front
propagation for segmentation of cardiac images. In: IEEE Workshop
on Applications of Computer Vision (in press).
amadé, H., 1970. Strength of Biological Material. Williams & Wilkins,
Baltimore, MD.

vung, A.A., Kraitchman, D.L., Dougherty, L., Axel, L., 1995. Tracking

and finite element analysis of stripe deformation in magnetic resonance
tagging. |IEEE Transactions on Medical Imaging 14 (3), 413—421.
aZ, J.H., 1999. Biostatistical Analysis. Prentice-Hall, Upper Saddle
River, NJ.
hu, %., Pelc, N.J., 1999. A spatiotemporal model of cyclic kinematics
and its application to analyzing nonrigid motion with MR velocity
images. IEEE Transactions on Medical Imaging 18 (7), 557-569.
hu,ZY., Drangova, M., Pelc, N.J., 1997. Estimation of deformation
gradient and strain from Cine-PC velocity data. IEEE Transactions on
Medical Imaging 16 (6), 840—-851.



	Stochastic finite element framework for simultaneous estimation of cardiac kinematic functio
	Introduction
	Cardiac motion analysis
	Myocardium material characterization
	Joint estimation of cardiac motion and material properties

	Methodology
	Biomechanical model of the myocardium
	Stochastic finite element method
	State space representation
	Augmented state space representation
	Extended Kalman filter for joint state and parameter identification
	Construction of augmented state error covariance matrix
	Confidence measures on shape-matched boundary displacements
	Confidence measures on mid-wall MR phase contrast velocity

	Other computational considerations
	Convergence and bias issues

	Synthetic and in vivo experiments
	Synthetic computational experiment
	In vivo canine imaging experiment
	Experiment setup and imaging data acquisition
	Results and discussion


	Conclusion
	Acknowledgements
	References


