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Abstract

We present a method to register a preoperative MR volume to a sparse set of intraoperative ultrasound slices. Our aim is to allow

the transfer of information from preoperative modalities to intraoperative ultrasound images to aid needle placement during

thermal ablation of liver metastases. The spatial relationship between ultrasound slices is obtained by tracking the probe using a

Polaris optical tracking system. Images are acquired at maximum exhalation and we assume the validity of the rigid body trans-

formation. An initial registration is carried out by picking a single corresponding point in both modalities. Our strategy is to in-

terpret both sets of images in an automated pre-processing step to produce evidence or probabilities of corresponding structure as a

pixel or voxel map. The registration algorithm converts the intensity values of the MR and ultrasound images into vessel probability

values. The registration is then carried out between the vessel probability images. Results are compared to a ‘‘bronze standard’’

registration which is calculated using a manual point/line picking algorithm and verified using visual inspection. Results show that

our starting estimate is within a root mean square target registration error (calculated over the whole liver) of 15.4 mm to the

‘‘bronze standard’’ and this is improved to 3.6 mm after running the intensity-based algorithm.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The registration of preoperative volumes to intraop-

erative modalities has been proposed to aid a number of

interventional and surgical procedures. This paper in-
vestigates a method to register a preoperative MR vol-

ume to a sparse set of ultrasound images. Most previous

work on MR or CT to ultrasound registration has been

to aid image guided neurosurgery (Bucholz et al., 1997;

Comeau et al., 2000; J€oodicke et al., 1998; King et al.,

2000; Roche et al., 2000). Some of these approaches

make use of standard image guided surgery registration

techniques, using either fiducial or anatomical land-
marks, to register the preoperative and ultrasound im-

ages together. In these cases the main purpose of the
* Corresponding author.

E-mail address: david.hawkes@kcl.ac.uk (D.J. Hawkes).

1361-8415/$ - see front matter � 2003 Elsevier B.V. All rights reserved.

doi:10.1016/j.media.2003.07.003
ultrasound is to detect and correct for tissue deforma-

tions (Bucholz et al., 1997; Comeau et al., 2000; King

et al., 2000). Other approaches directly register the im-

age volumes together, either using feature- (J€oodicke
et al., 1998) or voxel-based (Roche et al., 2001) ap-
proaches. The registration of MR or CT to ultrasound

has also been carried out on forearm (Porter et al.,

2001), carotid artery (Slomka et al., 2001) and liver

images (Aylward et al., 2002; Porter et al., 2001; Voirin

et al., 2002). The approaches range from feature-based

matching (Porter et al., 2001; Voirin et al., 2002) to

hybrid (Aylward et al., 2002) and voxel intensity-based

(Slomka et al., 2001) methods. Most of these algorithms
base their registrations on vascular structures (Aylward

et al., 2002; Porter et al., 2001; Slomka et al., 2001) while

Voirin et al. (2002) use liver surface features. These

approaches have all used a densely sampled 3D ultra-

sound volume. This may not be practical in some clinical
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situations as it is difficult to acquire densely sampled 3D

volumes with tracked 2D probes when respiratory gat-

ing is applied. Two-dimensional phased-array systems

are able to acquire dense 3D volumes very rapidly,

however, they currently produce lower quality images
than conventional 2D probes (Fenster et al., 2001) and

may not have the field of view to acquire good coverage

of large organs in a single acquisition.

This paper describes a system to register MR images

to a sparse set of tracked ultrasound slices; only 10 slices

were used. Our motivation is to aid image guidance

during percutaneous radiofrequency ablation of liver

metastases. Registration of MR or CT to abdominal US
images has a number of additional difficulties compared

to using intra-cranial US images. More deformation,

due to patient breathing and probe pressure, is typically

observed in abdominal ultrasound. Also, there are

usually more artifacts present in abdominal US images

and regions where no US signal is received as they lie

behind highly reflective acoustic interfaces. However,

larger errors can be tolerated for the treatment of liver
metastases than for most neurological procedures. We

estimate that, for our system to be clinically useful,

registration errors should be smaller than 5 mm. Larger

errors, around 10 mm, could be acceptable for the

treatment of large lesions (>5 cm in diameter).

Our method is a voxel-based approach. Initially the

MR image and the ultrasound slices are converted into

images of vessel probability, where the image intensity
represents the probability that a particular voxel or pixel

contains a vascular structure. These probability images

are then registered together using normalised cross-

correlation as a similarity measure. Registrations are

carried out on images acquired from five volunteers.

Results are compared to a ‘‘bronze standard’’ (Jannin

et al., 2002) registration which was calculated using a

feature-based method that required an expert to manu-
ally identify a large number of corresponding features in

both modalities.
2. Theory

Multi-modal image registration techniques have been

shown to be effective for matching a number of different
modality pairs. One area of multi-modal image regis-

tration which, up until recently, has seen a relatively

little attention is the registration of ultrasound images to

different modalities (Maintz and Viergever, 1998). This

is probably due to the large differences between ultra-

sound images and those acquired using other modalities.

Standard B-mode ultrasound images are two-dimen-

sional, have a lower signal-to-noise ratio and more im-
age artifacts than most other modalities, also the image

is formed as a combination of speckle from homoge-

neous regions and reflections from boundaries.
Image registration can be split up into a framework

of four main stages, namely establishing a feature space,

choosing a similarity measure, defining a search or pa-

rameter space and designing a search strategy (Brown,

1992). In most intensity-based registration algorithms,
the feature space is comprised of the raw intensity values

from the two images. A suitable similarity measure is

then used to compare these intensity values and the

transformation between the two images is altered in

order to optimise the value of the similarity measure.

Measures based on the joint entropy histogram have

been shown to be very effective in registering MR, CT

and PET images (Maes et al., 1997; Studholme et al.,
1996, 1997; Viola and Wells, 1995). More recently other

measures such as local correlation (Weese et al., 1999)

and correlation ratio (Roche et al., 1998) have been

shown to perform well on these modalities. In all these

cases very little image processing occurs in the formation

of the feature space and so it is the role of the similarity

measure to process these raw intensities in such a way so

as to indicate a registration position. Typically, as the
differences between the images increase the more difficult

a task is asked of the similarity measure.

In order to register images which differ greatly (es-

pecially in image artifacts and null signal behind strong

acoustic interfaces), we propose a strategy by which the

formation of the feature space is carried out using al-

gorithms to enhance corresponding features between the

images and suppress image features that do not corre-
spond. The algorithms produce images where the in-

tensity values represent the probability of a particular

feature being present: for the images used in this paper

the features were hepatic vessels. These images are then

registered together using a simple similarity measure,

normalised cross-correlation (Pearson’s r) (Press et al.,

1992). In this way we are pre-processing the raw image

intensity values to gather additional knowledge of the
spatial distributions of intensities and particular attri-

butes of the structures we are using to guide registration.

Previous work has relied on the similarity measures

being sufficiently robust to operate on raw (or in some

cases gradient) image intensities.
3. Method

An overview of the registration system is given in

Fig. 1. We wish to obtain a correspondence between pixel

positions in the ultrasound images xUS and voxel posi-

tions within the MR volume xMR. To achieve this, it is

necessary to calculate the transformation T such that

xMR ¼ TxUS. This transformation is computed from

three separate transformations, Tcal, Ttrack and Treg as
shown in Fig. 1. The probe calibration (Tcal), which

transforms positions from the US image to positions

relative to the infrared-emitting diodes (IREDs) attached



Fig. 1. Overview of system and transformations.
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Fig. 2. Graph showing how the distance between the US transducer

face and the superior–inferior axis of the patient alters over a series of

40 ultrasound images acquired at a rate of approximately 10 frames/s.

For this set of images, image number 13 was calculated to be (and

subsequently saved as) the image acquired at maximum exhalation.
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to the probe was calculated using a cross-wire phantom

(Prager et al., 1998), this calibration technique should be
accurate to 1–1.7 mm (Prager et al., 1998; Blackall et al.,

2000). The tracking transformation, Ttrack, transforms

positions relative to the IREDs to positions relative to the

cameras on the Polaris tracking system, this should

produce a very accurate transformation as individual

IREDs can be localised with a fiducial localisation error

(Fitzpatrick et al., 1998) of 0.2–0.4 mm (Hajnal et al.,

2001). This paper describes how we calculate Treg, the
matrix which transforms positions relative to the track-

ing system to positions in the MR volume.

3.1. Accounting for breathing motion

It is important that all the ultrasound images are ac-

quired at the same stage of the breathing cycle. If this is

not the case then inconsistencies will arise between the
position of features in different sliceswhichmay introduce

significant errors into the final registration. To eliminate

this potential problem,we use onlyUS images whichwere

acquired atmaximum exhalation (the exhale positionwas

chosen, instead of inhale, as it is more reproducible

(Balter et al., 1998)).

We use the following method to acquire images at

maximum exhalation. First, theUS probe is placed on the
inferior end of the volunteer�s sternum, so that the ultra-

sound slice plane is approximately parallel to an axial

section through the body and an US image is acquired.

This image will be referred to as the ‘‘orientation initial-

ization’’ (OI) image. The positional information (derived

from the Polaris tracking device) associated with the OI

image is used to calculate a linewhich goes through theOI

image centre and is perpendicular to the OI image plane.
This line is assumed to define an approximate superior–

inferior (SI) axis of the patient. In order to acquire a single

US slice at maximum exhalation the probe is positioned

on the volunteer and 40 slices are acquired at a rate of

approximately 10 slices/s. The tracking information for

each slice is used to calculate the minimum distance be-
tween the US transducer face and the SI axis of the pa-

tient. The US image for which this distance is the smallest
should correspond to the maximum exhale position, see

Fig. 2. It is not appropriate to use a breath hold technique

to acquire images at the same stage of the breathing cycle

as patients are sedated during liver metastases procedures

and cannot control their breathing.
3.2. Formation of the feature space

The US and CT images are converted from intensity

images IðxÞ into probabilistic images, P ðxÞ (where x rep-
resents the image position) in the following way. One

or more features FðxÞ are calculated at each image posi-

tion. Features are chosen which should allow an accu-

rate classification between hepatic vessels and liver

parenchyma. These features are transformed into vessel



d
θ

US image

Transducer face

84 G.P. Penney et al. / Medical Image Analysis 8 (2004) 81–91
probability images (not binary segmented images) using a

probability density function p which, given a set of fea-

tures FðxÞ, returns an estimate of the probability that

position x contains a vessel. Our aim is not to produce a

perfect segmentation of the vessels, but to produce vessel
probability maps of sufficient quality to allow accurate

and robust registrations. This is summarised as

P ðxÞ ¼ pðFðxÞÞ: ð1Þ
The function p was calculated using a set of training

data which was kept completely separate from the data

sets used for the registration experiments. For the MR

images only a single feature, image intensity IðxÞwas used.
For the US images, two features were used, image inten-

sity IðxÞ and a feature which represents dip intensity

IdipðxÞ. These features, and the calculation of p, are dis-
cussed in more detail in the following sections.

3.2.1. Converting the MR image

An MR image IMRðxÞ of the liver was used as a set of

training data. The liverwasmanually segmented from this

image (and from the MR images used in the subsequent

registration experiments). There were two main reasons

for using segmented data. First, it greatly simplified the
process of converting MR intensities to vessel probabili-

ties as the segmented MR images contained only two

tissue types, hepatic vessels and liver parenchyma, which

can be separated reasonably well using an intensity

threshold. Second, we would like the registration to be

based solely on hepatic vessels as these are expected to

move in an ‘‘approximate’’ rigid body relationship with

the liver parenchyma, whereas a number of other vessels
in the abdomen (e.g. the aorta) do not. By only matching

on the hepatic vessels our hypothesis is that we should

reduce the effect of errors induced due to liver movement

between MR and US image acquisition. This segmenta-

tion does not need to be exact and can be thought of as

defining a region of interest within theMR volume which

contains voxels useful to our registration process and

omits voxels which may induce errors due to non-rigid
motion.

A further manual segmentation was then carried out

on the set of training data to create an image which con-

tained only hepatic vessels. The MR probability density

function pMR (which is essentially a look-up table con-

verting intensities IMR into probabilities pMR) was calcu-

lated from these images as

pMRðIÞ ¼
Number of vessel voxels of intensity I
Number of liver voxels of intensity I

: ð2Þ
Fig. 3. Calculation of beam directions. Three points are manually

picked on the transducer face þs. These points are used to calculate the

centre of the arc transcribed by the transducer face �, the radius of this

arc d and a maximum angle h.
3.2.2. Converting the ultrasound images

The first step for the ultrasound images is an artifact

removal stage. Our method uses simple knowledge of the

ultrasound image formation process – that most strong

reflections and artifacts cause a loss of signal along the
direction of the beam.We have calibrated our ultrasound

images so that we know the beam directions. This is

achieved by picking three points along the transducer face

in one ultrasound image as shown in Fig. 3. Once these

values are known, the US image (and all subsequent US
images acquired on the same US machine with the same

depth setting) can be described by a set of lines (beams)

going through � at angles between �h.
The US images are Gaussian blurred (SD of four pix-

els) to reduce the effect of noise. Then, for each beam di-

rection, we begin at the bottom of the image and move

back towards the transducer face. The image is labelled as

artifact until a threshold Tart value is reached. Approxi-
mately 2 cm of the US image directly adjacent to the

transducer face is also labelled as artifact, this is to reduce

the effect of deformation caused by probe pressure. Image

positions labelled as artifact are not used in any sub-

sequent image processing. In this and subsequent sections

IUS will refer to US images which have been put through

this simple artifact removal process.

After artifact removal, two features from the US im-
ages are used to produce the probability images. The first

is image intensity. The second is the size of intensity dips

along the beam directions. Intensity dips were chosen as a

feature because, from visual inspection of the US images,

they were seen to be a characteristic property of hepatic

vessels. A dip image IdipðxÞ is generated from each US

image using the following method. The algorithm sear-

ches for vessels between a minimum vmin and maximum
vmax diameter. For a given vessel width v the algorithm

scans along the direction of the beam and calculates the

mean image intensity �cc around position x0 (in Fig. 4) up to
a distance of �v=2. The mean intensities on either side of

the vessel along the direction of the beam (�aa and �bb) are also
calculated, see Fig. 4.



Fig. 4. Formation of the dip image. Left is ultrasound image after artifacts have been removed IUSðxÞ. Centre shows intensity profile along line YZ

and the regions where the central �cc, before �bb and after �aa mean intensity values are calculated. Right shows resultant dip image IdipðxÞ.
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Initially all the image values in IdipðxÞ are set equal to
zero. Then values of IdipðxÞ along the ray YZ up to a

distance �v=2 from x0 (i.e. at positions x00 ¼ fx0 � v=2;
. . . ; x0 þ v=2g) are set equal to d ¼ minf�aa� �cc; �bb� �ccg if
�bb > �cc < �aa and d is larger than the current value of Idip.
Also, at each position, x0, the vessel size is varied be-

tween vmin and vmax.

This process is summarised as the following steps.

1. Set all image values in IdipðxÞ equal to zero.

2. For each position along the beam x0, using vessel di-

ameter v, calculate �aa, �bb and �cc.
3. Calculate the dip size d ¼ minf�aa� �cc; �bb� �ccg.
4. For each position x00 ¼ fx0 � v=2; . . . ; x0 þ v=2g if

�bb > �cc < �aa and d > Idipðx00Þ set Idipðx00Þ ¼ d.
Fig. 5. Four images showing the process from the original US to the probab

loss caused by poor probe contact (A), the removal of the area close to transdu

and shadowing (C). Some non-vessel pixels can be seen to have been alloca

reiterate that our aim is not to produce a perfect segmentation, but to produ

registrations.
5. Repeat steps 2–4 for all points along the beam and

for all v between vmin and vmax.

6. Repeat steps 2–5 for each beam.

A set of 40 US images of the liver was used as training
data. These images were acquired from both patients and

volunteers. There was no overlap between the images

used as training data and the images used in subsequent

experiments. The images were manually segmented to

give a set of images which only contained the hepatic

vessels and the US probability density function pUS

(which is essentially a 2D look-up table which converts I
and Idip into pUS) was calculated as shown in Eq. (3).

Fig. 5 shows a sample US image at a number of

stages from the original image to a probability image.
ility image. The mask image shows regions masked out due to a signal

cer face to reduce the effect of deformation caused by the US probe (B)

ted a high value in the probability image. However, we would like to

ce probability images of sufficient quality to allow accurate and robust
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pUSðI ; IdipÞ

¼ Number of vessel pixels with intensity I and dip intensity Idip
Number of US pixels with intensity I and dip intensity Idip

:

ð3Þ

3.3. The registration algorithm

Initially the algorithm Gaussian blurs (SD 2 mm) the

probability MR image PMR and the probability US slices

PUS.

The similarity measure for the algorithm is calculated

as follows. The current estimate of the rigid body pa-
rameters is used to reslice the PMR image in the plane of

each US slice. The pixel values in these reformatted

slices and in the PUS images are then compared using the

normalised cross-correlation similarity measure.

We use the following method to optimise the simi-

larity measure. Each of the rigid body parameters is

altered in turn and the value of the similarity measure

calculated. The algorithm then moves the current esti-
mate of the solution in the direction which produced the

greatest improvement in the similarity measure. This

optimisation scheme can be greatly affected by the

choice of initial stepsize. An excessively large initial

stepsize can result in an algorithm stepping outside its

capture range. If the initial stepsize is too small then the

optimisation may become trapped in a local optimum

(Studholme et al., 1996). For all the experiments carried
out for this paper, an initial stepsize of 2 mm or 2� was
used, which was reduced by a factor of 2 when move-

ments in all of the rigid body degrees of freedom pro-

duced a decrease in the value of the similarity measure.

The minimum stepsize used was 0.0625 mm or 2�. This
search strategy is a zeroth-order estimation scheme. A

good review of alternative optimisation methods can be

found in (Press et al., 1992).
Fig. 6. Anterior–posterior (left) and cranial–caudal (right) views showing the

white outlines (2 colours have been used for ease of visualisation). Also shown

and MR renderings have been aligned using the ‘‘bronze standard’’ registra
3.4. Experiments

3.4.1. Data acquisition

Sets of between 15 and 28 ultrasound slices were

collected by an interventionist from 5 volunteers, using
a Siemens SONOLINE Versa Pro ultrasound machine

and a 3.5-MHz probe. Images were captured using a

video frame grabber (Snapper card, DataCell Ltd.). Ten

images were manually selected from each set of images.

The selection criterion was to choose images which con-

tained a large number of clearly visible vessels and that

the set of images included a wide range of views, enabling

good coverage of the internal structure of the liver. These
images were filtered to remove artifacts (Tart ¼ 40) and

then converted into vessel probability images (max and

min vessel sizes were vmax ¼ 16 mm, vmin ¼ 2 mm). The

positions of the 10 slices from volunteer C can be seen in

Fig. 6.

MR images were also acquired from the same vol-

unteers on a Philips GYROSCAN ACS-2. The volun-

teers were asked to hold their breath at maximum exhale
while the images were acquired. A typical image size was

256�256�28 with voxel dimensions of 1.328�1.328�10

mm. The liver was segmented from each of these vol-

umes. A manual segmentation process was used, though

it should be possible to use a semi (Schenk et al., 2000)

or fully (Soler et al., 2000) automatic process to carry

out this segmentation. Voxels which were not in the liver

were labelled as missing data and took no further part in
subsequent image processing. These images were then

converted into probability images.

3.4.2. Calculation of a ‘‘bronze standard’’ transformation

All the registrations have been compared to a ‘‘bronze

standard’’ transformation. This has been calculated using

a modified version (Penney et al., 2001) of the iterative

closest point (ICP) algorithm (Besl and McKay, 1992).
relative positions of the 10 US images from volunteer C as black and

are renderings of the liver and skin surface from MR. The US outlines

tion.
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The features on which the registrations were based were

the surface of the inferior vena cava (IVC) and the mid-

lines of all the other visible hepatic vessels segmented from

MRand a set of pointsmanually picked in theUS images.

The graphical user interface (GUI) shown in Fig. 7 was
used to allow the operator to pick points in eachUS image

and draw lines to represent the midline of the hepatic

vessels in the MR volume. The surface of the IVC was

manually segmented using ANALYZE (Mayo Founda-

tion) and loaded into the GUI. The interface allowed the

user to run the modified ICP registration algorithm after

picking a few points to allow an initial registration, the

MR volume could then be resliced to show an approxi-
mately corresponding slice. This featurewas found tohelp

feature identification in the two images, allowing points

and lines to be marked on peripheral vessels. Successive

registrations could also be carried out to further improve

feature identification. To aid point correspondence, lines

and points were labelled as either IVC, portal vein or

hepatic vein when they were picked.

All available ultrasound images were used to calcu-
late the ‘‘bronze standard’’ and the aim was to use as

many image features as possible. The point and line

picking procedure typically took about 2 h to complete

and so is impractical to use on a routine clinical basis.

The final residual errors from the registrations were

between 2.7 and 3.5 mm.

3.4.3. Accuracy experiments

A starting position was found using the following

method. TheOI imagewas used to find a starting estimate

for the rotational parameters, i.e. the OI image was as-

sumed to lie parallel to an axial slice in the MR volume.

The translational parameters were found by manually
Fig. 7. Graphical user interface used to pick points and lines to calculate ‘‘br

which vessel points are picked, bottom left shows the current best estimate fo

image features which have already been picked and the current best estima

window.
identifying a single point in theMR and in one US image.

This point was chosen to be the midline of the IVC where

the hepatic veins join. Optimisation then used this posi-

tion as a starting estimate.

The final rigid body parameters were compared to the
‘‘bronze standard’’ registration in the following way.

Each voxel within the liver was transformed using both

the ‘‘bronze standard’’ registration and the final regis-

tration parameters and then the root mean square (RMS)

distance between these positions was calculated to give an

RMS target registration error (TRE) (Fitzpatrick et al.,

1998).

For comparison purposes, registrations were also
carried out between the MR greyscale images (with non-

liver voxels removed) and the greyscale US images (after

the artifact removal stage) using a normalised mutual

information (NMI) similarity measure (Studholme et al.,

1999).

3.4.4. Precision and robustness experiments

To assess registration precision and robustness, the
‘‘bronze standard’’ registration was perturbed by add-

ing random Gaussian noise to each of the rigid body

parameters (SD 5 mm or 5�) to produce 50 starting

positions.

Failed registrations were defined using the following

method. The 50 registrations to each dataset were used

to produce an average transformation (Moakher, 2002).

The RMS distance (calculated over all the liver voxels)
between the average and each individual transformation

was calculated and a histogram plotted, as shown in

Fig. 8. In three data sets there were no outliers. For the

other two data sets, a threshold was chosen from visual

inspection of the histograms and registrations which
onze standard’’ transformation. Top left shows an ultrasound slice on

r the corresponding slice through the MR volume. Right shows the 3D

te for the MR slice. 3D line features can be manually picked in this
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Fig. 8. Histogram plot showing the distribution of the RMS distance

between a mean transformation and each of the 50 individual regis-

tration positions for volunteer E. A threshold of 4 mm was chosen,

above which registrations were classified as a failure.

Table 2

Precision and robustness experiments

Volunteer Initial

RMS

TRE

Final

RMS

TRE

SD Failure

rate

A 11.3 mm 3.6 mm 0.5 mm 0%

B 11.3 mm 3.1 mm 0.8 mm 4%

C 11.1 mm 2.8 mm 0.9 mm 0%

D 11.6 mm 5.6 mm 0.6 mm 0%

E 10.7 mm 2.9 mm 1.1 mm 24%

RMS value 11.2 mm 3.6 mm 0.8 mm 5.6%

(mean)
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were further away from the mean transformation than

this threshold value were classified as failures.

Two error measures were calculated from the suc-

cessful results. The first was an RMS distance to the

‘‘bronze standard’’ registration calculated as explained
above: this gives an RMS TRE value. The second was

an RMS distance to an average transformation: this

gives information on the precision or SD of the results.
4. Results

Registration accuracy results are given in Table 1.
They show that on average the starting position, found

using the OI image and a single point, was within 15.4

mm of the ‘‘bronze standard’’ registration and this im-

proved to 3.6 mm after running the registration algo-

rithm. The algorithm did not converge towards the

‘‘bronze standard’’ when the NMI similarity measure

and greyscale images were used.

Fig. 9 shows three US slices and the corresponding
slices from the MR volume after it has been resliced and

reformatted using the final registration matrix. Corre-
Table 1

Registration accuracy

Volunteer Initial RMS

TRE

Final RMS

TRE

RMS TRE

result using

NMI

A 22.5 mm 4.3 mm 24.5 mm

B 17.7 mm 2.9 mm 23.2 mm

C 16.2 mm 2.9 mm 22.8 mm

D 9.8 mm 5.5 mm 39.6 mm

E 10.7 mm 2.3 mm 14.1 mm

RMS value 15.4 mm 3.6 mm 24.8 mm
sponding features can clearly be seen to be well aligned
in the respective images indicating an accurate regis-

tration. A number of image artifacts – in particular void

signal due to poor contact between part of the trans-

ducer face and the volunteer – can be seen in the images.

A linked cursor (white cross) shows corresponding po-

sitions in each image pair.

Table 2 shows the precision and robustness results.

The results in Table 2 show the algorithm to be precise
(maximum SD 1.1 mm) and robust for 4 out of the 5

data sets (maximum failure rate of 4%) for registra-

tions which start within �5� or 5 mm of the ‘‘bronze

standard’’. The failure rate for data set E was much

larger (24%), this was due to the presence of a local

minimum which captured all except two of the failed

registrations.
5. Discussion

We have presented an algorithm which can register a

set of tracked 2D ultrasound slices to an MR volume.

Our method differs from previous voxel-based registra-

tion methods as only a sparse set of US slices is used.

The greyscale intensity images are transformed into
probability images where the intensity values represent

the probability of a voxel or pixel containing a vessel.

We have shown that a method based on NMI and using

the original intensity values, which has been highly

successful in other registration applications, was not

able to register the images used in this paper. We de-

veloped a strategy in which images are pre-processed to

produce maps of probabilities of corresponding fea-
tures; in our case vascular structures. Registration is

then undertaken using these image maps.

The probability density functions used in this paper

were calculated using a set of training data. One draw-

back to this method is that subsequent images must be

similar to the set of training data. This would require a

standard protocol to be used for MR. Our method

should also be applicable for use with contrast enhanced
CT images. In this case, as CT image values represent

linear attenuation coefficients, there should be good
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consistency between calculated probability density

functions and subsequent sets of data. The US image

acquisition can also be affected by a number of operator

defined variables, these should be kept as similar as

possible to the settings used when the training data were

acquired. One solution to this problem would be to

collect the RF data from the ultrasound machine. These

data have not yet been converted into an image and so
are unaffected by a number of operator variables. Our

method to convert US images to probability images has

been designed to work along the line of the US

beam and so it is directly applicable for use with the RF

data.

Our probability density functions are formed from

relatively simple features, image intensity and (for US)

intensity of a dip image. These features have proved to
be sufficient to allow accurate and robust registrations

on the images used in this paper. However, in the future,

other image processing steps may be found which can

extract image features that are more able to clearly de-

lineate the differences between hepatic vessels and liver

parenchyma. Such features could either be used in

conjunction with our current feature sets, or could be

used as a replacement. The introduction of such features
should improve the quality of the probability images

which in turn should improve the accuracy, robustness

and capture range of the algorithm.

Our registration method assumes that the liver moves

as a rigid body, whereas the liver is known to deform,

both due to pressure from the US probe and the

breathing motion of the patient. Deformation from the

US probe is not expected to extend a long distance into
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the patient (Voirin et al., 2002) and so we account for

this by labelling the first few centimeters of the US im-

age as missing data. Deformation from patient breath-

ing has been kept to a minimum by gating both the US

and MR acquisition at the same position in the
breathing cycle – maximum exhale. Although the liver

moves by a number of cm due to respiration, the non-

rigid component has been measured to be much smaller

than this (6 mm) (Rohlfing et al., 2001). Methods have

also been proposed to account for this deformation us-

ing a patient specific statistical shape model (King et al.,

2001).
6. Conclusions

We have presented a method to register a sparse

set of 10 tracked US images to an MR volume of a

liver. Our method is based on a strategy in which we
pre-process images to provide a probability map of

corresponding features. This pre-processing step uses

information gathered from a set of manually segmented

training data. Our method has been compared to a

‘‘bronze standard’’ registration calculated by manually

picking points in both modalities. Results show that our

method is accurate to within an RMS error of between

2.3 and 5.5 mm (with respect to a ‘‘bronze standard’’
registration) which is accurate enough for most liver

procedures.

We are now integrating this method with a model of

liver motion and deformation over the breathing cycle

so as to track the shape and position of the liver during

free breathing. The results of this work will form the

basis of an image guidance system that will use the in-

traoperative ultrasound augmented with planning in-
formation from preoperative contrast enhanced CT (or

MR) to guide needle placement in the ablation of liver

metastases.
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