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Abstract

In this work a new statistic deformable model for 3D segmentation of anatomical organs in medical images is proposed. A statistic
discriminant snake performs a supervised learning of the object boundary in an image slice to segment the next slice of the image
sequence. Each part of the object boundary is projected in a feature space generated by a bank of Gaussian filters. Then, clusters
corresponding to different boundary pieces are constructed by means of linear discriminant analysis. Finally, a parametric classifier is
generated from each contour in the image slice and embodied into the snake energy-minimization process to guide the snake deformation
in the next image slice. The discriminant snake selects and classifies image features by the parametric classifier and deforms to minimize
the dissimilarity between the learned and found image features. The new approach is of particular interest for segmenting 3D images with
anisotropic spatial resolution, and for tracking temporal image sequences. In particular, several anatomical organs from different imaging
modalities are segmented and the results compared to expert tracings.
   2003 Elsevier B.V. All rights reserved.
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1 . Introduction Niessen et al., 1998, 1999; Zeng et al., 1999, Leventon et
al., 2000). Obtaining a successful segmentation is intricate-

Three-dimensional segmentation of anatomical organs is ly tied to the choice of features and the criteria used for
widely used for diagnosis of diseases and planning of discriminating the pattern classes (Jain et al., 1997).
surgical interventions. However, the segmentation of medi- Usually, image features are not selected in accordance
cal images is still a difficult task due to the complexity and with the specific organ and image modality; thus too many
variability of the anatomic shapes, sampling artifacts, feature points that do not belong to the organ of interest
spatial aliasing and noise. Deformable models stand out are enhanced, while other important ones go unnoticed.
from other segmentation techniques due to their ability to Blake and Isard (1998)and Yuille et al. (1992)proposed
interpret sparse features and link them to obtain object the combination of different image features depending on
contours. the application domain. However, the best way of selecting

Different examples of the application of deformable and integrating different features remains an open problem.
models can be found in the medical image literature So, the feature space must be capable of representing all
(McInerney and Terzopoulos, 1996; Terzopoulos, 1987; image features of interest. To achieve such a broad
Amini et al., 1990; Chen and Huang, 1992; Cohen and description, we propose employing a bank of Gaussian
Cohen, 1993; Cootes et al., 1995; Blake and Isard, 1998;filters. Numerous physiological measurements support the

theory that receptive field profiles can be modelled by
Gaussian filters of various scales (Koenderink, 1984;
Young, 1986; Florack et al., 1996). From a mathematical*Corresponding author. Tel.:134-981-563-100; fax:134-981-528-
point of view, it has been proven that the complete family012.
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tesian family for complete determination of local image snake (STD-snake) learns both the optimum features and
structure (Florack et al., 1992). discriminants. The external energy of the snake is defined

A very important issue concerns the construction of an as the distance from each curve part to its target contour in
irreducible set of differential invariants in a fixedN-jet (the the feature space. Thus, each part of the snake curve makes
set of partial derivatives up toNth order). This irreducible its own interpretation of the image data and deforms
set should provide optimal tools to measure the amount of thereby minimising this distance.
featureness at a certain position for any generic image The paper is organized as follows. In Sections 2 and 3
configuration (Niessen et al., 1997). We consider the we introduce the STD-snake based on Fisher linear dis-
problem of constructing an optimal subspace of the criminant analysis. In Section 4 we compare our proposal
complete feature space which will better discriminate the to classical snake, and give some results in the field of
different parts of the object boundary. For example, it is medical image. Finally, in Section 5 we outline the main
well-known that to discriminate texture patterns only conclusions of the work and future research.
second Gaussian derivatives are needed (Malik and
Perona, 1990).

An important issue which must be addressed is the 2 . Supervised feature learning
selection of filter scales. In general, an optimal single scale
does not exist. One alternative lies in searching for the best We represent the snake curve by means of a cubic
local scale, but it depends on the imaging modality and the B-spline, and therefore each snaxel (snake control point)
specific image feature (Subirana-Vilanova and Sung, 1992; influences four curve segments. For each snaxel, we define
Elder and Zucker, 1998). Multiscale analysis is usually acontour patch as the central part of its four curve
used when there exists no clear way to choose the right segments of influence, avoiding the overlap between
scale. The decisions of how many scales should be used adjacent contour patches. Each snaxel moves in accord-
and how to combine them are the main issues of this ance with the energy accumulated along its contour patch.
approach (Pardo et al., 2001;and references therein). The STD-snake has a triple objective: to obtain a

The integration of the selection of features, and their general representation of any contour class in terms of a
scales, in a statistical framework is the most convenient set of features (Section 2.1), to determine the optimum
approach to relate the segmentation technique to the discriminant for each desired contour part (Sections 2.2
specific task. Our approach combines the selection of the and 2.3), and to deform towards the target object boundary
best scale, for the fine local fitting, with a multiscale (Section 3).
approach to cope with cases where there is a big change in To make the snake discriminant, each snaxel must be
contour location from one slice to the next slice. able to distinguish between its corresponding contour

We can find in the literature statistical-based approaches, target and other structures (other parts of the contour and
which preferably attract the curve towards image features contours of nearby objects). The discriminant snake should
consistent with their trained shapes (Yuille et al., 1992; learn the more relevant features for each specific seg-
Staib and Duncan, 1992; Chakraborty et al., 1996; Cootesmentation problem, and generalize the classical approach
et al., 1995; Nastar and Ayache, 1996; Blake and Isard, that only uses gradient information. For each desired
1998) and/or greylevel appearance.Turk and Pentland contour part (class), a set of samples is obtained and then a
(1991)used principal component analysis to segment face supervised learning aimed at the maximization of the
images in terms of a set of basis functions.Paragios and between-class scattering of image features, is accom-
Deriche (1999)proposed a geodesic active contour based plished. We define a parametric potential that depends on
on a supervised statistical modeling, which combines a the features of each part of the target boundary. By
priori knowledge about the desired boundary, and the parametric we mean that each snaxel sees the image
exterior and interior region properties.Yezzi et al. (1999) features in a different way, because each one is aimed to fit
have presented active contours with a natural use of global different object boundary parts.
and local information to segment regions distinguishable Fig. 1 illustrates the learning process carried out for each
by a given set of statistics. Some authors consider the full contour part. The features of the target contour part and the
appearance (shape and grey-level) of the object (Lanitis et complementary class are extracted from the training con-
al., 1995; Leventon et al., 2000). tour and background. Then, Fisher linear discriminant

Our discriminant approach describes and learns contour analysis (FLDA) gives the optimal discriminant. During
grey level appearances and integrates them into the snake the optimization process each snaxel will evolve guided by
formulation. The method extracts knowledge from samples its discriminant. The following sections describe in detail
on the adjacent slice in the same 3D image sequence. The these steps.
contour configurations in a slice are good training samples
for the algorithm that operates in the next slice, because2 .1. Feature extraction
there is a high correlation between adjacent slices. Unlike
other probabilistic approaches, the statistic discriminant We propose to use a bank of Gaussian filters to extract
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Fig. 1. From feature space to classification vector for each contour part.

d&the image features. Since the directional derivative 3 : R → R ,f
doperator is steerable, each filterG (x, y, s, f) of degreed

( → & (.*$Sand orientationf can be synthesized by interpolating
d dd 11 basis functions G (x, y, s, u ) (Freeman andh jk k51 The image potential will refer to what each snaxel inter-

Adelson, 1991). We define& as the$-jet filter bank$S prets on this multivalued feature.0 1 N 21Swith N scales:s [ h2 , 2 , . . . ,2 j. The size of theS

bank of filters is a function of$ and N :S

2 .2. External forces by statistic classifiers$

d 5 dim(& )5N O (d 1 1)& $ SS
d50 Each snaxel will give different relevance to each com-

N ponent of the feature vector3 . In that sense, we shall talkS 2 f]5 ($ 1 3$ 12). (1) about variable (parametric or locally defined) external2
energy. To determine the relative importance of eachOur bank of filters contains derivatives up to degree three,
component of the feature vector, a supervised learning isbecause variance of higher-order filters can be expected to
performed. The algorithm starts with a set ofN sampleapproach that of image noise, and tend to be highly
feature vectors on object contour and non-object contourcorrelated to the outputs of lower order filters (Rao and d&hs , s , . . . ,s j, s [R . For each contour patchk, each1 2 N iBallard, 1995). The impulse responses of the Gaussian
multivalued features is assigned to one of two classesjfilters are given by ¯hC , C j, representing the pixels belonging to the contourkk k

2 2 and the complementary class.1 1 x 1 y0 ]] ] ]]G (x, y, s)5 exp 2 ,H F GJ Then a FLDA provides the optimal linear discriminant2 222ps s
for each patchk that maps the originald -dimensionalu &x 11 0]G (x, y, s,u )5R 2 G (x, y, s) , space into a 1-dimensional space (see Appendix A). TheSS D D1 2

s
discriminant for each patchk consists of the classifier2 u21 x2 0 vector9 and the class center2 of the samples of patch] ]G (x, y, s,u )5R 2 1 G (x, y, s) , C CSS D D k k2 2 4

s s k in the feature space:
3 u33x x3 0] ]G (x, y, s,u )5R 2 1 G (x, y, s) ,SS D D3 4 6 9 5V ,C k optks s ]

Td 2 59 m ,where the superscript inG ( ? ) represents the derivative C C Ck k k
uddegree, andR( ? ) represents a rotation of an angleu [d

where V maximizes the ratio between-class/within-hkp /d 1 1uk 5 0, 1, . . . ,dj. k opt
]

class discrimination, andm is the mean feature vector ofThe convolution of& with the image( allows the C$ kS

the patchk.generalized description of edge, ridge, valley or whatever
We define the local external energy of the snake in termsimage intensity features. We define a multivalued feature

of the distanceD from the image features3 in the3 as the result of this convolution: C ff k
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current location of the snake to the desired contour white background.Fig. 2(b,c) corresponds to the initial
features: contour and final fitting of the snake guided by the

classifiers (one per contour patch) in the multivaluedT TD 5 9 (3 2m ) 9 (3 2m )s ds dC C f C C f Ck k k k k feature space.Fig. 2(d,e)contains the components of the
T 2 multivalued feature for two scales and derivatives up to5 9 3 22 . (2)s dC f Ck k degree three.Fig. 2(f) shows the image potentials as are

We give an explicit expression for the external energy and seen by each snaxel.
forces in Section 3. A real example in the field of the medical images is

Each snaxelj learns different contour types (9 , 2 ) in shown in Fig. 3. Fig. 3(a) shows the training contour,C Cj j

where alternating colours represent different contour pat-slice i 2 1, and therefore each snaxel interprets in different
ches.Fig. 3(b–e)represents the distances (in feature space)way the image features3 in slice-i. This behaviour of ourf

to contour classes placed on the west, east, north and southmethod is illustrated in the synthetic example ofFig. 2.
sides of the training contour. As is desirable, the minimumFig. 2(a) contains a synthetic image of two circles on a
of each distance map is around each learning contour class,
and there is a maximum in the diametrically opposed part 

of the contour.

2 .3. Continuity and regularization of classification
vectors

In general, features smoothly vary along the boundary of
an object in a medical image. If the contour is densely
sampled, smooth variation of the classifiers can be ex-
pected to occur along the learning contour.Fig. 4 illus-
trates this hypothesis. It contains the representation of
components of the classification vector along the internal
contour of a coronary vessel in an intravascular ultrasound
(IVUS) image. As can be seen, the features and the
components of the classification vectors (V ) vary smooth-ij

ly along the sequence of contour patches.
If the inter-slice resolution is close to the intra-slice

resolution, the similarity between adjacent slices will be
high, which will allow us to learn the contour features in a
slice and use it to segment an adjacent slice.Fig. 5 shows
the continuity of the classifiers between adjacent slices in a
CT image sequence of femur.

We assume that features vary smoothly along the object
surface (inter- and intra-slices) to improve the robustness
of the learning process. Due to possible mislocation of
snaxels at the beginning of the learning step, some
spurious contour configurations could be learned. We
introduce a regularizing process which increases the
continuity of the classification vector, and makes the
learning step more robust. In this process, the classifier of
each contour patchp is regularized taking into account its
direct neighbour classifiers:

12zp
]]99 5z 9 1 9 19 ,C p C C Cs dp p p21 p112

(3)
12zp
]]92 5z 2 1 2 12 ,C p C C Cs dp p p21 p112

where the superscripts indicate new values, andz [ [0,1]pFig. 2. Training contour and patch numbering (a); initial contour (b); final
is a regularizing parameter. From the regularized clas-contour (c); filter responses for scaless 5 1,4 (d,e); distance map to the
sifiers, we define a continuous classification function asdifferent contour classes of the top left circle, top left map correspond to

patch 1 and bottom right map correspond to patch 8 (f). follows:
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Fig. 3. Training contour and selected patches (b–e) (a); distance maps for contour patches on the west (b), east (c), north (d) and south (e) of the training
contour (b)–(e).

N21 smoothed. This prevents that contours with real sharp
99(s)5O 9 w (s), changes smooth severely, and only erroneous vectors areC pp

p50 significantly corrected.
In Fig. 6 one can see the 0, 1st and 3rd derivatives withwhere w is considered in terms of finite-element nodal

respect to the coordinatex in the classifiers of snakeshape functions. For linear functions:
patches (p 50, . . . ,45).Note that different weights form a
continuous function of the internal parameter of the snakeuu(s)2 u u, if u [ [u , u ],p p21 p11

w (s)5 curve. In patches 35 and 37 smoothing of the weights isp H
0, otherwise, observed after applying Eqs. (3) and (4).

where u(s) represents the contour curve andu are thep

nodal points assuming uniform knots (uu 2 u u5 1) ofj j11

the same curve. 3 . Snake optimization
To correct erroneous vectors without seriously affecting

their neighbors, we compute parameterz as follows:p Let C(s)5o V B (s) be a B-spline representation of thei i i

curve, whereV are the control points ands is the curveiT T
z 5max 9 9 , 9 9 . (4)H Jp C C C C parameter. The total energy can be written (Menet et al.,p p21 p p11

1990):
Provided that classifiers are normalized,z is the cosine ofp

1the angle between both vectors:

E (C)5E(E (C(s))1E (C(s))) dstotal int extT T T9 ?9 5 i9 i ? i9 icos/ ,C C C C 9 ,9 0p p61 p p61 C Cp p61

1
2 2T T T 2≠C(s) ≠ C(s)i9 i5 iV i51 ⇒ 9 ?9 5 cos/ ,C C C C 9 ,9p p61 p p61 C C U]]U ]]5E a 1b 1E (C(s)) dsU US Dp p61 ext2≠s ≠s

0

where/ denotes the angle between vectors. Ifz takes?,? p 2 22≠B (s ) ≠ B (s )i j i jvalues close to 1 it means that classifier9 has at leastC ]] ]]5O a O V 1b O V 1E (C(s ))) .F S D Gp S Di i ext j2≠s ≠sj i ione similar neighbour classifier, so it is not greatly
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Fig. 4. Components of the classifier along the patches of the learning contour. InV , i [ [0, 1, 2, 3] indexes derivative degree andj indexes orientationij

(u [ h jp /(i 1 1)u j 5 0,1, . . . ,ij), and each line corresponds to a different scale.i

We define the external energy as a function of image These equations can be written in a matrix form similar to
features and the training contour classes (Section 2.2). For the classical snake:
a point in the patchk, the external energy is

A V 1G 5 0, (6)b

T 2E (C(s )) 5 (9 3 (C(s ))22 ) where the stiffness matrixA for B-spline snakes is still aext j C f j C bk k

(5) banded matrix andG plays a role equivalent to forces in
T 2*5 (9 (& ((C(s ))22 ) . the classical snake. Theith element ofG isC DS j Ck k

G 5O B (s )=E (C(s ))We are looking for control pointsV , i 5 0, . . . ,N that i i j ext ji
j

minimize the total energy, i.e., that satisfy
T

52 2O B (s )(9 ? (& ((C(s )))*i j C $S jk
j≠Etotal

]]5 0, ;l [ h0, . . . ,Nj. T≠V 22C )(9 (=& ((C(s )))). (7)l *k C $S jk
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Fig. 5. Continuity of the classifiers among adjacent slices for different derivatives and scales.

The solution of the segmentation problem is found in an The method is incremental because it begins with the
iterative and incremental way: highest scale components of the classification vector,

incorporates a new scale after convergence, and finishes
21V 5 (A 1gI) (gV 1G(C )), with all the scales. The weights corresponding to the scalest11 b t t

that are not being considered are set to zero. In each
where g is the damping parameter that determines the incremental step the algorithm iterates until all the control
convergence rate and is equal to 1 in our implementation. points stop evolution or oscillate.

 

Fig. 6. Learned and regularized components of the parametric classifier.
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As the number of control points increases, the delinea- snakes to both prove the advantages of our method and to
tions of convoluted shapes improve. However, when the justify the choices made. We will begin by showing the
number of control points is increased, the size of the advantages of using multiple scales and a continuous
patches decreases and discrimination power decreases. We classifier, and will finish by demonstrating the ability of
found that a distance of about 5 pixels between adjacent our method to describe and learning different image
control points worked well in all tested examples. To features.
maintain these distances we augmented the algorithm with
a reparameterization capability during the deformation 4 .1.1. Integration of multiple scales
process. The use of multiple scales has two objectives: first, the

greater the scale, the wider the spatial effect of the
potential. Hence high scales allow large displacement of

4 . Results the snake contour to reach the desired object. Second,
multiple scales greatly reduce the number of local minima.

In order to validate the method we have tested STD- Fig. 7 shows an example that illustrates this property of
snake on organs from different imaging modalities. First, the multiscale vector. We have computed the distance map
we are going to show some properties of our approach generated by the classification vectors over all the image.
with respect to classical implementations, and afterwards Fig. 7(b)shows the computed distance map using only the
we will show a comparison to expert tracings. lowest scale in the classification vector, andFig. 7(c)

contains the distance map computed by the multiscale
4 .1. Comparison to classical snakes classification vector. As can be seen inFig. 7(d,e) the

approximate Gaussian shape of the histogram has lesser
We are going to compare the method with classical variance and higher mean distance inFig. 7(e)than inFig.

 

Fig. 7. Training contour: MR Image of the knee joint (a); distance map images generated by the classifier of the contour patch placed in the middle top of
the bone contour in (a) considering: only the smallest scale (b), all the scales used in learning phase (c); histograms for the distance map: for singlescale
(d), and all scales (e).
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7(d). This means that the number of convex components in 8(e) shows two samples of the smoothed and the regular-
the distance map diminishes and there are less potential ized components of the classifier along the contour.
minima in Fig. 7(c) (multiscale) than inFig. 7(b) (single The continuous classifier also allows us to add new
scale). In all the examples shown in this work, we used control points to fit to concave shapes. After convergence,
scale parameters with valuess 51, 2, 4, 8. the algorithm tests the distance between adjacent control

points; when this distance is greater than two times the
4 .1.2. Continuous classifier initial distance a new control point is introduced. If new

The definition of a classifier that continuously varies control points were added the optimization would be done
along the contour has several advantages. One of them is again. The smoothed continuous classifier (Eq. 4) allows
the capability of filtering noise in the learned classifiers the snake to track changes in shape and texture features
without excessive smoothing. along the image sequence.

In Fig. 8 the regularized classifier is compared to simple Fig. 9 illustrates this ability:Fig. 9(a)contains a binary
average. The contour of a rectangular object against a synthetic image where the object contour is learned,Fig.
background is learned in a synthetic binary image. The 9(b) shows the initial curve andFig. 9(c)contains the final
contour presents sharp changes in features (the filter curve. If few contour patches are considered, erroneous
weights change significantly in corners) which is in fitting is achieved (Fig. 9(c)), but relying on the continuity
harmony with a square wave shape of the first and third of the classification vector, more control points can be
derivatives. Simple constant average (z 5 0.5, ;p) blurs dynamically introduced to allow a correct fitting (Fig.p

the sharp changes, while the new regularizing process9(d)). Fig. 9(e–g)shows the inverse case (deformation in
preserves them (the learned and regularized values agree). the opposite direction).
Fig. 8(c,d)shows the final fitting for both cases andFig. The classical snake has the well known difficulty in

 

Fig. 8. Learned contour (a); initial contour (b); final contour using smoothed (average) classifiers (c); final contour using regularized classifiers (d); average
(z 50.5) and regularized (preserving real sharp changes) components of the continuous classifier for the rectangle contour (e).p
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Fig. 9. Training contour (a); initial contour (b); intermediate contour (c); final contour after interpolation (d); training contour (e); initial contour (f); final
contour (g).

segmenting concave objects due to the curve is equallyFig. 11(a) shows the learning contour where alternating
attracted by different contour configurations (Fig. 10). As a colours indicate different contour patches. Between this
consequence, the curve falls in a zone of equal distance to slice and the next one, a sharp change exists around the
different contour configurations and stabilizes far from the pointed patch;Fig. 11(e)shows the profiles normal to the
desired contour.Fig. 10(d)shows the final fitting reached pointed patch in the two adjacent images. However, the
with classical snake where alternating colours of contour potential minimum for the corresponding patch in the next
patches allow us to see that contour patches near to slice is in the correct place asFig. 11(b)shows.Fig. 11(c)
concavities increase in size because they are attracted by contains the translation of learning contour in the previous
the ends of concavities. slice to the next slice, andFig. 11(d) shows the correct

Several methods have been proposed in the literature to final delineation.
cope with this problem. A well illustrated example about
the behaviour of traditional snakes in the presence of 4 .1.3. Generalized description of features
concavities and revision of previous proposed solutions Our snake does not have a predefined goal, but it learns
can be found in (Neuenschwander et al., 1997) and (Xu the desired contour features for each specific segmentation
and Prince, 1998). We think that our new approach is more problem. Moreover, each snake patch searches for its
general in the sense that it handles non-convex shapes in a specific contour class, which avoids ambiguities in the
natural way, and has the ability to adapt to concave event of there existing several neighbouring objects.
contours due to the selectivity of external energy and the Fig. 12(a–d)illustrates the second capability.Fig. 12(a)
smoothness of the discriminant function (classifier) along contains the original image andFig. 12(b) shows the
the contour. contour used for a supervised learning of different parts of

The discriminant snake allows the tracking of contours the external cortical bone of femur in an CT image. To
with some abrupt changes in shape or texture through show the robustness of our proposal we consider another
slices.Fig. 11 illustrates this property in a CT femur slice. slice (non-adjacent to that) which has different contour

 

Fig. 10. Initial contour (a); edges (b); classical distance map (c); fitting of the classical snake in black over the inverted potential (d).
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Fig. 11. Training contour (a); energy image generated by the classifier of the pointed patch in the following slice (b); initial contour (c) and final fitting (d).
Corresponding profiles normal to the pointed patch (e).

configuration (texture and contrast). We use the classifica- contour of interest are very different. In a normal medical
tion vector in the previous slice, but with the initial contour image sequence the distances between adjacent slices are
deformed, and placed between two bones, seeFig. 12(c). short so we can hope not to find such strong changes.
Fig. 12(d)represents the final contour fitted to the bone of Now, we are going to show the ability to learn different
interest by our method. Although the initial contour is not features by segmenting medical images (from several
close to the final contour and the characteristics of the modalities) where the desired object contours have differ-
contour are different, the snake found the contour more ent characteristics.
similar to the learned one, and this provided a good result. Fig. 13shows the segmentations of a set of slices where
Different parts of the cortical bone have different filter a considerable change in contour shape takes place. The
responses, hence they belong to different classes and the full sequence is made up of 60 slices with a distance
snake moves towards the desired contour even in the case between slices of 5 mm. This is a typical case where the
of nearby objects. 3D image has not the same resolution in all the spatial

If the texture features and the geometry changes dimensions, and, therefore, a multislice segmentation
dramatically then the segmentation fails.Fig. 12(e)shows approach is the best option. The supervised learning takes
the learned contour inFig. 12(b) over the slice to be place in the first slice and converged active contours and
segmented. The final result shown inFigs. 12(f) is updated classifiers are propagated from slice to slice. The
incorrect because the learned contour and the actual snake is capable of following texture and shape changes.
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Fig. 12. Original image (a); learned contour (b); initial contour and final contour for a moderately distant slice (c,d); initial contour and final contour for a
very distant slice (e,f).

Note that the new approach naturally fits convoluted scales, and the fitting process took 3 s per scale and slice.
shapes. Moreover, the new external energy eliminates All these figures give a total of 36 s per slice and 36 min
ambiguities between internal–external contours and con- for the 3D femur sequence.
tours of nearby structures.Fig. 14 shows the 3D recon- We also apply our method to MR images.Fig. 15shows
struction of the femur. three samples of the segmentations of a sequence of 15

To give an idea about the temporal cost of our algo- MR images of the distal femur. In these images contour
rithm, we measured the processing times for the complete has mostly the appearance of an intensity valley, unlike CT
sequence in a Pentium III at 400 Mhz. The algorithm took, images where the contour features are mainly edges.Fig.
on average, 25 s per scale to compute the multivalued16 shows the 3D reconstruction obtained from the seg-
features for the full 2563 256 slice images, but this figure mentation.
decreased (3 s/scale) when only a bounding box centered The next imaging modality that we consider is the IVUS
in the learning contour was considered. The bounding box in two different cases: abdominal aorta (AA) and coronary
was defined as a function of the maximum and the vessel. In these images the contours have less contrast and
minimum coordinates of the control points, and of the the signal to noise ratio is higher.Fig. 17 illustrates the
maximum scale (124 pixels, for maximum sigma equals segmentation of a sequence of IVUS images of the
to 8). The learning step took 8 s per slice for the four abdominal aorta of a pig. This figure contains the first
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Fig. 13. CT images of slices 35–40.

image with the initial training contour, and other inter- Finally,Fig. 19 shows the segmentation in intermediate
mediate ones of a sequence made up of 100 slices. slices of a sequence of 400 IVUS images of a coronary
Classifiers are learned in the first slice and the deformed vessel. These images are very difficult to segment because
contour is carried to the next slice. Subsequently, the some contour parts of the blood vessel are very difficult, if
classifiers are again updated and transfered together with not impossible, to delineate even for a human operator. In
the final contour to the next slice. Although there are that case we used a shape model that avoided severe
several different contours nearby, the snake fits the learned changes between contours of adjacent slices where there
one. Fig. 18 shows the reconstruction of the 3D surface existed no cues about the location of some contour parts.
derived from the segmentation. We have measured the ratio between horizontal and

vertical diameters of the vessel in a set of sample images,
and then computed their mean and variance values. A new

 internal energy term penalized the distance between the
ratios of the contour and the model. The 3D reconstruction
of the coronary arteries can be seen inFig. 20.

4 .2. Comparison to expert tracings

To quantitatively evaluate the new approach, five ex-
perts (e , e , e , e , e ) manually segmented images from1 2 3 4 5

different sequences and imaging modalities (IVUS, CT,
MRI). Model contours (M) were computed as the average
operator contours and used as the ground truth segmenta-
tion contours. For each test image (j), we computed the

j j jdistance between each pair of contours (e , M ) and (STD ,i
j jM ), where STD represents the contour fitted by the

STD-snake in imagej.
We developed an application to allow an interactive

manual segmentation: the expert selects a set of control
Fig. 14. 3D reconstruction of the proximal femur. points, then the application adds several control points so
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Fig. 15. MR images of the distal femur.

 that the distance between adjacent control points is less
than 5 pixels. After that the application paints the B-spline
and allows the expert to change the location of all the
control points to get the best delineation of the object of
interest. After each change the application repaints the
curve.

We measure the distance between two contours in the
following way: (1) we obtain an image where each pixel
value is the distance to the model contour, the distance
from the model contour to another contour is the sum of
the values of distance in the locations of the contour; (2)
then, the distance from each contour to the model is also
computed; (3) finally, we compute the average of theseFig. 16. 3D reconstruction of the distal femur.

 

Fig. 17. Training contour and several segmentation examples in a sequence of 100 IVUS images of the abdominal aorta of a pig.
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Fig. 20. Surface of the coronary artery.

Fig. 18. Reconstructed internal surface of the abdominal aorta.

 

Fig. 19. Samples of the segmentation of a coronary vessel in a IVUS image sequence.
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T able 1
Distance between the model segmentation contour and the contours provided by the different experts (inter-expert variability)

Sequence e e e e e1 2 3 4 5

2 2 2 2 2¯ ¯ ¯ ¯ ¯d, s d, s d, s d, s d, s

CT femur 1.22, 0.86 1.02, 0.76 1.03, 0.74 0.99, 0.80 0.99, 0.67
IVUS vessel 1.77, 2.63 1.50, 1.68 1.51, 2.05 1.73, 2.06 1.43, 1.72
IVUS AA 1.28, 0.97 0.98, 0.62 1.17, 0.70 1.26, 0.80 1.15, 0.77

T able 2 increase the ratio number-of-scanned-patients / time, etc.
Distance between the model segmentation contour and the contoursWhen this happens, features cannot be extracted in 3D, and
provided by the human experts and the snake

therefore a slice-to-slice framework is more adequate.
Sequence e STD In most general case, organs are complex structures and,

2 2¯ ¯d, s d, s as a consequence, their boundaries are rarely well defined
by single features. Because of this, we consider a multi-CT femur 1.04, 0.75 1.36, 0.94
valued feature capable of representing any contour con-IVUS vessel 1.59, 2.05 2.30, 3.46

IVUS AA 1.18, 0.78 1.62, 1.25 figuration. From it, our method finds the most relevant
features for each case. As a result, our model is a natural

two distances. From this value and the contour size, we generalization of contour-, valley- and crest-based snakes.
obtain the mean distance and the variance. The values of The extension of the method to deal with 3D operators
mean distance and variance for full sequences are obtained and learning surfaces (instead of learning contours) will
taking into account the size, the mean distance and the imply learning the features from 3D volume data samples
variance computed for each contour of the sequence. of the same organ and imaging modality. Moreover, a new

The distance is characterized by its mean and variance problem arises with the location of the initial surface,
j j¯(d , s ) in pixels. Table 1 contains the measured values because it is difficult to presuppose a high correlation in

for each expert in three image sequences, andTable 2 location between different image sequences. This is one of
shows the mean error of the method versus the mean error the main issues of our current research.
of the human segmentations. As can be seen, the average Although the approach is very promising, it is not free
distance given by the snake is similar to the distances of limitations. One of the most important challenges in our
given by manual segmentations. It is important to remark immediate research is to cope with the problem shown in
that the ground truth segmentation was built from all Fig. 2(f). A comparison between the large and small circle
manual segmentations, therefore the ground truth seg- shows that contour parts with similar orientation on the
mentation depends on human delineations but it does not small circle get a white center and two dark sidelobes. This
depend on snake segmentations. We consider that this is effect is generated by the difference in contrast. Slopes
the reason for slightly higher values on snake evaluation have the same sign in the border of both circles but
parameters, since there is no relevant difference in the different magnitudes, so circle features are different in the
visual inspection of results. Note that in the case of IVUS positions of the maximum slopes. However, features near
images the resolution is 1 mm for 45 pixels, hence 2 pixels the black circle are close to features at the stronger
of difference represents 0.044 mm, which is considered as transition in the white circle. Nevertheless, this behaviour
insignificant by the medical experts. is less important than it seems at first glance because the

undesired behaviour takes place far from the desired
contour part and our method is aimed at locating, in the

5 . Conclusions next slice, the contour part most similar to a contour part in
the current slice, and we assume that they are close in

The goal of this work is the generalization of the location and features.
classical feature-based snake technique in the field of The current method only considers the features along the
segmentation of spatial or temporal image sequences. We object contour (one dimension). We think that a method
have designed a parametric expression for external energy which considers the features in a certain region (two
so that different patches of the snake look for different dimensions) would be more reliable. We are exploring one
parts of the contour. Thus, the STD-snake is more selective possible solution: to deal with features in the frequency
and robust than the classical snake. transformed domain (inherently 2D).

We have applied the method to the reconstruction of User interaction is still required when shape changes
anatomical organs in images from different modalities. considerably between slices.Fig. 12 illustrates this prob-
Frequently, 3D image data sets have no isotropic spatial lem. To completely automate the segmentation process a
resolution; voxel size is bigger along the longitudinal axis high degree of specificity is required, which is usually
in order to maintain as low a radiation dose as possible, to accomplished by means of task oriented procedures. The
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robustness of the method could be improved with the vectors, andm is the mean vector over all samples.V isk opt
]

incorporation of shape knowledge, mainly in slices where the S -generalized eigenvector ofS with the largestwc bc

strong changes in shape occur or there are not image cluescorresponding eigenvalue (Belhumeur et al., 1997).
about boundary location. The combined learning and use If S is nonsingular we can obtain a conventionalwc

of statistical shape and image features seem very promis-eigenvalue problem by writing
ing. In fact, we have used shape constraints to segment the

21V 5 S (m 2m ).¯example inFig. 19, as aforementioned. k opt wc C Ck k]

The application of all the filters has large requirements
Before computingV , it is necessary to prevent thek optof storage and time. To reduce them, given the iterative ]
existence of a singularS . To this purpose, principalwcscene of snake deformation, we perform these computa-
component analysis (PCA) is firstly performed on alltions in the neighborhood of the moving contour, as
training samples. As a result, we obtainV as a matrix ofpcamentioned in the previous section. Further savings could
dimension d 3m formed by the m most important&be achieved by implementing ideas from the front propaga-
eigenvectors of the scatter matrixS of the full set ofTtion problem to define tight areas of interest.
samples. PCA is then followed by FLDA, to obtain the
best discriminant,V , for each contour partC :k opt k

]

T T TA cknowledgements V 5V V ,k opt k flda pca
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V] uV V S V V uk k pca wc pca k

Finally, we can write the optimal projection as

T 21 TV 5V (V S V ) V (m 2m ). (A.1)¯k opt pca pca wc pca pca C Ck kA  ppendix A. Fisher linear discriminant analysis ]

The Fisher linear discriminant analysis is the optimal
R eferencessolution to the problem of assigning patterns to two classes
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