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Abstract

Mechanical properties of the myocardium have been investigated intensively in the last four decades. Many complex strain energy
functions have been used to estimate the stress–strain relationship of myocardium because the heart muscle is an inhomogeneous,
anisotropic, and nearly incompressible material, which undergoes large deformations. These functions can be effective for fitting in vitro
experimental data from myocardial stretch testing. However, it is difficult to model in vivo myocardium using these strain energy
functions. Moreover, such estimates have so far been carried out almost exclusively on the left ventricle, because of the relative thinness
and complex geometry of the right ventricle. Previous work from our research group has successful estimated the motion and deformation
of both the left and the right ventricles, using data from noninvasive tagged magnetic resonance imaging. In this paper, we present a novel
statistical model to estimate the in vivo material properties and strain and stress distribution in both ventricles, using such data. Two
normal hearts and two hearts with right-ventricular hypertrophy (RVH) were studied and noticeable differences were found between the
strain and stress distributions for normal volunteers and RVH patients. Compared to the strain energy function approach, our model is
more intuitively understandable.
   2003 Elsevier B.V. All rights reserved.

Keywords: Heart ventricle; Strain–stress; MRI tagging; EM algorithm; Composite material model

1 . Introduction active force generated by the heart muscle and the effects
of the intracavitary blood pressure on the heart wall.

To better understand cardiac diseases, we need more The heart wall consists primarily of locally parallel
information about cardiac motion. Stress and strain of the muscle cells, a complex vascular network, and a dense
heart are two of the most important determinants of many plexus of connective tissue (Glass et al., 1991). The
cardiac physiological and pathophysiological functions, cardiac muscle cell is the predominant component of
including: (1) the pumping performance of the ventricle; myocardium, normally occupying around 70% of heart
(2) the oxygen demand of the myocardium; (3) the wall volume. The muscle cells are tied together by a
distribution of coronary blood flow; (4) the vulnerability of collagenous network and bundled together into fibers.
regions to ischemia and infarction; (5) the stimuli to There are two major groups of myocardial collagen
growth and remodeling during development and disease; (Caulfield and Borg, 1979): one group provides myocyte-
and (6) the risk of arrhythmia (Glass et al., 1991). Stress to-myocyte and myocyte-to-capillary connections, while
and strain in the heart wall depend on not only the another group surrounds the muscle fibers. Systematic
structure and material properties of the heart but also the measurements of muscle fiber orientations of canine heart

were carried out byStreeter and Hanna (1973).He found
that fiber directions generally vary in a continuous manner
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estimated based on uniaxial tests, mostly performed with from the end of diastole to the end of systole. The
papillary muscles (Pinto and Fung, 1973; Pao et al., 1980). previously measured fiber orientation data from animal
Biaxial tests were subsequently carried out (Demer and hearts is applied in our heart model at the end of diastole.
Yin, 1983; Yin et al., 1987), showing that the myocardium The fiber moves along with the heart wall in which it is
is anisotropic; corresponding anisotropic constitutive rela- embedded, and its orientation changes at every time step
tions have been proposed (Humphrey and Yin, 1987, during the heart contraction cycle. Assuming the fiber’s
1989). Different complex forms of strain energy function local material coordinates are constant, we can calculate
have been used to model the material properties of the the spatial coordinates of representative points on the fiber
heart wall by fitting the experimental data from excised at each time step and then compute the current fiber
tissue (Glass et al., 1991). However, it is difficult to orientation. The heart muscle stiffness is simplified as
understand the real meaning of the parameters in these piece-wise linear and the Young’s modulus depends on
strain energy functions since they do not offer us a direct how much the muscle has deformed. It has been shown
quantitative relation between stress and strain. The struc- that residual stress exists in the left ventricle (Fung, 1984;
ture of myocardium reveals that it is a composite material. Omens, 1988; Omens and Fung, 1990a,b), which reduces
As an alternative approach, we can use a fiber-reinforced the endocardial stress concentrations during diastole. We
composite material model for the stress estimation of the in applied the residual stress at the end of diastole to make
vivo left and right ventricles. By using this composite our model more realistic. The principal boundary condition
material model, we can estimate parameters such as in our model is the blood pressure in the ventricular
Young’s modulus and the Poisson ratio, which are more cavities.
understandable and intuitively meaningful than the strain
energy function parameters.

The active force was modeled in (Usyk et al., 2000) and 2 . Mechanical model
the blood pressure has been described in many sources,
such as (Guyton and Hall, 2000). Recently, experiments 2 .1. Geometrical model
have been carried out on in vitro left ventricle strain and
stress (Costa, 1996). However, the stress and strain The geometrical model chosen is the same as given in
estimation of the in vivo heart is much more complicated (Haber et al., 2000; Haber, 2000). The fiber orientation is
than that of the in vitro heart. This is because any invasive based on data from other researchers (Nielsen et al., 1991;
method will change the heart material properties and the Vetter and McCulloch, 1998). The schematic fiber orienta-
local stress distribution, and it is not yet possible to tion on the epicardium of LV is shown inFig. 1.
measure the heart properties and the active force noninva-
sively. Some other researchers have estimated the in vivo2 .2. Composite material model
strain of the left ventricle by using echocardiography
(Papademetris et al., 2001; Papademetris, 2000). However, A composite is a structural material which consists of
the echocardiographic image is not capable of showing the two or more constituents, which are combined at a
motion within the heart wall. The magnetic resonance macroscopic level and are not soluble in each other (Kaw,
imaging (MRI) tissue tagging technique (Axel and 1997). One constituent is called the reinforcing phase,
Dougherty, 1989; Young et al., 1993) provides an effective which is embedded in another constituent called the
means to estimate the heart wall motion noninvasively. matrix. In our model, the reinforcing phase is muscle fiber
The MRI tissue tagging makes it possible to track material and the matrix is collagen.
points within the heart wall and it does not change the Consider a representative volume element from a uni-
material properties or motion of the heart tissue. directional lamina which consists of the fiber surrounded

In this paper, the displacements of a bi-ventricular
model of myocardium were reconstructed from MRI-

 SPAMM tagging and a physics-based deformable model
method (Metaxas, 1996) based on previous work of Haber
(Haber, 2000; Haber et al., 2000). Based on the motion
data reconstructed from MRI tagging (Park et al., 1996;
Haber et al., 2000) and the previously measured in vitro
material properties (Usyk et al., 2000), we have estimated
the active force. Using the estimated active force, we have
estimated the in vivo material properties. Iterating these
calculations, we can get the maximum likelihood estima-
tion of the active force and the material properties. The
finite element method (Bathe, 1982) was used to calculate
the strain and stress. We studied the heart contraction cycle Fig. 1. Schematic fiber orientation on LV epicardium.



Z. Hu et al. / Medical Image Analysis 7 (2003) 435–444 437

  

Fig. 3. Piece-wise linearity of Young’s modulus.

Fig. 2. Elastic moduli evaluation of the composite.

2 .3. Coordinate transformation relation
by the matrix (Fig. 2). Assume the fiber and matrix volume
fractions areV andV , respectively, the Young’s moduli of The stress–strain relationship in Eq. (3) is defined withf m

the fiber and matrix areE and E , respectively, the respect to local material coordinates. Since the fiberf m

Poisson ratios arev andv , respectively, and the in-plane orientation varies in different regions of the left ventriclef m

shear moduli areG andG , respectively. For the compo- (Caulfield and Borg, 1979), we need to transform the localf m

site, the Young’s moduli along the fiber orientation and stress–strain relation into a global stress–strain relation
across the fibers are, respectively (Kaw, 1997) when implementing the finite element method. For the

coordinates shown inFig. 4, the stress in local fiber
E 5E V 1E V coordinates (1,2,3) can be transformed into global element1 f f m m

21 coordinates (x,y,z) by (Hyer, 1998)V Vf m
] ]E 5 1 . (1)S D2 E E sf m 1

s2

sThe Poisson ratio and the in-plane shear modulus are, 3
s 5123 t23respectively (Kaw, 1997): 3 4t31

t12v 5 v V 1 v V12 f f m m 2 2cos u sin u 0 0 0 2 sinu cosu sx
21 2 2V V sin u cos u 0 0 0 2 2 sinu cosu sf m y] ]G 5 1 . (2)S D12 0 0 1 0 0 0 sG G zf m 5

0 0 0 cosu 2 sinu 0 tyx3 43 40 0 0 sinu cosu 0 tzxThe stress–strain relation is given by (Hyer, 1998)
2 2

2 sinu cosu sinu cosu 0 0 0 cos u 2 sin u txy

1/E 2n /E 2n /E 0 0 01 12 1 12 1 5Ts . (4)xyz
2n /E 1/E 2n /E 0 0 012 1 2 23 2

2n /E 2n /E 1/E 0 0 012 1 23 2 2
´ 5 s 5C s, (3) The strain transformation can be expressed in tensor form0 0 0 2(11n ) /E 0 023 2

as3 40 0 0 0 1/G 012

0 0 0 0 0 1/G12

´ 5 T´ . (5)123 xyz

whereE is the Young’s modulus along the fiber direction,1

E is the Young’s modulus along the cross-fiber direction, By inverting Eqs. (4) and (5) and combining with Eq. (3),2

n andn are the corresponding Poisson ratios, andG is12 23 12

the shear modulus. Since the stress–strain relation of
 myocardium is nonlinear, both Young’s moduli are as-

sumed piece-wise linear. The piece-wise linearity can
approximate the nonlinearity perfectly if each piece is
infinitesimal. However, due to temporal resolution limita-
tion of MRI, four linear elasticity intervals are used to
approximate the stress–strain relation in myocardium as
shown qualitatively inFig. 3.Poisson ratios are assumed to
be 0.4 since myocardium is approximately incompressible
(Amini et al., 1998); the lock of full incompressibility can
be included in the model.G is assumed to be equal to12

Fig. 4. Coordinate transformation.E /(11 v ). C is called the compliance matrix.2 23
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Fig. 5. Isoparametric Finite Element: one irregular element is mapped into one regular element, the black dot on the left image is an arbitrary point onone
surface of the irregular element, its corresponding point is shown on the right image.

we have the stress–strain relation represented in global ≠Ni
] 0 0coordinatesx–y–z as:  ≠x

≠Ni
21 ] 0 0 ´ 5T CTs 5C s . (6)xyz xyz 1 xyz ≠y

≠Ni 
]0 0
≠z

B 5 , (10)i  ≠N ≠Ni i3 . Finite element method ] ]0
≠z ≠y 

≠N ≠Ni i3 .1. Model dynamics ] ]0
≠z ≠x 
≠N ≠Ni iThe finite element equation is derived by using energy ] ] 0 ≠y ≠xminimization and the variational formulation (Bathe,

1982):
whereN (i51,..,8) is theith shape function.i

dq
]1K(q 2 q )5P, (7)0dt

3 .2. Isoparametric finite elementswhere q represents the displacement,q represents the0

displacement generated by residual strain,K is the stiffness
The finite elements reconstructed from MRI imagesmatrix, andP is the load vector.K andP can be calculated

have irregular geometry. We used isoparametric finiteas
elements to map each element to a regular geometry
element (Fig. 5).

TK 5O E B DB dV The transformation is expressed in terms of shapeS De
e functions:V (8)

T T nP 5P 1P 5O E N f dS 1E N f dV ,p a p aS De x 5O N (j,z,h)x ,e e i iS V
i51

n

where f is the boundary force (mainly generated by the y 5O N (j,z,h)y , (11)p i i
i51pressure of the blood in the cavity), andf is the activea n

force generated by the fiber.D is the elasticity matrix; it is z 5O N (j,z,h)z ,i ithe inverse of the compliance matrix given in Eq. (3).B is i51

the strain–displacement matrix that relates nodal strain,´,
where (x , y , z ) is the position of theith node in theto nodal displacements,q, as ´ 5Bq. For an eight-noded i i i

element numbering system. The shape functions,N ,element,B is as follows: i

depend on the node’s local coordinates. By using the chain
B 5 B B B B B B B B , (9) rule of derivatives, we get the shape functions’ derivativesf g1 2 3 4 5 6 7 8

relation between local coordinates and global coordinates
where each sub-matrixB (i51, . . . ,8) is asfollows: asi
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 condition is the blood pressure in the two ventricular
cavities, which changes over time. The left ventricle
receives blood from the left atrium and pumps the blood
through the aorta to the systemic circulation. As shown
schematically in Figs. 6 and 7 (Glass et al., 1991;
Hoppensteadt and Peskin, 2002), the mitral valve closes at
A and the left ventricle undergoes isovolumic contraction
with rapidly rising pressure until B, when the left ventricu-
lar pressure exceeds the aortic pressure and the aortic valve
opens, blood is ejected and the left ventricle’s volume

Fig. 6. Schematic ventricle pressure-volume loop, please see the text forbegins to decrease. The aortic valve closes at end of
A,B,C,D.

systole at C, due to the decreasing intraventricular pres-
sure, which falls below the aortic pressure. The left
ventricle then undergoes isovolumic relaxation from C to≠N ≠N ≠N≠x ≠y ≠zi i i

] ] ] ] ] ] D. The mitral valve reopens at D when the pressure of left≠j ≠j ≠j ≠j ≠x ≠x       
ventricle is lower than that of left atrium. Blood pressure in≠N ≠N ≠N≠x ≠y ≠zi i i

] ] ] ] ] ]5 5 J , (12) the right ventricle cavity changes similarly over the heart
≠z ≠z ≠z ≠z ≠y ≠y        contraction cycle, although its magnitude is smaller than
≠N ≠N ≠N≠x ≠y ≠zi i i that of the left ventricle. In our implementation, the heart] ] ] ] ] ]
≠h ≠h ≠h ≠h ≠z ≠z        contraction cycle was divided into 5 time steps and

representative values were used for the blood pressure atwhereJ is called the Jacobian matrix. The Jacobian of the
each time step.transformation will determine whether the material is

The blood pressure values used over time are given inincompressible.
Table 1.If a local coordinate system is defined onj,z,h[

[21,1], and boundary pressure is acting on facej,z [
e e e[21,1],h51, thenK , P , andP can be easily calculated 3 .4. Residual strain and stressp a

as
To measure the residual strain, researchers have cut1 1 1

cross-sectional equatorial slices from potassium-arrestede TK 5E E E B DBuJudj dz dh,
rat left ventricles (Omens and Fung, 1990a,b). These were

21 21 21 then cut radially and it was found that they immediately1 1

opened into a curved arc with an open-angle whiche T (13)P 5E E N f uJudj dz,p p quantified the residual strain. In our model, both the
21 21 circumferential residual strain and the radial residual strain
1 1 1

are assumed to vary linearly from the epicardium to the
e TP 5E E E N f uJudj dz dh. endocardium. We assume the circumferential residuala a

21 21 21 strain is 0.05 at the epicardium and20.05 at the endo-
cardium, while the radial residual strain is20.05 at the

3 .3. Boundary conditions
epicardium and 0.05 at the endocardium (Costa et al.,
1997).

In our finite element model, the principal boundary

 4 . Statistical estimation of K and fa

4 .1. Expectation /maximization (EM) algorithm

In Eq. (7), the elasticity matrixD and the active forcefa
are unknown. The in vitro elasticity parameters of canine
heart have been measured (Usyk et al., 2000); we used
these data as initial values because of the general similarity
between human and canine hearts. We then used the
Expectation/Maximization (EM) algorithm (Bickel and
Doksum, 2001) to estimate the stiffness and active force atFig. 7. Ventricle pressure changes over time, A,B,C,D are the same with

Fig. 6. each time step. The EM algorithm is typically used to
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T able 1
Blood pressure in each time step

Time 1 2 3 4 5

Normal LV (mmHg) 8.2–12.0 45.8–49.5 83.3–87.0 113.3–118.0 98.3–103.1
Normal RV (mmHg) 8.2–12.0 15.0–19.7 18.8–23.3 22.5–27.0 18.8–23.3
RVH LV (mmHg) 8.2–12.0 45.8–49.5 83.3–87.0 113.3–118.0 98.3–103.1
RVH RV (mmHg) 15.0–19.5 30.0–34.6 60.0–64.5 67.5–72.0 60.8–65.3

compute maximum likelihood estimates given incomplete E are calculated from the experimental data given2,0

samples. DefineJ(u uu ) as in (Usyk et al., 2000)0

(4) Fix (E , E ), using the EM algorithm to get1,old 2,old
p(X,u ) optimal estimationfa,new]]J(u uu );Expectation log S(X)5 s , (14)US D0 u0 p(X,u ) (5) Fix f , using the EM algorithm to get optimal0 a,new

estimation (E , E )1,new 2,newwhereX is the random variable,u is the parameter to be (6) If (E , E )± (E , E ), set (E , E )51,old 2,old 1,new 2,new 1,old 2,oldestimated,S(X) is the sufficient statistics onX, andp(X,u ) (E , E ), go to step 4,1,new 2,newis the probability density function. The EM algorithm otherwise, return (E , E , f )5 (E , E , f )1 2 a 1,new 2,new a,newworks as follows: (7) t 5 t 11, if t , nt, go to step 2, otherwise, stop.
(1) Initialize u 5uold 0 wherent is the number of time steps.
(2) ComputeJ(u uu ) for many values ofuold

(3) Maximize J(u uu ) as a function ofuold

(4) Set u 5arg maxJ(u uu ), if u ±u , set u 5new old old new old
5 . Resultsu and go to step 2, otherwise, returnu5u .new new

where Step 2 is often referred to as the expectation step
5 .1. Finite element interpolationand Step 3 is called the maximization step.

For the normal heart, the model we used for the left
4 .2. Implementation

ventricle reconstructed from MRI tagging has 264 eight-
noded elements and 327 nodes while the right ventricle has

In our study, the parameters estimated are Young’s
80 eight-noded elements and 146 nodes. To model the fiber

moduli along the fiber direction (E ) and across the fiber1 orientation change from epicardium to endocardium and
direction (E ), respectively, and the active force (f ). We2 a improve the precision of computation, each parallelepiped
can denote them together asu 5 (E , E , f ). The displace-1 2 a element was interpolated into 27 eight-noded subelements.
ment error is defined as

After the interpolation, the normal heart model has 5256
n eight-noded elements and 6303 nodes for the left ventricle1 2 2 2ˆ ]d(x,u )5 O (x 2 x ) 1 (y 2 y ) 1 (z 2 z ) , (15)f gi it i it i it and 1536 eight-noded elements and 2202 nodes for then i51

right ventricle. Similarly, the model of the RVH heart
where (x , y ,z ) is the computed global coordinate based model was interpolated and it has 4818 eight-nodedi i i

ˆ elements and 5778 nodes for the left ventricle and 1920on estimateu, and (x , y , z ) is the reconstructed globalit it it

eight-noded elements and 2730 nodes for the right ventri-coordinate from MRI tagging. Since the smaller the
cle after the interpolation.displacement error, the better the estimation is, we put

more weight on estimations with less displacement error.
Our normalized density function is then defined as 5 .2. Fiber orientation

In Fig. 8, we have shown the fibers in the epicardiumˆ1/d(x,u )ˆ and endocardium at the end of diastole. In (a), the tiny blue]]]]p(x,u )5 . (16)O 1/d(x,u )s d line in each element shows the orientation of fibers within
u[Q

the epicardium elements. In (b), we have shown the fiber
orientations of 6 elements from epicardium to endocardiumAs shown inFig. 3,sinceE andE are approximated as1 2

across the left ventricle wall. The fiber orientation of thepiece-wise linear, we need to estimateu in each time
endocardium is shown in (c). The fiber orientation of eachinterval. We assumeE and E are linearly related. The1 2

element changes over time; we can compute the currentimplementation algorithm is:
fiber orientation at each time step by calculating the(1) Initialize t51
current coordinates of representative points on the fiber.(2) In the tth time interval, calculated(u ) and p(x,u ) for
The fiber orientation data was then plugged into Eq. (6) tomanyu [Q

compute each element’s current compliance matrix.(3) Initialize (E , E )5(E , E ), whereE and1,old 2,old 1,0 2,0 1,0
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Fig. 8. Fibers of a normal heart: (a) in epicardium, (b) from epicardium(left) to endocardium(right), (c) in endocardium. (This figure is available incolour,
see the on-line version.)

5 .3. Young’ s modulus estimationT able 2
Initial assignment of Young’s modulus in each time interval The Young’s moduli over one contraction cycle were

initially computed from the data given in (Usyk et al.,Time interval 1–2 2–3 3–4 4–5
2000) and set as shown inTable 2.

Normal E (Pa) 50 000.0 60 000.0 70 000.0 80 000.01 Using the statistical method described above, we get theE (Pa) 15 000.0 18 000.0 20 000.0 22 000.02

estimation of Young’s moduli in each time step as shownRVH E (Pa) 60 000.0 70 000.0 80 000.0 90 000.01

E (Pa) 18 000.0 20 000.0 22 000.0 25 000.0 in Table 3.2

5 .4. Strain and stress distribution
The bi-ventricular strain and stress distributions of a

T able 3
normal volunteer and a RVH patient in one contractionFinal estimation of Young’s modulus in each time interval
cycle are shown inFigs. 9–12,respectively. In general, the

Time interval 1–2 2–3 3–4 4–5 ventricles become thicker radially, and shorter circum-
Normal E (Pa) 48 300.0 59 700.0 71 200.0 77 600.01 ferentially and longitudinally when the heart contracts. As

E (Pa) 14 200.0 16 700.0 21 000.0 20 800.02 we can see from the images, most radial stresses are
RVH E (Pa) 61 700.0 73 500.0 82 400.0 95 700.01 positive while most circumferential and longitudinal stres-E (Pa) 23 500.0 24 300.0 33 300.0 36 700.02

ses are negative. However, some elements do not follow

 

Fig. 9. Normal heart: (a) radial, (b) circumferential, (c) longitudinal components of strain from end of diastole (left) to end of systole (right). (This figure is
available in colour, see the on-line version.)
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Fig. 10. Normal heart: (a) radial, (b) circumferential, (c) longitudinal components of stress from end of diastole (left) to end of systole (right). (This figure
is available in colour, see the on-line version.)

this rule either because of boundary condition constraints normal heart deforms more than the abnormal heart, but
or adjacent elements’ influence. their stresses are similar because the normal heart has

Quantitatively, normal heart has a smoother distribution smaller Young’s modulus.
of strain and stress than abnormal heart in the-free wall. In The numerical computation code was written in C and
addition, normal heart has larger strain than the abnormal the output display was implemented in Matlab. The
heart although there is not much difference in stress program was run on a DELL Precision 330 PC with 4
between normal heart and abnormal heart. This means the CPUs (1.5 GHz each) and 1048 MB RAM. For each time

 

Fig. 11. RVH heart: (a) radial, (b) circumferential, (c) longitudinal components of strain from end of diastole (left) to end of systole (right). (This figure is
available in colour, see the on-line version.)
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Fig. 12. RVH heart: (a) radial, (b) circumferential, (c) longitudinal components of stress from end of diastole (left) to end of systole (right). (This figure is
available in colour, see the on-line version.)
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