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Abstract

As multi-dimensional complex data become more common, new regularization schemes tailored to those data are needed. In this

paper we present a scheme for regularising diffusion tensor magnetic resonance (DT-MR) data, and more generally multi-dimen-

sional data defined by a direction map and one or several magnitude maps. The scheme is divided in two steps. First, a variational

method is proposed to restore direction fields with preservation of discontinuities. Its theoretical aspects are presented, as well as its

application to the direction field that defines the main orientation of the diffusion tensors. The second step makes use of an an-

isotropic diffusion process to regularize the magnitude maps. The main idea is that for a range of data it is possible to use the

restored direction as a prior to drive the regularization process in a way that preserves discontinuities and respects the local co-

herence of the magnitude map. We show that anisotropic diffusion is a convenient framework to implement that idea, and define a

regularization process for the magnitude maps from our DT-MR data. Both steps are illustated on synthetic and real diffusion

tensor magnetic resonance data.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

With the development of new imaging modalities,

image processing algorithms have to deal with images of

various types and increasing complexity and dimen-

sionality. The information provided is not restricted to a
scalar value but can be multi-dimensional and con-

strained with various conditions. The field of medical

imaging, in particular, has seen the appearance of vari-

ous new multi-dimensional magnetic resonance (MR)

acquisition techniques, a recent example of which is

diffusion tensor MR imaging (DT-MRI). DT-MR images

contain measurements of the diffusion properties of

water molecules within tissues (Basser et al., 1994).
These measurements provide information about the

structure and physiology of tissue. A DT-MR 3D vol-

ume contains at each voxel a diffusion tensor (DT)
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represented by a 3� 3 symmetrical positive-definite

matrix. The DT expresses a Gaussian model of the water

diffusion process. It contains directional information,

due to the anisotropy of the diffusion, as well as mag-

nitude information such as the diffusivity.

Recent interest has been paid in the image processing
and computer vision community to complex multi-di-

mensional data: multi-valued images (Whitaker and

Gerig, 1994), colour images (Sapiro and Ringach, 1996;

Trahanias et al., 1996; Tang et al., 1999), vector fields

with various constraints (Tschumperl�ee and Deriche,

2001a,b) direction fields (Perona, 1998; Chan and Shen,

2000; Tang et al., 2000), or even images defined on sur-

faces (Kimmel, 2001; Bertalmio et al., 2000). Traditional
scalar image processing techniques are often inappro-

priate given the multi-dimensional nature of these data

and further difficulties often arise due to the constraints

imposed by the space in which the data are defined. In

some cases, these data can be separated into two types of

information of different nature, such as direction and

magnitude. Colour images for example can be repre-

sented by chromacity (directional information) and
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brightness (scalar magnitude), and methods have been

proposed that process those two types of information

separately (e.g. Chan and Shen, 2000; Tang et al., 2000),

taking into account the specific nature of each. Never-

theless, for colour images, the direction field that defines
the chromaticity and the brightness map are not directly

related and can be processed independently. Other type

of data exists for which the direction field and the local

structure of the intensity map can be correlated. For

instance with MR angiography images, the blood flow

magnitude is expected to have some degree of smooth-

ness along the flow direction. Therefore, the blood flow

direction map can be used as a prior to describe the
structure of the blood flow magnitude image.

The purpose of this paper is to propose a regulari-

zation method for medical data containing both direc-

tion and intensity information, and for which the

directional information and the local structure of the

magnitude image are related. Examples of these kinds of

data are optic flow images, MRA volumes, MR flow

imaging, strain tensor images, or DT-MR images. The
method presented extends earlier work reported in

(Coulon et al., 2001). The general idea of the scheme

that we propose to regularize such data relies on two

steps. First, the direction field should be restored, and

we present a general method to do that. Second, the

restored direction field should be used as a prior to drive

the magnitude image regularization, and we show how

Weickert�s tensor-driven anisotropic diffusion scheme
(Weickert, 1998) can be used for that purpose. The pa-

per is organized as follows. In Section 2, we present

some concepts needed to understand the complex nature

of DT-MR images, as well as some background ideas

related to direction field restoration and anisotropic

diffusion process. A general discrete variational method

for restoring direction fields is proposed in Section 3.1.

Then in Section 3.2, we show how the restored direction
field can be used as a prior to drive the intensity map

regularization via an anisotropic diffusion process. Both

steps are illustrated on DT-MR data and results are

presented on synthetic and real data in Section 4.
2. Background

2.1. DT-MR images

In the following, we introduce a few concepts about

DT-MR images. This acquisition technique has become

increasingly popular over the past few years and has a

wide range of applications from clinical diagnosis, e.g.,

in case of stroke, to research applications, such as brain

connectivity studies (Lebihan et al., 2001). A DT-MR
acquisition sequence consists of the acquisition of a

number of 3D diffusion weighted (DW) images, each of

which measures the amount of water diffusion in a
particular direction. From these DW images, a Gaussian

model of the diffusion as a function of direction is fitted

at every voxel. This model is expressed by a diffusion

tensor, represented by a 3� 3 symmetrical positive-

definite matrix D ¼ ðDijÞ. Example images of the 6 co-
efficients of the matrix are shown in Fig. 1. We will use

ðkiÞi¼1;2;3 to denote its eigenvalues, with k1 P k2 P k3,
and ðviÞi¼1;2;3 the associated eigenvectors. Therefore,

D ¼ ðv1 v2 v3Þ
k1 0 0

0 k2 0

0 0 k3

0@ 1Aðv1 v2 v3ÞT: ð1Þ

Various scalar measurements can be derived from the

DT-MR images to describe tissue microstructure at each

voxel (see for instance (Basser and Pierpaoli, 1996;
Lebihan et al., 2001)). Amongst those measurements we

mention:

• The mean diffusivity, which characterizes the overall

amount of diffusion:

hDi ¼ TraceðDÞ
3

¼
P

i ki
3

: ð2Þ

It has a low value in tissues, such as grey matter

(GM) and white matter (WM), in which dense tissue

structure hinders diffusion, and a high value in cere-
bro-spinal fluid (CSF) where water is free to diffuse

unhindered.

• The fractional anisotropy describes the directional

bias and is related to the presence of oriented struc-

tures:

FAðDÞ ¼
P

iðki � hDiÞ2P
i k

2
i

 !1=2

: ð3Þ

Fractional anisotropy varies between 0 and 1. Low

values indicate media with no prefered orientation, such

as GM or CSF, whereas higher values indicate tissues

with strong orientation, such as WM and some internal

GM structures (thalamus), in which axonal fibers con-

stitute an oriented medium for diffusion. There is a range
of shapes that anisotropic tensors can have, which lies

between two extremes: prolate tensors, which have one

large eigenvalue and two small ones, and oblate tensors,

which have two large eigenvalues and one small one.

The first eigenvector v1, called principal diffusion di-

rection (PDD), plays a particular role in the eigensystem

since in white matter it has been shown to coincide with

the local orientation of fibers, therefore being a deter-
minant clue for studying brain connectivity (white

matter fiber tracking, or tractography, see for example

(Conturo et al., 1999)). In WM, the PDD field has a

very strong coherence and defines the main orientation

of the tensor. In more isotropic regions, the PDD field

loses its coherence and becomes meaningless with an

almost random orientation, as the anisotropy decreases

(Fig. 2).



Fig. 2. PDD field, colour-mapped by anisotropy: blue represents low anisotropy, red represents high anisotropy. As the anisotropy decreases, the

PDD field loses its coherence (real brain data: splenium of the corpus callosum). (This figure is available in colour, see the on-line version.)

Fig. 1. A slice of the 6 coefficients that define the tensor. (This figure is available in colour, see the on-line version.)
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Scalar measurements such as those in Eqs. (2) and

(3), and directional information such as the PDD de-

scribe complementary aspects of the tissue microstruc-

ture and architecture at each voxel (Basser and

Pierpaoli, 1996; Lebihan et al., 2001). A regularization
method must aim at restoring these properties and re-

duce their sensitivity to noise.

A few various DT-MR image regularization can be

found in the literature. They aim to regularize the whole

tensor (Aldroubi and Basser, 1999), the PDD (Poupon

et al., 2001), the orthonormal basis of eigenvectors

(Tschumperl�ee and Deriche, 2001b), or the diffusion

weighted images before estimation of the tensor (Parker
et al., 2000; Vemuri et al., 2001), but none of them ex-

plicitely uses the structural information given by the

tensor. The method we present in this paper aims to

both restore the orientation of the tensor and regularize

the diffusivities while taking into account the local

structure of the tensor.

2.2. Direction field restoration

Direction regularization has been a recent field of in-

terest as the problems of dealing with images containing

directional information have arisen. Examples include

chromaticity from colour images (Tang et al., 2000),

optic flow (Weickert and Schn€oorr, 2001), fingerprints

orientation images (Perona, 1998), PDD fields from DT-

MR images (Coulon et al., 2001; Poupon et al., 2001), or
direction fields from MR velocity imaging (Mohiaddin

et al., 1994). A direction field is a vector field with the

constraint that the vectors have a unit norm. Therefore,

directions live (for the three-dimensional case) on the

unit sphere S2, a non-linear manifold. Features living on

such non-linear manifolds are said to be non-flat and

restoration of this kind of feature has been the subject of

several recent works (Chan and Shen, 2000; Tang et al.,
2000; Trahanias et al., 1996; Perona, 1998).

Early work on direction field regularization was pre-

sented by Perona (1998), who proposed an angular dif-

fusion model to regularize orientation images, using a

parameterization of the unit circle. Both continuous and

discrete diffusion equations are proposed with the choice

of a proper metric on the unit circle. More general work

was then proposed, aiming to regularize data defined
between general manifolds. Tang et al. (2000) proposed a

direction diffusion model using the harmonic maps

framework that can be applied to direction fields in any

dimension. Chan and Shen (2000) found equivalent re-

sults, using a variational model based on the L1- or L2-

norms. In particular, the L1 model defines the total

variation (TV) energy, whose minimization provides a

discontinuity preserving regularization. Both continu-
ous and discrete models are proposed. An extension of

Chan and Shen work was presented in (Coulon et al.,

2001) and applied to DT-MR data. A geometric ap-
proach to norm constraint is proposed in (Tschumperl�ee
and Deriche, 2001a), with the integration of a constant

norm constraint in the PDE that defines the regulariza-

tion process. This results in a projection of the diffusion

flow in the plane orthogonal to the considered vector and
allows for the use of various diffusion equations in this

constrained framework. As we show later, the same re-

sult is obtained by Chan and Shen in some particular

cases of their variational approach. All three approaches

(Tang et al., 2000; Chan and Shen, 2000; Tschumperl�ee
and Deriche, 2001a) have in common the use of external

coordinates, after embedding the considered manifold

(S2) in a Euclidean space (R3), associated with a pro-
jection term. Kimmel and Sochen (2000), on the other

hand, use a local coordinate system and compute the

associated Beltrami flow to perform a regularization of

directions with preservation of discontinuities. Finally,

let us mention the work of Poupon et al. (2001), who

propose a Markovian approach to PDD field restoration

from DT-MR images. Their approach could be applied

to other direction fields, and allows for the integration of
complex rules in the definition of the model. Beside the

need for a more complex optimization method, the major

drawback of Poupon�s method is the necessity to dis-

cretize the feature space (S2).

2.3. Anisotropic diffusion

Several of the above-mentioned works extend the
framework of anisotropic diffusion, widely used for sca-

lar images, to direction fields. Anisotropic diffusion has

become a popular subject of research in the image

processing community. It started with the early work of

Koenderink (1984) who showed that the heat equation

provides the means with which to build a scale-space

and achieve isotropic smoothing with a number of use-

ful properties. Perona and Malik (1990) then proposed
an anisotropic diffusion scheme that provides an edge-

preserving smoothing controlled by the norm of the

gradient. Their work triggered a lot of research and,

since then, many other anisotropic schemes with various

formulations have been proposed for different purposes

((Catte et al., 1992; Alvarez et al., 1992; Sapiro and

Tannenbaum, 1993; Krissian et al., 1997; Kornprobst,

1998; Weickert, 1999a) to mention a few), with the un-
derlying idea that the diffusion process should be driven

by the local image geometry. Theoretical properties,

well-posedness, numerical aspects, and classification of

those scheme have also been widely studied (see for in-

stance (You et al., 1996; Alvarez et al., 1993; Catte et al.,

1992; Niessen et al., 1994; Shah, 1996)), and develop-

ments have included extensions to vector-valued images

and non-flat data ((Whitaker and Gerig, 1994) and see
previous section in this paper), links with curve and

surface evolution theory (Shah, 1996; Alvarez et al.,

1993), and variational approaches (Shah, 1996; Teboul
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et al., 1998). More generally, the anisotropic diffusion

framework has grown to the more general one of partial

differential equations (PDEs) for image processing. For

reviews of geometry-driven anisotropic diffusion and the

use of PDE�s, one can refer to (Weickert, 1997b; Sapiro,
1995; Caselles et al., 1998). With variational formula-

tions, one can establish the link between regularization

as the minimization of a functional, and anisotropic

diffusion that achieves that minimization (see also

(Nielsen et al., 1997; Radmoser et al., 2000)). An explicit

link is made between diffusion time and the regulariza-

tion parameter in (Scherzer and Weickert, 2000).

The original formulation of non-linear diffusion
(Perona and Malik, 1990) is defined as follows. From an

original image uð0Þ, one builds the one parameter family

of images uð�; tÞ that satisfies the following diffusion

equation:

ou
ot ¼ div ðgðkrukÞruÞ;
uðx; 0Þ ¼ uð0Þ;

�
ð4Þ

where g is the conductance function that defines the

amount of smoothing across the image. The idea is that

a high gradient norm indicates the presence of an edge,

therefore if we want to preserve this edge, g should have

a low value. Various conductance functions have been

proposed. It has been shown that this continuous for-

mulation defines an ill-posed problem and other for-
mulations have been proposed for which existence and

uniqueness of the solution have been proved. In par-

ticular, making the conductance a function of krurk,
where rur is the gradient of u smoothed by a Gaussian

function with parameter r, ensures the existence and

uniqueness of the solution (Catte et al., 1992).

Weickert developed the more general tensor-driven

formulation of anisotropic diffusion (Weickert, 1998),
defined by the following diffusion equation:

ouðx; tÞ
ot

¼ div ðMruÞ; ð5Þ

where M is the flow tensor. 1 The flow tensor is a con-

tinuous function of the image and its derivatives, and is

defined via a 3� 3 symmetrical, positive-definite matrix.

Scale-space and restoration properties of the scheme

have been studied and can be found in (Weickert, 1998).

With time t increasing, a larger smoothing is applied and

the tensor M is the way to define explicitly how this
smoothing is driven across the image, in terms of mag-

nitude but also direction. Different definitions have been

proposed, leading to different smoothing behaviours,

such as edge-enhancing (Weickert, 1998) or coherence-

enhancing (Weickert, 1999a).
1 M is usually called diffusion tensor but we will avoid this

terminology to distinguish it from the measured water diffusion tensor

in the DT-MR images. For the same reason we will use the term

‘‘smoothing’’ instead of ‘‘diffusion’’.
We also mention vector-valued diffusion, which is

used to smooth all channels of a multichannel image

simultaneously. Common examples are colour images

(Weickert, 1999b; Tschumperl�ee and Deriche, 2001a) or

multi-echo MR images (Whitaker and Gerig, 1994;
Coulon and Arridge, 2000). A common conductance is

defined for each single-channel diffusion equation,

which guarantees that channels evolve in the same

smoothing direction, determined by the (vector) geom-

etry of the multichannel image.
3. Method

We present here the two steps of our method. First, a

restoration scheme for direction fields is proposed, fol-

lowed by a magnitude regularization using anisotropic

diffusion.

3.1. A discrete variational approach to direction field

restoration

We present here a variational method for restoring

direction fields defined on a discrete set, followed by its

application to the PDD field. Our method is a devel-

opment of the total variation scheme proposed by Chan

and Shen (2000) that we present below.

3.1.1. Discrete total variation model

Amongst the methods presented in Section 2.2, the

Chan and Shen model (Chan and Shen, 2000) is par-

ticularly convenient, because it provides a direct dis-

crete formulation for which no spatial derivatives are

needed. Their scheme is general to non-flat data and is

based on a minimization of the total variation energy.

We present here the particular case of directions on

S2. We adopt the same notation as (Chan and Shen,
2000).

Let f : Xn ! S2 be our direction distribution on S2,

where Xn � Nn is the n-dimensional discrete image do-

main, and fa be the direction at voxel a. Chan and Shen

define the fitted total variation (TV) energy to be mini-

mized:

eTVðf ; kÞ ¼
X
a2Xn

eðf ; aÞ þ k
X
a2Xn

1

2
d2
l ðf ð0Þ

a ; faÞ; ð6Þ

where dlðf ; gÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kf � gk2

q
is the Euclidean distance

between vectors, f ð0Þ is the original direction map, and
eðf ; aÞ is the strength function at voxel a, that locally

defines the smoothness of the direction map

eðf ; aÞ ¼
X
b2Na

d2
l ðfa; fbÞ

" #1=2
; ð7Þ

where Na is a neighbourhood of a. Minimising eTV

therefore increases the smoothness of the map while
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keeping it close to the original data. This tradeoff is

controlled by the regularization parameter k.
Definitions above apply to more general Riemannian

manifolds. The choice of the distance dl then depends on

the metric induced by the Riemannian structure of the
manifold. For a more general approach, with precise

considerations on the concept of locally Riemannian

distances and the choice of dl, as well as a more general

interpretation of the strength function, one should refer

to the original paper (Chan and Shen, 2000).

The variational problem is solved by studying the

associated Euler–Lagrange equations (see Section 3.1.2

for more details), which leads to the following differen-
tial equation to minimize eTV:

dfa
dt

¼
X
b2Na

wabPfaðfbÞ þ kPfaðf ð0Þ
a Þ; ð8Þ

where Pfa is the orthogonal projection on the plane

tangent to M at fa, and wab is a weight defined by

wabðf Þ ¼
1

eðf ; aÞ þ
1

eðf ; bÞ : ð9Þ

Let us point out that the use of the projection Pfa recalls

the scheme proposed in (Tschumperl�ee and Deriche,

2001a), in which one can find a simple explanation of the

role of this projection. The weights wab define the

amount of interaction between voxels a and b. Notice

that in the presence of a discontinuity in the neigh-

bourhood of a the strength function tends to have a high
value, therefore wab has a low value, slowing down the

regularization process. That is why this scheme, like

other total variation-based scheme, is known to preserve

the location of discontinuities.

On the other hand, the behaviour observed at the

location of discontinuities is not always convenient. In

presence of a discontinuity in the neighbourhood of a,
all the weights wab, for all b 2 Na, tend to have a low
value, which means that a tends to have no influence

from any of its neighbours, leading to an under-regu-

larization around discontinuities [an illustration of this

behaviour is presented in (Coulon et al., 2001)]. This

comes from the fact that wab is defined using all neigh-

bours of a and all neighbours of b. Ideally, we would

like the voxel a to benefit from the influence of all its

neighbours that are ‘‘on the same side’’ of the discon-
tinuity. To achieve that, wab needs to be defined using

only a and b. We propose in next section a discrete

regularising U-function model, directly inspired from

the Chan and Shen TV model, which ameliorates the

behaviour at discontinuities.

3.1.2. Generalized U-function model

Let U : R ! R be a differentiable function with con-
tinuous derivative, and let Xn be the graph dual to Xn, or

the set of second-order cliques in Xn (if b 2 Na, then

ða; bÞ 2 Xn). We define the following energy:
eUðf ; kÞ ¼
X

ða;bÞ2Xn

Uðdlðfa; fbÞÞ þ
k
2

X
a2Xn

d2
l ðf ð0Þ

a ; faÞ: ð10Þ

The regularising component, defined on the second-or-

der cliques in Xn, recalls the Gibbs energy used in the

Markovian formulations of restoration (Besag, 1974),
for which the minimization is a maximum a posteriori

estimation. The fact that the energy is defined on cliques

reflects the idea that, on a discrete grid, common local

geometry descriptors do not necessarily apply and the

map is sometimes best described in terms of interaction

between neighbours or distance between neighbouring

features rather than, for instance, a discretized gradient.

In terms of behaviour of the process at discontinuities,
this is a major difference with the TV original scheme.

Let us compute the gradient of eU on S2:

oeUðf ; kÞ
ofa

¼
X
b2Na

o

ofa
Uðdlðfa; fbÞÞ þ

k
2

o

ofa
d2
l ðf ð0Þ

a ; faÞ:

ð11Þ

If F is a scalar function on R3 and rF denotes its gra-
dient, let bFF be its restriction on S2 with obFF =of its gra-

dient on S2. Then, as stated in (Chan and Shen, 2000)

and demonstrated in Appendix A:

o

of
bFF ðf Þ ¼ Pf ðrF ðf ÞÞ: ð12Þ

In particular,

o

of
Uðdlðf ; gÞÞ ¼ PfrUð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kf � gk2

q
Þ

¼ Pf

U0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kf � gk2

q
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kf � gk2
q ðf � gÞ

0B@
1CA

¼ �
U0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kf � gk2

q
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kf � gk2
q Pf ðgÞ

¼ �U0ðdlðf ; gÞÞ
dlðf ; gÞ

Pf ðgÞ: ð13Þ

For the same reasons

o

of
d2
l ðf ; gÞ ¼ �2Pf ðgÞ: ð14Þ

Therefore, we get the following differential equation to

minimize eU:

ofa
ot

¼
X
b2Na

U0ðdlðfa; fbÞÞ
dlðfa; fbÞ

PfaðfbÞ þ kPfaðf ð0Þ
a Þ

¼
X
b2Na

Gðdlðfa; fbÞÞPfaðfbÞ þ kPfaðf ð0Þ
a Þ; ð15Þ

with GðxÞ ¼ U0ðxÞ=x. Let us make a few comments about

this differential equation:
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• we demonstrated here discrete results that are consis-

tent with other constrained continuous PDEs

(Tschumperl�ee and Deriche, 2001a);

• it recalls the discrete scheme proposed by Perona and

Malik in their pioneering work on anisotropic diffu-
sion (Perona and Malik, 1990) (see Section 2.3). The

function GðxÞ ¼ U0ðxÞ=x (a classical result) is the con-

ductance function. It controls the local intensity of the

smoothing, or the interaction between neighbours, as

a function of the distance between neighbouring fea-

tures (instead of a function of the gradient on the

map for the Perona–Malik scheme). See Fig. 3 for

an example of this conductance function.

We show in the next section how we apply this

scheme to a particular type of directional data, the PDD

field derived from DT-MRI data. The behaviour of the

scheme is shown in Section 4. A comparison of our U-
function model with the TV model proposed by Chan

and Shen can be found in (Coulon et al., 2001) and

shows that the clique-based energy, defined by Eq. (10),

provides better management of discontinuities than the
node-based energy porposed by Chan and Shen (2000).

3.1.3. Application to PDD fields

In the particular case of PDD maps, we still want

discontinuities to be preserved. However, the disconti-

nuities can arise in different ways since they can be due

to transition between tracts with different directions, or

transitions between tissues with different anisotropy
levels. Practically speaking, because the PDD is defined

as an eigenvector of a matrix, it has no sign (v1 is in-

distinguishable from �v1), and the angle between two

PDDs is always in the interval ½0; p=2�. To take this

constraint into account, when measuring distance be-

tween fa and any neighbour fb, we first check that

fb � fa > 0 (i.e., they are on the same hemisphere of S2)

and if not, we ‘‘flip’’ fb to ð�fbÞ.
For scalar images, the influence of the choice of

function U has been studied and various functions have
Fig. 3. The two functions UðxÞ and GðxÞ with m ¼ 3. (This
been proposed (Perona and Malik, 1990; Green, 1990;

Rudin et al., 1992; Geman and McLure, 1985; Teboul

et al., 1998). Because the components of the diffusion

flow in gauge coordinates (a local coordinate system

defined by the gradient and the plane orthogonal to the
gradient) is a function of the first and second derivative

of U, it is possible to predict the behaviour of the dif-

fusion process in every direction. Convex U-functions
bring the most interesting theoretical properties but

some non-convex functions have been shown to lead

to better experimental results (see for example (Teboul

et al., 1998)). However, no such theoretical study has

been done for direction maps and we propose here an
empirical choice with a simple geometric interpretation

that proved to work well on the PDD data. Specifically

we are looking for an increasing function of the distance

between vectors, so we decided to use a function of the

cosine of the angular difference. Therefore, we propose

to define the ‘‘conductance’’ using

Gðdlðfa; fbÞÞ ¼ ðfa � fbÞ2m ¼ cosðhÞ2m; ð16Þ
with h the angle between fa and fb and m 2 N. Because

h 2 ½0; p=2�, it is easy to prove that cosðhÞ ¼
ð1� dlðfa; fbÞ2=2Þ. Therefore, one must have

GðxÞ ¼ U0ðxÞ
x

¼ ð1� x2=2Þ2m ð17Þ

and

UðxÞ ¼ 1� ð1� x2=2Þ2mþ1

2mþ 1
: ð18Þ

The functions U and G are shown in Fig. 3. The function

G explicitly defines the discontinuity preserving behav-
iour as a function of the distance between features and

the severity of this behaviour is tuned by the parameterm.
One important constraint of a PDD map is that it

does not have any organization or meaning in isotropic

regions. Regularization in isotropic regions is therefore

meaningless and could actually lead to the creation of a

‘‘fake’’ organization. Therefore, we define
figure is available in colour, see the on-line version.)
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aa;b ¼
FAðaÞ þ FAðbÞ

2
; ð19Þ

with FA the fractional anisotropy measure defined in

Eq. (3). We then alter our scheme to obtain a weighted

regularization, defined by the functional

e/wðf ; kÞ ¼
X

ða;bÞ2Xn

aa;bUðdlðfa; fbÞÞ þ
k
2

X
a2Xn

d2
l ðf ð0Þ

a ; faÞ;

ð20Þ
minimized by the differential equation

ofa
ot

¼
X
b2Na

aa;b
U0ðdlðfa; fbÞÞ
dlðfa; fbÞ

PfaðfbÞ þ kPfaðf ð0Þ
a Þ: ð21Þ

Thus, the effects of the regularization are weak where

anisotropy is close to zero. Furthermore, the weighting

also decreases the influence of isotropic tissues over

anisotropic ones, increasing the preservation of discon-
tinuities between GM and WM.

The minimization is then performed using a discret-

ization scheme proposed by Chan and Shen (geodesic

marching; see (Chan and Shen, 2000), Section 4.2.1).

3.1.4. Tensor reconstruction

Once the PDD has been restored, we reorient the

tensor with the new restored PDD. The second and third
eigenvectors must be first reoriented. We use a similar

approach to the preservation of principal directions al-

gorithm presented in (Alexander, 2001), which computes

the reorientation of DTs to accompany a non-rigid

transformation applied to the whole image. The second

eigenvector is projected on the plane orthogonal to the

regularized first eigenvector in order to compute the new

eigensystem:

• Let ðv1; v2; v3Þ be the original set of eigenvectors, and
vr1 the regularized first eigenvector.

• Define vr2 ¼ v2 � ðv2 � vr1Þvr1.
• Define vr3 ¼ vr1 � vr2.

The new tensor is then constructed using the new set of

eigenvectors and the original eigenvalues

Dr ¼ ðvr1 vr2 vr3Þ
k1 0 0

0 k2 0

0 0 k3

0@ 1Aðvr1 vr2 vr3Þ
T
: ð22Þ

The re-orientated tensor then has the same shape (ei-

genvalues) as the original one with a different orienta-

tion.

3.2. Intensity regularization using anisotropic diffusion

3.2.1. Generalities

Direction and magnitude are separated in the regu-

larization process, and we present here the magnitude

regularization. When dealing with colour images,
brightness (i.e. the magnitude information) and chro-

macity (direction) can be processed separately and in-

dependently, since the organization and coherence of

the two maps are not necessarily related. In other types

of image there is a correlation between the two types of
information, in particular, when the direction map can

be used to describe the local structure of the intensity

image: DT-MR images, MR flow imaging, optic flow,

deformation fields, strain tensor images. For instance

in the case of flow information, intensity is expected to

be smooth in the direction of the flow. The local co-

herence of the intensity image is therefore indicated by

the direction map itself. The case of DT-MR images is
similar although more complex: in WM, where the

tensor is anisotropic, eigenvalue coherence is defined by

the direction of the tracts, i.e. the PDD field. In iso-

tropic tensor regions, there is no such directional co-

herence and the eigenvalue fields are expected to be

isotropic.

The purpose of the this section is to show how tensor-

driven anisotropic diffusion, as formulated by Weickert
(1998), can be used to perform a regularization that

incorporates the prior knowledge of the image coher-

ence expressed by the direction field. This will be illus-

trated by our application to DT-MR images.

As opposed to previous formulations where conduc-

tance is expressed as a scalar function (e.g. Eq. (4),

sometimes designated by the term non-linear diffusion

instead of anisotropic diffusion), the tensor-driven for-
mulation defined by Eq. (5) allows us to define explicitly

directions and magnitude of smoothing, under a number

of conditions. This makes a perfect framework when

one has a prior model of the local structure in the image

and explicitly knows how and in what direction the

smoothing process must be performed. Weickert�s
models rely on an evaluation of the local structure using

the structure tensor: Jq ¼ Kq � ðrur �rurÞ, where Kq is
a Gaussian function and rur is the smoothed gradient

(Weickert, 1998). The eigenvectors of Jq indicate the

directions with the most and the least variations, while

the eigenvalues are descriptors of local structure, for

example: constant area, edges, corners, anisotropic

structures. The direction with the least variation is called

the coherence direction. By defining the flow tensor that

drives the smoothing with the same eigenvectors than Jq
and some well-chosen functions of its eigenvalues, one

can define the smoothing behaviour using the local

structure information (Weickert, 1999a, 1998). Evalu-

ating Jq necessitates the choice of an integration scale, q,
which gives rise to a trade-off between locality and

robustness.

3.2.2. Introducing a priori structural information

After having computed the local structure informa-

tion, Weickert shows how to define the flow tensor. In

particular, for the coherence enhancing scheme (Weick-
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ert, 1999a), the coherence direction v is used together

with a local index of coherence to build a flow that

smooths along v only where the index is high enough.

The idea is similar in the case of multi-dimensional

data such as the ones mentioned above. The prior in-
formation about the image map is partly contained into

the direction map: for instance with flow images, v is the
flow direction. For a general approach to building an

anisotropic flow tensor that takes into account the scalar

map structure, we need:

• A local coordinate system to define the eigenvectors

of the flow tensor. This is where the a priori direc-

tional information is introduced to define the first ei-
genvector.

• A local index that indicates where the direction map

describes properly the scalar map structure, and

where the anisotropic smoothing will be performed.

For instance, in the case of flow images, we want to

smooth along the flow only where there is one: the

flow magnitude is the coherence index. One can then

define the first eigenvalue as a function of this index,
and the second and third eigenvalues with a small

constant positive value. Therefore, the smoothing is

performed only in the direction of coherence.

The desired behaviour can be more complex than an

anisotropic smoothing in one direction. Several types of

smoothing might be required depending on the scalar

map characteristics, or we may want to take into ac-

count particular discontinuities. This is illustrated by
DT-MR images, for which the structural information is

directly available in the reorientated diffusion tensor Dr.

In the case of a prolate tensor (see Section 2.1), which

arises in white matter fiber bundles, coherence is defined

in one direction, and regularity is expected along the

fibers, that is in the direction of the restored PDD. With

an oblate tensor, local coherence lies within a plane

defined by the first two eigenvectors. For an isotropic
tensor, underlying tissues have an isotropic nature, and

regularity is expected in every direction. These three

extreme cases are used to define a smoothing behaviour

that takes into account the expected regularity and we

show how this can be achieved in the next section.

3.2.3. From diffusion tensor to flow tensor

According to the DT-MR image local coherence de-
scription presented in previous section, the smoothing

applied across the image should be defined as follows:

• isotropic smoothing in isotropic tissues (GM, CSF),

• strong anisotropic smoothing in WM, along the di-

rections of most diffusion (i.e. along fiber tracts),

• preservation of transitions between isotropic and an-

isotropic tissues.

The above three rules are enough to guarantee the
criteria mentioned at the end of previous section. In
particular, if in WM the smoothing is performed only in

the direction of anisotropy, there will not be any flow

between neighbouring tracts with different directions

(since the flow is directed only in the direction of the

tracts).
We recall the diffusion equation (5) applied on an

eigenvalue map k

okðx; tÞ
ot

¼ div ðMrkÞ; ð23Þ

and define the flow tensor as follows:

M ¼ ðvr1 vr2 vr3Þ
l1 0 0

0 l2 0

0 0 l3

0@ 1Aðvr1 vr2 vr3Þ
T
: ð24Þ

Therefore, M has the same eigenvectors as Dr, indicat-

ing the principal directions of anisotropy (in particular,
the PDD) when there is anisotropy. The amount of

smoothing is defined by the eigenvalues li, functions of

the diffusion tensor eigenvalues ki, and defined as fol-

lows:

li ¼
k2i

k21 þ k22 þ k23
HðkrFAr � vrikÞ ð25Þ

with

HðxÞ ¼ 1
2
ð1� tanhðKðx� CÞÞÞ: ð26Þ

The first part of the definition (before the function H )

guarantees that if Dr is isotropic then M is isotropic as

well, and if Dr is anisotropic then M is anisotropic with

the flow almost entirely along the principal directions of

anisotropy.

The function HðkrFAr � vrikÞ behaves like a contour

map that looks for anisotropy changes in the directions
vri . At the termination of a tract, there is a tissue tran-

sition (WM/GM) in the direction of the flow. Equiva-

lently, in GM the isotropic flow might cross a boundary

if we are next to WM. Such situations are indicated by a

high value of krFAr � vrik, where FAr is the fractional

anisotropy smoothed with a Gaussian kernel of pa-

rameter r. Therefore, the function H provides a smooth

cut-off at value C with a slope K.
Fig. 4 provides a visual illustration of the flow tensor

definition, using an ellipsoid representation of tensors.

In the very anisotropic bow-shaped structure (corpus

callosum), the flow is almost mono-directional, whereas

in the isotropic regions (CSF or GM, in blue on the

picture) the flow is isotropic. The close-ups in Fig. 5

show the edge-preserving effect of the flow definition. In

Fig. 5(a), one can see a small part of the corpus callosum,
anisotropic (yellow and red), next to isotropic tissues

(GM, small blue ellipsoids, and CSF, large blue ellip-

soids). The resulting flow tensor shows a high anisot-

ropy in the corpus callosum, but tensors in the CSF are

‘‘flat’’ (green ellipsoids), to prevent flow towards the

WM. In Fig. 5(b), two tracts are next to each other, the



Fig. 4. Diffusion tensor (top) and corresponding flow tensor (bottom). Same colour mapping as in Fig. 2. Real brain data: splenium of the corpus

callosum. (This figure is available in colour, see the on-line version.)
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corpus callosum again (in plane, curved), and the cin-

gulum (green ellipsoids in the foreground right corner),

which runs vertically and is slightly less anisotropic. The

two tracts are orthogonal and next to each other. The

resulting flow tensor image shows that the flow inside

each tract prevents the different orientations influencing

eachother, and that the flow tensor between the tracts is

‘‘flat’’ in the direction of the transition.
The process described by Eqs. (23)–(25) is applied

on the three eigenvalue maps simultaneously, with the

same flow tensor, similar to vector-valued image dif-

fusion (Whitaker and Gerig, 1994; Weickert, 1999b).

At each iteration of the diffusion process, the fractional

anisotropy FA is recomputed from the new eigen-

values, which introduces an implicit coupling between

the images and the contour map. The discretization of
Eq. (5) is done via a simple explicit scheme with a

small time step (Dt ¼ 0:2). More stable schemes,
allowing larger time steps, can be found in (Weickert,

1997a).
4. Results

Experiments were performed on both synthetic and

real DT-MR images. Synthetic images were used to as-
sess both qualitatively and quantitatively the effects of

the process. In this section, we present the results of

these experiments.

4.1. Synthetic images

4.1.1. PDD restoration: robustness to noise and choice of

the regularization parameter

Two noise-free tensor volumes were generated by

building anisotropic structures embedded in a pure



Fig. 5. Diffusion tensor (left column) and corresponding flow tensor (right column) in two sub-regions of the brain (small parts of the splenium of the

corpus callosum). Same colour mapping as in Fig. 2. (This figure is available in colour, see the on-line version.)
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isotropic medium. Realistic values were chosen for the

eigenvalues in each type of medium (Pierpaoli and

Basser, 1996; Pierpaoli et al., 1996), i.e., k1 ¼ 1700 and

k2 ¼ k3 ¼ 200 for the anisotropic tensors, and k1 ¼
k2 ¼ k3 ¼ 700 for the isotropic tensors. The first volume

is composed of a single anisotropic bundle in the shape

of a torus. The second volume is composed of two an-

isotropic bundles: a ‘‘ring’’ around a cylinder. Once the
noise-free tensor field has been constructed, we add

noise to the data that reflects the noise properties of data

acquired from an MR scanner using a similar approach

to that described in (Alexander et al., 2002). Given each

diffusion tensor, we can compute the corresponding DW

measurement (see Section 2.1) for a set of 60 directions.

Each of the DW images is transformed into the Fourier

domain, where Gaussian noise is added with variance
r2. The Fourier transform is then inverted to provide

noisy DW images, which are then used to reconstruct

noisy versions of the DT at each voxel. A value r2 ¼ 25

provides data with approximately the same level of noise

as that measured in our MR scanner in the absence of

any signal. A value r2 ¼ 400 introduces about 10 times

this level of noise, while r2 ¼ 1 introduces about a tenth

of this level. Figs. 10 and 11 show parts of the torus and
ring synthetic noisy images.
We defined a error measure for the PDD field be-

tween a restored image and the corresponding noise-free

original image. This error is defined as follows:

E ¼
X
a2Xn

FAð0ÞðaÞð1� fa � f ð0Þ
a Þ; ð27Þ

where FAð0Þ is the fractional anisotropy in the original

noise-free image, fa is the PDD in the restored image,

and f ð0Þ
a the PDD in the noise-free image. On our

synthetic images, this error measure effectively takes

into account only the anisotropic part of the image,
which is the only part we are interested in for the PDD

restoration. For a given noise level, E can be plotted as

a function of the regularization parameter k in order to

measure the influence of this parameter and find its

optimal value. Fig. 6 shows the plots EðkÞ for noise

levels r2 ¼ 1; 25; 100; 400. We can see that in all situa-

tions EðkÞ reaches a single minimum kopt. For k < kopt,
there is too much regularization and the data end up
being too smooth, whereas for k > kopt data are kept

too close from the original map and the noise level is

not decreased enough. Values of kopt for

r2 ¼ 1; 25; 100; 400, respectively, are 7.0, 1.0, 0.5, 0.25,

respectively. Let us define k�ðr2Þ as the function that



Fig. 6. Error after restoration of the torus PDD map as a function of the regularization parameter, for noise levels r2 ¼ 1; 25; 100; 400.

Fig. 7. PDD restoration. Left column: noisy synthetic torus image. Right column: the corresponding restored image. Top row: noise level r2 ¼ 25.

Bottom row: noise level r2 ¼ 400. Blue: isotropic tensor, red: anisotropic tensor. (This figure is available in colour, see the on-line version.)
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associates the noise level r2 with 1=kopt (the function

k�ðr2Þ is sometimes called regularization strategy

(Kirsch, 1996)). It is interesting to notice that experi-

mentally we observe:

• when r2 ! 0, then k�ðr2Þ ! 0;
• when r2 ! 0, then EðkoptÞ ! 0.

In other words, when the noise level tends to 0, the

amount of regularization required tends to zero, and the

result of the optimal restoration tends to be the original

noise-free image. These two properties are the theoreti-

cal requirements for a valid (admissible) regularization

strategy (Kirsch, 1996).

Figs. 7 and 8 show images of the result of the resto-
ration for noise levels r2 ¼ 25 (same level than real

images) and r2 ¼ 400, using the associated optimal

regularization parameter value. The following qualita-

tive observations can be made:

• The coherence of the field inside each structure is

properly restored.

• The PDD field at the border of the anisotropic struc-

tures has not been corrupted by the isotropic part.
Fig. 8. PDD restoration. Left column: noisy synthetic ring image. Right col

Bottom row: noise level r2 ¼ 400. Blue: isotropic tensor, red: anisotropic ten
• In Fig. 8, the transition cylinder-ring has been prop-

erly preserved and the restoration is well behaved at

the interface between those structures.

• For r2 ¼ 400 one can notice a few isolated vectors

that are orthogonal to their original orientation (cir-
cled in the images). This is an effect of the ‘‘sorting

bias’’ (Basser and Pajevic, 2000): in the presence of

noise k2 might become higher than k1. In this case

the sorting of the eigenvalue induces an error, and

the PDD field includes v2 instead of v1. At such

points, the error is seen as a discontinuity by the pro-

cess and the regularization is frozen. A method to

correct that bias is proposed in (Basser and Pajevic,
2000).

For real images, the noise level is similar to that ob-

tained from r2 ¼ 25, therefore for the experiments on

real data described in the next sections we will use the

value k ¼ 1:0.

4.1.2. Eigenvalue regularization

Experiments were performed on the same synthetic
images in order to assess the behaviour of the eigenvalue
umn: the corresponding restored image. Top row: noise level r2 ¼ 25.

sor. (This figure is available in colour, see the on-line version.)
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regularization process. After restoration of the PDD

using the optimal parameter value for a given level of

noise, the anisotropic diffusion process defined by Eqs.

(5) and (24)–(26) was applied on the eigenvalue maps

with a discrete time step Dt ¼ 0:2.
We defined two regions of interest, in the isotropic

and anisotropic parts of the torus image. For the noise

level r2 ¼ 25, we plotted the estimated standard devia-

tion of each eigenvalue within each ROI against iteration

number. Plots are presented in Fig. 9 and show a sig-

nificant decrease of the strandard deviation in every case,

corresponding to an effective decrease of noise level.

After an optimal number of iterations the trend is
inverted. This is due to the fact that, after some time,

regions start to mix: diffusion cannot be completely

stopped across boundaries (for theoretical reasons the

flow cannot be zero in any direction) and after an infi-

nite time the process converges to a constant image. This

is a well-known limitation of anisotropic diffusion and is

why it is necessary to determine an optimal time limit.
Fig. 9. Standard deviation of eigenvalues through iterations in isotropic and

version.)
Note that it is also possible to make the process con-

verge to a non-constant image by adding a data-driven

term, similar to the method presented for the PDD

restoration. One must then determine an optimal weight

for this term. In our case, and for r2 ¼ 25, 40 iterations
(t ¼ 8) is enough to bring down all eigenvalues to their

optimal noise level both in anisotropic and isotropic

media.

Figs. 10 and 11 show the results of the regularization

for the two synthetic images for r2 ¼ 25 and 400. It is

clear that for a realistic noise level the smoothness of the

field is restored within each structure. When the noise

level increases, anisotropy increases in isotropic media
and decreases in anisotropic bundles. Because aniso-

tropy of the flow depends on anisotropy of the diffusion

tensor, when the noise level becomes very high the flow

tends to be the same everywhere. Nevertheless, for

r2 ¼ 400 the smoothness of the field is largely increased,

while a transition between each medium can still be

observed.
anisotropic media. (This figure is available in colour, see the on-line



Fig. 10. Eigenvalue regularization. Left column: noisy synthetic torus image. Right column: the corresponding regularized image. Top row: noise

level r2 ¼ 25. Bottom row: noise level r2 ¼ 400. Same colour mapping as in Fig. 2. (This figure is available in colour, see the on-line version.)
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4.2. DT-MR images

Two types of DT-MR images were used in our ex-

periments: spinal cord data to observe the effects of the

PDD map restoration, and brain data to assess the ef-

fects of the eigenvalue regularization. We present results

using those data.

4.2.1. Spinal cord data

Acquisition at the level of the spinal cord is techni-

cally more difficult and more sensitive to motion arte-

facts, for instance induced by breathing, therefore these

data are quite noisy. In particular, the PDD field is more

noisy than with brain data. The images contain a cy-

lindrical region (the cord) inside which anisotropy is

high, due to the presence of fibers, and outside which
anisotropy is low, in the CSF surrounding the cord (see

Fig. 12). Discontinuities are of two types: at the inter-

face between cord and CSF, and inside the cord, at the

entrance of peripheral nerves.

Results of the PDD restoration are shown in Fig. 12

for a subsection of the cord. Fig. 12(a) shows that di-

rections have been clearly realigned along the cord, and

the smoothness has increased. At the borders of the
cord, data have not been disturbed by the CSF.

Fig. 12(b) shows a close-up at a discontinuity of the

direction field within the cord, and we can see that the

discontinuity has been preserved while the data have

been smoothed. As there is no ground truth to compare

results with, an essential issue of the PDD restoration is

its effect on post-processing methods, in particular,

white matter fiber tracking (tractography) for which the



Fig. 11. Eigenvalue regularization. Left column: noisy synthetic ring image. Right column: the corresponding regularized image. Top row: noise level

r2 ¼ 25. Bottom row: noise level r2 ¼ 400. Same colour mapping as in Fig. 2. (This figure is available in colour, see the on-line version.)
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PDD direction is essential. Current work aims at as-

sessing those effects using a tractography method (Par-

ker et al., 2001) on spinal cord data.

4.2.2. Brain data

Echo-planar DT-MR brain images of size 128� 128�
42 were acquired using an acquisition scheme similar to

that described in (Jones et al., 1999), and processed us-
ing the method presented above. The tensor was first

reorientated according to our direction map restoration

scheme, then the eigenvalue map regularization was

applied. Fig. 13 shows the results of the regularization

on the three eigenvalue maps at t ¼ 4. The smoothness

within each structure has increased while the bound-

aries of those structures have been preserved. The same

effect can be observed on the ellipsoid representation in
Fig. 14. As mentioned before, eigenvalues are used to

define scalar measurements that can characterise tissues

and assess their properties. Therefore, it is interesting to

observe the effect of the regularization on those mea-

surements. Fig. 15 shows the evolution of a fractional

anisotropy map through the regularization process with

increasing time. Obviously, as the smoothness of the

eigenvalue maps increases, so does the smoothness of
the fractional anisotropy, following a scale space-like

evolution. Discontinuities are preserved and the local

coherence of the anisotropy map is largely enhanced by

the process. As time increases, thin anisotropic struc-

tures in the white matter disappear. This highlights

the issue of the optimal amount of regularization to

apply to data like brain images, that contain a lot of

different structures at various scales. There is a trade-off



Fig. 12. Two sub-region of the spinal cord PDD field before (left) and after (right) regularization. Directions are scaled and colour-mapped by

fractional anisotropy (same colour mapping as in Fig. 2). (This figure is available in colour, see the on-line version.)
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between preserving fine structures and providing enough

regularization, although the discontinuity-preserving

strategy and the anisotropic nature of the smoothing in

white matter aim at relaxing this trade-off as much as

possible.
5. Conclusion

We presented a method to regularise diffusion ten-

sor magnetic resonance images. More generally, the

method defines a framework for the regularization of

multi-dimensional data containing both directional in-

formation and one or several magnitude scalar com-

ponents whose structure is related to the direction

map. On the theoretical side, we proposed a general
variational method for restoration of direction fields

on a discrete domain, inspired from the approach of

Chan and Shen (2000). The method can be used with
various regularising U-functions, and the influence of

this choice on the behaviour of the scheme, for in-

stance in terms of anisotropy or edge enhancement, is

still to be done. The second part of our method pro-

poses the use of anisotropic diffusion to drive a regu-

larization process using the restored direction field as a

prior to describe the local magnitude image structure,

the main idea being to drive the smoothing along the
direction field, modulated by a measure of coherence,

similar to the coherence enhancing scheme proposed

by Weickert (1999a). On the practical side we proposed

the use of the diffusion tensor itself to define the flow

tensor that drives the anisotropic diffusion tensor, as a

way to take into account the structural information in

the image and drive the regularization consistently

with the underlying tissues. For the PDD field resto-
ration, we proposed the use of realistic synthetic data

to evaluate the adequate value of the regularization

parameter.



Fig. 14. Ellipsoid representation of brain data (sub-region between ventricule and caudate nucleus). Left: original image, right: after regularization at

time t ¼ 8 (same colour mapping as in Fig. 2). (This figure is available in colour, see the on-line version.)

Fig. 13. Eigenvalue map regularization. Left column: k1, k2 and k3.
Right column: the corresponding regularized images at time t ¼ 4.

(This figure is available in colour, see the on-line version.)

Fig. 15. Fractional anisotropy map at time t ¼ 0; 4; 8; 16; 12; 16 and 20.

(This figure is available in colour, see the on-line version.)
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The scheme was shown to work well on diffusion

tensor magnetic resonance data. Validation of the pro-
Jðf Þ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p � x2

ðx2 þ y2 þ z2Þ3=2
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ðx2 þ y2 þ z2Þ3=2
� xz
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cess using applications of DT-MRI is the subject of

current work. It includes statistics on scalar measures

derived from the tensor in various regions of the brain,

as well as tractography studies on spinal cord and brain

images to assess the effects of the PDD regularization.

An alternative to post-reconstruction regularization is to

integrate a spatial regularization constraint in the tensor

estimation process, and it is also the subject of current
work. Such methods should allow acquisition con-

straints to be reduced. In particular, we aim to povide a

way to acquire images with a higher spatial resolution

while maintaining a reasonable acquisition time. When

keeping a constant acquisition time, increasing spatial

resolution will decrease the signal-to-noise ratio. Spatial

regularization aims at fixing this.
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Appendix A. Gradient restricted to S2

We define the mapping from R3 to S2:

8f 2 R3; f̂f ¼ f
kf k : ðA:1Þ

For a scalar function G : R3 ! R, we define its restric-

tion bGG on S2 with bGGðf Þ ¼ Gðf̂f Þ. Let rG ¼
ððrGÞx; ðrGÞy ; ðrGÞzÞ

T
the gradient on R3, and define

obGG=of the gradient on S2:

8f ¼ ðx; y; zÞ 2 R3;
obGGðf Þ
of

¼ Jðf Þ � rGðf̂f Þ; ðA:2Þ
where Jðf Þ stands for the Jacobian of the mapping to

the sphere:
Therefore,

8f 2 R3;

obGGðf Þ
of

¼

ðrGÞx 1
kf k �

ðrGÞxx2�ðrGÞy xy�ðrGÞzxz
kf k3

ðrGÞy 1
kf k �

ðrGÞxxy�ðrGÞy y2�ðrGÞzyz
kf k3

ðrGÞz 1
kf k �

ðrGÞxxz�ðrGÞy yz�ðrGÞzz2

kf k3

0BBBBB@

1CCCCCA
¼ 1

kf k rG
�

� ðrG � f
kf kÞ

f
kf k

�
; ðA:4Þ

In particular, for f 2 S2,

obGGðf Þ
of

¼ rG� ðrG � f Þf ¼ Pf ðrGÞ; ðA:5Þ

where Pf is the projection on the plane orthogonal to f.
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