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A fully automatic and robust brain MRI tissue classification method
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Abstract

A novel, fully automatic, adaptive, robust procedure for brain tissue classification from 3D magnetic resonance head images (MRI) is
described in this paper. The procedure is adaptive in that it customizes a training set, by using a ‘pruning’ strategy, such that the
classification is robust against anatomical variability and pathology. Starting from a set of samples generated from prior tissue probability
maps (a ‘model’) in a standard, brain-based coordinate system (‘stereotaxic space’), the method first reduces the fraction of incorrectly
labeled samples in this set by using a minimum spanning tree graph-theoretic approach. Then, the corrected set of samples is used by a
supervised kNN classifier for classifying the entire 3D image. The classification procedure is robust against variability in the image
quality through a non-parametric implementation: no assumptions are made about the tissue intensity distributions. The performance of
this brain tissue classification procedure is demonstrated through quantitative and qualitative validation experiments on both simulated
MRI data (10 subjects) and real MRI data (43 subjects). A significant improvement in output quality was observed on subjects who
exhibit morphological deviations from the model due to aging and pathology.
   2003 Elsevier B.V. All rights reserved.
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1 . Introduction from the model due to pathology, or simply due to normal
anatomical variability between individuals. Also, there

Fully automatic brain tissue classification from magnetic may be situations when the only model available was
resonance images (MRI) is of great importance for re- constructed from a different human population than the
search and clinical studies of the normal and diseased image to be classified. This paper presents a novel, fully
human brain (e.g.Collins et al., 2001; MacDonald et al., automatic classification procedure that is robust against
2000; Paus et al., 1999; Rapoport et al., 1999; Zijdenbos etmorphological deviations from the model. Moreover, the
al., 2002). Operator-assisted classification methods are procedure does not make any assumptions about the MRI
non-reproducible, and also are impractical for the large tissue intensity distributions.
amounts of data required for a meaningful statistical Many kinds of computerized analyses can be used to
analysis. Methods for fully automatic brain tissue classifi- extract information from three-dimensional (3D) MRI data
cation typically rely on an existing anatomical model for of the human head. The application that concerns this
localizing a training set for each tissue class to be labelled, paper is the classification, or labeling, of individual voxels
e.g. gray matter, white matter and CSF (cerebro-spinal of a 3D anatomical MR image (MRI) as one of the three
fluid). This assumption of normal anatomical distribution main tissue classes in the brain: CSF, grey matter and
of tissue types makes them sensitive to any deviations white matter; a fourth class is defined as ‘background’,

denoting everything else (skull, skin, fat, air surrounding
the subject’s head, and so on). An attractive feature of MRI
is that different contrasts between tissue types (multi-
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tions (Collins et al., 2001; Rapoport et al., 1999; Zijdenbos tissue probability map in a standard, brain-based coordi-
et al., 1998, 2002), cortical thickness measurements (Fischl nate system (the ‘model’), and is designed to accommo-
and Dale, 2000; Jones et al., 2000; MacDonald et al., date subject anatomies that are significantly different than
2000), morphological analysis (e.g. voxel-based mor- the model (the difference can be due to aging, due to
phometry: Paus et al., 1999; Wright et al., 1995), and pathology, or even due to anatomical variability between
visualization. normal individuals of similar age).

Several types of medical image segmentation methods In Section 2 we explain the problem we address here,
can be applied to anatomical brain MRI. Intensity-based and why previously existing solutions are unsatisfactory.
classification methods generally operate in a multi-dimen- In Section 3 we describe our new method. Section 4
sional feature space (d >1). Each feature consists of an presents validation experiments and their results. We
image intensity at the spatial location (voxel) to be conclude with a discussion and comparison with other
classified; all the features are derived from the same approaches in Section 5.
subject. Such classification techniques are, in fact, not
medical imaging specific—an extensive coverage of clas-
sifiers is given byDuda et al. (2001). 2 . Problem statement

Many researchers have applied to brain MRI classic
methods such as the Bayes (maximum likelihood) classifier 2 .1. Fully automatic classification
(Collins et al., 2001; Kamber et al., 1995), or non-paramet-
ric classifiers like kNN (k nearest neighbors) (Warfield et Manual, or even semi-automatic, classification per-
al., 2000) and ANN (artificial neural network) (Zijdenbos formed by a trained expert is labor-intensive (hence
et al., 1998). Expectation-maximization (EM) is a popular impractical for processing large amounts of data), highly
statistical classification scheme for this application. Origi- subjective, and non-reproducible (Zijdenbos et al., 1998,
nally proposed in a brain MRI context byWells III et al. 2002). Fully automatic, robust tissue classification is
(1996), and further improved by many others (e.g.Ash- required for the quantitative analysis of MRI data from
burner, 2000; Ashburner and Friston, 2000; Guillemaud large-scale (150–1000 subjects), possibly multi-site clini-
and Brady, 1997; Held et al., 1997; Pohl et al., 2002; cal trials or research projects (e.g.Zijdenbos et al., 1998,
Schroeter et al., 1998; Van Leemput et al., 1999a,b), these 2002).
methods interleave intensity non-uniformity field estima- The MRI intensity scale has no absolute, physical
tion (correction) and classification, in an iterative fashion. meaning: the image values and contrast are dependent on

All MRI classification methods are sensitive to overlap the pulse sequence, and other variable scanner and post-
in the tissue intensity distributions. Such overlaps are processing parameters. Thus, the ability of a tissue classifi-
caused by inherent limitations of the image acquisition cation method to automatically adapt to a new MRI dataset
process, such as noise, intensity non-uniformity (INU, also is especially important when the data is collected at
known as bias field) (Sled and Pike, 1998), and partial multiple sites or with several different MRI scanners.
volume effect (as a consequence of the finite resolution of An aspect that is often ignored by brain MRI classifica-
the imaging process, the image voxels may contain a tion schemes is how to adapt to a new MRI dataset in a
mixture of more than one tissue type, which all contribute fully automated manner. Some researchers have addressed
to the measured signal). Several approaches have been this issue:
proposed to address this limitation of intensity-based • The use of stereotaxic space tissue probability maps (a
classification. For example, post-classification morphologi- probabilistic brain atlas) for automating supervised
cal operations or contextual classifiers (Choi et al., 1991; classification algorithms was originally proposed by
Held et al., 1997; Rajapakse et al., 1997; Udupa and Kamber et al. (1995),and subsequently used by others
Samarasekera, 1996; Yan and Karp, 1995). Moreover, a (Kollokian, 1996, Zijdenbos et al., 1998, 2002).
number of researchers have proposed continuous classifiers• Automatic implementations of the popular expectation-
which attempt to estimate the mixing proportions of maximization (EM) statistical classification scheme
several tissues in a voxel (i.e. the partial volume effect) were proposed byVan Leemput et al. (1999a,b)and by
(Choi et al., 1991; Laidlaw et al., 1998; Pham and Prince, Ashburner (2000)and Ashburner and Friston (2000).
1999; Schroeter et al., 1998; Van Leemput et al., 2002). These methods use a probabilistic brain atlas to initial-
Another approach, in which the limitations of intensity- ize, and also to constrain, the iterative EM process.
based classification are addressed by constraining it with However these methods can fail for ‘atypical’ brain scans
the non-linearly deformed anatomical template, was pro- (significantly different from the atlas), such as child brains,

1posed byWarfield et al. (2000). or brains with large pathological abnormalities. All these
The main contribution of the work we present here is a

novel method for fully automatic generation of correct
training samples for tissue classification. The method is 1This was shown by our experience with the method ofKamber et al.
non-parametric, hence does not make any assumptions(1995), and was reported by bothVan Leemput et al. (1999b)and
about the feature space distributions. It is based on a priorAshburner (2000).
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classification methods start by spatially registering the the TPMs provide an a priori spatial probability dis-
subject’s MRI to the probabilistic atlas using a linear (rigid tribution for each tissue (Fig.1). This distribution can be
body) transformation. Work very recently presented used to automatically produce a training set for the
(D’Agostino et al., 2002; Pohl et al., 2002) showed that supervised classifier (Kamber et al., 1995). For example,
using elastic (non-linear) registration of the subject to the choose spatial locations that have a TPM value>t 5 0.99
atlas can improve the performance of Van Leemput’s (99%); the TPM will provide the class label for the
method. training sample, and the actual MR image value(s) at that

However, as of this writing these results are preliminary spatial location will provide the sample’s feature vector.
and comprehensive validation is still pending. However, this simplistic approach has two limitations:

2 .2. Feature space distributions Mis-labeled samples. Even among the locations with very
high a priori probability of being a given tissue, some of

The classification procedure we describe in this paper is them will in fact be from another class. There are several
non-parametric. Many of the brain tissue classification reasons for this.
methods proposed in the literature employparametric First, the morphology of the human brain is highly
classifiers—they assume the data distributions in featurevariable and the TPM is created from a finite sample.
space follow a certain model (notable exceptions:Udupa Second, in practice the automatic linear registration of
and Samarasekera, 1996; Warfield et al., 2000; Zijdenbosthe subject to the stereotaxic space will not be perfect.
et al., 1998). Typically, the multi-variate Gaussian model Lastly, in practice the TPM is not computed from ground-
(‘Normal’ distribution) is used. If the features are MR truth (which cannot be obtained in vivo) but from semi-
signal intensities from various MRI modalities (such as T1, automatic segmentations of MR images (Kamber et al.,
T2, PD), then the Gaussian model assumption can be poor1995; Kollokian, 1996); any systematic errors or bias of
(Clarke et al., 1993; DeCarli et al., 1992; Schellenberg et the method will propagate into the TPM.
al., 1990): besides biological causes such as the intrinsic The fraction of mis-labeled samples in the training set
heterogeneity within the tissue classes that concern thiswill increase when the minimum prior probability thres-
paper (CSF, grey matter, white matter), the MRI acquisi- hold t is decreased. Also, for a givent, this fraction will
tion artifacts also affect the intensity distributions—i.e. be larger when the subject is from a different population

3result in deviations from a Normal distribution (Ashburner, than the population statistically represented by the TPM.
2000; Kollokian, 1996; Schellenberg et al., 1990). While
intensity non-uniformity can be reduced by retrospective

Intensity distribution estimation. For highestt (wherecorrection methods (e.g.Sled et al., 1998), the partial
the rate of mis-labeled samples is lowest) the qualifyingvolume effect cannot.
sample points give a very limited coverage of the brainEven if the normal-distribution assumption would be
area (Fig.2). Using these points will not yield a goodacceptable for some data, it is safer not to make it if the
estimate of the true tissue intensity distributions (which isautomatic classification method aims to be robust against
needed by a supervised classifier), for two reasons:variability in the imaging data quality. Robustness is
• MRI artifacts, such as intensity non-uniformity (INU),especially important for unsupervised processing of data

introduce spatial variations in the image intensity of anycollected in large-scale, multi-site research projects or
given tissue type.clinical trials.

• Due to the underlying biology, the MRI signal intensity
of the main brain tissue types is not homogeneous2 .3. Model-based training set selection
throughout the brain (Kandel et al., 2000).

Thus, more spatial coverage, by sampling at a lowert,In this paper, ‘stereotaxic space’ is a standard frame of
would be beneficial for the intensity distribution estimationreference defined by anatomical landmarks; it allows for
provided by the training set. However, loweringt alsothe removal of affine differences (rotation, translation,
results in an increased number of incorrectly labeledscale) between brains. A stereotaxic space tissue probabili-

2 samples in this set.ty map (TPM) of a given tissue is a spatial probability
distribution representing a certain subject population. For
each spatial location in the stereotaxic space, the TPM In the following, we present a procedure which allows
value at that location is the probability of the given tissue for a lowert while limiting the rate of mis-labeled training
to be observed there, for that particular population. samples. Specifically, an automatic ‘pruning’ of the raw set

Once imaging data is spatially registered (normalized) to of points obtained from the TPM is performed.
the stereotaxic space by means of an affine transformation,

2 3A TPM is also sometimes referred in the literature as ‘statistical Pathology is a common cause of significant deviations of a subject’s
probability of anatomy map (SPAM)’ or ‘probabilistic brain atlas’. anatomy from a normal brain model.
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Fig. 1. For a given spatial location in the 3D stereotaxic space, tissue probability maps (TPM) provide an a priori probability for a tissue to be found there.
In this example, the TPMs are computed from a young-normal population (N553), subject A is a young-normal individual, and subject B is an elderly
Alzheimer’s disease patient (who exhibits significant brain atrophy with enlarged ventricles). Note that a location (‘1’ in images) with very high prior
probability to be white matter is in fact CSF in subject B. Although 2D sections are shown, all these data are 3D.

3 . Method referred to as the ‘pruning’ stage, and is described in
Section 3.1.

Our fully automatic, non-parametric, brain tissue classi- 2. A supervised non-parametric classifier trained on the set
fication procedure (Fig.3) consists of two stages: of samples produced by the first stage. This training set
1. A novel semi-supervised classifier, using a minimum provides an estimate of the tissue intensity distributions

spanning tree graph-theoretic method and stereotaxic in the actual MR dataset subjected to classification. This
space prior information. It produces a set of training stage is described in Section 3.2.
samples customized for the particular individual The features used are signal intensities of one or more
anatomy subjected to classification. This stage will be MRI modalities. If multiple MR contrasts of the same

 

Fig. 2. Brain coverage of the training set obtained from the 3D prior tissue probability maps (TPM) for differentt thresholds (training samples are selected
from spatial locations with TPM value>t). Note the very limited spatial coverage at high values oft, especially for CSF.
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Fig. 3. Diagram of our novel classification procedure described in Section 3. The spatial probabilistic prior (TPM) is only used for generating the rawset
of samples; the two-stage classification procedure (pruning and final classification) uses only MR image intensities.

subject are used, the different acquisitions need to be main clusters are identified and labeled by using prior
spatially aligned to each other in a pre-processing step. knowledge, and a stop condition is tested on them. If

The feature space proximity measure we used is the the condition is not satisfied, the graph breaking loop is
common Euclidean distance ind-dimensional space. In a continued.
pre-processing step, the intensity values along each dimen- 3. After the iterative process stops, the points that are in
sion are normalized by a histogram range-matching the ‘correct’ cluster (i.e. have the same initial labeling

4procedure. as their cluster) are deemed to be correctly labeled and
are kept; all the other points are deemed to be incorrect-

73 .1. Pruning stage ly labeled and are discarded.

The pruning works on an input set of spatial locations MST computation. This work uses Kruskal’s algorithm
that are selected through random sampling from the (Albertson and Hutchinson, 1988; Kruskal, 1956). By
qualifying spatial locations in the respective tissue prob- employing union-by-rank and path-compression methods
ability map (TPM); an equal number of samples is selected (Cormen et al., 1990) for an efficient connected com-
for each tissue class (background, CSF, grey matter, white

 matter). The qualifying locations are locations where the
TPM value (i.e. the prior probability) is>t (Section 2.3).

The pruning technique makes use of a minimum span-
5ning tree (MST) in feature space. We refer to this method

as ‘semi-supervised’ because, unlike in traditional un-
supervised classification, some prior information exists in

6this application: the number of main clusters is known (to
be 4), and each input point has an initial labeling suggested
by the TPM-based sample selection process. The purpose
of the pruning is to reject the points with incorrect
labeling.

Here are the three main steps of the pruning method,
followed by a more detailed description of the important
parts:
1. The minimum spanning tree of the input set of points is

constructed in feature space (Fig.4 top).
2. In an iterative loop, the graph is broken into smaller

connected components (clusters) by removing ‘inconsis-
tent’ edges from the initial MST. At each iteration, the

4Points located a small percentile away from the absolute minimum/
maximum are used as robust estimators of the histogram’s range. WeFig. 4. Top: minimum spanning tree (MST) of a set of points in feature
heuristically determined that 4/0.5/4% percentiles are adequate for T1/ space. The T1-PD data are simulated MRIs (Section 4.1). The initial
T2/PD. labeling of each sample point is indicated by its shade. Bottom: clusters5A MST of a set of points ind-dimensional space is defined as a graph resulted after the iterative graph breaking procedure (Section 3.1) stopped
that connects all the points, has no cycles, and whose sum of all edgeat R5 4.92. The arrows indicate points with incorrect initial labeling.
lengths is as small as possible.

6There could be other, smaller, clusters produced by acquisition
artifacts, or by other brain tissue classes than the main four (background,

7CSF, GM, WM), such as fat or skull. Justification: their prior probability (given by the TPM) is very low.
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ponents implementation, the time complexity of our im- should be as large as is practical in order to get a good
plementation (for an arbitrary feature space dimensionality estimate of the true feature space class distributions. It was

2d) is O(n log n) for large n, where n is the number of shown (Devroye, 1981; Stone, 1977) that if k satisfies both
input points. This complexity can be further reduced to of the conditions,
O(n log n) in two-dimensional space using the property

lim k 5`,that the Euclidean-distance minimum spanning tree is a n→`

subset of the Delaunay triangulation (O’Rourke, 1998). In k
one-dimensional space, computing the Euclidean-distance ]lim 50,

n→` nMST is equivalent to sorting, which is O(n log n).
then the kNN classifier (forn →`) will have an error
probability equal to the optimal ‘Bayes risk’R*—theMST breaking loop. A heuristic method (inspired by
minimum possible error probability of a generic classifierDuda et al., 2001) was implemented and experimentally
(achieved when the classifier knows the true data dis-evaluated (in Section 4). It uses a threshold valueR, which
tributions).is decreased at each iteration of the algorithm and tested on

For example, ak that satisfies the above conditions isall edges of the graph in parallel:
]Œk 5 n (for small n, Enas and Choi (1986)suggestk 5• an edge (i, j) is removed if length(i, j).R3 A(i) or if

0.25 0.375n . . . n ). In the experiments presented in this paperlength(i, j).R3 A( j), where A(i) is the average
(Section 4) we chosek 5 45, and usedn . 3000 traininglength of all the other edges incident on nodei (Fig. 4

0.48samples per class (i.e.k ¯ n ). This largen might bringbottom).
only marginal classification improvements over smallerNote that smallerR values will result in more edges being
values (and the computational requirements are propor-removed, hence result in more, and smaller, clusters. To
tional to n). However, the goal of our validation experi-minimize unnecessary graph fragmentation, it is desirable
ments was to assess the performance of the novel pruningto use the largest value ofR that satisfies our stop
stage; therefore, we conservatively over-specified the finalcondition. The appropriate value ofR is adaptive: for each
supervised classification stage in an attempt to reduce itsparticular input MRI dataset, an approximation ofR is
contribution to the errors of the overall two-stage methodautomatically computed by our algorithm in an iterative
(Fig. 3).loop that tests progressively smallerR values until the stop

A likely reason why the kNN classifier was not usedcondition is satisfied.
more in the past is that its straight-forward (naive) im-
plementation is slow. However, kNN’s computationalMain clusters identification. The main clusters are the
requirement can be reduced by several techniques (seebest guesses for the true background, CSF, grey matter and
Duda et al., 2001,Section 4.5.5), and the computing powerwhite matter clusters in feature space. Under the assump-
of commonly available computers steadily and quicklytion that the majority of points have correct initial labels,
increases. Our implementation uses a fast nearest-neighborthe best guess for each class is the cluster which contains
lookup library (publically available:Mount and Arya,the largest number of points labeled as that class.
1998), which pre-processes the training set using box-Note that early in the iterative process some of these
decomposition (BD) trees (Arya and Mount, 1993; Arya etmain clusters will not be distinct (they are still connected
al., 1998).for the current value ofR); in other words, the same cluster

By employing this library we experienced a reduction ofwill contain most samples from classi, but also most
about 100 times in the necessary computation time com-samples from classj.
pared to the straight-forward kNN implementation.

Stop condition. The loop stops when the main clusters,
identified as above, are four disconnected clusters. Post-processing. The classifier sometimes incorrectly

labels as brain tissue some regions which are outside the
3 .2. Final classification stage brain itself, such as dura, skin or fat. This is an inherent

limitation (especially when only one MR modality is
The supervised classifier we used in our implementation available) of any ‘pure’ brain tissue classification method

is the classick nearest-neighbor (kNN) classifier. For each that considers each voxel independently and uses only the
data point to be classified, kNN computes this point’s MRI intensity information at that voxel. However, such
closestk training samples in feature space; then, the data is non-brain tissue can be masked out by a skull removal
classified with the label most represented among thesek procedure (also known as skull stripping, or brain ex-
nearest neighbors. kNN is attractive because it is a ‘non- traction) that uses spatial position, and possibly also voxel
parametric’ classifier: it can learn, from the training set, neighbourhood information, in addition to the MRI intensi-
data feature distributions of arbitrary shape (see also ty. Several such automatic procedures exist, for example:
Section 2.2). (Hahn and Peitgen, 2000; Justice et al., 1997; MacDonald

For good performance, the size of the training set (n) et al., 2000; Smith, 2002; Stokking et al., 2000).
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4 . Experiments and results P 2Po e
]]]Kappa 5 ,12PeThe prior stereotaxic space probabilistic anatomy model

(TPM) used in these experiments (Fig.1) was produced where P is the observed proportion of agreement (alsoo
(Kamber et al., 1995; Kollokian, 1996) from a set of known as ‘accuracy’),
T1/T2/PD MRI scans of 53 young individuals (aged C118–35) using a semi-automatic tissue classification meth- ]P 5 O a ,o iN i51od. The stereotaxic space is the Talaraich space (Talairach
and Tournoux, 1988) and is defined by brain anatomical and P is the expected (due to chance) proportion ofelandmarks. The 53 individual scans were spatially regis- agreement,
tered to this standard frame of reference using a linear

C(rigid body) transformation with nine degrees of freedom 1
]P 5 O s t .e 2 i i(Collins et al., 1994). The class-C TPM value of each N i51

voxel was computed as the frequency with which that
The maximumKappa value of 1 corresponds to a perfectlocation was labeled asC among the 53 individuals.
agreement (P 51), and a value of 0 corresponds toWe performed validation experiments on both simulated o

agreement due to chance alone (P 5P , i.e. the twoand real data, and on both single-spectral (T1) and multi- o e

labelings are completely independent events). We shouldspectral (T11T21PD) MRI data. Moreover, to validate
point out that P (and consequentlyKappa) does notthe robustness against morphological deviations from the o

necessarily give the same weight to the labeling accuracyTPM, we tested the classification method on elderly and on
of each of the individual classes—e.g. the label similaritydiseased subjects-aging and pathology typically cause
for an over-abundant classi will have more effect on thesignificant deviations from a young-normal model. Spe-
overall Kappa value than the similarity for a less-abundantcifically, experiments were performed on the following
class j. Instead,P gives the same weight to the labeldata: o

similarity of each individual sample. Nevertheless, the1. realistic MRI simulations driven by a new custom set of
ratio of the brain CSF:Grey:White image voxels is typical-10 brain ‘phantoms’ resembling elderly brains.
ly 1:2.3:1.9 (for the stereotaxic space we used), so over-2. a real MRI dataset from a young normal individual,
abundance of one class is not a significant issue in thiswhich was fully manually segmented by a human
work.expert.

3. real multi-spectral MRI scans of 31 ischemia patients.
4. real multi-spectral MRI scans of 11 Alzheimer’s disease 4 .1. Elderly brain simulated MRI

elderly patients.
Although single-feature (T1 only) experiments were These data were produced by a MRI simulator (Kwan et

performed on the datasets 1 and 2, the results wereal., 1999) that produces realistic synthetic MRI images
8qualitatively similar to the multi-feature (T12T22PD) based on an anatomical model (a ‘phantom’). 10 phantoms

experiments, so in the interest of brevity we will not show resembling 10 different elderly brains were created as
them here. follows:

The quantitative measurements were performed with 1. T1 scans of 10 individuals (60–70 years old, 5 males, 5
9repetitions to assess the statistical significance of each data females) were non-linearly spatially registered (Collins

point—the repetitions were over 10 different ‘subjects’ and Evans, 1997) to a previously available standard
(for data 1), and over 10 different raw sets of samples (for phantom (Collins et al., 1998; MNI, 1997).
data 2). 2. The resulted deformation field was inverted and used to

To validate the novel pruning stage, we also performed deform the standard phantom, such that it looks similar
classification experiments without pruning (termed as to the source individual brain (Fig.5).

3‘raw’ in the following): the supervised kNN classifier was Then, T1, T2 and PD MRI-s were simulated as 1-mm
directly trained with the raw samples extracted from the voxel acquisitions, with 3% noise and 20% INU (intensity
TPM (see Fig.3). non-uniformity). These values were previously reported as

10For a quantitative measure of classification performance, typical artifact severity (Kollokian, 1996; Sled et al.,
we computed theKappa metric against a ‘gold standard’.

8Kappa (Cohen, 1960) is a chance-corrected similarity This simulator is accessible through the Internet (Cocosco et al., 1997;
measure between two labelings, defined as follows: given aMNI, 1997), and is widely used by the research community for

validation.C-class classification problem for a set ofN samples, if (;
9Data source: Dr. Ryuta Kawashima, Sendai, Japan.class i) we denote bya the total number of samples 10i In a practical automatic image analysis system, an INU correction

labeled asi by both classifiers, and bys , t the totali i procedure (such asSled et al., 1998) would typically be employed.
number of samples labeled asi by the first, respectively, However, here we wanted to simulate the worst case scenario: when the
by the second classifier, then INU correction is not available or it fails.
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Fig. 5. Left to right: standard phantom (column 1), and three sample ‘elderly brain’ phantoms (columns 2–4), produced as described in Section 4.1.
Transverse and coronal sections are shown, but the phantoms are 3D. Compared to the standard phantom (constructed from a young-normal scan), the
‘elderly’ phantoms exhibit enlarged ventricles and overall brain atrophy (typical of aging brains).

1998; Zijdenbos et al., 2002). Sample MRI images are in MRI modalities were then spatially registered to the
Fig. 7. Talairach stereotaxic space using automatic rigid-body

We computed theKappa classification performance (nine-parameter) registration software (Collins et al.,
measure, over the entire brain area, against the digital1994). Also, INU correction was performed using the
phantom used to drive the simulations. method ofSled et al. (1998).

Fig. 6 shows that the pruning brings a statistically We used this manual segmentation as the ‘gold standard’
significant improvement in theKappa metric over the for computing theKappa figure of merit of the classifica-
‘raw’ method. Also, the plot does not show any significant tion (Fig. 8). The plot does not show any significant
variation in theKappa for our method (‘pruned’) when variation in the performance of our method (‘pruned’) for
0.30<t , 1.00. Sample classification outputs are in Fig. choices of t in the range 0.50<t , 1.00 (the median
7. Kappa only varies from 0.772 to 0.783, which is negli-

gible).
4 .2. Real data: young-normal individual Moreover, these quantitative measurements do not show

an overall statistically significant improvement of the
We also performed a quantitative validation on a real pruned classification over the not-pruned (‘raw’) one.

multi-spectral MRI dataset of a 36-year-old healthy in- Nevertheless, this individual is morphologically similar to
3dividual. The T1-weighted 1 mm 3D scan was completely the TPM used, so the ‘raw’ classification is already of

12manually classified (except the cerebellum) (Kabani et al., good quality.
111997, 1998) by a trained neuroanatomist. T2 and PD

scans were also acquired as 2 mm thick sagittal slices (14 .3. Real data: ischemia patients
2mm in plane), in two acquisitions offset by 1 mm; the two

paired scans were spatially co-registered and averaged These data are multi-spectral T12T22PD MRI datasets
together in order to improve the image resolution. All three

12Moreover, preliminary results (which are beyond the scope of this
11This segmentation was done completely manually, without the aid of paper) indicate that, with a large training set and an appropriatek (Section

any semi-automatic intensity-based tools. Besides the MR image intensi- 3.2), the kNN classifier is more robust against incorrectly labeled training
ty, the neuroanatomist used additional information such as spatial context samples than other commonly used classifiers, e.g. maximum-likelihood
and expert neuro-anatomical knowledge. with a Gaussian density estimator.
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Fig. 6. Quantitative evaluation of classification performance on elderly brain multispectral T12T22PD simulated MRI (Section 4.1).t is the prior
probability threshold for extracting the training samples using the TPM. Experiment was repeated with 10 anatomically different elderly brain digital
phantoms. Note that for 0.30<t , 1.00 theKappa of the ‘pruned’ method does not vary significantly witht. Also, for all t >0.30 the lowest median
Kappa of ‘pruned’ is higher than any medianKappa of ‘raw’, and the difference is statistically significant. (A description of box plots is given in Appendix
B.) See also Fig.7.

3of 31 patients diagnosed with ischemia. T1: 1 mm normalization, INU correction) was applied to all three
resolution; T2/PD: 13133.5-mm resolution; same pre- MRI modalities.
processing (spatial normalization, INU correction) as for A qualitative evaluation of the classification results
the dataset of Section 4.2. Ischemia leads to brain atrophy, revealed a clear improvement on some datasets when the
hence to a significant morphological difference from the pruning stage was employed (Fig.10). While the improve-
young-normal TPM. ments were subtle on the other datasets, pruning never

We qualitatively evaluated the classification results by degraded the classification result.
visual inspection. On some of these 31 datasets the
classification result without pruning was poor, and the
addition of the pruning stage significantly improved the 5 . Discussion and conclusion
result (Fig.9). On the other datasets the pruning produced
only subtle improvements (the no-pruning classification 5 .1. Contributions
was already of acceptable quality). • We described and validated a completely automatic

procedure for brain tissue classification from MR
4 .4. Real data: Alzheimer’ s disease elderly patients anatomical images. The procedure can take as input any

number of MR imaging modalities of the same subject.
Multi-spectral MRI scans (T12T22PD) were acquired • Our procedure is robust against significant morphologi-

for 11 elderly patients (aged. 60) diagnosed with Alz- cal differences between the subject of the classification
heimer’s disease (which causes cortical atrophy), as part of and the particular probabilistic anatomical model used

3a clinical study. The T1 was of 1 mm resolution. The T2 for initialization. Moreover, the implementation is non-
and PD were acquired as 8 interleaved sagittal-slice parametric in that it does not make any assumptions
acquisitions; the 8 scans were then spatially co-registered about the tissue image intensity distributions.
and spliced together in order to obtain a single final 3D • The performance of the procedure was demonstrated by

3image of 1 mm resolution. Finally, the same pre-classifi- quantitative and qualitative experiments on both simu-
cation processing as for the dataset of Section 4.2 (spatial lated and real MRI data, and on subjects who are both
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Fig. 7. Gold-standard (digital brain phantom) and classification output for one elderly brain multispectral simulated MRI (Section 4.1). The ‘pruned’
method provided a qualitative improvement in classification compared to the ‘raw’ method—e.g. in the left and right putamen (center of images), and inthe
left posterior white-matter (lower-left of images). Although only transverse slices are shown, the entire processing was done on the full 3D data volume.

similar and dissimilar to the anatomical model used for able models) is its ability to produce high quality definition
initialization. of tissue boundaries. This is especially important for

• Although this procedure requires a probabilistic ana- human brain tissue classification, where highly curved
tomical atlas (model) for initialization, it is not re- interfaces between tissues (such as between gray and white
stricted to the particular model that we used, nor to the matter) can be challenging to recover from finite resolution
method we used to spatially register the subject to the images.
atlas. Any other prior model and spatial registration In Section 2 we explained the shortcomings of previous-
procedure can be used; the only requirement is that the ly existing methods for fully automatic MRI tissue classifi-
majority of samples in the initial training set (provided cation. Our novel method is designed to accomodate
by the model) have correct tissue labels. More spe- ‘atypical’ brain anatomy (i.e. subjects significantly differ-
cifically, the requirement is that the ‘main cluster ent from the brain model). In particular, the validation
identification’ guess (Section 3.1) is valid. experiments showed that our new method performs better

• Our pruning procedure is general: one is not restricted on atypical subjects than the traditional ‘raw’ method—the
to using kNN for the second (supervised) classification latter method is similar to the one originally proposed by
stage. The implementation we validated in these experi- Kamber et al. (1995),but implemented using a non-
ments uses kNN (for the reasons presented in Section parametric classifier (kNN). In addition, our new pro-
3.2), but another supervised classifier could be used cedure is more robust against imaging artifacts and vari-
instead. A non-parametric classifier is advisable, for the ability in the MRI data quality because it has a non-
reasons presented in Section 2.2. parametric implementation: as explained in Section 2.2, the

Normal-distribution assumption (made by parametric
5 .2. Other approaches methods such as:Ashburner and Friston, 2000; Van

Leemput et al., 1999a,b) is not safe for brain MRI tissue
The advantage of MR-intensity-based tissue classifica- classification.

tion over other image segmentation methods (e.g. deform- The methods ofVan Leemput et al. (1999a,b)and of
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Fig. 8. Quantitative evaluation of classification performance on multispectral (T12T22PD) real MRI of a young-normal individual (Section 4.2).
Measurements were repeated 10 times with different raw training sets extracted by random sampling of the qualifying spatial locations indicated by the
TPM (Section 3.1). The ‘raw’ (no-pruning) result fort 50.10 has very lowKappa and is not shown.

Ashburner and Friston (2000)and Ashburner (2000)use preliminary work:D’Agostino et al., 2002; Pohl et al.,
the prior probability (at that particular spatial location in 2002), this may not completely eliminate the mis-labeled

13stereotaxic space) in the classification decision for each samples in the training set suggested by the atlas. Hence,
voxel. This approach prevents the resulting classification our pruning approach will still be needed in order to have a
from being significantly different from the prior probability robust classification procedure.
model. If the subject is seriously ‘atypical’ (e.g. a patient An intuitive approach for classifying MRI data for a
with severe brain atrophy) then there will be serious errors large set of individuals from a certain population is to first
in the classification result. Our method is more adaptive obtain a probabilistic anatomy atlas representing that
because it uses the spatial prior only for initialization, and particular population. However, our method is more gener-
not in the classification decision—which is based only on al (hence, more reproducible): its pruning strategy allows
actual image information. one to use a less specific atlas instead—e.g. use a young-

The method byWarfield et al. (2000)improves on the normal atlas for classifying subjects from a broad range of
inherent limitations of intensity-based classification by ages. Besides, the generation of a new probabilistic atlas
combining it with an elastically deformed atlas. This for a certain population requires non-trivial resources.
technique has an advantage for situations when intensity
data alone is insufficient to distinguish the tissues (e.g. 5 .3. Limitations and future work
neonate brains). However, this method currently needs
manual supervision, and it still needs to be investigated In a typical anatomical MRI the tissue intensity dis-
how reliably can this method be automated.

Moreover, current elastic (non-linear) registration meth-
ods are not robust when there is a significant topological

13difference between the subject and the target brain. In theory, one would have no mis-labeled samples if the prior
probability atlas would be generated from a very large (‘infinite’) sample,Another limitation of elastic matching is that in practice
and if the elastic deformation field would have sufficiently high spatialthe deformation field is band-limited and cannot fully
frequencies. In practice, however, such an atlas would require vast

match the cortical folding patterns of the human brain. resources for data acquisition and processing, and such a deformation
Consequently, even if one uses an elastic deformation of would take a very long time to compute. The pruning approach we

the subject MRI to the probabilistic atlas (such as in recent presented here is a more economical solution.
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Fig. 9. Classification results on real multi-spectral MRI scans of three ischemia patients, shown one per row (Section 4.3). The ‘raw’ (not pruned)
classification is poor inside the ventricles (top and middle patients), in the anterior cortex (middle patient, top of the axial slice), and outside the cortex
(bottom patient). In comparison, the ‘pruned’ classification is qualitatively improved.

tributions partially overlap. Consequently, our pruning for head MRI-s without significant amounts of pathological
method eliminates some of the training set samples that are brain tissue (e.g. lesions, tumors); the extension of our
positioned in feature space in between the clusters (note method to such pathological subjects is a topic of future
that this overlap is an inherent problem for any intensity- research. Nevertheless, if the volume of pathological tissue
based discrete voxel labeling method). One cause of this is relatively small compared to the healthy tissue then the
distribution overlap is the finite spatial resolution of the presented algorithm will still correctly label the healthy
image acquisition: voxels at the boundary between tissue tissue voxels—the cluster identification procedure (Section
types have more than one tissue contributing to the 3.1) will never select the relatively small cluster represent-
measured signal (partial volume effect). It would be ing the pathological tissue as one of the ‘main clusters’.
desirable for the pruning method to put less trust in the
intensity of such voxels than in the intensity of pure tissue
voxels. The boundary (partial volume) voxels will be A cknowledgements
located in high gradient areas of the MR image, thus the
incorporation of local gradient information into the algo- We would like to thank: John Sled, Steve Robbins, Peter
rithm is worth exploring. Neelin, Louis Collins, Jean-Franc¸ois Mangin for valuable

The classification method we presented here is designed feedback on earlier versions of this paper; Noor Kabani for



C.A. Cocosco et al. / Medical Image Analysis 7 (2003) 513–527 525

 

Fig. 10. Classification results on real multi-spectral MRI scans of two Alzheimer’s disease elderly patients, shown one per row (Section 4.4). The ‘raw’
(not pruned) classification is poor inside the ventricles (especially for the top patient), and around the lateral cortex—where the white-matter is
over-estimated, and grey-matter and external CSF are under-estimated. In comparison, the ‘pruned’ classification is qualitatively improved.

neuroanatomy expertise and for the manual segmentation size (n) for the graph-theoretic pruning method (Section
of Section 4.2; the anonymous reviewers for useful com- 3.1). There are two causes for this:
ments and suggestions; Guido Gerig and David Gering for 1. The computational requirement—the MST computa-

2their comments on the MICCAI conference version of this tional complexity is O(n log n) for multi-spectral input
paper. In addition, the first author would like to thank consisting of three or more MRI modalities.
Godfried Toussaint for his inspiring ‘Pattern Recognition’ 2. The limited precision of the MRI data representation-
course. 12-bit, or even 8-bit, integer data is typical (only 4096,

respectively 256, possible values). A largen will result
in an over-population of the discretely sampled feature
space, and consequently in a reduced ability to compare

A  ppendix A. Implementation details distances between points in this space.
However, the final supervised kNN classifier is less

The implementation of the method described in Section affected by the above two issues. Our practical im-
3 has to take into account practical limitations on the input plementation solution (used for all the experiments pre-

 

Fig. 11. Practical implementation (see Appendix A) of the generic classification method from Fig.3.
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