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Abstract

This paper describes the design, implementation and results of a unified non-rigid feature registration method for the purposes of
anatomical MRI brain registration. An important characteristic of the method is its ability to fuse different types of anatomical features
into a single point-set representation. We demonstrate the application of the method using two different types of features: the outer cortical
surface and major sulcal ribbons. Non-rigid registration of the combined feature point-sets is then performed using a new robust non-rigid
point matching algorithm. The point matching algorithm implements an iterative joint clustering and matching (JCM) strategy which
effectively reduces the computational complexity without sacrificing accuracy. We have conducted carefully designed synthetic
experiments to gauge the effect of using different types of features either separately or together. A validation study examining the
accuracy of non-rigid alignment of many brain structures is also presented. Finally, we present anecdotal results on the alignment of two
subject MRI brain data.
   2003 Elsevier Science B.V. All rights reserved.
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1 . Introduction from subject to subject and may not always be present.
Nevertheless, the existence of stable and consistent large

In human brain mapping, a spatio-temporal statistical scale anatomical structures such as the outer brain surface,
analysis of anatomical (MRI, CT) and functional (fMRI, major sulci and major subcortical volumes allows us to be
PET, SPECT, EEG, MEG) data across diverse modalities cautiously optimistic of the success and value of 3D MRI
is required. It has become clear that the subject data from brain registration.
different imaging modalities (MRI, fMRI, PET, etc.) have There exist a plethora of 3D brain registration methods
to be placed in a common spatial coordinate reference in the literature and we briefly review some of the
frame (Toga and Mazziotta, 1996) in order to facilitate a approaches in the next section. Most approaches can be
statistical analysis. One way this can be achieved is by classified as either voxel-based or feature-based (with some
bringing stable anatomical structures of different subjects recent methods attempting their integration). Our approach
(as seen in 3D MRI) into a register. This is a daunting task is feature-based and as with other feature-based methods,
since there are many anatomical features—cortical folding we have to first extract the anatomical features from the
patterns such as sulci and gyri—that vary dramatically 3D MRI data prior to registration. In this work, we pay

particular attention to the extraction ofstable, consistent
and important brain structures. Subsequently, registration*Corresponding author.
is achieved by non-rigid matching of the important brainE-mail addresses: anand@cise.ufl.edu(A. Rangarajan), http: /

/www.cise.ufl.edu/|anand(A. Rangarajan). structures. Our feature registration method differs from
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other work in two important ways. Firstly, we directly inconsistent structures across different subjects still re-
work on point feature locations rather than higher order mains an unresolved problem for most voxel-based meth-
features such as surface normals, curvature, etc. This has ods.
the advantage of robustness since the noise in point feature This particular problem calls for more careful treatment
locations is just point ‘jitter’ which can be modeled. The of different brain structures when used for the purposes of
major downside of working with point features is the brain registration. There are major brain structures which
well-known point correspondence problem but as we shall are consistent across subjects and are important anatomi-
argue, the difficulty of the correspondence problem has cally and/or functionally. In contrast, other minor struc-
usually been overstated. Secondly, as opposed to most tures may either be inconsistent, hence not matchable, or
previous approaches, we fuse different types of point not important and hence should not be considered in the
features together into a common point-set representation first place as they tend to increase the complexity of the
prior to alignment. As we will show through our experi- registration task. By using only the features which satisfy
ments, the combination of different features provides both the consistency and the importance criteria, it not only
important mutual anchoring information for each other and provides us with a reliable method to handle extreme
improves the registration. variability across subject brains, but also reduces the

We begin by briefly examining the basic elements of computational complexity. This brings us to the feature-
different current brain registration strategies. based brain registration methods.

Obviously, features which represent important brain
structures have to be extracted first. The features run the

2 . Review gamut of landmark points (Bookstein, 1989), lines, curves
(Davatzikos and Prince, 1994; Sandor and Leahy, 1997) or

Most of the current efforts at inter-subject non-rigid surfaces (Thompson and Toga, 1996; Thompson et al.,
anatomical registration can be broadly categorized into 1997; Davatzikos, 1997; Vaillant and Davatzikos, 1999).
voxel-based and feature-based methods. After the feature extraction step, these methods then

Voxel intensity-based approaches try to find the best attempt to solve the resulting feature matching problem
deformation such that an image intensity similarity mea- (point matching, line matching, curve matching or surface
sure is maximized. Most methods in this class allow highly matching) for the best deformation between the features.
complex volumetric deformations to accommodate vast The spatial transformations resulting from feature match-
anatomic variations. For instance, spline models (Meyer et ing are then propagated to the whole volume. With recent
al., 1997), elastic media models (Bajcsy and Kovacic, advances on both the brain segmentation front using
1989; Gee, 1995), viscous fluid models (Christensen et al., deformable models (Xu et al., 1998; Zeng et al., 1999a;
1997; Christensen, 1999) and other local smoothness MacDonald et al., 2000; Wang and Staib, 2000) and the
models (Collins et al., 1995, 1998) are introduced as feature extraction front (Vaillant et al., 1996; Khaneja et
constraints to guide the non-rigid spatial mapping while al., 1998; Zeng et al., 1999b), more and more anatomical
maximizing a voxel intensity similarity measure. features are becoming readily available. The main question

Although the results of these methods clearly demon- at this juncture is how to fully utilize these different types
strate the power of highly complex non-rigid deformations, of features for brain registration. We first review some
there have been concerns as well since these methods do currently available methods.
not attempt to match specific anatomical structures. A In (Bookstein, 1989), landmarks are used for non-rigid
somewhat tacit assumption underlying voxel-based meth- registration and shape analysis. A thin plate spline (TPS)
ods is that the brain structures are matchable as long as bending measure is minimized while ensuring that the
there is enough flexibility provided by the spatial deforma- Euclidean distance between landmarks is small. This
tion. It is already well-known that minor cortical sulcal method is now viewed as being limited by the difficulty of
patterns may not be very consistent (Toga and Mazziotta, finding good landmark points. More recent approaches
1996), i.e., a minor sulcus in one person may not even have been based on dense feature representations such as
exist in another person. By forcibly matching such non- 3D surfaces. In (Thompson and Toga, 1996), the surfaces
corresponding anatomical structures, the extra flexibility of of the lateral ventricles and outer cortex are chosen
the complex volumetric deformation may make the results because they are developmentally fundamental for the
unpredictable and hence less reliable. To somewhat allevi- brain. To better represent the deep cortical structures
ate this problematic aspect, modifications have been added (sulci), parametric mesh surfaces are also interactively
in some voxel-based methods to include higher level extracted. A point-to-point mapping between each pair of
feature information. For example, landmarks were used as the surfaces is then calculated and a linearly weighted 3D
an initial step in (Christensen et al., 1997) and Joshi and volumetric warping is generated. The work presented in
Miller (2000) and major sulcal location information was (Davatzikos, 1997) has a similar surface-based framework.
incorporated via the chamfer distance measure in (Collins Surface curvature maps at different scales are used to
et al., 1998). Despite these modifications, the presence of model different brain structures. More consideration is
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given to the inhomogeneity within the brain. A more new iterative joint point clustering and matching algo-
sophisticated elasticity model makes the algorithm flexible rithm. Originating from our previous robust point matching
at the ventricles and powerful enough to account for some (RPM) algorithm (Gold et al., 1998; Rangarajan et al.,
abnormal cases where, for example, tumors are involved. 1997; Chui et al., 1999; Chui and Rangarajan, 2000), the
There has also been considerable interest in indirect current algorithm has incorporated a few new improve-
surface matching approaches based on surface reparame- ments. By solving both the forward (A to B) and the
terizations (flattening or mapping onto a sphere). reverse (B to A) deformations, it is more symmetric than

The above feature-based methods have been successful- the previous RPM. The clustering step is carried out
ly applied to various problems and have achieved excellent simultaneously with the estimation of the deformation so
results (Thompson and Toga, 1996; Davatzikos, 1997). that the accuracy of matching is improved while reducing
However, there is still room for improvement. While each the computational complexity. The deformation obtained
type of feature is useful by itself, these earlier methods via the feature point matching process is volumetric and
neglected to integrate the features together into a common hence can be directly applied to the volume data without
representation prior to registration. More recent research further interpolation. We now describe our approach in
efforts have been trying to capitalize on such information. greater detail.
For example, to improve the cortical alignment, incorpora-
tion of sulcal features into the matching framework has
attracted a lot of attention. In both (Thompson et al., 1997)

3 . A unified feature registration method
and (Vaillant and Davatzikos, 1999), major corresponding
sulcal curves are introduced into the mapping of the outer

The overall scheme of our method is as follows: (i)
cortical surface. By enforcing exact correspondence of the

choose and extract major and consistent neuroanatomical
sulcal curves within such a mapping, it has been shown

features; (ii) fuse these features into a common point-set
that the alignment of the cortical surface can be improved.

representation; (iii) solve for the spatial deformation
These methods work well if there is only a single surface

between two feature point-sets through point matching. We
and a few other curves, which also happen to be on that

explain each step in detail below.
surface. It is not clear, though, how these methods can be
applied to other more general situations in feature registra-
tion, where, for example, there are multiple surfaces that 3 .1. Feature extraction
may or may not be connected.

We propose a general framework to attack this problem. At present, we choose the outer cortical surface as well
The basic idea is quite simple and straightforward. To as major sulcal ribbons as the dominant features. The outer
achieve the combination and joint registration of different cortical surface has been widely used for brain registration
types of features, we first fuse them together into a since it provides a very good model for the global shape of
common point representation. After this step is accom- the brain. Automated extraction of the brain surface is
plished, non-rigid registration can be achieved by solving a based on the coupled surface-based brain segmentation
point matching problem. In this work, we choose two method as described in (Zeng et al., 1999a). Since the
different types of anatomical features to demonstrate the minor sulci seen on the brain surface cannot be expected to
idea. The first is the smoothed outer cortical surface (Zeng be consistent across subjects, we decided to further smooth
et al., 1999a). Smoothing of the surface is done so that the the cortical surface. The smoothing is done so that the
surface still closely wraps over the brain and yet all the surface still closely wraps over the brain but with all the
sulci are filled. Such a surface captures the global shape of sulci filled up (as shown in Fig. 1). To accomplish this, we
an individual brain. The second type of feature is the major first apply Gaussian smoothing on the original MRI
sulcal ribbons (Zeng et al., 1999b). Major sulci, such as the volume image with the skull removed. The smoothing
central sulcus, the Sylvian fissure and the interhemispheric blurs all the sulci. Then we extract the smoothed outer
fissure, are chosen to provide more detailed shape in- cortical surface as an iso-surface from the blurred volume
formation from within the brain. We then fuse the two image.
different types of feature together by converting them all The second type of feature is the set of major sulcal
into a point representation, i.e., points are sub-sampled ribbons. Major sulci, such as the central sulcus, the Sylvian
from each feature and then placed together to form a fissure and the interhemisphere fissure, are chosen because
common point representation. Note that a point representa- of their well-known importance and relative consistency
tion allows a unified treatment of the different features across individuals. Instead of using 3D space curves, we
while maintaining the uniqueness of each feature type via use ribbons, which provide a better representation for the
label or attribute. The flexibility of using point representa- sulci’s deep 3D structure (as shown in Fig. 1). The
tions easily overcomes the otherwise difficult problem of interactive extraction of these ribbons is done with the help
feature data fusion. To solve the resulting matching of a ribbon extraction method developed in (Zeng et al.,
problem between hundreds of points, we have designed a 1999b).
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Fig. 1. Feature extraction. From left to right: (i) original MRI brain volume; (ii) extracted outer cortical surface without smoothing; (iii) smoothed outer
cortical surface; (iv) extracted major sulcal ribbons; (v) the joint feature representation with the outer cortical surface and the sulcal ribbons placed together.
Most of the ribbon structures are hidden by the cortical surface.

3 .2. Feature fusion of splines), we are usually required to specify a set of
spatial control points. The choice of the control points is

Once all the features are extracted, we have a set of vital because they directly affect the behavior of the
different 3D surfaces in the form of the closed outer deformation. Ideally, the control points should be chosen
cortical surface and open major sulcal ribbons. We then run to accomplish the following two purposes at the same
a sampling procedure to convert each of the feature time. Firstly, they should provide maximal necessary
surfaces, which are parameterized as polygonal meshes, flexibility for the deformation to capture the variability of
into points. All the vertices on a single feature surface are the data. However, too flexible a deformation is not stable
considered first. After dividing the space into cubes of so it will be easily disturbed by a small amount of noise or
equal sizes, we compute the average of all vertices lying possible outliers. So the second requirement is that they
inside each cube. The final point-set for each feature should also provide a reasonable amount of regularization
surface consists of all the average points computed in this of the deformation to prevent it from becoming too
manner. In this way, the outer cortex is reduced from the flexible. These two conflicting requirements make the

4original order of 10 (50,000 to 80,000) vertices to|1000 choice of the control point locations difficult. The situation
average points. The ribbon surfaces are sampled in a here is actually even more difficult because we do not have
similar fashion except that smaller sized cubes are used to much a priori information about the deformations. Due to
boost their relative importance since they represent much this reason, predefined control points are arbitrary and
smaller structures in comparison to the outer cortical problematic. Instead, we decided to include the control
surface. Each ribbon, with originally about 1000 to 2000 points as unknown variables. Subsequently, we incorporate
vertices, is eventually represented by roughly 100 to 200 the estimation of the control points into the overall process
average points. Since all the feature surfaces involved here of estimating the deformation.
are relatively smooth, the sizes of the sampling cubes are Based on the observation that the control points can
chosen to achieve sufficient data reduction without losing better accomplish their purposes when they are placed in
too much shape information. Finally, the point-sets from the more densely distributed data locations, and also the
each feature surface are combined to form a super point- locations where the deformation is more complex, we
set, which is used as the common point-based representa- choose to cluster the data and use the cluster centers as our
tion for the purposes of registration. The fusion/sampling control points for the deformation. Clustering is done
process is demonstrated in Fig. 2. during the process of estimating the deformation, which

fulfils the requirement that there be feedback of infor-
3 .3. Joint point clustering and matching framework mation from the deformation estimation into the estimation

of the control points.
After finishing the first step, we have a complex 3D The idea is demonstrated in Fig. 3. Each of the two

point-set composed of hundreds of points to represent each point-sets to be aligned is clustered to achieve a set of
brain. We now need to solve for an optimal non-rigid cluster centers, which are also used as control points to
deformation that aligns the point-sets. define the deformation that matches the point-sets. The

cluster centers serve a dual purpose. They provide not only
3 .3.1. Joint estimation of the deformation and its control a concise representation of the original point data but also
points an optimal control point-set for the deformation. The need

In order to define such deformations (usually in the form to specify the control points beforehand is eliminated. The
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Fig. 2. Feature fusion/sampling. From left to right: (i) sub-sampling of the outer cortical surface vertices. The original dense surface vertices are shown as
dots and the sampled mean points are shown as circles. A solid ellipsoid is inserted in the middle for visualization purposes; (ii) sub-sampling of thesulcal
ribbons. Again, dots represent original vertices and circles represent the sampled average points; (iii) placing the average points together, we form the super
feature point-set.

only parameters now a priori specified are the total number need to have the same numbers of feature points in the two
of clusters and a regularization parameter. point-sets. And as mentioned previously, correspondence is

A third and quite interesting aspect of the joint cluster- established by having the same cluster center indices in the
ing and matching approach is the treatment of the corre- two point-sets. Hence, the resulting cluster centers can also
spondence problem. Since the cluster centers and deforma- be viewed as an automated landmarking method.
tion are jointly estimated, we can simply associate the
cluster center indices of one point-set with that of the 3 .3.2. A Bayesian posterior joint clustering and
other. This defines the correspondence. With the two setsmatching (JCM) objective function
of cluster centers now evolving in lock-step, the algorithm Here, we derive a Bayesian posterior objective function
searches for the best cluster center locations and least that fully expresses our joint clustering and matching
deformation that can match the two point-sets. A side goals. When viewed from a Bayesian perspective, the
benefit of the clustering approach is that feature consis- likelihood expresses the data clustering aspect while the
tency is automatically established. Since cluster centers prior expresses the matching aspect.
and not the original point locations are matched, there is no We first explain the notation. We begin with two point-

Fig. 3. The joint clustering–matching algorithm. Each point-set is clustered into a set of cluster centers (X to V, Y to U ). The two sets of cluster centers are
further connected through deformations that match them. Both the cluster centers and the deformation are unknown.
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sets. The reference point-setX (which we seek to warp covariance matrix for each cluster are included in the
onto a target) hasN points. The target point-setY hasN estimation. After this specialization, the mixture likeli-x y

points. Note thatN can be different fromN . We represent hoods (now written forY) becomex y

them ashx , i 5 1, 2, . . . , N j and hy , j 5 1, 2, . . . , N j, Ki x j y 1while each x (and eachy ) represents a single point ]i j p(yuu, s)5 O p(yuu , s), (3)aK a51location in 3D.
A set of cluster centers (with a total ofK) is associated where

with each point-set. The cluster centers arising from the
21 1reference point-setX is calledV, consisting ofK centers ]]] ]]p(yuu , s)5 exp 2 uy 2 u u . (4)S Da 2 D / 2 2 a(2ps ) 2shv , a 5 1, 2, . . . ,Kj. The cluster centers arising from thea

target point-setY is calledU, consisting of corresponding
In (3), y is a vector (2D or 3D) instance, andu is theaK centershu , a 5 1, 2, . . . ,Kj.a ath cluster center. Note the use of a commona index and

A Gaussian mixture model (McLachlan and Basford,
total number of clustersK for X and Y.

1988) is used to model the clustering likelihood. Since the
As mentioned previously, the prior expresses the match-

brain anatomical feature point-sets are highly structured,
ing aspect. Essentially, the cluster centersv and u are not

we can expect them to form tight clusters. Below, we
independent. We relatev and u to each other via ‘land-

separately write down mixture likelihoods for both feature
mark’ spline deformation functionsf and f . Sincev andx y apoint-setsX and Y. It should be understood that in the
u are in correspondence, a landmark-based approach isaresulting algorithm, clustering is simultaneously performed
well suited to model the deformation. However, please

on both point-sets with exactly the same number of cluster
note that the preceding mixture likelihood clustering step

centers. Correspondence is automatic since the same index
can be viewed as an automated landmarking procedure

is used for the cluster centers in both point-sets. While the
since clustering is performed in lockstep on both point-sets

index is common, the locations of the cluster centers will
X and Y with the cluster indices being identical as well.

obviously be different.
p(v, uu f , f )K x y

(x) (x)
Kp(xuv,p ,S )5O p p(xuv ,S ), (1)a a a 1 1 2 2a51 ] ]]5 exp O (uu 2 f (v )u 1 uv 2 f (u )u .F G2 a x a a y aZ 2s1 a51

where
(5)

1
]]]]p(xuv , s)5 In (5), there are two deformation functionsf and f . Thea D / 2 1 / 2 x y(2p) S a function f models the ‘forward’ deformation fromv to u(2) x

1 T 21 while f models the ‘reverse’ deformation fromu to v. Wey]S D3 exp 2 (x 2 v ) S (x 2 v ) .a a a2 have chosen to use two deformations to avoid being biased
towards point-setX or Y. A second reason is that eachIn (1) and (2), K denotes the total number of cluster
function f actually comprises two (in 2D) or three (in 3D)xcenters,D the dimension of the point-sets (2D or 3D),x
separate functions (one for each coordinate ofu). Thisthe vector (2D or 3D) of an instance,v the cluster centera

(x) separability is undesirable since it implies an unwarrantedvector (2D or 3D),p the occupancy probability of the
decomposition of the original 2D or 3D spline deformationclusters andS the cluster covariance matrix of theatha
into its constituent dimensions (Bookstein, 1989). Atcluster. For the sake of simplicity and ease of implementa-
present, we have not attempted to constrain the reversetion, we immediately specialize to the case where the

(x) function f to be the inverse off as in (Christensen, 1999)y xoccupancy probabilities are uniform (p 5 1/K) and thea
but we do not see any technical difficulties in imposingcovariance matrixS is isotropic and diagonal (S 5a a

2 this constraint in the future. Finally, if a diffeomorphism iss I ). Clearly, these choices can be questioned. TheD
required, the functionsf and f can be replaced by ax yoccupancy probability contains valuable information re-
landmark-based diffeomorphism method as in (Joshi andgarding the number of members in a given cluster. And,
Miller, 2000) and (Camion and Younes, 2001). This is notthe covariance matrix gives us valuable information re-
technically as straightforward as imposing the inversegarding the principal direction (tangent vector) at each
constraint as in (Christensen, 1999).cluster center. Since we are already estimating the cluster

The priors on the forward and reverse functionsf and fx ycenters, the memberships of the feature points and the
are essentially regularizers.deformation between the two point-sets, we have elected

not to excessively burden the computation by also estimat- 1 2]p( f )5 exp(2liLf i ),x xing the occupancy probability and the covariance matrix at Zf
(6)each cluster. The main reason for this restriction is that we

1 2found it very hard to engineer the joint clustering and ]p( f )5 exp(2liLf i ).y yZfmatching strategy if the occupancy probabilities and the
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In (6), L is a regularization operator. In all deformation imposed from without rather than being estimated from
2recovery experiments, we have used the Laplacian operator within. A temperature parameterT 52s as in simulated

which results in the familiar thin-plate spline (TPS) in 2D annealing (or MCMC) is gradually lowered from high
and in 3D (Wahba, 1990; Bookstein, 1989). The parameter values to low values. When the temperatureT is high, the
l is a regularization parameter. cluster centers congregate around the center of mass of the

There is a technical simplification made in the preceding point-sets. As the temperature is lowered, a series of
development which requires justification. Please note that symmetry-breaking ‘phase transitions’ (Rose et al., 1990)
we use the same parameters to model both the average occur during which the cluster centers progressively move
spatial deviation of points in a cluster and the landmark away from the center of mass and toward their more local
‘jitter’ variance. This artifactual development is due to the members.
fact that we do not estimate the covariance matrix of each Consider the following Gaussian mixture likelihood
cluster. If we had decided to estimate an isotropic global objective function:
(for all clusters) variance parameter rather than the full

Nx K 1covariance matrix, this artifact can be avoided. The 2]]E (v)5 2O logO exp 2 ux 2 v u . (9)S Dmix 2 i aaverage spatial deviation of points in a cluster w.r.t. to 2si51 a51

their cluster center—which is whats is—would then be
The objective function in (9) is a straightforward mixtureestimated and there would be a natural tradeoff between
objective unencumbered by the deformation prior. Nowthe clustering term and the registration error term.
considerHaving specified the likelihood (onX and Y) and the

N Nprior [on (u, v) and (f , f )], we may write the posterior. x K x Kx y
x x 2 x xE (v, m )5O O m ux 2 v u 1 T O O m log m .cmp ai i a ai ai

i51 a51 i51 a51p(xuv)p(yuu)p(v, uu f , f )p( f )p( f )x y x y
]]]]]]]]]]p(v, u, f , f ux, y)5 .x y (10)p(x, y)

x(7) The objective function in (10) has a new variablem and
the temperature parameterT. It turns out that

The Bayesian MAP posterior objective function corre-
xsponding to (7) is min E (v, m )5E (v), (11)cmp mixxm

Nx K x x K x1 when m satisfiesm . 0 ando m 5 1 (Hathaway,2 ai a51 ai]E (v, u, f , f )52O logO exp 2 ux 2v uS Dposterior x y 2 i a 1986; Yuille et al., 1994) and whenT is identified with2si51 a51
2 x2s . The new variablem is a membership variableNy aiK 1 2 indicating the degree to which each point featurexi]2O logO exp 2 uy 2u uS D2 j a2sj51 a51 belongs to cluster centerv . The main convenience re-a

K sulting from using (10) rather than (9) is that (10) does not1 2 2 x]1 O (uu 2f (v )u 1uv 2f (u )u ) have theo log o exp form in it. Also, the termo m log2 a x a a y a ai ai
x2s a51 m is an entropy barrier function with T being theai

2 2
1l(iLf i 1iLf i ). (8) temperature. We now perform this conversion from thex y

mixture objective in (8) to a new deterministic annealing
objective along the same lines as the transition from (9) to

Eq. (8) is the joint clustering and matching objective (10).
function.

Nx KAs it stands, minimizing (8) is awkward due to the x y x 2E (v, u, f , f , m , m )5O O m ux 2v ucmp x y ai i ao log o exp forms appearing in the objective. This is a
i51 a51

well-known problem in Gaussian mixture modeling (Red- Ny K
ner and Walker, 1984). The expectation–maximization y 2

1O O m uy 2u uaj j a(EM) algorithm (McLachlan and Basford, 1988) can be j51 a51

pressed into service as an optimization algorithm. Since K K
2 2the mixture likelihood is non-convex, the EM algorithm is 1O uu 2f (v )u 1O uv 2f (u )ua x a a y a

a51 a51usually executed many times with varying random initial
2 2conditions. We instead adopt a deterministic annealing 1lT iLf i 1lT iLf ix y

approach (Rose et al., 1990; Yuille et al., 1994; Hofmann
Nx K

and Buhmann, 1997). x x
1T O O m log mai aiThe main difference between the traditional EM algo- i51 a51

rithm for mixtures and a deterministic annealing algorithm Nx K
2

y yis in the treatment of the isotropic variance parameters . 1T O O m log m , (12)aj aj
In deterministic annealing, the variance parameter is i51 a51
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all clusters is one. The continuous value of the membership
x ywherem [ [0, 1] andm [ [0, 1] satisfy the constraints variable reflect the ‘fuzziness’ in our clustering model. Forai aj

xexample, if allm are the same, the membership of a dataaiK
x point in a cluster center is uncertain. A small calculationO m 51, for i 51, 2, . . . ,N , (13)ai x

a51 shows that this effectively causes all the cluster centers to
lie at the center of mass of the data point-set. At the other

and xend of the spectrum, if allm are close to binary valuesai
K (either 0 or 1), each cluster center will represent a separate

yO m 51, for j 5 1, 2, . . . ,N . (14) subset of the data points resulting in a good representationai y
a51

of the shape of the data point-set. Between these two
xThe objective function in Eq. (12) is closely related to the extremes, the membership matrixm of some intermediateai

objective functions used in our previous work on robust fuzziness would then generate a set of cluster centers
point matching. More detailed explanations are available in which can capture the shape of the data points at some
(Gold et al., 1998; Rangarajan et al., 1997; Chui et al., intermediate level. The shapes of the intermediate levels
1999; Chui and Rangarajan, 2000) showing that point are very helpful in our quest for a good non-rigid deforma-
matching can also be viewed as a fuzzy assignment tion. They are much simpler than the actual data shape,
optimization problem. Here we intend to give some brief which make them easier and more stable to match. On the
but more intuitive explanations for all the terms used other hand, they resemble the actual data shape to some
within the above objective function. extent. So the answer for the deformation found at a less

The first two terms are average residue distance mea- detailed level can be used as a good initialization to find
sures between the data and the cluster centers. Note that the deformation at a more detailed level. If we have a way
the memberships present in the distance measure are to gradually reduce the fuzziness in a controlled manner
themselves unknown. These two terms basically measure while progressively improving our estimation of the de-
the degree of fidelity of the cluster centers (V andU ) to the formation, it obviously leads to a coarse-to-fine, scale-
data (X and Y), respectively. space-like strategy.

The next two terms in the objective function in (12) try Deterministic annealing accomplishes this purpose by
x x yto find the best deformation (both forward and reverse at adding the entropy termsT o m log m andT o mai ai ai ai ai

ythe same time) to match the two sets of cluster centers. logm to the original energy function. The temperatureai

Instead of matching the original data points, the deforma- parameterT now controls the fuzziness of the membership
tion estimation step attempts to match the cluster centers. matrices: the higher the temperature, the greater the
Since the cluster centers are actually the control points for fuzziness. As mentioned previously, this form of the
the deformation splines, the deformation is directly affect- entropy term effectively leads to Gaussian clusters. The
ed by a change in the cluster centers. This feedback loop square root ofT can then also be regarded as the size of
between the deformation estimation step and the clustering the clusters. The required fine control of the fuzziness can
step allows us to more closely model the deformation be achieved by gradually reducingT.
between the two data-sets. Such a feedback loop is only Finally, we provide further justification for the decision
possible when we allow the cluster centers (control points) not to include covariance matrix and occupancy probability
to be dynamically estimated while the deformation is being estimation steps in our joint clustering and matching
updated. strategy. Firstly, the number of variables that need to be

The fifth and the sixth terms play the role of regulariza- estimated increases. Secondly, we have anecdotally ob-
tion. The parameterl is a weight parameter which controls served that either the number of local minima of the new
the degree of deformation; the larger the regularization cost function are greater or our propensity for falling into
parameter, the smaller the extent of deformation and vice- poor local minima has increased. And, please note that the
versa. Note that the temperature parameter now modulates inclusion of the occupancy probabilities and covariance
the regularization. At high temperatures, the regularization matrices will mainly benefit the placement of the cluster
is very large, thereby forcing the deformation to be close to centers and not the deformation (even though the two
the identity mapping. As the temperature is lowered, the variables are coupled).
cluster centers move away from the centroid of the two
point-sets and the deformation moves away from the
identity mapping. This simultaneous movement is gov- 3 .3.3. The joint clustering–matching algorithm
erned by the temperature parameter setting. The resulting joint clustering–matching algorithm is

Before we explain the last two terms, we first discuss very simple. It essentially involves a dual update process
some interesting properties of membership variables. Our embedded within an annealing scheme. The update of each

x yclustering membership variablesm andm are continuous variable is calculated basically by differentiating the
variables in the interval [0,1], which still satisfy the energy function w.r.t. that variable and setting the result to
constraints that the total membership of each data point in zero. We first briefly describe the two update steps.
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Step 1. Clustering. Update membership matrices and
Joint clustering–matching (JCM) algorithmcluster centers.
pseudo-code:

yx q Initialize T, f and f .q aj x yaix y]] ]]m 5 , m 5 , (15)ai K aj K Dual update:
x y x yO q O q ? Clustering step: updatehm , m , v and u j.ai aj ai ai a a

a51 a51 ? Matching step: updatef and f .x y

Anneal: T 5 T ? r until T is reached.where final

2 2x 2ux 2v u /T y 2u y 2u u /Ti a j aq 5e , q 5 e , (16)ai aj

3 .3.4. Choice of splines to model the deformation
and then We now specify the deformation parameterization in

NN yyxx order to complete the algorithm specification. Although itm y f (v )m x f (u ) aj j y aai i x a
]] ]] ]] ]] is almost impossible to specify the exact deformation thatv 5O 1 , u 5O 1 . (17)a a2 2 2 2i51 j51 can account for all of the inter-subject brain structural

differences, many types of deformation models originatingStep 2. Matching. Update the deformation functions.
from either continuum mechanics or spline theory haveThis is a standard least-squares spline fitting problem.
been used to provide reasonable approximations. Splines

K
2 2 have been especially popular for feature-based methodsf 5 arg min O uu 2 f (v )u 1liLf i , (18)S Dx a x a x

f (Thompson and Toga, 1996; Davatzikos, 1997) because ofx a51

their well-established geometrical properties. However,K
2 2 when it comes to the specific choice of the spline, there aref 5arg min O uv 2 f (u )u 1liLf i . (19)S Dy a y a y

fy a51 few guidelines as to which spline is the most suitable.
Since our framework is general and can accommodateThe update presented for the cluster centers has been
different splines, we are able to conduct controlled com-slightly simplified. The deformations are held fixed when
parative studies between different splines.the cluster centers are updated despite the fact that the

We implemented two types of radial basis functiondeformation is actually a function of the cluster centers.
splines (Wahba, 1990). Given a set of control pointshv ,aIncluding the complete relation into the formulation greatly
a 5 1, 2, . . . ,nj, a radial basis function basically defines acomplicates the calculation. Another reason for this simpli-
spatial mapping which maps any locationx in space to afication is that we are only slowly refining the deforma-
new locationf(x), represented bytions during this whole iterative process; it is reasonable to

nassume that deformations estimated at successive iterations
f(x)5O c f(ux 2 v u), (20)will not be vastly different. The approximation based on a a

a51
the previous iteration should be most likely sufficient.

whereu?u denotes the usual Euclidean norm in 3D andhc ja

Annealing. As before (Gold et al., 1998; Rangarajan et al., is a set of mapping coefficients. The kernel functionf
2 21997; Chui and Rangarajan, 2000), an annealing scheme assumes different forms. If we choosef(r)5 exp(2r /t ),

(for the temperature parameterT ) controls the dual update it becomes a Gaussian radial basis function (GRBF). The
process. Starting with a high valueT , the temperature parameters controls the locality of each kernel function.init

parameterT is gradually reduced according to a geometric A small value ofs generates more localized and hence
annealing schedule,T 5 T ? r (r is called the anneal- less smooth warpings. A different choice of usingf(x)5new old

ing rate). The dual update is repeated until convergence at2 r leads to another type of radial basis function called the
each temperature. The temperatureT is then lowered and thin plate spline (TPS). Compared to the GRBF, TPS has a
the process is repeated until the final temperatureT is more global nature—a small perturbation of one of thefinal

reached. The parameterT is set to the largest square control points always affects the coefficients correspondinginit

distance of all point pairs. We setr to be 0.97 (normally to all the other points as well. It is worth pointing out that
between [0.9, 0.99]) so that the annealing process is slow TPS has one less free parameter. Another nice property of
enough for the algorithm to be robust, and yet not too the TPS is that it allows the deformation to be cleanly
slow. To prevent overfitting, the parameterT should be decomposed into a rigid (affine) and a non-rigid com-final

set according to the amount of noise within the data set. In ponent.
this work, we make a simplified treatment to setT to be Due to space considerations, we have not included herefinal

equal to the average of the squared distance between the the detailed solutions to the spline fitting problem (Eqs.
nearest neighbors within the set of cluster centers which (18) and (19)). We would like to just point out that there
are being deformed. The interpretation is that atT , the are closed form analytic solutions available for both GRBFfinal

Gaussian clusters for all the points will then barely overlap and TPS (Wahba, 1990) since they are essentially linear
with each other. least-squares problems. Though derived from matching
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Fig. 4. Corpus callosum example:K510. Leftmost, original point-sets. Left of center: cluster centers and correspondence. Center: forward transformation.
Right of center: reverse transformation. Rightmost: overlay of point-sets.

geometrical features, both deformations are defined over JCM algorithm on candidate point-sets. A 2D template was
the whole 3D space and can hence be directly applied to first chosen. Both noise and deformation performance were
the volume data. studied. Instead of TPS, we use a different non-rigid

mapping, namely Gaussian radial basis functions (RBF)
(Yuille and Grzywacz, 1989) for the random transforma-

4 . Experiments and results tion. The coefficients of the RBF were sampled from a
Gaussian distribution with a zero mean and a standard

We begin by illustrating the way the JCM algorithm deviations . Increasing the value ofs generates more1 1

works on 2D point-sets. We use two typical 2D corpus widely distributed RBF coefficients and hence leads to
callosum shapes for the illustration. generally larger deformation. Random noise are added to

A crucially important parameter in JCM is the number the warped template to generate the target point-set. We
of cluster centersK. Below, we show the results of then used JCM to find the best TPS to map the template set
executing the JCM algorithm withK510 throughK 5 60 onto the target set. The errors are computed as the mean
cluster centers. The 2D shape has about 90 points. Figs. squared distance between the warped template using the
4–9 take us through this sequence of increasingly better TPS found by the algorithms and the warped template
approximations of the shape. It is clear from the figures using the ground truth Gaussian RBF.
that the corpus callosum shape is well represented after We conducted two series of experiments. In the first
K 5 30. Until that point, the shape is pinched in the middle series of experiments, the template was warped through
(as seen from the cluster center locations). progressively larger degrees of non-rigid warping. The

We are also interested in gauging the performance of the warped templates were used as the target data without

Fig. 5. Corpus callosum example:K520.

Fig. 6. Corpus callosum example:K530.
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Fig. 7. Corpus callosum example:K540.

Fig. 8. Corpus callosum example:K550.

Fig. 9. Corpus callosum example:K560.

adding noise or outliers. The purpose is to test the medium degree of warping was used to warp the template.
algorithms’ performance on solving different degrees of The purpose is to test the algorithms’ tolerance of noise.
deformations. In the second series, different amounts of One hundred random experiments were repeated for each
Gaussian noise (standard deviations from 0 to 0.05) were setting within each series. The results are shown in Fig. 10.2

added to the warped template to get the target data. A Surprisingly, we did not observe much variation asK was

Fig. 10. Left: deformation; right: noise performance on 100 trials.
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increased. We speculate that the performance is likely to deformation should not affect the algorithm’s performance.
show quantized jumps asK is increased corresponding to For example, if one type of spline is used to construct the
the cluster center phase transitions. Clearly, this needs to synthetic target data, a different spline should be used for
be studied in greater detail. subsequent recovery. Similar rules apply for the examina-

We conducted various experiments on both synthetic tion of the errors as well. Instead of using the features
and real data to evaluate our algorithm. Experiments on directly involved in the matching to evaluate the matching
real data are clearly necessary since that is the ultimate error, different features or the volume data should be used.
goal of the algorithm. However, because the ground truth Keeping these considerations in mind, we briefly describe
for real data in inter-subject brain registration is usually the design of each step for the synthetic study.
not available, the synthetic data provides a good alternative
for validation purposes. In our experiments with synthetic 4 .1.1.1. Construction of the template. We choose one
data, we intend to answer the following questions: (i) does normal male brain MRI (without the skull) as the raw data
the fusion of different types of features improve the for our template. For the purposes of registration, as
registration or not? (ii) if it does, what is the degree of explained before, the smoothed outer cortical surface and a
improvement? With these questions in mind, we first set of major sulcal ribbons are extracted as features.
describe the synthetic experiments and the validation We need to prepare the template for later error measure-
procedure. ment as well. Apart from these features used for the

registration, we asked a neuroanatomy expert to extract a
4 .1. Experiments on synthetic data different set of landmark points over the whole brain

volume to get a rough error measurement. The landmark
4 .1.1. The design of the synthetic experiment points includes two sub-groups: one group distributed on

The synthetic experiments for registration are normally the outer cortical surface and another group distributed at
carried out in the following steps: (i) construct a template; critical locations of the sub-cortical structures (as shown in
(ii) construct a target from the template via a synthetic Fig. 11). The idea is that while the error calculated over
deformation (ground truth); (iii) recover a good deforma- the whole landmark point-set will give us a rough global
tion (via the algorithm) to match the template to the target; estimate of how good the alignment is, the errors from
(iv) examine the errors between the solution and the each sub-group can tell us a little bit more about where the
ground truth deformation. error originates.

In order to make the synthetic study more reliable, we To provide even more detailed measurement than land-
carefully designed the experiment to eliminate any bias marks, we also have the MRI volume fully segmented and
due to the fact we have knowledge of the ground truth labeled with the help of a neuroanatomy expert. A label is
deformation. Essentially, knowledge of the ground truth assigned to each voxel according to which structure the

Fig. 11. Template for the synthetic study. Top row, from left to right: (i) the template MRI volume; (ii) the cortical landmarks; (iii) the subcortical
landmarks in 3D view; (iv) again the sub-cortical landmarks in 2D view. Bottom row, from left to right: (i) a surface rendering of the fully segmented brain
MRI volume; (ii) a 2D slice of the segmentation. Different colors stand for different labels; (iii) the corresponding gray level MRI slice with the contours
from the segmentation; (iv), (v) another slice.
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voxel belongs. A hierarchy of structures is used. The manually chosen to be a group of grid points (64 points
volume is first segmented into the background and the total) over the whole volume.
brain. The brain is then divided into cortex and sub-cortex.
The cortex is subdivided into different lobes with gray/ 4 .1.1.3. Using TPS to recover the deformation. We
white matter segmentation performed for each lobe. Within choose TPS as the deformation spline in our feature
the sub-cortex volume, a list of important sub-cortical registration/point clustering–matching algorithm. Using
structures are segmented including the thalamus, caudate, TPS instead of GRBF obviously makes the problem more
putamen, brain stem and the ventricles. With this finely difficult. However, it is necessary since it provides more
segmented brain volume template, we can then make very unbiased validation of the algorithm. The advantage of
detailed error measurements. using TPS is the smaller number of free parameters

compared to GRBF. Apart from the annealing parameters,
the only extra parameter that TPS needs is the regulariza-

4 .1.1.2. Using GRBF as synthetic deformation to con- tion parameterl. The value forl is manually chosen. The
struct the target. We choose GRBF as the synthetic annealing parameters are set as discussed above. We
deformation to warp the template data (Fig. 12). The main specify the total number of cluster centersK to be 150 to
reason is that with its locality parameter, GRBF can easily give TPS enough flexibility.
generate both local and global warpings. By comparing the To answer the question posed above, we run the JCM
algorithm’s performance under these different circum- algorithm with different settings to see if the combination
stances, it provides another valuable way to evaluate the of features really improves the registration. Three different
algorithm’s performance. The control points for GRBF are choices of features are compared—the outer surface alone,

Fig. 12. Ground truth GRBF (local warp and global warp). Top row, from left to right: (i), (ii) two side views of the original brain volume; (iii) a
randomly generated GRBF with a smalls 5 30 (local warp). The original space is shown by the regular dotted 3D grid and the warped space by the solid
deformed grid; (iv), (v) two side views of the warped brain volume by GRBF. Bottom row, from left to right: (i), (ii) original brain volume; (iii) a GRBF
with a big s 560 (global) warp. Note the difference between the local warp and the global warp; (iv), (v) the warped volume.
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Fig. 13. Joint point clustering–matching using TPS. Top row, from left to right: (i) a 3D view of two feature point-sets before point matching. One
point-set is shown using crosses and another using circles; (ii), (iii) two 2D views. Bottom row, from left to right: (i) a 3D view of the feature point-sets
after point matching. TPS is used to deform one point-set (circles) to match the other set; (ii), (iii) two 2D views.

the sulcal ribbons alone and the combination of the outer ground truth setA. After the TPS registration, we warp the
surface and the sulcal ribbons. One matching example of original landmarks again with the TPS recovered by the
using both the outer surface and the sulcal ribbons is algorithm to get the solution setB. Errors are then
demonstrated in Figs. 13 and 14. calculated betweenA and B as the Euclidean distances

between the two warped landmark point-sets. A similar
4 .1.1.4. Examination of the errors. Errors are calculated procedure is performed for the labeled volume as well. The
based on both the landmarks as well as the labeled volume. only difference between the landmark error and the volume
To measure the errors on landmarks, we first warp the error measurements is that in the latter, the error is
original landmarks with the ground truth GRBF to get the measured as the ratio of misaligned voxels between the

Fig. 14. Comparison of TPS and GRBF. Top row: (i) TPS deformation recovered from the point matching; (ii), (iii) the warped brain volume using TPS.
Bottom row: (i) the ground truth GRBF deformation; (ii), (iii) the warped brain with the GRBF. Note that though the warped volumes from TPS and
GRBF look almost the same on the surface, the two deformations are still slightly different over the whole space. It shows that the two splines have
different behaviors.
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Fig. 15. The error statistics based on the landmarks of test series 1 (local GRBF warp). Method I: using outer cortical surface alone. Method II: using
sulcal ribbons alone. Method III: using both together. Overall, method III gives smallest errors. Also note that the cortical landmark errors tend tobe
smaller than the sub-cortical landmark errors.

two warped labeled volumes for a certain segmented with the sulcal ribbons actually outperforms method I,
structure. Firstly, the misaligned voxels are counted for a which uses the outer cortical surface in places. This is not
particular structure. The error ratio is calculated by divid- what we originally expected. Even though the major sulcal
ing the misaligned count by the actual total number of ribbons are extended more into the brain, they seem to be
voxels in that structure. Such an error ratio basically too sparse a representation. The results from the experi-
provides a relative measurement for the alignment of each ments clearly indicate their better 3D placement outweigh
structure. their major disadvantage, namely sparseness. The ellip-

soidal shape of the outer cortical surface is also more
4 .1.2. Synthetic experiments and results likely to cause rotation errors. Generally the behavior of

We carried out two series of synthetic experiments: one TPS is more global when compared to GRBF. So it is
with a smaller value ofs 5 30 in GRBF for more natural that TPS approximates GRBF better when the
localized warpings and one with a larger value ofs 5 60 warping is more global. This is confirmed by smaller errors
for global warping. Ten randomly generated trials (with from test series 2.
randomly generated GRBF coefficients) are included in As shown in Fig. 17, the error statistics measured based
each series. The algorithm is run three times for each trial, on the segmented volume data not only confirm all our
each time with a different choice of feature—outer surface findings based on the landmarks but also provide more
alone (method I), sulcal ribbons alone (method II) and the detailed information. While its errors on the cortical lobe
combination of outer surface and sulcal ribbons (method regions are comparable to other methods, method I (with
III). The errors for each method are averaged over the total only the outer cortical surface) simply cannot provide
10 trials to get both the mean and the standard deviation. enough anchoring information when it comes to the sub-
The error statistics are shown in Figs. 15–17. cortical structures. On the other hand, method II (with only

From the error statistics based on landmarks (Fig. 15), the sulcal ribbons) clearly suffers from the sparseness of its
method III is clearly shown to be superior than the other feature representation. For any structure that is relatively
two methods. It brings the landmarks within 1 to 2 voxels’ far away from the sulcal ribbons (e.g. cerebellum), method
distances consistently despite the fact that we are trying to II leads to large errors. All these problems can be avoided
use TPS to match to a target which is generated by a by combining them together as in method III.
different spline (GRBF). The results confirm that the The inclusion of error examination on gray and white
combination of the two types of features does improve the matter allows us to check the alignment at a much more
registration. detailed level. For very convoluted structures like the

The data also reveal other interesting facts. Since all our gray/white matter interface, small local misalignments can
features are mostly located at the cortical regions, it is not accumulate to a large error. Compared to the relatively low
surprising that the alignment of the cortical landmarks errors on lobe alignment, the residual errors at the gray/
tends to be much better than the sub-cortical part. Includ- white matter interface are much larger. This indicates that
ing further features to represent the sub-cortical structures the alignment at a fine local level can be improved. The
certainly should help. One interesting fact is that method II small difference between TPS and GRBF is magnified and

Fig. 16. The error statistics based on the landmarks of test series 2 (global GRBF warp). Note that the errors generally improve a little bit when compared
to test series 1.



128 H. Chui et al. / Medical Image Analysis 7 (2003) 113–130

4 .2. Experiments on real data

We conducted some preliminary experiments on a few
pairs of anatomical MRI brain data. At the present stage,
our feature representation is well-suited for the global
alignment of the brain. We include one example based on
the currently available feature representation here in Fig.
18. We believe that to provide a more adequate representa-
tion of the complex brain structures, more detailed brain
structural features are needed, especially from the sub-
cortical regions.

The use of two different subject MRI brain data poses
an interesting problem for validation. While anatomical
structures such as the inter-hemispheric fissure, principal
and central sulcus can be expected to correspond, other
important structures such as the Sylvian fissure may not
share a detailed correspondence. Also, our validation
approach assumes that we have good if not perfect
segmentation of various brain subvolumes for the purpose
of quantifying registration errors. One possible validation
strategy would be to have different neuroanatomical
experts segment the same brains and record the registration
overlay errors separately for each expert. If a single
registration error quantification number is needed for each
subvolume, the registration error averaged over all the
experts can be computed. This effectively assumes a
uniform distribution over the experts’ segmentation ability.
Please note that we have bypassed some of these issues by
performing validation on a synthetically deformed brain.
While this is a beginning, it avoids the real brain mapping
problem of assessing registration accuracy across subjects.

Fig. 17. The error statistics based on the volume of test series 1 (local
GRBF warp). Top: comparison of method III and I. Bottom: comparison 5 . Discussion and conclusion
of method III and II. Method I, with only the outer surface, yields much
bigger errors for all sub-cortical structures. Method II, with only the

Here, we discuss the important issue of free parameterssulcal ribbons, tends to perform worse near the rear region of the brain
(occipital lobe, parietal lobe, cerebellum and brain stem), from where all in our algorithm and suggest ways of moving toward a
the ribbons are relatively far away. Note: when measuring errors on the turnkey algorithm requiring almost no parameter tuning.
brain lobes, the distinction between the gray matter and the white matter The dominant free parameters in our approach are the
is neglected to provide a more global and overall evaluation of the

number of clustersK, the regularization parameterl andalignment.
the temperature parameterT. We speculate that the route to

clearly demonstrated here. The volume error statistics of a parameter-free approach will involve (i) estimating the
test series 2 is similar to test series 1 but with a slight number of clustersK, (ii) de-emphasizing the regulariza-
improvement and, hence, we do not repeat them here. tion parameterl by moving to a diffeomorphism parame-

Fig. 18. An experiment with two real brain data. From left to right: (1) the reference brain; (2) warped reference brain (warped to match the target); (3) the
target brain. Note how the warping changes the brain’s global shape.
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terization of the deformation (Camion and Younes, 2001), provides a simple and effective way of accomplishing the
and (iii) replacing the annealing strategy by including an goal of unified registration.
estimation of the covariance matrix in the clustering step. Even though we only discussed using multiple surfaces

Choosing the number of clusters in a Gaussian mixture in this paper, the idea of fusing different features into a
model is a famous unsolved problem. There are numerous common point representation space is general and can be
‘solutions’ available ranging from MCMC sampling of the easily applied to other features such as lines and curves. It
posterior to information theoretic methods (MDL, Fisher is also possible to add weight factors and attributes to each
information, etc.). Of all these methods, the one with the type of feature in this framework. The point clustering–
best fit with our approach is the recent work of Figueiredo matching engine is quite general as well. The matching of
and Jain (2002). In this work, the authors show that a the feature points is indirectly accomplished by matching
simple Fisher information-based criterion can be employed cluster centers. In essence, we are trying to achieve a
to prune cluster centers that do not contribute to the overall many-to-many fuzzy matching between the original dense
shape of the point cloud. It remains to be seen if such feature point-sets. For the discrete point representation
automated methods of choosing the number of clusters can derived through sub-sampling, exactly corresponding
outperform a simpler user specified interactive approach. points are rare. Therefore, perfect one-to-one matching
The landmark diffeomorphism approach in the recent work may no longer be the optimal solution. The fuzziness in
by Camion and Younes (2001) is a very attractive drop-in our matching greatly alleviates this problem by allowing
replacement for the forward and reverse deformation partial correspondences. A single parameterT affords fine
functionsf and f . The constraint that the deformation has control over the degree of such fuzziness. If we stop thex y

a valid inverse is automatically assured as well. Roughly algorithm at a higherT, higher fuzziness is achieved. If we
speaking, the regularization parameter gets transformed lower the final temperature, we can achieve the limit of
into a step size parameter thereby diminishing its impor- binary correspondence which may or may not be desirable.
tance. Finally, we can replace the annealing strategy by Clearly, the effect of varying the two free parameters—the
including an estimation of the covariance matrix for each number of cluster centers and the regularization parame-
cluster. Our preliminary experiments indicate however that ter—need to be studied. Also, we speculate that the
the trace of the covariance matrices should be carefully inclusion of additional information such as the principal
controlled. In addition, care should be taken to avoid components of the covariance matrix of each cluster may
numerical instability by not allowing the covariance ma- improve the performance of the JCM algorithm especially
trices to become singular. These three modifications should on larger data-sets.
help us move toward a completely parameter-free ap-
proach.
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