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Abstract. The aim of this paper is to propose new regularization and filtering techniques for dense
and sparse vector fields, and to focus on their application to non-rigid registration. Indeed, most of the
regularization energies used in non-rigid registration operate independently on each coordinate of the trans-
formation. The only common exception is the linear elastic energy, which enables cross-effects between
coordinates. Cross-effects are yet essential to give realistic deformations in the uniform parts of the image,
where displacements are interpolated.

In this paper, we propose to find isotropic quadratic differential forms operating on a vector field, using
a known theorem on isotropic tensors, and we give results for differentials of order 1 and 2. The quadratic
approximation induced by these energies yields a new class of vectorial filters, applied numerically in the
Fourier domain. We also propose a class of separable isotropic filters generalizing Gaussian filtering to
vector fields, which enables fast smoothing in the spatial domain. Then we deduce splines in the context
of interpolation or approximation of sparse displacements. These splines generalize scalar Laplacian splines,
such as thin-plate splines, to vector interpolation. Finally, we propose to solve the problem of approximating
a dense and a sparse displacement field at the same time. This last formulation enables us to introduce sparse
geometrical constraints in intensity based non-rigid registration algorithms, illustrated here on intersubject

brain registration.
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1. Introduction

The goal of this paper is to propose new regularization and filtering techniques for dense or
sparse vector fields. Although the scope of this study is general, we focus here more precisely
on its application to non-rigid registration. Non-rigid registration is a fundamental task of
image processing, which consists in deforming one image into the geometry of the other, so
that similar structures correpond. Non-rigid registration is used e.g. for pattern recognition,
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object tracking, image sequence compression, and in the medical area, for atlas generation
or matching and for follow-up studies.

There are two main non-rigid registration methods. The first one is the geometric feature
based approach. Some geometric features, such as points, lines or surfaces, are extracted
beforehand in the images; then, a geometric distance D is used to match these two sets. The
second one is the intensity-based approach. An intensity similarity is used as a distance D
between the images. Points are moved so that this similarity increases.

In both cases, it is not sufficient to rely only on geometric or intensity features, because
this does not ensure any spatial correlation between the displacement of close points. Spatial
correlation is a strong a priori knowledge that enables a much better estimation of the
displacement. In the case of the geometric feature approach, spatial correlation should also
give the possibility to extrapolate the displacement to non-segmented points. One has thus
to choose a motion model to enforce this continuity constraint — which besides may allow
occasional discontinuities.

This paper focuses on motion models based on a regularization energy R (also sometimes
called stabilizer), that is minimized in a weighted sum with the distance D. Interestingly, this
regularization energy can be related to a prior probability distribution on the transformation
that depends on its smoothness [Szeliski, 1990]. When this energy is quadratic, convolutions
filters and splines can be deduced for regularizing resp. dense and sparse vector fields.

Most of the time, this regularization energy is simply a sum of energies depending on
one coordinate of the transformation, e.g. R(f) = r(f,) + r(f,) in 2D. Practically, this
means that the filters or splines mentioned above are scalar and applied to each coordinate
independently. However, this does not let the possibility of coupling coordinates, which is
yet essential to yield realistic motions: in a real material, a constraint along an axis would
also affect the position of points along the other axes.

A common exception is the linear elastic energy, used since long in non-rigid registration
[Bajcsy and Kovacic¢, 1989]. This is the kind of energy we are interested in, since its two
parameters enable to control both the regularization strength and the coupling between
coordinates. However the linear elastic energy is not satisfactory for at least two reasons:
firstly, the impulse response of its associated convolution filter has a very strong discontinuity
in its derivative, which may yield quite unsmooth regularized fields; secondly, there is not
spline associated to this energy, even if substitutes have been designed [Davis et al., 1997],

so this energy cannot be used for point landmark registration.
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In this paper, we propose to find vector field regularization energies. We will restrict our-
selves to differential quadratic forms (DQF), with the additional constraint that they should
be isotropic, i.e. invariant by rotation and mirror symmetry. This might sound restrictive.
However, isotropic DQFs are often used as is for fast regularization. Furthermore, more
complex regularization techniques are often based on isotropic DQFs — for example, one can
easily introduce anisotropy [Alvarez et al., 2000], non-uniformly weights [Terzopoulos, 1986],
M-estimators [Hellier et al., 1999], a Mumford-Shah formulation [Tsai et al., 2000], etc., to
obtain more complex, non-quadratic regularization energies.

It is worth noting that our goal is quite different from general vector image regularization,
e.g. for color images — see for example [Blomgren and Chan, 1996, Sapiro and Ringach, 1996,
Casalles et al., 2000, Kimmel et al., 2000]. Conceptually, the main problem for vector image
regularization is not how to propagate the value of vectors (intuitively, the same value will
be propagated with a weight decreasing with distance), but to which extent to propagate
them according to the local structure of the image. The main problem addressed by these
techniques is thus how to extract structure information for “edge preserving”, non-linear
smoothing.

In our case, we work with vector fields, for which vectors have exactly the same dimension
as the image. Our problem is not a particular case of the previous one, but an orthogonal
one: it really addresses the question of how to propagate the displacement of a point to
its neighbors. The propagated value is not necessarily a rescaling of the original value:
coordinates may be combined, leading to rotation of the vector. By contrast, if one has
to smooth a red object on a black background, creation of other colors such as blue or green
is generally not desirable. The work proposed here is therefore not applicable to general
vector image regularization if vectors do not carry a motion-like information. However, one
could extend the work introduced here to non-linear regularization using techniques similar
to the previous papers.

In Section 2, we propose to find all possible isotropic differential quadratic forms (IDQFs)
of vector fields using a known theorem on isotropic tensors, and apply it to IDQF's of order
1 and 2.

In Section 3, we deduce vector convolution filters from the previous IDQFs. Contrary to
conventional scalar filters, these vector filters allow cross-effects between coordinates, yielding
more realistic displacements. We also give a set of fast, separable filters that generalizes

Gaussian filtering to vectors.
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Similarly, in Section 4, we deduce splines from IDQFs. Again, contrary to conventional
scalar splines or radial basis functions, these vectorial splines allow cross-effects between
coordinates. These splines generalize Laplacian splines such as the thin plate spline.

In Section 5, we finally propose to merge dense and sparse approximation problems,
and show that their solutions are linear combinations of filters and splines. This regular-
ization technique turns out to be extremely useful for introducing geometrical landmarks
in intensity-based registration algorithm, which is illustrated in this paper on intersubject

brain registration.

2. Isotropic Differential Quadratic Forms (IDQF)

In this section, we aim at finding differential quadratic forms (DQF) that are isotropic. DQFs
are sums of products of two partial derivatives of a vector field; therefore, their number
increases exponentially with the space dimension and with the differential order. However,
only a small number of them are isotropic. A theorem on isotropic tensors helps us to find

them.

2.1. MATHEMATICAL DEFINITIONS AND NOTATIONS

We note IR? the real vector space of dimension d, M(d) the group of linear functions of
R? in itself, and O(d) € M(d) its subgroup composed of orthogonal functions R, such that
RTR = RR" = 1d,. Also, to avoid long mathematical expressions, we use in the following a
simplified! Einstein summation convention, for which every index repeated twice in a product

is implicitly summed all over its range.

Definition 1. (Tensor) A tensor T of order n > 1 in a space of dimension d > 1 has d"
components, noted T;,;, ;. , i € [1;d], Vk € [1;n], which transform under the action of

A = (ai;) € M(d) in the following way: if A% T is the resulting tensor, then
AxTy i, = iyjy-ai,5, Ty,

We note T (n,d) the set of these tensors.

! Here, we will not distinguish between covariant and contravariant coordinates.
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Definition 2. (Differential Tensor) The partial derivatives 0;, ;. fi. ., of a vector field f of

dimension d form a tensor of 7 (n + 1, d) called the n-th order differential tensor of f.

n+1

Definition 3. (Quadratic form of tensors) We note Q(n,d) the set of quadratic form of
tensors T' € T (n,d), which can be represented by d*™ numbers q;, i i, ., (ix, jx) € [1;d]?
VEk € [1;n], so that

CI(T) = Qil...injl...jnTil...inle...jn

With @i i = Qireojinin.in:
Property 1. If ¢ € Q(n,d), T € T(n,d) and A € M(d),
QAXT) = iy injrgnGirky @i ke @1y -t Thy b Tl 1

The gi, ,j,..j, therefore form a tensor of order 2n.

2.2. ISOTROPY

Definition 4. (Isotropic tensors) A tensor T' € T (n,d) is isotropic if it is invariant by an
orthogonal change of the tensor, i.e. if for any orthogonal function R = (r;;) € O(d),

RxT =T
or more explicitely, if

Ty i = Tijs-Tingn Tiyooje - V(i1enin) € [1;d]"

Definition 5. (IDQF) Isotropic quadratic forms of the n-th order differential tensor of a
vector field are called isotropic differential quadratic forms (IDQFs). Their coefficients form

an isotropic tensor of order 2n + 2.

Theorem 1. (Isotropic tensors) An isotropic tensor of order n, n even, can be written as
a linear combination of the n!/(2"/2(n/2)!) products of Kronecker tensors &; ;.. The only

isotropic tensor of order n, n odd, is the null tensor.

The demonstration of this result can be found in [Weyl, 1966, Jeffreys, 1973].
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2.3. FIRST ORDER IDQFs

According to Theorem 1, an isotropic tensor of order 4 is a linear combination of the three
following tensors:
i, in0. 0ii50.

1112 Vigiq 1193 Y121q 5i1i46i2i3

Therefore, a first order IDQF ¢, which can be seen as a tensor of order 4, is a linear
combination of the tensors 0;f;0;f;, 0,f;0;f; and 0, f;0; fi.

Property 2. For any IDQF ¢ of the first derivative of a vector field f, we can find three

coefficients a1, as, az so that
q(f) = a.tr(VE'VE) + ay.tr(VEVE) + az.tr? (VF) (1)

with tI‘(VfTVf) == aifjaifj, tI'(Vfo) == @f]a]fl and tI'Q(Vf) = @fﬁ]f]

Linear elasticity is the particular case where a; = A\/2 and ay = a3 = p/2, where X\ and pu

are Lamé coeflicients.

2.4. POSITIVE FIRST ORDER IDQF's

A quadratic regularization energy should be positive, in order to penalize non-smooth esti-
mations. Therefore, one should find the conditions on a;, as and az under which the IDQF
remains positive for any set of partial derivatives.

The linear function @ : M,, — M,, associated to ¢ given by Eq. (1) is defined by:
Q(M) = alMi’j.E(i‘j) + CLQMi’jE(j’i) + agMi’iE(j‘j)

)

where E(7) is the matrix of M,, whose only non-zero element is El(ljj = 1. Its eigenmatrices

are reported in the following array:

Eigenmatrix Eigenvalue
Id a; +as + das
ECD + BUD (i5) € [Ld]%i#] a1+ as
EWD — EUY (i) e [1;d]%i# ) ar — as
Fie€[2;d] a+ay
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where F; = Id and (F},...,F;) is an orthogonal basis of the space generated by the set
{E@D i € [1;d]}. All these eigenmatrices are orthogonal, and we have exactly 1 + d(d —
1)/24+d(d—1)/2 + (d— 1) = d? of them, so there does not exist any other eigenvalue than
the three listed above.

Therefore, a first order IDQF ¢ is positive if we simultaneously have a;+as > 0, a1 —as > 0

and a; + ay + daz > 0.

2.5. SECOND ORDER IDQF's

According to Theorem 1, an isotropic tensor of order 6 is a linear combination of products

of Kronecker tensors of the form §; ;_d;,;,0 There are 15 such tensors.

This set of generators can nonetheless be reduced. First, it is known that the isotropic
tensors given by Theorem 1 are not independent. A minimal, independent set of isotropic
tensors that generates all isotropic tensors by linear combination can be found for example
in [Smith, 1968]. Second, the quadratic forms we are interested in are tensors with specific
symmetries, due to the commutation of multiplication and differentiation assumed here: this
also reduces the number of functions necessary to generate second order isotropic quadratic

energies. This is done in Appendix A, and leads to the following result:

Property 3. For any second order IDQF of a vector field f, we can find five coefficients

ai, ag, as, a4, as SO that
q(f) = a1 Q1 (f) + a2Q2(F) + a3Qs(f) + asQ4(f) + a5 Q5 (f)

with Q1(f) = 0y fu0ij fr, Q2(f) = 04 fi0ufr, Qs(f) = 0iifijOukf;, Qu(f) = 0y frOkjfi and
Qs5(f) = 0,i f;Ok; fr.

2.6. CONCLUSION

Theorem 1 is convenient to find IDQF's almost automatically. However, this set being non
linearly independent, one may want to reduce it; this task is less trivial because of the
special symmetries of IDQFs. Furthermore, apart from first order IDQF's, it is also not trivial
to compute conditions of positiveness on the IDQF coefficients, which are yet essential for
regularization purposes. However, as shown in next sections, one can overcome these problems

by dealing directly with the filters or splines associated with these energies.
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3. Isotropic Convolution Filters for Vector Fields

Filters can be deduced from quadratic regularization energies R by looking at the closed-form
solution of the homogeneous dense approximation problem, which consists in approximating

a possibly noisy vector field g by a smooth vector field f by minimizing the energy
B(0) = [ It - gl + R(1) e
Solving this problem in the Fourier space, we obtain a closed form equation for f
f=M"

where * denotes the Fourier transform, and M~! is a d x d symmetric matrix which is the

Fourier transform of the convolution filter we are looking for.

3.1. FIRST ORDER ISOTROPIC FILTERS

3.1.1. Functional derivatives of first order IDQF's
The functional derivatives w.r.t. f of the generating elements of first order IDQFs given by

Prop. 2 are reported in the following array.

Quadratic form Derivative
0,fj0;f; — —2Af
0, f;0,f; — —2VV'f
0,f:0;f; — —2VV'f

where A denotes the Laplacian. Now, the differentiation of the approximation energy (2)

w.r.t f, when R is a first order IDQF given by (1), yields
aAf 4+ BVVIf =g —f (3)

with @ = a; and = ay + daz. This equation (3) corresponds to a linear elastic PDE,
with external forces g — f corresponding to linear springs attracting f towards g. According
to Section 2.4, we should choose a;, as and az so that ay +ay > 0, a; —ay > 0 and

ay + as + daz > 0. Combining these inequalities, we find that « > 0 and 8 > —a.
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3.1.2.  On the number of degrees of freedom

It appears that two out of the three generating IDQFs have the same functional derivatives.
Therefore, here we have only two degrees of freedom (corresponding to a and /) to shape
the regularization process.

This situation is similar to the scalar case, for which there exist several isotropic quadratic
regularization energies at any order of derivation, but all of them having the same derivatives
[Nielsen et al., 1994]. [Brady and Horn, 1983] showed that boundary conditions are critical
to tell these energies apart: they potentially contain the other DOF.

When using Fourier transform, the implicit boundary conditions are periodicity, i.e. we
consider that opposite image borders are connected. With these assumptions, there is no

other degree of freedom that those given by the derivative.

3.1.3. Resolution in the Fourier domain
The linear differential equation (3) can be solved in the Fourier space. We have the following

equivalence between spatial and Fourier domains:
Spatial domain Fourier domain
Af(x) +— —(wiw)f(w)
(VVDE(x) «— —(ww!)f(w)

where x = (21, ...,z4) and w = (wy, ..., wy) are the canonical coordinates of resp. the spatial

and the Fourier domain. Equation (3) transforms in the Fourier domain as:

[(1 + aWTW) Id + BWWT] f=g

My

For homogeneity reasons explained in Section 3.3.3, we replace the parameters o and [ by
a = X and # = Ak, so that A can be identified to a regularization strength and k to a
cross-effect strength; positiveness conditions become A > 0 and k > —1. We invert M; to
solve the previous equation:

1 AK
= |ld - T 4
! 1+ wlw 1+ A1+ Ii)WTWWW (4)

Now, to fit f to g with the approximation energy (2) where R is a first order IDQF, we
proceed in three steps: 1), compute the Fourier transform of g; 2), multiply this Fourier
transform by Eq. (4); 3), compute the inverse Fourier transform of this product, yielding the

solution.
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Figure 1. Impulse responses are obtained here by applying filters to this vector field, which is null except

for the central point which is moved to the right.

3.1.4. Impulse response

We show three examples of first order isotropic filters, depending on the sign of the cross-
effect parameter k, which act as the Poisson ratio v of the theory of elasticity. Here, the
vector field g to be smoothed is a simple impulse along the horizontal axis (Fig. 1). The
results shown in Fig. 2 can be considered as the impulse response of their respective filter.

The first filter, Fig. 2a, does not present any cross-effect (x = 0) and corresponds to a
membrane model. Without cross effects, horizontal lines stay straight: there is no motion
along the vertical axis because the input impulse itself has no vertical component.

The second filter, Fig. 2b, presents cross-effects (k > 0); the tissue gets closer to an
incompressible model and the material is less deformed: this can be interesting for registration
purposes, for example if the organs to be registered are nearly incompressible, such as the
brain.

The last filter, Fig. 2c, also has cross-effects (k < 0), but its behavior is somewhat counter-
intuitive as the impulse tends to inflate the material behind it. Although some rare materials
do have this kind of behavior, e.g. foams with negative Poisson ratio [Lakes, 1987], the choice
of a negative k for registration has more to do with a prior knowledge on the displacement
(e.g. inflations or contractions).

For any value of A or k, there exists a discontinuity in the derivative of the impulse
response, at the tip of the sharp peak. In non-rigid registration, external forces are dense,
and applied at every pixel of the image, therefore such peaks may appear frequently in the

image. This is particularly annoying if a further processing uses a differential analysis of the
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3.2. SECOND ORDER ISOTROPIC FILTERS

3.2.1. Functional derivatives of second order IDQF's
We follow the same strategy and begin by differentiating the basis of second order IDQF":

Quadratic form Derivative
0;if: 0,5 — 2A°f
0i;£;0uf, — 2AVVTE
0iif;jOf; — 2A°f
0ifk0kf; — 2AVVTE
0iif;0n;f. — 2AVVTE

So the functional derivative of Eq. (2), where now R is a second order IDQF, is
aA*f + BAVVIf=f —¢g (5)

Although we did not characterized positive second order IDQFs, we can ensure a proper
regularization by finding a particular IDQF whose functional derivative yields Eq. (5), and
whose positiveness conditions are simpler to compute than in the general case. Indeed, the
left member of (5) is (proportional to) the derivative of the second order IDQF «0;; f1.0;; fr +

B30i; fOk;jfi, whose related linear function is

QT k) = aT; ;BN + BT, ; B

)

where E(7F) is the tensor whose single non-zero element is El(l]],C = 1. The eigentensors and

eigenvalues of this linear function are

Eigentensor Eigenvalue
BOIR) — pRiD (G 5 k) € [Ld]* i >k a— B
BUIR) L pRiD (i 5 k) € [L;d]* i >k a+ B
EWM (i, 5) € [1;d]* a+ 8
There are d*(d — 1)/2 + d* + d*(d — 1)/2 = d® such eigenvectors, which are orthogonal,
therefore there is no any other eigenvalue.

Thus, the quadratic form is positive if a+3 > 0and a— 3 > 0,i.e. if « > 0 and § > —a.

These are exactly the same conditions as in the first order case.
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Figure 4. Impulse response of three different second order isotropic filters.



14 Pascal Cachier and Nicholas Ayache

3.3. GENERALIZATION

3.3.1. Higher-order isotropic filters
Given the results obtained for first and second order isotropic regularization energies, we are
tempted to generalize the linear PDE to higher order regularization. Even though we did not

characterize the n-th order IDQFs, we can set the PDE for the n-th order regularization as:
(=1)" [aA™ + BA™ 'YV =f — g

which is indeed isotropic, since it is related to the functional derivative of the following

isotropic quadratic form:

E.(f) = .0, iy fini1Oiy i fingr + B-0iy iy fini1 Oiirin.in [i (6)

The linear function associated to this quadratic form is

Q(T) — aﬂl E(il,...in+1) _|_ ﬁﬂl,___in+1E(inJrl’iZ’...in’il)

i

(150 int1) _

where E(1#n+1) is the tensor whose only non-zero element is £ = 1. Its eigentensors

11,0 g1
and associated eigenvalues are:
Eigentensor Eigenvalue
Bttt g plnsnioeint) iy gy € [3d] i > iy @t B
Elvintt) — plnevioeini) 4o o€ [1d], 6 > inp a— B
Ekizeink) o in € [1id]  a—p
All these d" tensors are orthogonal. Therefore, there exists no additional eigenvalue, and as
for the first and second order regularization, positiveness conditions are a > 0 and > —a.

We have the following correspondences between the spatial domain and the Fourier

domain:

Spatial domain Fourier domain
A" (x) +— (—1)"(w"w)"f(w)
A"HUVDE(x) «— (=1)"(ww)"  (wwT)f(w)

The differential equation becomes (setting o = A and = \k):

[(1+ AW w)") Id + As(w’w)" (ww')] f=g

J

-~

My
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To solve this equation, we invert the matrix M,,:

1 AK
M'=———— [Id— g
" 1+ AwTw)" I+ A1+ KJ)(WTW)"WW (7)

3.3.2. Multi-order filters
A regularization energy may include several or even all orders of derivation. Let us consider

linear combinations of energies (6)

Z nOiy i fingr Ot i s T B0y i fini1 Ot rin.in Jin (8)
n=1
The associated regularization PDE is
D ()" [ A + B,ATI YV =f — g
n=1

with two scalar a,, > 0 and (3, > —a, to choose per order of derivation, corresponding

approximately to its strength and its shear. In the Fourier domain, the previous PDE becomes

(1 5 an<wTw>n> 0+ 3 Bulw!w)~ (ww) | = &

n=1

N

-~

M
As previously, one should invert matrix M and apply it to the Fourier transform of g to

obtain the solution.

3.3.3. A note on the reqularization strength

Energies (8) are designed for regularization. Therefore, we should be able to control their
weight relatively to another energy, e.g. an intensity similarity measure, via a regularization
parameter \.

In the case of quadratic approximation, choosing A as a global multiplicative factor, AR(f),
gives counterintuitive results, because A changes the shape of the impulse response instead
of just rescaling it. If we want a regularization strength A\ that corresponds to a scale factor
of the impulse response, as for Gaussian filters, we have to put it inside the energy

R(f,\) = Z N[00y i fins1 Oin . in fines + BuOiy in Finir Oinsrinin fi1 ]

n=1
Now ) is a parameter of the regularization energy. Of course, if the regularization energy
uses only one order of differentiation, which is quite frequent in non-rigid registration, both

approaches are equivalent.
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3.4. SEPARABLE ISOTROPIC FILTERS

Previous vectorial convolution filters are applied in the Fourier domain — this is indeed
generally the faster way to proceed, especially in 3D and for large kernels. However, the

computation can be even faster in the real domain, if the kernel is separable.

3.4.1. Definitions

Definition 6. (Isotropic Filters) A scalar convolution kernel f(x):IR? — IR is isotropic if
f(RTx) = f(x), YR € O(d). A vector convolution kernel F(x) = F(z,...,x4) : R* = My is
isotropic if RF(RTx)R" = F(x), VR € O(d).

Definition 7. (Separable Filters) A scalar convolution kernel f(x) = f(x1,...,24) : R* —
IR is separable if there exists d functions fi, k& € [1;d], such that f(x) = fi(x1) f2(z2)... fa(®a) =
15, fe(zx). A vector convolution kernel F(x) = F(xy,...,z4) : RY — M, is separable if

each of its element Fj; ; is separable.

Note that there are other possible definitions of separability for vectorial filters. The prop-
erty of separability is very interesting from a numerical point of view, because n-dimensional
convolutions then boil down to a sequence of 1-D convolutions, which can be implemented
efficiently for instance using recursive filtering.

The choice of separable filters is drastically reduced if we also impose the isotropy property.
For scalars, it is known that the only isotropic separable kernels are the family of Gaussians
[Kannappan and Sahoo, 1992]. However, to the best of our knowledge, there is no similar

theorem for vector filters. We propose the following result, easy to verify:

Proposition 1. The vector filter G, .. defined by

]_ XTX

Gonlx) = _ (Idy + —xx")e™ 57 9)
(ov2m) (14 k) o

is separable and isotropic.

. . . d . .
The normalization coefficient (ov/27) (1 + k) is chosen so that a constant vector field is
unchanged by convolution with G, ,. As previously, the coefficient s act as a Poisson ratio.
When & is set to zero, the matrix G, is diagonal and we obtain a classical Gaussian filtering,

independently on each component of the vector field.
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There exist separable isotropic filters that are not part of this previous family, as this
filter in 2D:

kxy/o? 1 — ka?/o?

1 1 —ky*/o*  kxy/o? oly?
(ov/2r) (1 - 1) ( ) ‘

However we could not find counter examples in higher dimension. The filters G, . given by

(9) might be the only separable isotropic filters in dimension greater than or equal to 3, but

this has yet to be proven.

3.4.2. Computation with classical Gaussian filters

Property 4. If we note G,(x) = exp(—x'x/(20?))/(0v/27)? the normalized, d-dimensional
scalar Gaussian kernel, and HG,, its Hessian matrix composed of its second order derivatives,
the following relation holds:

o’k

Gon(x) = G, (x)Id + .

HG,(x)

+ K

Because G, (x)Id and HG,(x) are also separable, the convolution with G, , can be com-
puted as a weighted sum of convolutions with a one-dimensional Gaussian, and its first
and second derivatives. There exist many efficient techniques to implement these filters
— for example Deriche’s recursive filters [Deriche, 1992], which have a computation time

independent of the size of the Gaussian kernel.

3.4.3. Impulse response

Figure 9 shows the impulse responses of the separable isotropic filter (9) for three different
values of parameter k. Their behavior is somewhat similar to second order filters, Fig. 4,
although here the impulse response is even smoother, as the underlying energy is of infinite

order.

3.5. AN APPLICATION TO IMAGE REGISTRATION

In the experiment reported in Fig. 3.5, two circles have been moved apart. They have been
registered with PASHA [Cachier and Ayache, 2003], a fast intensity-based non-rigid registra-
tion algorithm, using the separable isotropic filters described in Section 3.4. We ran the
algorithm without (k = 0) and with cross-effects (k > 0).

Without cross-effects, horizontal lines stay horizontal between the circles; there is no

noticeable vertical deformation. Choosing x > 0 gives a more realistic extrapolation of the
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Figure 5. Impulse response of three different separable isotropic vector filters G, ., Eq. (9) generalizing the
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4.1. INTERPOLATION AND APPROXIMATION OF SPARSE POINTS

The vector interpolation and approximation problems are a straightforward extension of the
scalar ones [Duchon, 1976]. Given two sets of points x; and g; of IRY, the vector interpolation
problem consists in finding a vector field f : R? — IR? which minimizes a regularization
energy R(f) under the constraint that f(x;) = g;. The vector approximation problem consists

in seeking an approximation f* which is solution of
* : o N2
f —argmfmZHgl f(x;)||” + AR(f)

When A — 0, the approximation solution tends toward the interpolation solution. More
elaborate approximation problems are sometimes useful, where for example the isotropic
distance ||g; — f(x;)||* is replaced by an anisotropic distance depending on the index i
[Rohr et al., 1999].

4.2. VECTORIAL LAPLACIAN SPLINES

For vector interpolation and approximation, the most common solution in the field of non-
rigid registration consists in interpolating or approximating every component independently
with isotropic scalar kernel, such as Laplacian splines or radial basis functions. A notable
exception is the elastic body spline of [Davis et al., 1997], which is based on linear elasticity.
Unfortunately, the exact interpolation kernel of linear elasticity is ill-defined as it tends
toward infinity at its center. Therefore, there is a need of higher-order splines having tunable
cross-effects.

For vector interpolation or approximation problems, we propose to generalize Laplacian
splines using the IDQF's given by (for simplicity, we drop one of the two energy parameters

of Eq. (6) since splines are defined up to a global multiplicative coefficient) :

En(f) = 05 infi 0005y i i + K000y K Oi i i B

As for the scalar case [Duchon, 1976], if n > d/2, we note S,, the solution of
(—=1)" [A"S, + kA" 'VVTS, ]| = 61d (10)

then the solution f of the vector interpolation or approximation problem has the following

form

f(x) = p(x) +ZSn(X—xi)ai (11)
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where p is a polynomial such that E,(p) =0, and av; € R? are coefficients that can be found

by solving a set of linear equations.

4.2.1. Closed-form formulas
As in the scalar case, it is possible to get closed-form formulas for S,,. Getting into the Fourier
domain, the PDE (10) becomes

[(w!'w)"Id + k(w'w)" 'ww’] S, = 1d

and we find that

N 1 K
Sp=———1Id — T
(wlw)" (1+ k) (WTW)n+1WW
The Fourier transform of the scalar Laplacian spline s, is precisely —a——. Thus, we can

WwTw)

express S,, as a function of s,, and s,,11:
S, = suld + ——H
1+ k i

where s, is the Hessian matrix of s, .

4.2.2. Example: Vectorial Thin Plate Spline Interpolation
Up to a multiplicative coefficient, the 2-D second order Laplacian spline (or thin plate

2. and the 2-D third-order Laplacian spline is s3(z,y) = r*Inr?

spline) is sy(z,y) = r?Inr
[Duchon, 1976], where r* = x? + 3. One can thus calculate Hss3, and find the close form for-
mula of Sy in 2D: (S2)1,1 = r* Inr? 4+ [2(30 +y°) Inr? + 70 + 9], (S2)12 = 2750y (2Inr?+
3).

In Fig. 7, we compare the results of the interpolation of displacement using scalar and
vectorial thin plate splines. In the original position, the four points were placed at each
corner of a square. The upper point has then been forced to move to the center of the
square. The scalar thin-plate spline interpolation applied on each component independently,
Fig. 7a, do not present any horizontal displacement, and thus vertical lines remains straight.
It possesses a strong accumulation of matter just under the point that has been moved.
The vectorial Laplacian spline interpolation, Fig. 7b, is more realistic thanks to a better

distribution of the resulting displacements into both vertical and horizontal components; the

previous accumulation of matter has disappear.
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b. Using vectorial TPS

Isotropic Energies, Filters and Splines for Vector Field Regularization

Merging filters and splines

5.

In this section, we merge the two previous problems of dense (Section 3) and sparse (Section

4) vector approximation: we are searching for a vector field f : RY — R? that approximates

both a dense vector field g;, and a set of discrete pairings gs. The energy to minimize is

i=1...p

It is shown in Appendix B that the optimal solution f is a linear combination of a smoothed

vector field and a sum of splines

X — xi)ai

)+ K(

K * g (x

(x) =

f

i

as those found in Section 3, and «;

Y

where K is the smoothing kernel associated to R

are coefficients found by solving a set of linear equations. Note that the same kernel is

and as a spline to approximate the sparse

used both as a smoothing kernel to smooth Cf,

correspondences (5. Contrary to the vectorial Laplacian splines of Section 4.2, these splines

are bounded and decrease towards zero at infinity.

This formulation turns out to be very useful in the context of non-rigid registration, when

one wants to add sparse geometric constraints to an intensity based algorithm, because the

intensity similarity measure gives dense pairings g;, while geometric constraint gives sparse

pairings gs.

Using TPS

a.

Figure 7. Interpolation of displacement using splines. One of four points initially forming a square is forced to

move downwards. Without cross effects, vertical lines remain vertical and straight, and the material present

a strong accumulation of matter in front of the translated point. When using cross-effects, the displacement

field involves both vertical and horizontal components, producing a more realistic result.
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We successfully applied this technique to the difficult problem of intersubject brain regis-
tration [Cachier et al., 2001]. Because of the high variability of the cortex topology between
different subjects, it is difficult to obtain valid registration results using the intensity alone.
On the other hand, geometric features provided for instance by a set of sulcal lines ex-
tracted on the cortex, are too sparse to provide a dense and accurate non-rigid registration
field everywhere. The idea developed in [Cachier et al., 2001] is to combine intensity-based
and feature-based registration with the above presented technique. The geometric features
correspond to a set of sulcal lines automatically labeled by the Riviere-Mangin et al. algo-
rithm [Riviere et al., 2000], which we added to the PASHA registration scheme, presented in
[Cachier and Ayache, 2003]. We present one of these results, because we believe it provides
a nice illustration of the concepts developed in this article on a set of real images.

We show in Figure 8a and 8b the position of 3 important cortical sulci extracted from
the images of 5 different brains resp. before non-rigid registration (i.e. only a global affine
alignment is applied to each brain with a reference one) and after. An important parameter
is v which allows the user to adjust the influence of feature-based pairings on the deforma-
tion field. One can see that it is possible to obtain a good geometric correspondence while

preserving a smooth and one-to-one deformation field (Fig. 8c).

T

T

Tt

a. Before registration b. After registration c. Deformation sample

Figure 8. Results of interpatient brain registration based on intensity and geometric features, using Eq. (12)
for regularization. Bright, medium and dark ribbons correspond resp. to precentral, central and temporal
sulci of the 5 brains used in this registration experiment. Our registration scheme enables to strongly reduce
the interindividual sulcal variability while keeping estimated transformations smooth and one-to-one, as

shown on the right on one of the transformations. Images published originally in [5].
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6. Conclusion

In this paper we introduced some new techniques for regularizing vector fields. We first
studied isotropic quadratic energies, and then used these energies to deduce vector filters
and splines to approximate respectively dense and sparse vector fields. We also introduced a
separable vector filter that generalizes Gaussian filtering to vectors and enables a particularly
efficient smoothing, using recursive filtering. Finally, we combined both sparse and dense
approximation problems, and showed that the interesting closed-form solution can be applied
successfully to real problems.

The original feature of vector regularization is the possibility to have cross-effects between
coordinates, which is not possible using standard scalar regularization on each component
separately. This new parameter makes it possible to more finely tune the solution of our
problem, in the context of non-rigid registration for example, depending on our prior knowl-
edge. Future quantitative analysis should demonstrate improvement of the motion recovery

using the models proposed in this paper depending on the nature of the deformed material.
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A. Reduction of second order IDQF generators

According to Theorem 1, the 15 quadratic forms that generate the set of second order IDQF's

are

OiifiOufu (14)  OifiOkifr (19)  0iifiOuf; (24)
Oij fiOu [ (15)  0ijfiOkifr (20) Oy fidkf; (25)
0ij fiOwfu (16) 0 fudifr (21) 0y fuOuf; (26)
Oij fiOifu (17) 0 fu0sifi (22) 0y fuOkif; (27)
Oy fiOwfi (18)  0iifudifi (23)  O0yfiOkifi (28)

Because we suppose that the derivation commutes with itself, some of these 15 quadratic
forms are equal. It is straightforward to see that (14)=(19), (15)=(20), (16)=(17), (21)=(22),
(23)=(28) and (26)=(27). Renaming i — j and j — 7, we also find (16)=(20), (18)=(25)
and (26)=(28). We now have only 6 quadratic forms:

O fiOwfu (29) 0 fu0ifr (L) Oy filkif; (33)
OiifiOkifi (30)  OufiOkef; (32)  0ifuOkjfi (34)
Now, because the multiplication commutes, two of these 6 quadratic forms are also equal.

Renaming k¥ — i and i — k, we see that (30)=(33). We finally have only 5 independent

quadratic forms:

05 [ Oir fr 05i [0k [x 055 [10sj fx 0;i [0k f; 05 [0k fi

B. Sparse-and-dense approximation

For sparse and dense approximation, we minimize the energy (12), which we first rewrite in

the Fourier domain:

E(f) =/|If—§1||2+7 $ ||f<xi>—g2<xi>||2+/P<w>.||f||2

i=1...p

where P(w) is a polynomial matrix related to the IDQF R, and which is a linear combi-

nation of the terms A(ww)" + Ax(wlw)" 'wwT if R is on the form (8). Since f(x;) =
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[ f(w) exp(2mi.wTx;), the formal differentiation of this energy w.r.t. f leads to

(F—g)+7 > (f(xi) — ga(xi)) exp(—2miw’x;) + P(w).£ =0
i=1...p
The solution of this equation is
f=M"'g +v Z exp(—2miw! x;) M (ga(x;) — f(x;))

i=1...p

where M ™! is the invert matrix of M = Id + P(w), with the same notation of Section 3.3.2.

Let us note K the inverse Fourier transform of M ~'. In the real domain, the first term
M~'g, transforms as K g, as in Section 3. Furthermore, exp(—2miw” x;) M " is the Fourier
transform of K (x — x;), so the second term transforms as v . K(x — x;)(g2(x;) — f(x;)).

The solution to this approximation problem is thus of the form

f(x) = K xgi(x)+ Z K(x — x;)a;

i=1...p

where a; = 7(gs(x;) — £(x;)) € R? is a set of multiplicative coefficient that solve the set of

equation:

K *gi(x;) + ZK(Xi —Xj)o = 8(%;) — o/ Vi € [1;p]

J

This linear system can be rewritten as
1

<—Id + W> a=03
~

with a being the vector of size pd of all the coefficient
W the pd x pd matrix
W= (K(x; — x,)) =

and 3 the vector of size pd

B=((g(x1) = Kxgi(x1))" ... (g2(x,) — K *gi(x,))"
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