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Abstract. Interpreting endomicroscopic images is still a significant chal-
lenge, especially since one single still image may not always contain
enough information to make a robust diagnosis. To aid the physicians,
we investigated some local feature-based retrieval methods that provide,
given a query image, similar annotated images from a database of en-
domicroscopic images combined with high-level diagnosis represented as
textual information. Local feature-based methods may be limited by the
small field of view (FOV) of endomicroscopy and the fact that they do not
take into account the spatial relationship between the local features, and
the time relationship between successive images of the video sequences.
To extract discriminative information over the entire image field, our pro-
posed method collects local features in a dense manner instead of using
a standard salient region detector. After the retrieval process, we intro-
duce a verification step driven by the textual information in the database
and in which spatial relationship between the local features is used. A
spatial criterion is built from the co-occurence matrix of local features
and used to remove outliers by thresholding on this criterion. To over-
come the small FOV problem and take advantage of the video sequence,
we propose to combine image retrieval and mosaicing. Mosaicing essen-
tially projects the temporal dimension onto a large field of view image. In
this framework, videos, represented by mosaics, and single images can be
retrieved with the same tools. With a leave-n-out cross-validation, our
results show that taking into account the spatial relationship between
local features and the temporal information of endomicroscopic videos
by image mosaicing improves the retrieval accuracy.

1 Introduction
With the recent technology of probe-based confocal laser endomicroscpy (pCLE),
endoscopists are able to image tissues at microscopic level with a miniprobe, and
in real time during ongoing procedure. However, as the acquired pCLE images
are relatively new for them, the physicians are still in the process of defining a
taxonomy of the pathologies in the images, for instance to differentiate benign
tissues and neoplastic, i.e. pathological, tissues of colonic polyps, see Fig. 1 for an
illustrative example of such images. To face this clinical challenge, a valuable aid
to the physician in establishing a diagnosis would be to provide endomicroscopic
images that have a similar appearance to the image of interest and that have been
previously diagnosed by expert physicians. Knowing that pathological tissue is
characterized by some irregularities in the cellular and vascular architecture, we
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aim at retrieving texture information coupled with shape information by using
local operators on pCLE images. To serve that purpose, we decided to investigate
a modern method for content-based image retrieval (CBIR), the bag-of-visual
words (BVW) method [1]. BVW has been successfully used in many applications
of computer vision. For example, by applying this method on a large variety of
images of natural or artificial textures, the authors of [1] obtained excellent
recognition results that are close to 98%.

The standard BVW method detects salient regions in the images and ex-
tracts information only on these specific regions. However in pCLE images, the
discriminative information is distributed over the entire image field. Contrary to
classical methods that apply sparse detectors, we use a dense detector to collect
densely the local features in the images. This overcomes the information sparse-
ness problem. Moreover, pCLE images contain characteristic pattern at several
scales, in particular the microscopic scale of individual cells and the mesoscopic
scale of groups of cells. For this reason, we perform a bi-scale description of
the collected image regions. Another problem is that the spatial relationship be-
tween the local features is lost in the standard BVW representation of an image,
whereas the spatial organization of cells is highly discriminative in pCLE images.
So we looked at measuring a statistical representation of this spatial geometry.
This was achieved by exploiting the co-occurence matrix of the visual words la-
beling the local features in the image. After the retrieval process, we introduce
the measured spatial criterion in a verification step that allows to remove outliers
from the retrieved pCLE images, which are given by the most similar to queried
images. Taking into account the spatial relationship between local features is the
main contribution of our study, it can be used as a generic tool for many appli-
cations of CBIR. Besides, we noticed that the FOV of single still pCLE images
may not be large enough for the physicians to see a characteristic global pattern
and make a robust diagnosis. As this limitation cannot be solved by the standard
methods, we decided to take into account the time information of pCLE video
sequences by considering them as objects of interest instead of still images. More
precisely, we use image mosaicing [2] to project the temporal dimension of video
sequences onto a large FOV image, cf. some resulting mosaics in Fig. 1. With
a leave-n-out cross-validation, classification experiments on the pCLE database
serve the validation of the methodology: our method outperforms other methods
taken as references, by improving the classification accuracy and by providing
more relevant training images among the first retrieved images.

2 The bag-of-visual words method

As one of the most popular method for image retrieval, the BVW [1] method aims
at extracting a local image description that is both efficient to use and invariant
with respect to viewpoint changes, e.g., translations, rotations and scaling, and
illumination changes, e.g., affine transformation of intensity. Its methodology
consists in first finding and describing local features, then in quantizing them
into clusters named visual words, and in representing the image by the histogram
of these visual words. The BVW retrieval process can thus be decomposed into
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four steps: detection, description, clustering and similarity measuring, possibly
followed by a classification step for image categorization.

The detection step extracts salient regions in the image, i.e. regions contain-
ing some local discriminative information. In particular, corners and blobs in the
image can be detected by the sparse Harris-Hessian (H-H) operator around key-
points with high responses of intensity derivatives. Other sparse detectors like
the Intensity-Based Regions (IBR) and the Maximally Stable Extremal Regions
(MSER) are also specialized for the extraction of blob features in the images.
We refer the interested reader [3] for a survey of these detectors.

Then, each local region can be typically described by the Scale Invariant
Feature Transform (SIFT) descriptor. We refer the reader [1] for a survey of
this and other powerful descriptors. At the description step, the SIFT descriptor
computes, for each salient region, a description vector which is its gradient his-
togram at the optimal scale provided by the detector, the gradient orientations
being normalized with respect to the principal orientation of the salient region.
As a result, the image is represented in a high dimensional space by a set of
SIFT description vectors that are invariant by translation, rotation and scale.

To reduce the dimension of the description space, the clustering step, for
example based on a standard K-Means, builds K clusters, i.e. K visual words,
from the union of the description vector sets gathered from all the N images of
the training database. Since each description vector counts for one visual word,
an image is represented by a signature of size K which is its histogram of visual
words, normalized by the number of its salient regions.

Given these image signatures, it is possible to define a distance between two
images as the χ2 distance [3] between their signature and to retrieve the closest
training images as the most similar to the image of interest. The relevance of the
similarity results can be quantified by a further classification step, for instance
based on a standard nearest neighbors procedure that weights the votes of the
k-nearest neighbors by the inverse of their χ2 distance to the signature of the
queried image, so that the closest images are the most determinant. Besides,
performing image classification is a way to validate a new retrieval method by
comparing it with other methods.

3 Including spatial and temporal information

When we applied the standard BVW method on pCLE images, we obtained
rather poor classification results, as presented in Section 4, and the presence of
many retrieval outliers. To improve the accuracy of endomicroscopic image re-
trieval, we decided to include both spatial and temporal information contained
in the pCLE images. By locally testing on pCLE images the numerous sparse
detectors listed by [3], we first observed that a large number of salient regions
sparsely extracted by these standard detectors do not persist between two highly
correlated successive images taken from the same video. To overcome the persis-
tence problem and take into account all the information in the images, we use
a dense detector contrarily to the standard method. This is consistent with the
fact that local information appears to be densely distributed over the entire field
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of the pCLE image. The dense detector is made of overlapping disks localized
on a dense regular grid, such that each disk covers a possible image pattern at
microscopic level.

We also noticed that the endoscopists establish their diagnosis on pCLE im-
ages from the regularity of the cellular architecture in the colonic tissue [4], where
goblet cells and crypts are both round-shaped characteristic patterns, but where
a crypt has larger size than its surrounding goblet cells so it must not be recog-
nized as the same object. In order to be sensitive to scale changes, our method
looked at describing local disk regions at various scales that are not automati-
cally computed, for example by choosing a microscopic scale for individual cell
patterns and a mesoscopic scale for larger groups of cells. This leads us to rep-
resent an image by several sets of description vectors that are scale-dependent,
resulting in several signatures for the image that are then concatenated into one
larger signature.

This previous observation also suggests that the spatial organization of the
goblet cells must be included in the retrieval process because it is substantial
to differentiate benign tissues from neoplastic tissues. The authors of [5] previ-
ously proposed adding a geometrical verification to take spatial information into
account, however their method is based on the assumption that they want to
retrieve images of the exact same scene, which is not the case for our applica-
tion. In like manner, our idea is to introduce a geometrical verification process
after the retrieval process, but based on the assumption that the spatial rela-
tionships between the local features are only statistically the same in the images
with similar appearance. To introduce spatial information, we took advantage
of the dense property to define the adjacency between two visual words as the
8-adjacency between the two disk regions that are labeled by them on the detec-
tion grid. Thus, we are able to store in a co-occurence matrix M of size K ×K
the probability for each pair of visual words of being adjacent to each other.
In order to best differentiate the images of the benign class from the images of
the pathological class, we looked at the most discriminative linear combination
W of some elements m of M . This is achieved by a linear discriminant analysis
(LDA) which uses the textual diagnostic information in the database. The LDA
weights are given by W = Σ−1 (µ1 − µ2), where Σ is the covariance matrix of
the elements m ofM in all training images and µi is the mean of the elements m
of M in the training image belonging to the class i. From these weights W , we
computed the spatial criterion α = Wm for each retrieved image and compared
it with the α value of the image of interest. By thresholding the α value during a
verification process, outliers are rejected and the first retrieved training images
are more relevant.

Expert physicians pointed out that some characteristic global patterns are
too partially visible on single still pCLE images to make a robust diagnosis: two
still images may have a very similar appearance but be attached to contradictory
diagnoses. To address this problem, the time dimension of pCLE videos needs
to be exploited, by including in the retrieval process the temporal relationship
between successive images from the same video sequence. The study reported
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by [6] proposes a method for video retrieval using the spatial layout of the image
regions, but this method has been designed for object matching, which is not
our objective. Since successive frames from pCLE videos are only related by
viewpoint changes, our approach uses the image mosaicing of [2] to project the
temporal dimension of a video sequence onto one image with a larger FOV and
of higher resolution. Thus, mosaics can be queried and retrieved in the same way
as still images.

4 Experiments and discussion
At the anonymized for review, the Cellvizio® system, MKT, Paris, was used
to image colonic polyps during surveillance colonoscopies in 54 patients. On
each acquired video sequence, expert physicians established a pCLE diagnosis [4]
that differentiates pathological sequences from benign ones. The video sequences
contain from 5 to over a thousand frames and each frame is an image of diameter
500 pixels corresponding to a FOV of 240 µm. To build our pCLE database, we
considered a subset of these sequences by discarding those whose quality was
insufficient to perform a reliable diagnosis. In each of the remaining 52 video
sequences, we selected groups of successive frames according to the length of the
sequence. The resulting database is composed of N = 1036 still pCLE images
and N ′ = 66 pCLE mosaics, half of the data coming from benign sequences and
half from pathological ones.

In pCLE images, the disk regions containing information at mesoscopic scale
have a radius value ρ1 = 40, while the radius value of those containing infor-
mation at microscopic scale is ρ2 = 15. For the dense detector, we then chose
δ = 20 pixels of grid spacing in order to get a reasonable overlap between ad-
jacent regions. Among the values from 30 to 1500 found in the literature for
the number K of visual words provided by the K-Means clustering, the value
K = 100 yielded satisfying classification results. To prevent overfitting, as the
size of our pCLE database is still rather small, especially concerning the num-
ber of mosaics, the number of LDA weights in the computation of the spatial
criterion α had to be restricted. For the elements m of the co-occurence matrix
M , we only considered the K diagonal elements of the matrix M build from the
visual words of large radius 40, observing that the overlapping regions of radius
40 have a sufficient spatial correlation, better than those of radius 15. The good
values of the threshold θα were chosen by analysing the distribution of α across
the benign and pathological images: 2 when retrieving still images from a queried
still image and 0.5 when retrieving still images from a queried mosaic.

The classification results of our method are presented in Fig. 2 and com-
pared with the following methods taken as references: the standard sparse scale
invariant SIFT method, the statistical approach of Haralick features [7, 8] and
the texture retrieval method of Textons [9]. To ensure a non-biased classifica-
tion, our validation scheme retrieves k nearest images in the training set with
training images not belonging to the video sequence of the image being queried,
i.e. a leave-n-out cross-validation where n is the number of frames in the video
of the queried image. According to the accuracy, sensitivity and specificity rates
yielded by each method on the still images of the pCLE database, our retrieval
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Benign Benign Benign Benign Benign

Neoplastic Neoplastic Benign - error Neoplastic Benign - error

Benign Neoplastic (O) Neoplastic (O) Benign Benign

Neoplastic Benign (O) Neoplastic Neoplastic Benign (O)

Benign Benign Benign Benign Benign

Neoplastic Neoplastic Neoplastic Neoplastic Neoplastic

Fig. 1: Six rows of similar pCLE images or mosaics provided by our retrieval method.
From left to right on each row: the queried image, and its first, second, third and fourth
most similar images. An outlier rejected by the spatial verification process is indicated
by the letter (0), and is an error otherwise. FOV of the images: 240 µm. FOV of the
mosaics: from 260 µm to 1300 µm.
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Dense Bi−Scale

H−H + SIFT

Haralick

Textons

Method / kNN k=1 k=4 k=10
(I, I) DBV

Acc. 71.7 74.0 76.5
Sens. 71.8 74.9 77.7
Spec. 71.6 73.1 75.3

(I, I) DB
Acc. 70.2 72.1 75.0
Sens. 69.8 71.1 73.8
Spec. 70.6 73.3 76.3

(I, I) HH SIFT
Acc. 65.3 65.1 66.4
Sens. 76.6 75.8 76.6
Spec. 52.7 53.1 55.1

(M, M) DB
Acc. 86 89 82
Sens. 88 88 78
Spec. 85 91 85

(M, I) DBV
Acc. 71.2 81.8 83.3
Sens. 96.9 100.0 100.0
Spec. 47.1 64.7 67.7

(M, I) DB
Acc. 71.2 80.0 78.8
Sens. 90.6 93.8 90.6
Spec. 52.9 67.7 67.7

Fig. 2: Left: Classification accuracies with leave-n-out cross-validation. Right: Results
for k nearest neighbors, where M means Mosaic and I means Image in the configu-
ration (Queried, Retrieved). Our proposed method is referred to as Dense Bi-Scale
Verif (DBV) if it includes spatial verification and Dense Bi-Scale (DB) otherwise.

method including spatial information is the most efficient, with an accuracy rate
of 78.2% for k = 22 neighbors, which is 11.5 points better than the standard
SIFT method. The gain of accuracy can be decomposed in 10.2 points for the
choice of a dense detector and a bi-scale SIFT description, and 1.3 points for
the verification process on the spatial criterion. It is also worth mentioning that
with the spatial verification, fewer nearest neighbors are necessary to classify
the query at a given accuracy. For k = 4 neighbors, some illustrative examples
of the image retrieval results are shown in Fig. 1, where the outliers that have
been rejected by the verification process are indicated by the letter O.

Moreover, when including both spatial and temporal information by querying
mosaics, our classification results are much better. Since mosaics contain more
information than single images, their content-based neighborhood is more repre-
sentative of their pathological neighborhood, so they can be better classified by
a smaller number k′ of nearest neighbors. Indeed, if we retrieve still images for
queried mosaics, the classification accuracy is 83.3% for k′ = 10 neighbors, which
demonstrates the robustness of our retrieval method applied on heterogeneous
data with different resolution. For the retrieval of still images from queried mo-
saics, the poor specificity can be explained by the fact that a mosaic annotated
as neoplastic may contain some benign patterns which induce the retrieval of
single benign images and classify it as benign. However the expert physicians
diagnose a pCLE video sequence as neoplastic as soon as it contains neoplastic
patterns, even when some benign tissue is imaged. Besides, if we retrieve mo-
saics for queried mosaics, the classification accuracy is 89%. Thus, even though
we only have a small number of mosaics, including time dimension in mosaics
provides us proof of concept results for endomiscroscopic video retrieval. For the
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retrieval of mosaics from queried mosaics, including the spatial information does
not improve the classification results because of the overfitting phenomenon:
indeed, the number of LDA weights, 100, is bigger than the total number of
mosaics, N ′ = 66.

5 Conclusion
Using visual similarity between a given image and medically interpreted images
allowed us to provide the physicians with semantic similarity, and thus could po-
tentially support their diagnostic decision. Although our experiments are focused
on a relatively small training dataset, the classification results constitute a vali-
dation of our generic methodology. By taking into account the spatio-temporal
relationship between the local feature descriptors, the first retrieved endomi-
croscopic images are much more relevant. For future work, a larger training
database would not only improve the classification results if all the characteris-
tics of the image classes are better represented, but also enable the exploitation
of the whole co-occurence matrix of visual words at several scales. Besides, the
learning step of the retrieval process could leverage the textual information of
the database and incorporate the spatial information of multi-scale co-occurence
matrices into descriptors. As for introducing the temporal information, a more
robust approach would not only consider the fused image of a mosaic but the
2D + t volume of the registered frames composing the mosaic to work on more
accurate visual words and better combine spatial and temporal information.
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