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Abstract: We present in this report a novel kind of geometrical transformations, which we
have named polyrigid. Within their framework, it is possible to de�ne local rigid deforma-
tions in a given number of simple regions, while simultanously guaranteeing the smoothness
and invertibility of the global transformation. Entirely parametric, this new type of tool is
highly suitable for inference, and it is successfully applied to the non-rigid registration of
histological slices. These general transformations are a nice alternative to classical B-Spline
transformations (which do not guaranty invertibility). In future work, other applications
will be considered, for instance in 3D registration.

Key-words: Parametric transformation, medical imaging, ODE, di�eomorphisms, non-
rigid registration, histological slices.



Une nouvelle famille de transformations géométriques:

les transformations polyrigides

Application au recalage de coupes histologiques.

Résumé : Nous présentons dans ce rapport un type nouveau de transformations géomé-
triques, que nous avons appelées polyrigides. Grâce à elles, il est possible de dé�nir des
déformations localement rigides dans un nombre donné de régions, tout en garantissant la
régularité et l'inversibilité de la transformation globale. Intégralement paramétrique, ce
nouveau type d'outil est hautement adapté pour l'inférence, et on montre ici son application
avec succès au recalage non-rigide de coupes histologiques. Ces transformations générales
sont une alternative séduisante aux classiques B-Splines (pour lesquelles l'inversibilité n'est
pas garantie). Dans de futurs travaux, d'autres applications seront étudiées, en particulier
le recalage d'images en 3 dimensions.

Mots-clés : Transformation paramétrique, imagerie médicale, EDO, di�éomorphismes,
recalage non-rigide, coupes histologiques.
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4 V.Arsigny et al.

1 Introduction

To motivate the introduction of a new type a geometrical transformation, let us focus on
the registration of medical images, and more precisely on the types of geometrical transfor-
mations they are based on.

The registration of medical images is in general a di�cult problem, and numerous meth-
ods and tools have been already devised to address this task [1]. At the beginning of the
spectrum, we have simple parametric transformations such as rigid or a�ne transforma-
tions, which have a very small number of degrees of freedom, and can be e�ciently used for
intra-patient registration. Other types of transformations, such as those parameterized via
B-Splines [2], Thin-Plate-Splines [3], �nite elements mechanical models [4] or more general
deformable models can have an arbitrary number of degrees of freedom and be used for both
inter-subject or intra-subject registration. At the end of the spectrum, deformation �elds
de�ning a displacement at every voxel exhibit the highest number of degrees of freedom
[5, 6, 7, 8, 9], and can be used for inter-subject registration.

Each of the above transformations has its particular domain of application. However, in
the case of anatomical structures incorporating rigid elements (such as bone articulations,
or structures which are subject to simple local deformations, like histological slices), we
believe that none of them is fully appropriate. Rigid and a�ne transformations clearly
don't have enough degrees of freedom. On the contrary, deformation �elds have too many
ones and thus can be easily misled by local minima of the similarity criterion. For the
existing intermediate transformations, e.g. B-Splines [2], the degrees of freedom of the
transformation are not really adapted as many control points are required to reconstruct
several locally rigid behaviors, especially when rotations are substantial.

Our goal in this paper is to de�ne new parametric transformations that exhibit a locally
rigid or a�ne behavior, and that can be e�ciently implemented. Also, a very desirable
property is invertibility, which is not guaranteed in the approaches based on splines or other
interpolation techniques, except in the case of the Geodesic Interpolating Splines [10], which
are computationally expensive.

An approach was proposed in [11] to smoothly interpolate a deformation outside inde-
pendent rigidly moving regions. This computationally e�cient approach is unfortunately
�parameterized� by the motion and the arbitrarily complex shape of each rigidly-moving re-
gion. As a consequence, it is not straightforward to use this model for inference (i.e. non-rigid
registration). Moreover, the invertibility of the interpolated transformation is not always
ensured. An extension of this approach is presented in [12], which deals with the registration
of histological slices. This is a pivotal issue for the fusion of MR images and histological
slices, which is a promising technique for building precise atlases of brain structures [13],
[14].

Our idea is to use simple fuzzy regions de�ned by very few parameters: mainly the
position of the center, a typical radius of in�uence and the associated rigid or a�ne trans-
formation. We show in Sec. 2 that a simple average of the displacement induced by each
region leads to invertibility problems. Thus, we develop an in�nitesimal approach where
the displacement is obtained by the integration of the average speed. To address the imple-
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Polyrigid transformations 5

mentation e�ciency, we investigate in section 3 several numerical schemes. The result is a
new family of invertible and fully parametric transformations that we called polyrigid and
polya�ne transforms. We show in Sec. 4 that this new general tool is well-suited for the
non-rigid registration of articulated-like object. This is exempli�ed on 2D histological slices.
In Section 5, we also present preliminary results that show how polyrigid transformations
can be re�ned to describe precisely regions of in�uence of a complex shape.

2 Theory of Polyrigid Transformations

2.1 Regions of In�uence and Interpolation of Sparse Data

Simple Parameterization of Regions of In�uence

In order to model transformations having several distinct rigid behaviors in di�erent regions,
it is necessary to de�ne how each component of the global transformation is anchored geo-
metrically. One could of course choose to have regions of in�uence of arbitrary shape, like
in [11], but this is not convenient for inference. Having a reduced number of parameters
describing the shape and extent of each region of in�uence allows for simple optimization of
these parameters, which is a highly desirable feature for registration purposes.

We propose here a Gaussian model for regions of in�uence: to each region we have an
anchor point a 2 Rn , and in addition we also have two other parameters, a typical distance
� and a parameter p such that the in�uence of the i-th component is described by a �weight�
wi(x) = pi:G(ai;�i)(x) where G(ai;�i) is the Gaussian of mean ai and of standard deviation
�i. Thus, instead of using regions in which the transformation is purely rigid like in [11], we
propose �fuzzy� regions, which makes the transitions or interpolations between the regions
straightforward to handle.

In order to obtain a global transformation from several weighted components, the classical
way of mixing each local behavior is given in [15], which simply amounts to averaging the
displacements according to the weights:

T (x) =

P
i wi(x)Ti(x)P

i wi(x)
: (1)

Here, the transformations (Ti)i21���N are rigid transformations. They are parameterized by
the rotation matrixes (Ri) and the translations (ti). Their action on a point is given by:

8x 2 R
n ; Ti(x) = Ri(x) + ti:

Weaknesses of the Classical Averaging

The transformation obtained via (1) is smooth, both with respect to spatial coordinates and
its parameters. Nonetheless, it has several major drawbacks:

� Its invertibility is not guaranteed, and indeed will not be assured in many cases, for
example if the displacements are large.

RR n° 4837



6 V.Arsigny et al.

� In the favorable case where the inverse exists, it has in general no simple form and has
to be estimated by an ad hoc technique, for instance using a general deformation �eld,
which is iteratively optimized to obtain the inverse

� Is the behavior of this direct averaging procedure really qualitatively satisfactory? In
Fig. 1, an example shows that in the case of a mixture of rotations, points do not
in general turn around the centers of the rotations. On the contrary the approach
proposed here has this property.

These reasons have led us to develop a new kind of averaging procedure tackling the
above-mentioned problems.

2.2 A Framework with ODEs

Invertibility and ODEs

The challenge facing us at this point is the following: how to mix several transformations
according to some weight functions in an invertible way? A classical way of obtaining
invertible and smooth transformations is to use ordinary di�erential equations (ODEs) [16].
A particle governed by an ODE follows an equation of the form:

_x(s) = V (x; s):

If V is smooth (for instance C1) with respect to x (spatial coordinates) and s (time), and
if the solution x(s) is de�ned for all time, then the �ow �(x; s) associated to the ODE
de�nes a family of di�eomorphisms. This operator associate to a given starting position x
where a particle is supposed to be at time zero the position at time s reached by the particle
following the evolution prescribed by the ODE.

More precisely, for each s 2 R, we have that x 7! �(x; s) is a di�eomorphism: Rn ! Rn .
Our approach is based on this key result.

The Case of Rigid Transformations

From the classical results of linear algebra, it is obvious that a rigid transformation is
invertible, and its inverse is simply obtained by inverting the rotation part and adapting the
translation component in the appropriate way. But another viewpoint can be used to prove
the invertibility, using ODEs. More precisely, we can associate to a rigid transformation the
following ODE:

_x(s) = Vi(x; s) = ti +Ai(x� s ti) for s 2 [0; 1]: (2)

The origin of the Ai matrix is explained below. Eq. (2) is obtained by derivating the
trajectory equation x(s) = sti + exp(sAi). At time 0, we start with the initial position
and the image for the rigid transformation is obtained at time 1. Since Vi is smooth and
trajectories are de�ned for all time, the above-mentioned result applies.

INRIA
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Figure 1: Proposed approach (right) versus simple averaging (left). Here, the
polyrigid transformation has two rotation components, which have exactly opposite angles.
We consider in this �gure the various trajectories of points originally in the segment joining
the two centers. These trajectories are constituted by all the �nal positions of the initial
points as we progressively increase the angle of rotation from 0 to 2� radians. On top, the
two relative weights p1 and p2 are equal whereas on the bottom that of the left component
is substantially higher than the other, hence the greater in�uence of the transformation
anchored in the left part of the space. The form of trajectories show that points moving
under the action of a polyrigid transformation do turn around the centers of rotations of the
transformation. This property is not veri�ed in the case of the classical averaging.

In Eq. (2), we denote by Ai one of the logarithms of the rotation matrix Ri, which
veri�es the equality: exp(Ai) = Ri where exp is the matrix exponential. Since Ri is a
rotation, it always has a real logarithm, which is a skew matrix. In this report, we focus on
the 2D and 3D cases, although all results are valid for dimensions. This allows us to reason
in term of rotation vectors. Indeed, if we note r = (rx; ry; rz)

T a rotation vector associated
to a rotation R, we can de�ne a skew matrix A associated to r that is a logarithm of R with

RR n° 4837



8 V.Arsigny et al.

the relation:

A =

0
@ 0 �rz ry

rz 0 �rx
�ry rx 0

1
A :

A Continuous Averaging Procedure with ODEs

In order to insure the invertibility of our averaged transformation, let us de�ne a new ODE,
with the hope of being able to apply the invertibility theorem. The idea is simply to average
according to weights the speed vectors associated to each component, instead of averaging
the �nal results:

_x(s) = V (x; s) =

P
i wi(x)Vi(x; s)P

i wi(x)
(3)

Ideally, we would like to de�ne our averaged transformation as T (x) = �(x; 1), where � is
the �ow associated to the ODE (3).

This means that each component will in�uence the motion of a particle accordingly with
the weights modeling its in�uence in space. The result obtained at time 1 is the image of
initial position x under the action of the average transformation.

2.3 Theoretical Properties of Polyrigid Transformations

Life-Span of a Solution to an ODE

As mentioned before, in order to de�ne our average transformation, it is necessary to prove
that the position at time 1 exists, whatever the initial position may be. For an arbitrary
ODE, the existence is not always insured, however smooth the speed function V may be.
Consider for instance, the 1D evolution

_y(s) = V (y) = y2:

Its solution with an initial position y0 is y(s) = 1=1=y0 � s. We thus see that for 1=y0 > 0,
the life-span of the solution only extends between �1 and 1

y0
, and if 1

y0
< 1, then the

position at time 1 is absolutely unde�ned, the particle having gone to in�nity before that!

Existence and Invertibility of Polyrigid Transformations

Since in (3) V (x; s) is C1 with respect to spatial position and time, it only remains to be
proved that the evolution does not lead to explosion towards in�nity before time 1. This is
the central theoretical result of this paper.

Theorem 1. All solutions of Eq. (3) have an in�nite life-span, i.e. they are de�ned for
all time, whatever the rigid transformations may be. The polyrigid transformations de�ned
via �(:; 1) are thus well-de�ned and di�eormorphic.

INRIA
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Proof. There exists three positive constants C1, C2 and C3 such that kV (x; s)k2 � C1 +
C2jsj + C3kxk. For instance, take C1 = maxi ktik2 and C2 = maxi kAitik2 and C3 =
maxi kAik2 where kAik2 refers to the Frobenius norm of matrix Ai, equal here to the L2 norm
of the associated rotation vector. This yields via a classical bounding that 8s; k�(x; s)k �
eC3jsj(k�(x; 0)+(1�e�C3jsj)(C1=C3+ jsjC2=C3)), which su�ces to prove the result because
it shows that the position of the particle evolving with Eq. (3) is contained within a sphere
whose radius grows exponentially this time.

A simple inverse. The inverse of the transformation is obtained here in a simple fashion:
it su�ces to go back in time! The skew matrix is changed into its opposite, the translation
also and s becomes 1� s. The inverse transformation thus takes here a simple form.

Di�erentiability with Respect to the Parameters

So far, we have shown that for a given system of rigid transformations (Ti)i21���N parameter-
ized by (Ai; ti) and anchored in space via the region parameters (ai; �i; pi) can be averaged
so as to yield a di�eomorphism. But, what smoothness can be guaranteed with respect
to the parameters? Di�erentiability is crucial so as to enable simple optimization of the
transformation in a registration framework. We have the following result:

Theorem 2. Polyrigid transformation are C1 with respect to all parameters.

Proof. This comes from the di�erentiability of the �ow of an ODE. Indeed, let us de�ne
the new ODE _z(s) = W (z; s) where z = (x; p), x being the spatial coordinates of a particle
and p the parameters of the polyrigid transformation written in a vectorial fashion, and
where the speed vector W (z; s) = (V (x; s); 0). Thus, x evolves according to (3) and that p
does not change as time goes by. W is C1 and the solutions are de�ned for all time since
those of (3) are. This implies the di�erentiability of the �ow associated to this ODE, which
is exactly the di�erentiability of the polyrigid transformation with respect to its parameters.

2.4 Extension to Polya�ne Transformations

A Simple Extension via the Real Logarithm

One can wonder to what extent it is possible to use the framework presented above to
work with locally a�ne transformations. This can be done in a direct way if each a�ne
transformation (Mi; ti) has a linear part Mi that admits a real logarithm, i.e., if there exists
Ai 2 Mn(R) such that exp(Ai) = Mi. Then, we can adopt all coordinates of Ai as new
scalar parameters to work with, and all the results of this section hold for this other type of
transformation, that we could call polya�ne.

RR n° 4837



10 V.Arsigny et al.

Practical Limitations and Complex Logarithm

Unfortunately, not all real invertible matrices Mi 2 GLn(R) have a real logarithm. Even
among real matrices with a positive determinant, this is not true. One reason is that there is
no real logarithm for negative real numbers. Another comes from the speci�c structure of the
group of real matrices of positive determinant. For more details, a precise characterization
of real invertible matrices admitting a real logarithm can be found in [17]. For example, the
following matrix, corresponding to a dilation of factor 2 along the �rst axis followed by a
rotation of � radians has no real logarithm:�

�2 0
0 �1

�

This is unsatisfactory, because compositions of a dilatation and a rotation are deformations
that are essential to the a�ne generalization of polyrigid transformations. Moreover, this
leads to an impossibility to initialize with an arbitrary a�ne transformation a polya�ne
transformation. But it should be noted that in this simple example, this problem occurs
only when the module of the angle of the rotation is greater than �=2. Generally speaking ,
the compositions of dilatations and rotations admit a real logarithm if the angle of rotation
is su�ciently small. This is indeed a limitation, but whether or not it is too restrictive
depends of course on the application.

In order to construct completely polya�ne transformations, a natural idea is to use
complex numbers. Indeed, if all invertible real matrices do not admit a real logarithm, a
contrario, they always admit a complex logarithm, i.e. for all M 2 GLn(R), there exists
A 2 Mn(C ) such that exp(A) = M . In order to make use of this logarithm, one could
think for example of using intermediary points that lie in the complex domain, and then of
taking the real part of the �nal position. But in that case, discarding the imaginary part of
the result implies the impossibility to go back in time. In other words, this suppresses the
invertibility of the transformation in the general case. This generalization, still incomplete,
will be the subject of future work.

2.5 Summary of the properties of Polyrigid Transformations

In this section, we de�ned a new class of transformations, modeling a mixture of rigid
transformations, whose in�uence is geometrically anchored in a simple way. These trans-
formations are di�eomorphisms and smooth with respect to all of their parameters. The
following tables summarize the various parameters of the transformations (Table 1), and the
number of scalar parameters obtained in 2 dimensions or 3 dimensions (Table 2), where a
comparison is be made with B-Splines.

INRIA



Polyrigid transformations 11

Region parameters Deformation parameters

Anchor points: (ai) Rotation vectors: (ri)
Standard deviations: (�i) Translation vectors: (ti)
Relative weights: (pi)

Table 1: The two types of parameters of polyrigid transformations.

Number of components 2D B-Spline equivalent 3D B-Spline equivalent

2 13 3 control points 21 3 c.p.
3 20 5 c.p. 32 5 c.p.
4 27 6 c.p. 43 7 c.p.
N 7N � 1 7N�1

4 c.p. 11N � 1 11N�1
6 c.p.

Table 2: Summary of the various types of parameters for polyrigid transformations, and a
comparison between their number of parameters and that of the B-Splines.

3 Implementation of Polyrigid Transformations

3.1 Discretization Schemes

Since it is impossible in the general case to obtain a formula giving the new position of a
point moving under the action of a polyrigid transformation, it is a necessity to resort to a
numerical scheme consistent with the ODE de�ning the transformation.

In other words, the trajectory of a point moving via (3) must be sampled: a number
of intermediary point has to be chosen, let us say N , and a rule for obtaining the points
(xi)i20���N has to be chosen, so that the curve de�ned by the points converges toward the
real continuous curve given by the ODE.

The Consistent First Order Scheme

The consistent �rst order scheme is simply given in the following way: we de�ne the operators
T
1=N
1 and T

k=N
1 by:8><

>:
T
1=N
1 (x; s) = x+ 1

N V (x; s):

T
k=N
1 (x) = T

1=N
1 (:; (k � 1)=N) Æ � � � Æ T

1=N
1| {z }(x; 0):

k compositions

(4)

The points (xi) are obtained recursively using:�
x0 = x:

for 1 � n � N : xn = T
1=N
1 (xn�1; (k � 1)=N) = T

k=N
1 (x0):

(5)

This simply means that starting at x0, we jump from xn�1 to xn by adding 1
N times the

speed vector V (xn�1;
n�1
N ).

RR n° 4837



12 V.Arsigny et al.

An E�cient Second Order Scheme

The scheme described above is not really satisfactory. In the case of a single rigid component,
the approximation obtained results in making points move along a diverging spiral instead
of along a circle (if the transformation is a rotation). This is regrettable, and a simple way
of suppressing this approximation is to use the following second-order scheme using new
operators T 1=N

2 and T
k=N
2 :8>><

>>:
T
1=N
2 (x; s) = x+

P
i wi(x)(

1

N ti+(e
Ai
N �Id)(x�sti))P

i wi(x)
:

T
k=N
2 (x) = T

1=N
2 (:; (k � 1)=N) Æ � � � Æ T

1=N
2| {z }(x; 0)

k compositions

: (6)

Instead of averaging the speed vectors of each component, we average instead the displace-
ments that would be observed if each component was acting alone during a small interval
of time of length 1

N . This consistent scheme is not the optimal second-order scheme. But it
is exact in the case of a single component, and its convergence is much faster than the �rst
one as is shown in �gure 2. Furthermore, the diverging spiral phenomenon observed for the
�rst scheme disappears.

The Optimal Second Order Scheme

The optimal second-order scheme is obtained simply by looking at the Taylor development
of the solution of the ODE (3). Let x(s) be the solution of initial condition x0. We have:

x(s) = x0 + s V (x0; 0) +
s2

2

�
@V

@x
(x0; 0):V (x0; 0) +

@V

@s
(x0; 0)

�
+O(s3):

From this equation a third scheme can be deduced, more precise than the second one,
though computationally more expensive. In practice, we did not use it, because computing
the derivatives of this approximation of the transformation with respect to the parameters
involves computing second-order derivatives of the speed vector, which is quite expensive.

Derivatives of the Transformation

Computing the derivatives of the transformation with respect to its parameters is necessary
to use a gradient descent approach. More explicitly, let us consider a simple registration
strategy. Let I and J be two images, and let us chose the sum of square di�erences (SSD)
criterion. This does not imply that our approach is restricted to that particular case: one
could obviously compute the derivatives for other criteria. We take two images, J and I ,
and we want to register J onto I using the inverse of a polyrigid transformation Tp. p are
the parameters of the transformation. In this case, The criterion to be minimized is:

S(I; J Æ Tp) =

Z



kI(x)� J Æ Tp(x)k
2 dx:

INRIA
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Figure 2: First scheme (on the left) versus second scheme (on the right). From
top to bottom: discretization levels of 3, 5, 7 and 20. As in �gure 1, various trajectories are
displayed, these trajectories being obtained when the two opposite rotations see their angle
increase progressively between 0 and 2�. Here, the rotation on the left has a larger relative
weight than that on the right, which lessens the in�uence of the latter.
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The gradient of S with respect to p is the following:

@S

@p
(I; J Æ Tp) = 2

Z



(J Æ Tp(x) � I(x)):(rJ Æ Tp)(x):
@Tp
@p

(x) dx:

In the last equation, the symbol � :� denotes the matrix product. In order to compute the
derivatives of the transformation with respect to the parameters, we simply computed the
derivatives of each of the schemes. This is done again with a recursive formulation:

@T
k
N
p (x)

@p
=

@T
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p
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�
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p (x)
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T
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p (x)
�
:
@T

k�1
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p (x)

@p
:

For a �rst-order gradient descent, only the above gradient is necessary. But for a second-
order gradient descent, we will also need the second-order derivative:

@2S
@p2 (I; J Æ Tp) = 2f

@Tp
@p (x)T :(rJ Æ Tp)(x)

T :(rJ Æ Tp)(x):
@Tp
@p (x)

+(J Æ Tp(x)� I(x))
@Tp
@p (x)T :(@

2J
@x2 Æ Tp(x)):

@Tp
@p (x)

+(J Æ Tp(x)� I(x))
@Tp
@p (x):

@2Tp
@p2(x)g:

(7)

A useful approximation is obtained by keeping only the �rst term of this equation. It has
the nice property of being symmetric positive, and is a good approximation of the Hessian
as long as that the di�erence of intensities (J Æ Tp(x) � I(x)) is small. Therefore, the more
we will be close to a �good� solution, the more valid this approximation is. For detailed
formulas, we refer the reader to Appendix A.

3.2 Practical Implementation

The polyrigid transformations were implemented as a new transformation class of the Insight
Toolkit1, in C++. This new toolkit provides extensive resources dedicated to segmentation
and registration of medical images. Figure 3 shows the registration framework chosen by
ITK. The experiments presented in next section are carried out using our new class of trans-
formation, the SSD similarity criterion (called here a �metric�), with a bilinear interpolation.

For the �rst-order gradient descent, we used the already implemented ITK optimizer
RegularStepGradientDescentOptimizer, in which the step of the gradient is reduced if
the change of direction is too abrupt. This prevents the algorithm from going systematically
too far in the direction of the gradient. For the second-order gradient descent, we have
implemented our own optimizer. This enabled us to adapt completely the optimization tool
to the registration studied in Section 4.

1http://www.itk.org
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Figure 3: ITK's registration framework.

4 Registration of Two Histological Slices

4.1 Object of the Study and Experimental Setup

In order to demonstrate the feasibility and power of the use of polyrigid transformation for
registration purposes, we present in this section some preliminary results on the registration
of histological slices (Fig. 4). These images are acquired in such a way that rigid defor-
mations are frequently introduced locally during the acquisition process. Indeed, we see in
Fig. 4 that such an artifact is present: a gyrus has been rotated in the top left corner. The
aim of this study is to show that simple polyrigid transformations can substantially and
naturally reduce the impact of such non-linear deformations, without introducing too much
unrealistic deformations. Indeed, di�erent slices image di�erent parts of the brain, and we
do need to keep these anaotmical di�erences: our goal is to lessen the artifacts created dur-
ing the acquisition process without introducing new arti�cial deformations, what a classical
non-rigid registration algorithm would clearly do.

In �gure 5, we see the results obtained with classical robust rigid and a�ne registration
procedures [18]. These methods are not able to register properly the rotated gyrus and at
the same time all other gyri. This defect is due to the lack of degrees of freedom in these
linear transformations. In the a�ne case, it is also due to the fact that the extra degrees of
freedom, modeling dilatations and shearing, are not used to model the actual deformations
appearing in the image. This suggests to use transformations with more degrees of freedom,
and if possible, degrees of freedom that are adapted to the real deformations observed. This
is precisely what polyrigid transformations are aiming at for this application.

The dimensions of the slices are 226 by 384 pixels. These two slices, kindly provided by
P. Thompson and A. Pitiot from the LONI (UCLA), are relevant here, because local rigid
deformations have occurred while cutting and storing the slices. The registration of these
two slices has an additional di�culty: the absence of matter in the lower-left-hand corner of
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16 V.Arsigny et al.

Figure 4: Histological slices studied in Section 4. There is clearly a global rigid trans-
formation to take into account between the two slices. Two main di�culties are predictable
here for a non-rigid registration algorithm: �rst, the absence of matter on the bottom left-
hand corner of the second slice. Second, a large gyrus on the top left has been rotated
toward the left. The aim of this study is to correct this defect without being misled by the
�rst one.
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Polyrigid transformations 17

Figure 5: Images of absolute di�erences for rigid (on the right) and a�ne (on
the left) registrations. The whiter the grey level, the worse the registration is locally.
We see in both cases that in many places, the edges of the gyri have not been registered
precisely, because of the in�uence of the rotated gyrus in the top left corner and also because
some other (smaller) non-linear deformations have taken place. We see also on the left that
in order to register better the rotated gyrus, the a�ne registration gives poorer results for
many edges than the rigid registration. Indeed, this better registration of the gyrus has been
obtained at the cost of a dilatation of the slice, which in this situation is not appropriate.
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the second slice. Most non-rigid registration algorithms are misled by such a defect because
they will try to correct it, and in so doing they introduce irrelevant arti�cial deformations.

The two images are both histological slices and the calibration of the optical setup used
to acquire them was identical. Therefore, the assumption that the various structures present
in the images have the same grey level is valid, and we can safely use the sum of square
di�erences criterion.

We apply successively in this section several types of gradient descent. To test the
robustness of our algorithm, the initialization used is the following:

� All rigid components are initially set to the identity.

� Anchor points are sampled on a regular grid, except in the �rst experience, where a
manual initialization is done.

� Relative weights are all equal.

� (�i) are initialized at a high value, here 40, so that the in�uence of all regions extends
in a good half of the images.

Four rigid components are used in the experiments. This number is a good compromise
between the necessity of having enough degrees of freedom to register correctly the slices
and the obvious risk of introducing too many degrees of freedom, which results in large
unrealistic deformations. This is precisely what happens when more components are used.
All in all, these four components are parameterized by 27 scalar parameters, which is the
equivalent of only 6 control points for the B-splines (24 scalar parameters).

The second numerical scheme is used here, since it outperforms the other. The level of
discretization is chosen very low, i.e. almost all results are obtained using no intermediary
point between the starting position and the �nal position of a point. The deformed grids
shown in the �gures of this section show that the obtained transformations are invertible.
Since inverting them was not necessary in this study, it is not necessary here to use more
points. In fact, increases the number of discretization points used leads to very similar
results, which shows that such a precision is not necessary here. But for other applications,
if discontinuities appear or if it is necessary to use also the inverse transformation, then a
�ner discretization is of course essential.

4.2 Limitations of the First-Order Gradient Descent.

A simple way to minimize the similarity criterion between the images is to use a �rst-order
gradient descent, i.e. to make the parameters evolve in the steepest direction of descent,
which is given by the gradient. Unfortunately, this approach cannot be directly used for
our model. The partial derivatives in the gradient show di�erences of several orders of
magnitudes! Qualitatively we have k @

@ri
Tpk >> k @

@ti
Tpk >> other derivatives. This implies

that the classical gradient descent will make rotations evolve enormously, the translations a
little, and the other parameters almost not.
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Polyrigid transformations 19

For rotations and translations, the di�erence of magnitude of their respective partial
derivative can be intuitively understood in the following way: for a small variation of the
angle of rotation, points far away from the center of rotation will move proportionnaly to
their distance to the center of rotation. In other words, the further away from the center,
the higher will be the variation in position, and a small variation can result in a large one at
a distance. On the other hand, a variation in translation will a�ect all the points uniformly,
and a small variation always yields a small modi�cation in position. Therefore, we tend to
have large partial derivative with respect to rotations as compared to partial derivatives with
respect to translations. This di�culty is often encountered in situations where parameters
of di�erent natures are to be optimized simultaneously.

A simple remedy is to renormalize the amplitudes of the partial derivatives. Typically,
dividing the amplitude of the rotation partial derivative by a factor 1000 is needed to obtain
the optimization at least of both rotations and translations. Fig. 6 shows the behavior of
the registration as the scaling evolves.
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First order registration with scaling of rotations
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Scale=100
Scale=300
Scale=1000

Figure 6: SSD criterion evolution for a polyrigid registration with a simple �rst
order gradient descent. The only modi�cation to the gradient was the rescaling of the
rotation partial derivative, which is much larger in magnitude than the others. The �gure
shows the SSD evolution during registration for three values of the rotation scaling: 100, 300
and 1000. Thus, we see that an important rescaling (at least of a factor 300) is necessary
to improve the registration process, which is otherwise ine�cient. The registration results
only in the optimization of the rotations, the other parameters hardly evolving during the
registration procedure.

As we see in the deformed grid of Fig. 7, the �nal transformation is notably non-linear.
But the anchor points have not moved from their initial position, which does not allow for an
accurate registration in the upper left-hand corner. We can see in Fig. 8 that the edges were
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much better registered than with using a robust rigid transformation. But the incapacity
to optimize the regions of in�uence thwarted the better registration of the upper-left-hand
corner.

Of course, one could think of estimating a relevant renormalization for each type of
parameter. This could be done by computing some kind of average amplitude for each
partial derivative, and them dividing the derivatives by that value so as to obtain values of
approximately the same amplitude. But this renormalization would have to be carried out for
each pair of images to be registered. It would surely not be e�cient for all iterations, and it
is not so clear why all partial derivatives should have approximately the same amplitude. In
the case of a pure translation, forcing the rotation vectors to evolve would not be convenient!
This calls for some type of adaptive renormalizing method.

4.3 Registration Results using a Levenberg-Marquardt Algorithm

To renormalize the partial derivatives in an adaptive way, a simple idea is to perform a
second-order gradient descent scheme. The renormalization is handled by multiplying the
gradient by the inverse of a matrix re�ecting the second variations of the criterion. Here,
this matrix is the approximation of the Hessian described in Section 3. The computation of
this positive matrix term (in the sense of quadratic forms) can be done only at the expense
of a very little cost, since it only requires the knowledge of the transformation's gradient
and of the images intensities.

In order to perform an e�cient 2nd-order gradient descent, the Levenberg-Marquardt
algorithm (LM) was used (see [19], pages 312-314). At each iteration, a trust indicator is
updated, which tunes the gradient descent between a simple �rst-order gradient descent and
a quasi Gauss-Newton descent based on the truncated Hessian. This way, we obtain naturally
a renormalization of the various parameters and also a faster convergence, especially when
we are close to the minimum.

Figures 9 and 10 show that the Levenberg-Marquardt performs much better than a �rst-
order descent, both quantitatively and qualitatively. Three major local rigid transformations
have been correctly identi�ed, and the only remaining defect is concentrated in the transition
area between two rigid components, in the top left corner. The edges have been very �nely
registered as compared to rigid registration, as we see in Figure 10. This good result is
obtained in spite of a very crude initialization which proves the robustness of the proposed
registration algorithm. The only remaining problem is the large deformations occurring
at the vertical frontier between the originally rotated gyrus and the other gyri. This is
partly due to the simple spherical form chosen for the regions of in�uence, and partly to the
discontinuity that originally made the gyrus rotate. The polyrigid deformations are smooth
transformations and therefore they cannot properly model discontinuous deformations.

4.4 Alternating Optimization

The renormalizing process via a second-order approach can be avoided by simply optimizing
the parameters alternatively. Moreover, with more than 4 rigid components, the renormal-
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Figure 7: Polyrigid registration result with a simple �rst-order gradient descent.
From left to right and from top to bottom: (1) The deformed image. (2) The image of
absolute di�erence between the deformed image and the �xed image. (3) A representation
of the regions of in�uence: a grey level is attributed to each region, and this color is displayed
if and only if the local weight of the region represents more than 90 percents of the total
weight. The anchor points are represented here by small squares. (4) A regular grid deformed
like the deformed image. (5) An image of the regions of in�uence, a grey level being displayed
if and only if its associated weight is the largest one. (6) An image of the regions of in�uence
displaying at each point the weighted average of the grey levels according to the local weights.
Thus, we see that a non-linear deformation has been obtained, as show the curved lines of
the initially regular grid. The defect of this registration is that anchor points have not moved
from their initial positions.
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Figure 8: Rigid (on the left) versus polyrigid registration with a simple �rst-order
gradient descent and a rescaling for rotations (on the right). This demonstrates
that the absence of matter in the lower left-hand corner has not prevented the polyrigid
registration from being quite satisfactory. Indeed, most edges have been very �nely reg-
istered, much better than in the rigid case. Nonetheless, we see that the gyrus lying in
the upper left-hand corner still has not been completely correctly registered, because of the
incapacity of the algorithm to optimize the region parameters, which have small derivatives
in magnitude.
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Figure 9: SSD criterion evolution for a polyrigid registration with a Levenberg-
Marquardt (LM) versus a simple �rst-order optimization scheme. This shows that
using a second-order descent has greatly enhanced the �nal results quantitatively, and also
qualitatively as is shown is the next �gures.

ization introduced in the second-order descent is no longer su�cient: the same defects as in
the �rst-order gradient descent appear again.

As a consequence, we introduce here a strategy optimizing alternatively the various
parameters. There is no single way of optimizing alternatively the parameters, and it is
theoretically di�cult to decide which parameters to group, and how many iterations of
optimization are to be used for each group at each iteration of the global optimization.
Our tests led us to optimize on the one hand the deformation parameters and on the other
the region parameters, one iteration at a time for each. We also use here a Levenberg-
Marquardt strategy for each group, to speed up the convergence. This yields a stable and
e�cient optimization algorithm.

Figures 11, 12, 13, 14 and 15 shows how the registration process progresses as the number
of iterations increases. In these images, we can clearly see that the registration process has
identi�ed and satisfactorily estimated at least three independent rigid behavior. At the same
time, the deliberate simplicity of the regions of in�uence forbids a precise description of the
frontiers between the regions. At this point of the registration process, we could resort to a
classical non-rigid registration algorithm to make the registration more precise in this sector.
But re�ning the parameters describing the regions of in�uence can also be a possibility, as
is shown in the next section of this report.
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Figure 10: Polyrigid LM registration versus robust rigid registration: deformed
image and absolute di�erence after 78 iterations for LM (resp. left and middle) and result of
rigid registration (right). The second-order registration method has allowed the algorithm
to register the previously rotated gyrus. The result is much better qualitatively than for
the �rst order descent, and edges are much more �nely registered than in the rigid case.
Nonetheless, some amount of unnatural deformations has been added at the vertical frontier
between the gyrus and the rest of the slice. This phenomenon is due to the simple forms of
the respective rigid regions.
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Figure 11: Polyrigid alternating LM registration, iteration 10. This �gure and
the four following ones are intended to give to the reader a better understanding of how
the polyrigid registration proceeds, and of what is �nally obtained in terms of parameters,
regions, local deformations... We see here that the global rigid transformation has already
been obtained, and also some amount of more subtle local rigid deformations.
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Figure 12: Polyrigid alternating LM registration, iteration 20. The upper-left-hand
corner gyrus is beginning to move.
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Figure 13: Polyrigid alternating LM registration, iteration 40. The registration of
the upper-left-hand corner gyrus continues, while the various rigid components see their
standard deviation decrease.
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Figure 14: Polyrigid alternating LM registration, iteration 60. The registration of
the gyrus is almost done, and the respective regions are more and more cleary delimited,
the band of transition between them being smaller and smaller. One region also adopts a
spherical form, which comes form the isotropic Gaussian model chosen to de�ne the regions.
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Figure 15: Polyrigid alternating LM registration, iteration 80. This is the �nal result:
the gyrus has been as correctly registered as can be. The vertical frontier on the left of it
has a circular form, which results in some unnatural deformations. These deformations are
marginal but nonetheless non-negligeable. However, only 4 rigid components (i.e. 27 scalar
parameters) have been necessary here to register very �nely most of the two slices, without
being disturbed by the lack of matter in the lower-left-hand corner of one the registered
slice.
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5 Preliminary Results with more Complex Regions

5.1 The Shape of the Regions of In�uence.

The assumption that each fuzzy region can be accurately described by a simple Gaussian
weight can be too strong in certain cases. But generally speaking, we simply have to keep
the weights (strictly) positive and smooth with respect to spatial coordinates and parame-
ters. Therefore very complex regions can be used, the simplest way being to use mixtures
of simple probability distributions. But other solutions could be used, such as introducing
explicitly an pre-de�ned shape for a region. More precisely, if R is a region, we can de-
�ne an associated weight with w(x) = 1R ? G�(x). 1R is simply the function returning 1
if x 2 G and 0 elsewhere. G� is a Gaussian of standard deviation �, that smoothes 1R
through a convolution. Thus, combinations of pre-de�ned regions and simply parameter-
ized regions provides quite a rich framework for modeling an application-speci�c polyrigid
transformation.

We present here preliminary results in which we have simply increased the number of
anchor points per region. Therefore, regions are modeled via a mixture of Gaussian. This
more general form for the weights wi(x) can be written as follows:

wi(x) = pi

niX
j=1

Gaji ;�
j
i
(x):

In other terms, each component i has its own number ni of anchor points (a
j
i )j21���ni , which

all have their speci�c standard deviation �ji .

5.2 Results Obtained with Three Anchor Points

In order to see whether we can obtain better results than in the previous section, we present
here the results with three anchor points per region. One could think of re�ning progressively
the number of points, and this is a issue that will be addressed in future work. The present
experiment simply consists in making the whole registration proceed with three anchor
points, using the most e�cient optimization algorithm presented in this report, i.e. the
alternating LM strategy.

The experimental setup is identical, except for anchor points, which are initialized on
the vertices of equilateral triangles placed on a regular grid.

We obtain here much better results, as show �gures 16, 17 and 18. The frontier that
was lacking in precision is substantially re�ned here, introducing less arti�cial deformations.
However, some amount of unrealistic deformation remains. That was to be expected, since
it was a rift which made the gyrus rotate. Such a discontinuous process cannot be fully
recovered with a smooth deformation! To proceed further, it would be necessary to take
into account precisely such discontinuous e�ect.
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Figure 16: Polyrigid alternating LM registration with 3 anchors points per region,
iteration 26. We immediately see that instead of being circular as in the former images,
the vertical frontier at the right of the rotated gyrus is more complex, with two distinct
arcs. Several points are placed on each side of it, as in the famous case of support vector
machines in classi�cation theory.
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Figure 17: Polyrigid alternating LM registration with 3 anchors points per region,
iteration 57. The frontier mentioned in the last �gure is more re�ned, and gets closer and
closer to the real frontier.
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Figure 18: Polyrigid alternating LM registration with 3 anchors points per region,
iteration 89. The �nal result is quite satisfactory: a realistic frontier has been automati-
cally inferred which brings the originally rotated gyrus into a precise registration. All edges
have been correctly registered. Few arti�cial deformations are introduced, thanks to the
fact that we have only used four di�erent regions having independent rigid motions. As the
deformations of the regular grid show, the transformation is still invertible. It should also
be noted that is result has been obtained with a fully automatic and crude initialization,
and without resorting to a multi-resolution framework. This demonstrates the robustness
of the registration algorithm.
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6 Conclusion and Perspectives

We present in this paper a novel and innovative type of geometrical transformation, the
polyrigid transformations. Smooth and invertible, these transforms have several rigid com-
ponents. This means that a given number of fuzzy regions are de�ned, on which the global
transformation is mostly rigid. An e�cient numerical scheme for the practical implementa-
tion in any dimension is also presented.

These transformations are exempli�ed on the 2D registration of histological slices. Most
non-linear artifacts generated during the acquisition process of the slices have been corrected,
and it remains only a residual deformation due to the smoothness of polyrigid transforma-
tions. For this speci�c application, further developments would be needed to model the
tearing process that has taken place, which is discontinuous by nature.

As shown in Sec. 5, there are many ways of adapting the polyrigid transformations to
new applications, by modifying the shape and parameterization of the regions of in�uence.
In order to make the polyrigid transformations more accurate, it should also be possible to
de�ne adaptive strategies progressively re�ne the shape of regions where it is necessary.

We will investigate in future work the application of this new tool to 3D registration.
In the human body, many structures present articulations between rigid structures, which
suggests the use of transformations incorporating all these rigid movements. A possibility
would be to use several components of elongated shape in order to model articulated regions,
plus another one modeling the transformation of the background. Such a model has the
advantage of describing movements that in reality have few degrees of freedom with also a
limited number of degrees of freedom.

We have also presented in Sec. 2 a possible extension of our framework to polya�ne
transformations. Though some theoretical limitations remain on this subject, we believe
it is be possible to use such an extension in the �eld of shape statistics. More precisely,
one could model the variability of the shape around its mean via the statistical analysis of
these variations in a certain space of transformations. By choosing as adequately as possible
this space of deformations, a model with a limited number of parameters could be derived.
Polya�ne transformations are in our opinion a good candidate for doing so, because they
can take into account both local rotations, translations or swellings.

In the same vein, another application would be the building of new anatomical atlases,
which would use polyrigid or polya�ne transformations to establish correspondences between
the various instances in a dataset so as to compute accurate statistical atlases. It would be
interesting to compare the performances of these new transformations to those obtained for
example with B-Splines, for an equal number of degrees of freedom.
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A First Derivative of Polyrigid Transformations

Here, we will only focus on the derivatives of the second scheme, which is the only one of
practical interest.

A.1 Derivation with Respect to Parameters

Let us denote:

M
1

N

i (x; s) =
1

N
ti + (e

Ai
N � Id)(x � sti):

This is the modi�cation �proposed� by the i-th component at a given time s and point x for
the second scheme. Conversely, let us write the actual modi�cation:

M
1

N (x; s) =

P
i wi(x)(

1
N ti + (e

Ai
N � Id)(x � sti))P

i wi(x)
:

Then let pi be a parameter of a rigid transformation Tp, and more speci�cally a parameter

of the i-th component. When we compute the derivative of T 1=N
2 (x; s) with respect to pi,

we get the following simpli�cation:
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Then, it only remains to see what form take the derivatives of the modi�cations and of the
weights. If we assume that weights have a Gaussian expression of the following form:

wi(x) = pi
(2��2i )

n=2 exp
�
�kx�aik

2

2�2i :

�
: (8)
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It follows that:8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:
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As for the derivatives of the modi�cations, we have:
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@ti
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Id� s

�
e
Ai
N � Id

�
: (10)

It remains to be seen how one can derivate (e
Ai
N � Id) with respect to the rotation vector

ri.

A.2 Derivation with Respect to the Rotation vector

The computation of the derivative of a matrix exponential of a matrix function has no simple
form like in the case of scalars. Indeed, when we take M(p) = exp(A(p)), we do not have
in the general case as with scalars that @

@pM(p) = f @
@pA(p)gM(p). This stems from the

non-commutation of A(p) and @
@pA(p), which is a su�cient condition for derivating in a

simple way the exponential.
Let us denote Bx, By, Bz the following matrices:

Bx =

0
@ 0 0 0

0 0 �1
0 1 0

1
A ; By =

0
@ 0 0 1

0 0 0
�1 0 0

1
A ; Bz =

0
@ 0 �1 0

1 0 0
0 0 0

1
A :

We have the following result:

8a 2 fx; y; zg;
@

@ra
exp

�
1

N
A

�
=
X
n>0

1

n!Nn

nX
i=1

Ai�1:Ba:A
n�i:

This simply comes from the derivation of each term of the series de�ning the exponential.
In the case of a�ne transformation, all coordinates of the logarithm are parameters in

their own right, instead of being a function of a rotation vector. Let us denote B(i;j) the
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matrix such that B(i;j)(k; l) = Æ((i; j); (k; l)) where Æ is the Kronecker function. In this more
general case, derivating exp

�
1
NA
�
with respect to the coordinates A(i; j) of A yields:

@

@A(i; j)
exp

�
1

N
A

�
=
X
n>0

1

n!Nn

nX
i=1

Ai�1:B(i;j):A
n�i:

A.3 Spatial Derivatives

Finally, let us consider the spatial derivative of our scheme, which it is necessary to compute
in order to obtain the derivative of the transformation with respect to its parameters. We
have:

@T
1=N
p (x; s)

@x
=

1

N

P
i(M

1

N

i (x; s) @wi(x)
@x + wi(x)

@
@xM

1

N

i (x; s))P
i wi(x)

�
(
P

i wi(x)M
1

N

i (x; s))(
P

i
@wi(x)
@x )

(
P

i wi(x))2

=
1

N

P
i(M

1

N

i (x; s) @wi(x)
@x + wi(x)(e

Ai
N � Id))P

i wi(x)

�M
1

N (x; s)
(
P

i
@wi(x)
@x )

(
P

i wi(x))
:

(11)

The spatial derivative of the weights is given by:

@wi(x)

@x
=

@

@x

�
pi

(2��2i )
n=2

exp

�
�
kx� aik

2

2�2i

��

=
pi

(2��2i )
n=2

�
�

1

�2i
(x� ai)

T

�
exp

�
�
kx� aik

2

2�2i

�

= �
wi(x)

�2i
(x� ai)

T :

(12)
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