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Abstract. We introduce a novel family of geometrical transformations
for the non-rigid registration of medical images, called polyrigid and
polyaffine. These transformations have nice mathematical properties, in-
cluding differentiability and invertibility (i.e diffeomorphism). They are
parameterized by a small number of intuitive parameters which allow to
recover locally rigid and locally affine deformations often encountered in
medical imagery. These transformations are a nice alternative to classical
B-Spline transformations (which do not guaranty invertibility). Prelim-
inary experiments on synthetic and real images already illustrate the
potentialities and good properties of this approach.

1 Introduction

The registration of medical images is in general a difficult problem, and numer-
ous methods and tools have been already devised to address this task[1]. In this
paper, we do not focus on the similarity metric, but rather on the geometrical
aspects of the registration process, and more precisely on the family of transfor-
mations used to establish dense correspondences between anatomical images.

At the beginning of the spectrum, we have simple parametric transforma-
tions such as rigid or affine transformations, which have a very small number
of degrees of freedom, and can be efficiently used for intra-patient registration.
Other types of transformations, such as those parameterized via B-Splines [2],
Thin-Plate-Splines [3], finite elements mechanical models [4] or more general
deformable models can have an arbitrary number of degrees of freedom and
be used for both inter-subject or intra-subject registration. At the end of the
spectrum, deformation fields defining a displacement at every voxel exhibit the
highest number of degrees of freedom [5,6,7], and can be used for inter-subject
registration.

Each of the above transformations has its particular domain of application.
However, in the case of anatomical structures incorporating rigid elements (such
as bone articulations, or structures which are subject to simple local deforma-
tions, like histological slices), we believe that none of them is fully appropriate.
Rigid and affine transformations clearly don’t have enough degrees of freedom.
On the contrary, deformation fields have too many and thus can be easily misled
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by local minima of the similarity criterion. For the existing intermediate trans-
formations, e.g. B-Splines [2], the degrees of freedom of the transformation are
not really adapted as many control points are required to reconstruct several
locally rigid behaviors, especially when rotations are substantial.

Our goal in this paper is to define new parametric transformations that ex-
hibit a locally rigid or affine behavior, and that can be efficiently implemented.
Also, a very desirable property is invertibility, which is not guaranteed in the
approaches based on splines or other interpolation techniques, except in the case
of Geodesic Interpolating Splines [8].

An approach was proposed in [9] to smoothly interpolate a deformation out-
side any finite set of independent rigidly moving regions. Since these regions are
arbitrary in shape, it is not straightforward to use this model for inference (i.e.
non-rigid registration). Moreover, the invertibility of the interpolated transfor-
mation is not always ensured.

Our idea is to use simple fuzzy regions defined by very few parameters: mainly
the position of the center, a typical radius of influence and the associated rigid
or affine transformation. We show in Sec. 2 that a simple average of the displace-
ment induced by each region leads to invertibility problems. Thus, we develop
an infinitesimal approach where the displacement is obtained by the integration
of the average speed. To address the implementation efficiency, we investigate
several numerical schemes. The result is a new family of invertible and fully
parametric transformations that we called polyrigid and polyaffine transforms.
We show in Sec. 3 that polyrigid transformations are well-suited for the non-
rigid registration of articulated-like object. This is exemplified on 2D histological
slices.

2 Theoretical Framework

The polyrigid/affine transformations are related to different topics: the interpo-
lation of irregularly spaced data, as addressed by Sheppard in [10] and revisited
in [9] and the theory of ordinary differential equations (ODE), which provides
tools for creating diffeomorphic transformations [8,11].

2.1 Point-Based Interpolation and Parametric Transformations

To model transformations T (x) having several distinct rigid or affine behaviors,
we propose to use anchor points, denoted (ai)i∈1···N ∈ (Rn)N . These points
represent the core of the influence of each local transformation Ti : R

n → R
n,

such that whenever x is “close” in some sense to ai, we should have T (x) ≈ Ti(x).
Choosing points (rather than regions) to anchor transformations is a convenient
choice to explicit the transformation parameters, thus facilitating their inference.
A simple way to mix the influence of each transformation is to average their
induced displacement:

T (x) =
∑

i wi(x)Ti(x)
∑

i wi(x)
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with some positive “weights” function wi(x) describing the influence of each com-
ponent. In the current implementation, we use Gaussians wi(x) = pi.G(ai,σi)(x),
where the standard deviations σi control the rate of decay and the pi’s rank the
global influence of the each component. This way, the obtained transformation
is smooth, but there is no easy way to express its inverse, if it ever exists.

2.2 Diffeomorphic Transformations via ODEs

In order to address the invertibility problem, we chose an infinitesimal approach,
in which averaging is compatible with inversion. The idea is to average the
infinitesimal displacements (instantaneous speed) generated by each component,
and obtain the total displacement by integration the resulting flow. To see this,
let us recall that a point moving under the action of a rigid transformation
Ti(x) = Rix + ti (Ri is the rotation matrix and ti the translation part) can be
viewed as a point following a trajectory governed by the following ODE:

ẋ(s) = Vi(x, s) = ti + Ai(x − s ti) for time s ∈ [0, 1]. (1)

This ODE simply comes from the derivation w.r.t. s of the trajectory equation
x(s) = sti + esAi .x(0). Ai is the smallest skew symmetric matrix associated with
the rotation eAi = Ri (cf. [12] for a determination of Ai). If we denote Φi(x, s)
the flow associated with this ODE, we have Ti(.) = Φi(., 1), which means that
Ti(x) is obtained as the position at time s = 1 of a mobile starting at time s = 0
at x and moving according to Eq. (1). In order to obtain a transformation T that
encompasses all the influences of a system of transformations (Ti)i, we average
the speed vectors Vi(x, s) with the weights wi(x) and let any given point evolve
between time 0 and 1 to obtain its new position. The new ODE is written:

ẋ(s) = V (x, s) =
∑

i wi(x)Vi(x, s)
∑

i wi(x)
. (2)

Mathematically, equation (2) is nice, for the following two reasons: firstly,
V (x, s) is C∞ in both space and time since all quantities are C∞ and the de-
nominator never vanishes. Secondly, we may bound the speed at each time s by
a radius that depends on the position and the time: there exists three positive
constants C1, C2 and C3 such that ‖V (x, s)‖2 ≤ C1 + C2|s| + C3‖x‖. This im-
plies that the displacement obtained by integrating the speed is bounded by an
exponentially growing radius, but always remains finite:

∀s, ‖Φ(x, s)‖ ≤ eC3|s|(‖Φ(x, 0)‖ + (1 − e−C3|s|)(C1/C3 + |s|C2/C3)).

The trajectories are therefore defined for all time and the transformation T =
Φ(., 1) is well-defined. This fact combined with the smoothness property ensures
(from the classical ODE theory [13]) that T is a diffeomorphism.

As we can see in Fig. (1), polyrigid transformations produce smooth and
intuitive trajectories for points, and are clearly invertible, which is not the case
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Direct displacement averaging Infinitesimal displacement averaging

Fig. 1. Comparison between direct and infinitesimal averaging for two 2D
rotations of opposite angle. We displayed the trajectories of a set of points between the
two anchor points (rotation centers) for an angle of rotation varying from 0 to 2π. Near
the centers, the transformation is close to rotations and gives circles in both cases. As
we go away from the centers, the direct averaging gives ellipsoidal trajectories, whereas
the infinitesimal averaging evolves smoothly and remains a diffeomorphism.

when direct averaging is used, mostly when distortions are large. Another ad-
vantage is that the inverse is simply obtained by inverting rotation, translation
and time parameters.

Like in most Lie Groups, many invertible real matrices Mi with det(Mi) > 0
are not equal to the exponential of a real matrix. But we have that any element
of a real connected Lie Groups is equal to the product of two exponentials
[14]. Indeed, the singular value decomposition yields that Mi = eAi .eSi with Ai

and Si respectively skew and symmetric matrices. The equivalent of Eq. (1) for
polyaffine transformations is thus:

ẋ(s) = ti + (Ai + esAiSie
−sAi).(x − s ti). (3)

Since all results mentioned before apply also the polyaffine transformations, we
thus have exhibited a novel parametric family of smooth and invertible trans-
formations, whose parameters are the same as the usual rigid and affine trans-
formations, plus points to anchor them in space and two additional parameters
(the scale σi and the global influence pi) that control the way their respective
influences vary in space.

2.3 Numerical Implementation

Practically speaking, Eqs. (2) and (3) have to be solved numerically, since there
is no explicit formula except of course in the case of a single component. In
order to speed-up the computations, we restricted ourselves to simple numerical
schemes (simpler than Runge-Kutta’s). The first one is the first-order consistent
scheme: sampling the trajectory using N − 1 intermediate time-points, we may
approximate the transformation at time-step k by applying recursively k times
the transformation at time-step 1:
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




T
1/N
1 (x, s) = x + 1

N V (x, s).
T

k/N
1 (x) = T

1/N
1

(·, k−1
N

) ◦ · · · ◦ T
1/N
1

︸ ︷︷ ︸
(x, 0)

k compositions

. (4)

The complete transformation T (x) is of course approximated by T
N/N
1 (x).

This scheme can be slightly modified to be more efficient: averaging the speed
vectors at a given time amounts to assume that they are constant during a time
1/N , which is even not exact for a single component. A more efficient strategy
is to average the displacements that would be observed if each component was
acting alone. Doing so, we obtain a second-order scheme, which is not the opti-
mal one but which is more precise than the first scheme and exact for a single
component. For polyrigid transformations, this is simply done by replacing in

Eq. (4) 1
N V (x, s) with

∑
i wi(x)( 1

N ti+(e
Ai
N −Id)(x−sti))∑

i wi(x) .

2.4 Optimization of the Transformations

To apply our new transformation to inference (i.e. non-rigid registration), it is
often necessary to differentiate the transformation Tp(x) w.r.t its parameters,
denoted by p. From the continuous point of view, we have:

∂Tp

∂p
(x) =

∂Φp(x, 1)
∂p

=
∫ 1

0

∂Vp

∂p
(Φp(x, s), s) +

∂Vp

∂x
(Φp(x, s), s) ds.

∂Φp(x, s)
∂p

.

This formula cannot be used directly, because of the recursive reference to ∂Φp

∂p .
We must therefore resort to the derivative of the discrete integration scheme:

∂T
k
N

p (x)
∂p

=
∂T

1
N

p

(·, k−1
N

)

∂p

(
T

k−1
N

p (x)
)

+
∂T

1
N

p

(·, k−1
N

)

∂x

(
T

k−1
N

p (x)
)

.
∂T

k−1
N

p (x)
∂p

.

By recursively applying the derivation process, we obtain a good approximation
of the derivative. Thus, one may optimize the transformation in a registration
process based on any similarity criterion.

3 Experiments and Discussion

Polyrigid transformations are implemented as a new Transform class of ITK
[15]. Although the whole implementation is done in 3D, we present in this section
preliminary results on 2D data in order to better display the main features of
interest of the polyrigid transformations.

3.1 Synthetic Examples

Fig. (2) illustrates the influence of the number of sampling points on the trajec-
tory. One can clearly see that only one time-step (which corresponds to the direct
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averaging of displacements) creates some highly non-linear distortions (almost
a discontinuity). With two time-steps, the transformation is already much more
regular, and there is almost no evolution after 3 time-steps, which indicates that
our numerical scheme is very stable. Notice that this important deformation is
only modeled by 2 sites (14 parameters): that would only represent 7 control
points for a standard spline interpolation, without the guaranty of invertibility.

Fig. 2. Influence of the number of sampling points used to compute the trans-
formation: from left to right N=1,2,3, and 20. One can see that the integration scheme
has almost converged with only 3 time-steps.

3.2 Registration of Histological Slices

Even if the optimization method still needs to be improved a lot (see [16] for
advanced results and for a discussion on initialization and the number of anchor
points), we present here preliminary results on the registration of two consecutive
histological slices. We believe that our polyrigid transformations are very well
adapted to this kind of data as the physical material consists in very thin slices
of brain matter with many elongated parts that can rotate around their isthmus
during the cutting and fixation process before imaging [17]. An important point
in such a registration is to keep very high locally rigid constraints in order to
preserve real anatomical differences. Thus, the sought deformation should be
close to rigid in large regions, which is exactly what polyrigid transformations
provide.

Fig. (3) displays the results of the registration using an affine versus a poly-
rigid transformation with only 3 rigid components. The non-linear registration
algorithm uses a first-order gradient descent: the regular step gradient descent
provided by ITK, on the sum of square image difference (SDD) metric. The
transformation was initially set to the identity, and the anchors set manually.
The main bending is retrieved with only 3 polyrigid components, thus allowing
a very fine match of most of the edges, whereas the affine transformation is
essentially retrieving a global translation that leaves a large part of the edges
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Image I1 Image I2

Affine transformation of I2 Polyrigid transformation of I2

Affine(I2): zoom on top left PolyRigid(I2): zoom on top left

Affine(I2): zoom on bottom right Polyrigid(I2): zoom on bottom right

Fig. 3. Registration of successive histological slices (on the top row) using
affine vs polyrigid transformations (on the second row). To assess the quality of
the registration, we superimposed on the resampled image I2 the contours of image
I1 (white). On can see on the zooms of the top left part (on the third row) and the
bottom right part (on the last row) that the main bending is retrieved with polyrigid,
thus allowing to match very accurately most of the edges, which is not the case for the
affine registration. A more adapted optimization method is necessary to recover the
full bending (see [16]).
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unmatched. The total number of parameters optimized in our polyrigid trans-
formation is 21 (vs 5 for affine), which remains very small compared to most
free-form deformation algorithms. With our simple optimization strategy we are
only able here to recover a part of the large bending motion of the lower broken
girus, but with a more appropriate optimization, this bending can be fully re-
covered [16]. We are currently working on 3D registration experiments, as well
as adapting the similarity measure and introducing more complex anatomical
knowledge on the region weights in order to adapt the regions influences to the
background parts of the images.

Acknowledgments. We are very grateful to P. Thompson, A. Toga, J. Annese
and A. Pitiot for providing us with the histological slices through an associated
teams collaboration between Epidaure at INRIA and LONI at UCLA.
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