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Abstract. Diffusion tensor images (DTIs) provide information about
deep white matter anatomy that structural magnetic resonance images
typically fail to resolve. Non-linear registration of DTIs provides a way
to capture the deformations of these structures that would otherwise
go unobserved. Here we use an existing method that fully incorporates
a useful vector space parameterization of diffeomorphisms, thereby al-
lowing simple and well defined calculation of deformation statistics. An
initial analysis of the statistics produced by registration of a group of 37
HIV/AIDS patients illustrates principal modes of deformation that are
anatomically meaningful and that corroborate with previous findings.
The registration method is developed by incorporating these modes into
a statistical regularization criterion. Even though initial results suggest
this new criterion over-constrains the registration method, we discuss
plausible ways to address this.

1 Introduction and Motivation

Computational anatomy aims to use transformations, produced by non-linear
registration, to compute deformation statistics of anatomical structures that
can account for biological variability within a population [1]. A first require-
ment of the registration method is that the result should be easily usable in
subsequent statistical analyses. A second requirement is that the images the
method can register should contain information that is rich enough to correctly
describe anatomically meaningful deformations. In this work, we specifically con-
sider DTIs, which represent the diffusion of water in the brain using a second
order symmetric tensor at each voxel [2]. DTI registration is of particular in-
terest because it provides unique information about major deep white matter
structures, the deformations of which we propose may be more significant than
changes observed from scalar image registration. This is likely to be especially
true in HIV/AIDS patients, where significant white matter changes have previ-
ously been reported [3,4].

Both these requirements are met by the log-domain diffeomorphic demons
algorithm [5], which directly estimates a vector space parameterization of a dif-
feomorphism, and has been adapted for use on DTIs [6] as described in Sec. 2.
We then explain how, in Sec. 3, first and second order statistics can be computed
for inter-subject registration of a group subjects. Further developments to the



registration method are proposed in the same section, by describing how these
statistics can be reintegrated into a regularization criterion. An initial analy-
sis demonstrates, in Sec. 4, that the statistics describe anatomically meaningful
modes of deformation. However, experiments detailed in this section show that
the statistical regularization criterion over-constrains the registration in some
areas of the brain. We conclude by discussing, in Sec. 5, how these current prob-
lems might be overcome and propose ways in which the statistics could be used
to constrain registration of other modalities.

2 Log-domain Diffeomorphic Registration of DTIs

2.1 A Log-Euclidean Parameterization of Diffeomorphisms

Throughout this work, it is assumed there is a non-parametric spatial transfor-
mation s from a moving image, M , to a fixed image, F . When the images are
of different subjects, it is desirable that s should be a diffeomorphism which
respects an inverse consistency constraint [7]. The log-domain diffeomorphic
demons method [5] provides an approach to find an s that respects these con-
straints by exploiting the log-Euclidean framework for diffeomorphisms [8]. This
framework considers the space of diffeomorphisms that can be identified by tan-
gent vectors at the identity transformation. Each tangent vector defines a smooth
stationary velocity field v, which is related to a diffeomorphism through the ex-
ponential map s = exp(v). The main advantage of this parameterization is that
v lies in a vector space, so that proper arithmetic and statistical analysis can be
easily performed. Additionally, the negated velocity field provides simple access
to the inverse transformation s−1 = exp(−v).

2.2 Log-Domain Diffeomorphic Demons Registration

The log-domain diffeomorphic demons registration method [5] works by attempt-
ing to iteratively minimize an energy

E(F,M,v,w) = Sim(F,M ◦ exp(w)) + Dist(v,w) + Reg(v) (1)

where c = exp(w) is a non-parametric spatial transformation that attempts to
achieve point correspondences between F and M . The introduction of the hidden
variable, w, allows the energy to be split into two forms, each of which can be
optimized alternately in the following scheme [9].

1. Correspondence: given the current v, find the w that minimizes

Ecorr(F,M,v,w) = Sim(F,M, exp(w)) + Dist(v,w). (2)

2. Regularization: given the w found from step 1, find the v that minimizes

Ereg(v,w) = Dist(v,w) + Reg(v). (3)



Solving (2) is equivalent to finding a small update transformation u = exp(u)
to compose with the current one such that c = s ◦ u. One usually defines the
similarity and distance criteria as Sim(F,M, exp(w)) = σ−2

i ||F −M ◦ exp(w)||2
and Dist(s, c) = σ−2

d ||v −w||2 respectively, where σi weights the uncertainty of
the images and is typically defined as ||F −M ◦exp(w)||, whereas σd weights the
spatial uncertainty between v and w and therefore controls the size of the update
u. The inverse consistency constraint, which we use throughout this work, can
be imposed by defining a similarity criterion that is independent of the image
order Sim(F,M, exp(w)) = σ−2

i

(
||F −M ◦ exp(w)||2 + ||M − exp(−w) ◦ F ||2

)
.

These choices have the advantage that (2) has an approximate closed form so-
lution that can be found independently at each point of an image.

In the absence of prior knowledge, a sensible choice for the regularization
criterion would be one that penalizes the harmonic energy of the velocity field
σ−2

r ||∇v||2, where σ−2
r weights the spatial uncertainty of s alone. Instead, the

demons method smooths the correspondence field to give the transformation ve-
locity field v = G[0, σ−2

d σ2
rI]∗w, which can be shown [10] to be the Tikhonov reg-

ularized solution of (3). This means that a harmonic energy criterion Reg(v) =
σ−2

r ||∇v||2K is only definable with respect to a Hilbert space K.

2.3 How to Account for Registration of DTIs

Like diffeomorphisms, symmetric second order tensors lie on a manifold, which
makes properly defining the similarity criterion between two DTIs problematic.
A definition can be made by exploiting the log-Euclidean framework for tensors
[11], which achieves a good approximation of the Riemannian metric. In this
case, a log-tensor, T, which exists in the tangent space at the identity matrix,
parameterizes a tensor T through the exponential map T = exp(T). This pa-
rameterization also allows proper linear interpolation of tensors images, which
is required when resampling at the same regular points in both images after a
discrete transformation has been applied to M .

A further difficulty of non-linear DTI registration is that non-rigid transfor-
mation of tensors causes their local orientation to be lost. There are two major
reorientation schemes that attempt to correct for this: preservation of principal
directions; and finite strain [12]. Here we only consider the finite strain approach
because an analytic gradient of its effect can be used in the demons optimization
and improves registration performance compared to a scheme where orientation
is simply corrected after each standard update [13]. Furthermore, this method
can be easily adapted to use the log-domain parameterization with little affect
on registration performance [6].

3 Computation and Reuse of Deformation Statistics

3.1 Defining a Distribution of Group-Wise Deformations

While the log-domain parameterization allows desirable constraints to be re-
spected, its most important benefit is that we can properly compute deformation



statistics by calculating vector statistics of the velocity fields. Imagine that we
have a group of m subjects {S1, . . . , Sm} and want to find the set of n = m(m−1)
velocity fields vi,j that represent the transformations from Si to Sj . As the in-
verse consistency constraint is respected, only n/2 registrations need to be per-
formed because each one gives access to the forwards and inverse transformations
represented by v and −v respectively. As this implies that the mean velocity
field is guaranteed to be the zero field, the immediate topic of interest is how
the n fields vary.

Consider that the number of variables in a field, p, is three times the number
of voxels in an image. Ignoring background voxels means that p ≈ 106 for a
typical DTI with an isotropic spatial resolution of 2mm. We can usually expect
DTI datasets to contain images from around m ≈ 102 subjects, implying that
n ≈ 104. This suggests that estimating the p(p + 1)/2 values of the covariance
matrix Σv will be highly underdetermined. However, in the demons framework,
the regularization criterion effectively imposes the velocity field to be drawn
from G[0, σ−2

d σ2
rI] subject to the constraints from the data. When σ−2

d σ2
r is large

enough, there should be a significant amount of spatial correlation in the field
due to the locally imposed smoothness. This means that the effective number of
variables, which we denote as p′, should be far less than p.

Even so, estimating the p′(p′+ 1)/2 values of Σv is still likely to be underde-
termined and presents practical computation problems as well. In order to tackle
both these difficulties, we perform principal components analysis (PCA) on the
velocity fields to define a rank-reduced covariance matrix Σ(k)

v = Y(k)Λ(k)Y(k)T,
where the columns of Y(k) are the k principal eigenvectors of Σv, {y1, . . . ,yk},
and the diagonal of Λ(k) contains its k principal eigenvalues {λi, . . . , λk}. In
this model, we can consider the projection of a velocity field v onto the k ma-
jor eigenvectors, which gives v(k) =

∑k
i=1(vTyi)yi =

∑k
i=1 αiyi. This assumes

a Gaussian distribution on the fields where P (αi) = G[0, λi] and P (v(k)) =∏k
i=1 G[0, λi].
Under the Baker-Campbell-Hausdorff (BCH) assumptions [5], the composi-

tion of two diffeomorphisms exp(a) and exp(b) can be approximated by the
exponential of their addition exp(a) ◦ exp(b) ≈ exp(a + b). Technically, this
should only hold when b has a small magnitude, but here, we investigate what
happens empirically when this constraint is loosened. We do so because this
means that the fields generated by registration from one particular subject to
all m− 1 others are approximate basis vectors for the space of all n fields (Fig.
1). Of course, if we choose a different reference subject, we will find a different
set of approximate basis vectors. In this sense, performing PCA corresponds to
defining an orthogonal basis that should not be biased towards any particular
subject and that should reduce the effects of the BCH approximations in our
model.

3.2 A Statistically Regularized Demons Method

Minimizing the regularization energy (3) in the demons framework can be seen
as the equivalent of maximizing the posterior probability of v given w from



vi,j ≈ −v1,i + v1,j

Sm

S3

S2

exp(v2,3) = exp(−v1,2) ◦ exp(v1,3) ≈ exp(−v1,2 + v1,3)

S1

exp(v1,2)

exp(v1,3)

exp(v1,m)

Fig. 1: Under our Baker-Campbell-Hausdorff approximations, the velocity fields
that represent the transformations from one subject, here S1, to all other sub-
jects, S2, . . . , Sm, are basis vectors for the space of velocity fields that represent
transformations between any two subjects.

the correspondence step. In this sense, the distance criterion is related to the
likelihood, in that Dist(w,v) ∝ − log(P (w|v)), and the regularization criterion
acts as a prior assumption on the distribution of v, in that Reg(v) ∝ − log(P (v)).
Under the usual assumptions, we have P (w|v) = − log(G[v, σ2

dI]) and P (v) =
G[0, σ2

r(∇∗∇)−1]K , the latter of which assumes no prior knowledge on where the
field should be smooth or where there should be covariation.

Given our reduced-rank definition of Σv, we can introduce such knowledge by
replacing the usual prior on v with a prior on the projection P (v(k)) = G[0,Σ(k)

v ].
This yields a MAP estimate of

v(k) = argmax
v(k)

[P (v(k)|w)] = argmin
v(k)

[E(k)
reg(v(k),w)] (4)

where

E(k)
reg(v(k),w) = − log(G[v(k), σ2

dI]])− log

(
k∏

i=1

G[0, λi]

)

=
1
2

k∑
i=1

(
σ−2

d

(
α2

i − 2αiβi

)
+
α2

i

λi

)
. (5)

Here βi = wTyi is the coordinate of the correspondence velocity field pro-
jected on the ith eigenvector. The minimization of (5) can be performed indepen-
dently on each projected coordinate to give αi =

(
1 + σ2

dλ
−1
i

)−1
βi. Empirical

results given in Sec. 4 show that when using a suitable value of k, it is the case
that λi >> σ2

d, which means αi ≈ βi. Therefore, we approximately minimize (5)
by simply projecting w onto the eigenvectors of Σv to give v(k).



4 Experiments and Results

4.1 Data, Pre-Processing and Registration Details

Diffusion weighted imaging data of a set of 37 HIV/AIDS patients are provided
by the Neuradapt study group and the authors would like to acknowledge M.
Vassallo, C. Lebrun and S. Chanalet for making these available. We use 30
subjects, denoted as group A, for statistical estimation, and reserve the other 7,
denoted as group B, for validation. For each subject, a single unweighted (b = 0)
image was acquired along with 23 gradient weighted (b = 700 s/mm2) images
with spatial dimensions of 0.9375 mm × 0.9375 mm × 5.5 mm. Correction for
subject motion and eddy currents is achieved by affinely registering the diffusion
weighted images of each subject to their b = 0 image using FSL [14].

DTIs are reconstructed using a log-Gaussian noise model and non-positive
tensors are replaced with a local mean [15]. The affine registration method de-
scribed in [16] is used to register each subject’s b = 0 image to that of the 2mm
ICBM-DTI-81 template [17]. The affine transformations produced are applied to
their corresponding DTIs, using finite strain reorientation, so that the DTIs lie
in a common global coordinate system. Finally, the brain extraction toolkit [18]
is used to generate a brain foreground mask from each affinely registered b = 0
image, which is applied to the affinely registered DTI to remove any tensors
outside of the brain.

After pre-processing, non-linear registration is performed between each unique
pair of subjects in groups A and B. All registrations use σd = 1 and are allowed
to iterate ten times, which is enough to ensure reasonable convergence of the so-
lutions. In order to generate results over a range of transformation regularities,
registration is repeated using σr = {0.8, 1.2, . . . , 2}.

4.2 What Are the Major Modes of Deformation?

Eigenvectors and eigenvalues are estimated from the velocity fields generated in
group A and we compute the ith mode of deformation as exp(

√
λiyi). Figure 2

demonstrates that the first four major modes are anatomically meaningful in the
sense that areas of significant displacement are concentrated in and around iden-
tifiable anatomical structures. We find that these modes are relatively consistent
across the range of regularization parameters used. One unsurprising difference
is that larger regularization produces smoother modes that are more spatially
sparse. This suppression of probably noisy deformations swaps the order of the
third and fourth modes at the extreme values of σr used.

The first mode exhibits large displacement in the area under the corpus
callosum, which actually corresponds to an expansion in the ventricles, and cor-
relates with a rotation around the cerebellum. The second mode represents an
expansion in the cerebellum that causes a displacement of the brain stem, which
both correlate with expansion in the cortical areas. The third mode, for σ = 2,
exhibits fairly complicated deformation that is localized around the cerebellum
and brain stem. The fourth, again for σ = 2, mostly accounts for an expansion of
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Fig. 2: A mid-sagittal view of the 4 major modes of displacement found from
inter-subject DTI registration of group A using low (left) and high (right) values
of σr = 0.8, 2.0. Arrows indicate displacement direction and color corresponds
to displacement size in mm. The background is the T1 1mm MNI-152 template.



the ventricles that causes displacement above the corpus callosum, particularly
close to the genu. It is of interest that there is large amount of deformation in
and around the cerebellum because this is compatible with cerebellar changes
previously found in HIV/AIDS [19].

Less regularization obviously produces more variance in the velocity fields,
which causes larger eigenvalues (Fig. 3). Here, we see that the distribution of
the first m − 1 eigenvalues is roughly exponential, but, as expected from our
discussion in Sec. 3.1, the eigenvalues drop off sharply from here because the
space of velocity fields is approximately m− 1 dimensional. The other n−m+ 1
eigenvalues are roughly constant at all values of σr and are likely to be either
noise or modes of deformation that are very specific to certain pairs of subjects.
As σr is increased, we are better posing the problem of estimating the eigende-
composition given the number of data available. The small difference between
distributions at σr = 1.6 and 2 suggests that using a value of around σr = 1.6 is
suitable. However, even in this case, only around 80% of the variance in the data
is accounted for by the first m − 1 eigenvalues. This may be due to the BCH
approximations in our model or a non-Gaussian distribution of the velocity fields.

Fig. 3: The eigenvalues (left) and the cumulative percentage of variance they
account for (right) from PCA performed on the 435 velocity fields found by
inter-subject DTI registration of group A using σr = {0.8, 1.2, . . . , 2}.

In order to test whether or not the eigenvectors generalize well to other
subjects, we calculate the mean square error between the velocity fields found
from inter-subject registration of group B and the projections of these onto the
eigenvectors 1

n

∑n
i=1 vi−

∑k
j=1 αiyj . We see that as the number of eigenvectors

is increased, this error approximately decreases linearly across all values of σr,
which suggests that generalization is only reasonable (Fig. 4). Again, there is
little difference between σr = 1.6 and 2. The localization of the errors for σr = 1.6
and k = 29, which is representative for all values of σr, is mostly in cortical
regions rather than in major white matter structures. This suggests that the
eigenvectors generalize well for deformations in deep central areas of the brain,
but that deformations in outer areas are likely to be more subject specific.



Fig. 4: The mean square error between the velocity fields in group B and the
projections of these onto the eigenvectors estimated from group A using σr =
{0.8, 1.2, . . . , 2} (left). Also shown (right) is a mid-sagittal slice of the mean
square error for k = 29 and σr = 1.6 overlaid on the T1 1mm MNI-152 template.

Using this approach, the error may be higher in cortical regions simply be-
cause the velocity is higher in these areas. To compensate for this potential bias,
we consider the relative mean square error, where each error vector of each field
is normalized by the square norm of the local velocity vector (Fig. 5). Although
we observe some differences in how this error is distributed across σr, the local-
ization of the error for k = 29 and σr = 1.6 is similar, in that high errors are
mostly found close to the cortices and outside of major white matter structures.

Fig. 5: The relative mean square error between the velocity fields in group B
and the projections of these onto the eigenvectors estimated from group A using
σr = {0.8, 1.2, . . . , 2} (left). Also shown (right) is a mid-sagittal slice of the
relative mean square error for k = 29 and σr = 1.6 overlaid on the T1 1mm
MNI-152 template.



4.3 How Does Statistical Regularization Affect DTI Registration?

Registration is also performed on group B using the statistically regularized
method with k = {4, 8, . . . , 48} and the eigenvectors found from group A with
σr = 1.6. Figure 6 shows that the mean square error between the registered
DTIs using statistical regularization for all values of k is significantly higher
than that using the original method, which suggests that the statistical prior
knowledge is over-constraining the registration. The localization of this error
(Fig. 7) shows that the statistically regularized method behaves similarly to the
original method in some deep internal areas of the brain, such as the mid-body
of the corpus callosum and the ventricles, but fails to account for the error in
other areas, such as the genu, splenium and parts of the brain stem.

Fig. 6: The mean square error (left) between the registered DTIs and the har-
monic energy of the transformation (right) using the statistically regularized
method with k = 4, 8, . . . , 48 eigenvectors at σr = 1.6. For comparison the initial
error and the final error for the original method at σr = 1.6 are also shown.

However, note that the harmonic energy of the statistically regularized trans-
formation is considerably lower for all values of k (Fig. 6). It is possible that when
compared at similar harmonic energies, the statistically regularized method may
be produce lower errors than the original method, although the current results
cannot show this.

5 Conclusions and Further Work

Here, we present an investigation of the deformations between DTIs of a reason-
ably sized group of HIV/AIDS patients using log-domain diffeomorphic demons
registration. The major principal components of the underlying transformations
describe anatomically meaningful modes of deformation between deep structures
in the brain, which generalize well to other patients. These encouraging initial
results are not only interesting in their own right, but also help to validate the
development of log-domain methods that directly parameterize diffeomorphic



Fig. 7: The mean square error between the registered DTIs using the statistically
regularized method with k = 28 eigenvectors at σr = 1.6 (middle) and the
original method using σr = 1.6 (right). For comparison, the initial error is also
shown (left). All errors are overlaid on T1 1mm MNI-152 template.

transformations. Although the incorporation of these modes into the statistical
regularization criterion is perhaps less successful, we do observe that they reli-
ably capture deformation in deep areas of the brain. As the formulation of the
statistically regularized method is independent of the image modality, we could
use DTI deformation statistics to better constrain T1 registration, which can
prove difficult in these deep areas due to the lack of signal and contrast.

From a methodological point of view, performing PCA on the velocity fields
amounts to computing the eigensystem from the sample covariance matrix, which
is known to be unstable in high dimensions. This instability may explain why
the statistical regularization method proposed here is overly restrictive, implying
that alternatives to PCA should be considered. Alternatively, rather than project
the correspondence field at each iteration of the demons algorithm, it may make
more sense to directly optimize the coordinates of the velocity field {α1, . . . , αk}
on the eigenvectors. It could also be the case that the methodology is well defined,
but that the registration cannot reliably capture deformations from DTIs in
some areas of brain, such as the cortices. Further investigation should focus on
exploring how stable the eigendecomposition as the size of the subject group is
increased, although this may present problems in terms of computation time.
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