
UNIVERSITY OF NICE - SOPHIA ANTIPOLIS

GRADUATE SCHOOL STIC
INFORMATION AND COMMUNICATION TECHNOLOGIES AND

SCIENCES

THESIS
to ful�ll the requirements for the degree of

Doctor of Philosophy - Ph.D.

of the University of Nice - Sophia Antipolis
Specialized in: CONTROL, SIGNAL AND IMAGE PROCESSING

presented and defended by

Adityo PRAKOSA

Analysis and Simulation of
Multimodal Cardiac Images
to Study the Heart Function

Thesis supervised by

Hervé DELINGETTE, Maxime SERMESANT and

Nicholas AYACHE

prepared at Inria Sophia Antipolis, Asclepios Project-Team
defended on January 21st, 2013

Jury :

Reviewers: Patrick CLARYSSE - CREATIS
Elsa ANGELINI - Telecom ParisTech

Supervisor: Hervé DELINGETTE - Inria (Asclepios)
Co-Supervisor: Nicholas AYACHE - Inria (Asclepios)
Examiners: Shérif MAKRAM-EBEID - Philips Healthcare (Medisys)

Pascal ALLAIN - Philips Healthcare (Medisys)
Eric SALOUX - CHU Caen
Maxime SERMESANT - Inria (Asclepios).





UNIVERSITÉ DE NICE - SOPHIA ANTIPOLIS

ÉCOLE DOCTORALE STIC
SCIENCES ET TECHNOLGIES DE L'INFORMATION ET DE LA

COMMUNICATION

THÈSE
pour obtenir le titre de

Docteur en Sciences

de l'Université Nice - Sophia Antipolis
Mention : AUTOMATIQUE, TRAITEMENT DU SIGNAL ET

DES IMAGES

presenté et soutenue par

Adityo PRAKOSA

Analyse et Simulation
des Images Multimodales du Coeur

pour l'Etude de la Fonction Cardiaque

Thèse dirigée par

Hervé DELINGETTE, Maxime SERMESANT and

Nicholas AYACHE

préparée á l'Inria Sophia Antipolis, Asclepios Équipe-Projet
soutenue le 21 janvier 2013

Jury :

Rapporteurs : Patrick CLARYSSE - CREATIS
Elsa ANGELINI - Telecom ParisTech

Directeur : Hervé DELINGETTE - Inria (Asclepios)
Co-Directeur : Nicholas AYACHE - Inria (Asclepios)
Examinateurs : Shérif MAKRAM-EBEID - Philips Healthcare (Medisys)

Pascal ALLAIN - Philips Healthcare (Medisys)
Eric SALOUX - CHU Caen
Maxime SERMESANT - Inria (Asclepios).





Analysis and Simulation of Multimodal Cardiac Images to
Study the Heart Function

Abstract: This thesis focuses on the analysis of the cardiac electrical and
kinematic function for heart failure patients. An expected outcome is a set of
computational tools that may help a clinician in understanding, diagnosing and
treating patients su�ering from cardiac motion asynchrony, a speci�c aspect of
heart failure.

Understanding the inverse electro-kinematic coupling relationship is the main
task of this study. With this knowledge, the widely available cardiac image
sequences acquired non-invasively at clinics could be used to estimate the cardiac
electrophysiology (EP) without having to perform the invasive cardiac EP mapping
procedures.

To this end, we use real clinical cardiac sequence and a cardiac electrome-
chanical model to create controlled synthetic sequence so as to produce a training
set in an attempt to learn the cardiac electro-kinematic relationship. Creating
patient-speci�c database of synthetic sequences allows us to study this relationship
using a machine learning approach.

A �rst contribution of this work is a non-linear registration method applied
and evaluated on cardiac sequences to estimate the cardiac motion. Second, a new
approach in the generation of the synthetic but virtually realistic cardiac sequence
which combines a biophysical model and clinical images is developed. Finally, we
present the cardiac electrophysiological activation time estimation from medical
images using a patient-speci�c database of synthetic image sequences.

Keywords: Cardiac motion tracking, synthetic cardiac sequences, cardiac
inverse electro-kinematic learning





Analyse et Simulation des Images Multimodales du Coeur pour
l'Etude de la Fonction Cardiaque

Resumé : Le travail de thèse porte sur l'analyse de la fonction électrique et
mécanique du coeur a�n d'étudier les e�ets de l'insu�sance cardiaque. Il débouche
sur un ensemble d'outils qui peuvent aider le clinicien à mieux comprendre et
traiter l'asynchronisme cardiaque, un des aspects de l'insu�sance cardiaque.

Il a pour principal objectif de résoudre le problème inverse du couplage électro-
cinématique : estimer l'électrophysiologie cardiaque sans avoir à e�ectuer des
procédures invasives de cartographie cardiaque. Les séquences cardiaques acquises
de manière non-invasive sont déjà largement utilisées dans les centres cliniques et
pourraient permettre de caractériser l'électrophysiologie cardiaque sans procédure
invasive.

La première contribution de ce travail est l'évaluation d'une méthode de re-
calage non-linéaire appliquée sur des séquences cardiaques pour l'estimation du
mouvement. La deuxième est une nouvelle approche de simulation de séquences
synthétiques d'images cardiaque. Nous utilisons des séquences réelles et un modèle
électromécanique du coeur pour créer des séquences synthétiques contrôlées. Le
réalisme des séquences générées repose sur l'utilisation conjointe d'un modèle bio-
physique et d'images réelles lors de la simulation. En�n, la troisième contribution
concerne une méthode d'estimation de la carte d'activation électrique du coeur
à partir d'images médicales. Pour ce faire, nous utilisons une base de données
d'images synthétiques cardiaques personnalisée à chaque patient. Ces images et
les cartes d'activation électrique utilisées lors de la simulation fournissent une base
d'entrainement pour apprendre la relation électro-cinématique du coeur.

Mots clés : Suivi de mouvement cardiaque, simulation de séquences syn-
thétiques d'images cardiaque, problème inverse du couplage électro-cinématique
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Introduction

Contents
1.1 Brief Introduction to Cardiac Imaging . . . . . . . . . . . . . 1

1.1.1 Cardiac Function . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Heart Failure and Cardiac Motion Asynchrony . . . . . . . . 3

1.1.3 Analyzing Cardiac Image Sequences . . . . . . . . . . . . . . 4

1.1.4 Cardiac Electrical Mapping . . . . . . . . . . . . . . . . . . . 5

1.1.5 Cardiac Simulation . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Context and Motivations . . . . . . . . . . . . . . . . . . . . . 8

1.3 Objectives and Manuscript Organization . . . . . . . . . . . 8

To better describe the clinical context of this thesis, we present a brief introduc-
tion to cardiac imaging and then present the objectives as well as the motivation of
this thesis.

1.1 Brief Introduction to Cardiac Imaging

The recent advances in medical image processing and also the wide availability of
medical imaging modalities at clinics makes it feasible for clinicians to obtain de-
tailed information about the cardiac function in order to understand, to diagnose
and also to treat the patient better. Cardiologists analyse a patient's cardiac func-
tion from the time series of cardiac images. For example echocardiography is one
of the non-invasive imaging modality widely used by cardiologists. Based on the
analysis of these images, a cardiologist could diagnose and also plan a treatment for
the patient. For instance, for a patient diagnosed with heart failure and cardiac mo-
tion asynchrony, the cardiac resynchronization therapy (CRT) is a treatment which
could improve the life quality of the patient.

1.1.1 Cardiac Function

The heart is an organ which has an important role in the blood circulation (cf.
Fig. 1.1). It is composed of involuntary cardiac muscle (myocardium) and consists
of four chambers, the two superior atria (left and right) and also the two inferior
ventricles (left and right).
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Figure 1.1: The cardiac conduction system (yellow path) allows the electrical im-
pulse from the SA node to be transmitted to the AV node and the atria, causing the
atria contraction. The impulse is then conducted through the bundle of His to the
bundle branches (left and right), to the Purkinje �bers and �nally to the ventricular
muscles, causing the ventricular myocardium contraction. The blue color shows the
de-oxygenated part of the heart while the red color shows the oxygenated part.

Di�erent cardiac events are described in the Wiggers Diagram (cf. Fig. 1.2).
The atria collect the blood to the ventricles which pump it during each heartbeat.
The heart is able to beat automatically since it has a natural pacemaker which
is called the sinoatrial (SA) node which generates electrical impulses. It also has
a conduction system which allows the action potential from the SA node to be
transmitted to the atrioventricular (AV) node and to the right and left atria, causing
the atria to contract during the atrial systolic phase or during the end of ventricular
diastolic phase. This is shown as the P wave on the electrocardiogram (ECG). The
electric stimulus is then conducted through the bundle of His to the bundle branches
(left and right) where it rapidly spreads using the Purkinje �bers to the ventricular
muscles, causing them to contract during the ventricular diastolic phase. This is
shown as the QRS complex on the ECG. The right side of the heart deals with the
de-oxygenated blood where the right atrium collects the de-oxygenated blood from
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Wiggers Diagram: Source Wikipedia

Figure 1.2: The Wiggers diagram describes the di�erent events in the cardiac cycle.

the body and the right ventricle pumps it to the lungs. The left side of the heart
deals with the oxygenated blood where the left atrium collects the oxygenated blood
from the lungs and the left ventricle pumps it to the body.

1.1.2 Heart Failure and Cardiac Motion Asynchrony

Cardiovascular diseases (CVDs) are the number one cause of death globally
[WHO 2012] with an estimation of 17.3 million people died from CVDs in 2008.
This represents 30 % of all global deaths. Heart failure is an event of CVD and is
described by the inability of the heart to pump su�cient amount of blood required
by the body. Cardiac motion asynchrony, a speci�c aspect of heart failure, is caused
by the conduction disturbances, most commonly by the left bundle branch block
(LBBB) [Kuijpers 2011, Leclercq 2004]. In LBBB, the cardiac electrical impulse is
not well transmitted to the left ventricle through the left bundle branch. As a result,
left ventricle activation is delayed and it contracts later than the right ventricle. This
impairs the systolic function and reduces the volume of blood being pumped by the
heart (the cardiac output). Cardiac resynchronization therapy is a treatment which
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could improve the hemodynamic in patient by increasing cardiac output. Electrical
resynchronization improves mechanical synchrony between and within the right and
left ventricles. In CRT, an arti�cial pacemaker is placed under the skin in the upper
chest (cf. Fig. 1.3). Its leads are implanted through the subclavian vein into the

Figure 1.3: Biventricular pacemaker in cardiac resynchronisation therapy

right ventricle and into the coronary sinus vein to pace the left ventricle. Another
lead is usually implanted into the right atrium. Small electrical impulses are sent
through the leads which maintain the right and left ventricles pumping together.

1.1.3 Analyzing Cardiac Image Sequences

During this study, we �rst processed 4D echocardiography (US) data acquired by Dr.
Eric Saloux. A 3D segmentation of the endocardium is also provided. This dataset
contained images from patients receiving CRT with di�erent pacemaker activation
modes (e.g. sinus rhythm, left ventricular pacing, right ventricular pacing, and
bi-ventricular pacing). Concerning the purpose of this study, it is expected that
analysis of the images from this modality could provide a hint for the placement
of pacemaker leads in patients being treated with CRT since currently, 30% of the
patients with pacemaker show no bene�t from this therapy. Therefore, the idea is to
�nd the relationship between kinematic descriptors obtained from images analysis,
which is widely available, and the electrical activation time. By understanding this
inverse electro-kinematic coupling, we could predict the cardiac electrical activation
time from 4D US image analysis. This prediction is important in order to see the
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Figure 1.4: Non-linear registration result is shown as the tracking of the myocardium
(left) and the radial (upper right) and longitudinal strain (lower right)

e�ect of the CRT. To this end, we evaluated the strain based on the incompressible
di�eomorphic demons algorithm (iLogDemons) [Mansi 2011]. Di�erent approaches
for the tracking the cardiac motion using a template cardiac model are also developed
in [Schaerer 2010]. With iLogDemons, we track the myocardium and obtain strain
curves (radial, longitudinal and circumferential). The best registration parameter
is estimated by computing the di�erence between the provided segmentation and
the deformed initial segmentation. Tools developed within the Asclepios group are
used for this need. The �rst observation of the 3D strains obtained by this method
shows encouraging results (cf. Fig. 1.4). A further evaluation of the iLogDemons
registration algorithm was done in [McLeod 2012, Prakosa 2012a]. Currently, the
evaluation of image analysis methods is still challenging since there is lack of ground
truth. However, recent study [Lebenberg 2012] has developed a statistical method
to �nd a consensus between di�erent cardiac segmentation and motion tracking
method in order to estimate the left ventricle ejection fraction.

1.1.4 Cardiac Electrical Mapping

The cardiac electrical mapping has an important role as the reference in understand-
ing the inverse electro-kinematic coupling relationship. However, acquisition of the
cardiac electrical mapping is an invasive procedure since it requires the insertion of
a catheter in order to reach the heart chamber (catheterisation).

A �rst acquisition on cardiac electrical mapping from a patient using EnSite
system has started at the University Hospital of Caen and an EnSite dataset has
been sent to be visualized (cf. Fig. 1.5). A surface mesh along with the potential
isochrones mapping was visualized. However, the corresponding 4D echocardiogra-
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Figure 1.5: EnSite cardiac electrical potential mapping visualization

phy acquisition from the same patient is not of su�cient quality in order to apply
a motion tracking algorithm. This is due to the use of contrast agent during the
acquisition for this particular study. Therefore, we cannot use the pair of cardiac
electrical mapping and 4D echocardiography as a ground truth for the validation of
the inverse electro-kinematic learning algorithm.

Nonetheless, we have processed the provided dataset by �rst registering the
EnSite mesh to a 3D echocardiography image sequence. From the 3D US image, the
endocardium is manually delineated and a tridimensional surface is reconstructed.
The EnSite mesh is registered to the endocardial surface, by �rst aligning their long
axis and then selecting a feature point on both surfaces. The activation times and
the infarct mapping information contained in the EnSite mesh are then projected
to the endocardium surface (cf. Fig. 1.6).

1.1.5 Cardiac Simulation

The development of the computational cardiac electromechanical models allows
us to simulate various cardiac cases [Smith 2000, Belik 2004, Sainte-Marie 2006,
Sermesant 2012, Chapelle 2012]. These models are built based on the biophysical
properties of the heart and the knowledge of pathologies. It enables the creation of
virtual hearts. Using personalisation method [Sermesant 2012, Marchesseau 2012a],
the cardiac model can produce similar behavior than the one clinically observed.
The availability of this personalised biophysical model helps the clinicians in the
study of the patient's cardiac function. This is helpful for example for diagnosing
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Figure 1.6: Ensite cardiac electrical mapping data is projected to the endocardium
surface of the corresponding 3D echocardiography

anomalous motion patterns, for making prognosis by simulating a therapy, and for
predicting the results of a therapy. Furthermore, the model can estimate quantities
that can be di�cult to obtain in a clinical setting. By coping with the limited access
to certain clinical data, for example the cardiac electrophysiology mapping, com-
putational cardiac simulation could play an important role in the study of cardiac
function.

Furthermore, computational cardiac electromechanical models can be help-
ful to generate realistic synthetic medical images, i.e. to translate the simula-
tion into an observation comparable to the one usually found at clinics, which
are the patient's medical images. This can be done by combining the model
with advanced methods in medical imaging and image processing. As a result,
it is possible to create a virtual patient or virtual phantom. Examples of vir-
tual phantom are the "voxelized phantom" [Segars 2008] or the "voxelized at-
las" where the voxel intensities take into account the motion of the organ or
the inter-patient anatomy variability. The "voxelized atlas" has been developed
in [Zubal 1994, Xu 2000, Kramer 2003, Kramer 2004, Kramer 2006] where the phan-
tom contains the segmentation of organs from medical images. In our case, a
database of realistic synthetic cardiac images were used to study the inverse electro-
kinematic relationship since it contains the required ground truth from the model.
Since the synthetic image is similar to the real one, the same image processing
method can be applied to both of them. The relationship learned using the syn-
thetic dataset can be directly applied to the real dataset in order to predict patient
cardiac electrophysiological pattern.
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1.2 Context and Motivations

The research work for this thesis were conducted in a collaboration between the
Asclepios Research Project - Inria Sophia Antipolis, the Medisys Research Lab -
Philips Healthcare Suresnes and the Cardiology Unit - Caen University Hospital.
In this collaborative work, a stay (for 6 months) was carried out at the Medisys
Research Lab environment under the supervision of Pascal Cathier and Patrick
Etyngier. During this stay, a visit to cardiologist Dr. Eric Saloux at the Cardiology
Unit of the Caen University Hospital was arranged to study the data acquisition
process.

This study focuses on the analysis of the cardiac electrical and kinematic func-
tion for patients su�ering from heart failure. We aimed at creating computational
tools that may help a clinician in better understanding, diagnosing and treating
patients su�ering from cardiac motion asynchrony, a speci�c aspect of heart failure.
Cardiac motion asynchrony is related to the abnormal cardiac electrophysiology.
Currently the analysis of patient cardiac electrophysiological function requires the
cardiac electrical mapping information which is usually acquired invasively. Esti-
mating this information from the analysis of the widely available cardiac images
acquired non-invasively would give an alternative in the non-invasive cardiac elec-
trical activation pattern estimation. Therefore, understanding the cardiac inverse
electro-kinematic coupling relationship is the main task of this study. With this
knowledge, the analysis of the motion or the kinematics of the cardiac images se-
quences can be used to estimate the cardiac electrophysiological activation pattern.

1.3 Objectives and Manuscript Organization

The objective of this thesis led us to consider the following three questions on how
we can estimate the electrophysiology of the heart by observing the cardiac motion:

1. The development of non-rigid registration methods for the cardiac motion
tracking in the cardiac image analysis allows the quanti�cation of the myocar-
dial deformation. However the evaluation of these methods is still challenging
since it requires reference dataset with controlled ground truth. By creating
synthetic cardiac sequences, the underlying motion ground truth is provided
for each generated sequence. The availability of this dataset then opens a
question:
Can we evaluate objectively cardiac motion algorithms by using controlled syn-

thetic sequences?

2. The generation of synthetic cardiac sequences is important to cope with the
limited access to certain clinical information, for example the cardiac electro-
physiological information, and also the lack of ground truth, for example the
cardiac motion ground truth. However, the created synthetic sequence has of-
ten limited realism since it is restricted to a number of simulated objects due
to the complexity of the physical models involved. This constraint imposes
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to only often simulate an isolated myocardium without much consideration to
the blood pool and surrounding structures. Therefore, the second question
that we ask is:
How can is it possible to create a realistic synthetic cardiac sequence using a

biophysical model?

3. Finally, since electrophysiological activation controls the onset of the mechan-
ical contraction, important information about the electrophysiology could be
gathered from the detailed observation of the resulting motion patterns. In-
deed the relationship between the mechanical waves and electrical waves is
very complex. The availability of the cardiac electromechanical model allows
the creation of a cardiac motion database with the underlying cardiac electro-
kinematic ground truth. Thus the last question that we tackle is:
How can we estimate the cardiac inverse electro-kinematic relationship using

patient-speci�c databases of synthetic cardiac sequences, in order to estimate

the cardiac electrophysiological activation pattern from the analysis of a pa-

tient's time series of cardiac images?

This thesis is organized based on our published and submitted studies. It devel-
ops from the evaluation of a motion tracking algorithm to the generation of synthetic
but visually realistic cardiac sequences and �nally to the use of database of synthetic
sequences to learn the inverse electro-kinematic study.

Chapter 2 presents a motion tracking algorithm which is largely used in all
part of this thesis. As a part of a challenge, the log-domain di�eomorphic demons
(LogDemons) and the incompressible LogDemons (iLogDemons) [Mansi 2011] were
evaluated on a database of synthetic ultrasound sequences [Prakosa 2012a]. Since
these sequences provide the ground truth motion, objective evaluation of the param-
eters of this non-linear registration algorithm can be done. The iLogDemons had
also been applied to a dataset of cine MRI, ultrasound and tagged MRI of healthy
volunteers from the previous challenge [McLeod 2012].

In Chapter 3, based on [Prakosa 2012c], a pipeline to generate synthetic but
visually realistic cardiac images is presented. This pipeline uses an approach based
on stationary velocity �eld to combine the motion estimated from the real clinical
images and the motion simulated using a cardiac electromechanical model. The
combined motion is then used to create synthetic cardiac sequences. A method to
smooth displacement �elds was introduced to maintain the continuity between the
simulation and the real image with minimal texture distortion. Using this method
a database of synthetic but visually realistic cardiac sequences which contains the
underlying ground truth cardiac electrophysiology and motion was created.

The creation of databases of synthetic cardiac sequences using the electrome-
chanical model opens the possibility of the machine learning based approach on the
inverse electro-kinematic study. Preliminary studies in the inverse electro-kinematic
learning are described in the Appendix B and C. In Appendix B [Prakosa 2010]
we attempt to learn this relationship from the displacement and strains esti-
mated directly from the E/M model. More realistic estimation was done in
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Appendix C [Prakosa 2011] by �rst simulating 3D ultrasound images and using
an image-based motion tracking algorithm. Chapter 4 [Prakosa 2012b] uses the
method developed in Chapter 3 to create patient-speci�c databases of synthetic
MR cardiac sequences. This database is then used as a training set in a machine
learning study to �nd the relationships between the cardiac motion descriptors
and the left ventricle (LV) endocardial surface electrical activation time (AT).
Using this training set and the learned relationship, patients cardiac LV AT can
be estimated from the motion descriptor extracted from this patient's estimated
displacement �eld.
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Pennec. Evaluation of iLogDemons Algorithm for Cardiac Motion Tracking in
Synthetic Ultrasound Sequence. In Proc. MICCAI Workshop on Statistical Atlases
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October 2012. To appear

We evaluate the iLogDemons algorithm for the STACOM 2012 cardiac motion

tracking challenge. This algorithm was previously applied to the STACOM 2011

cardiac motion challenge to track the left-ventricle heart tissue in a data-set of vol-

unteers. Even though the previous application showed reasonable results with respect

to quality of the registration and computed strain curves; quantitative evaluation of

the algorithm in an objective manner is still not trivial. Applying the algorithm to
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the STACOM 2012 synthetic ultrasound sequence helps to objectively evaluate the

algorithm since the ground truth motion is provided. Di�erent con�gurations of the

iLogDemons parameters are used and the estimated left ventricle motion is compared

to the ground truth motion. Using this application, quantitative measurements of the

motion error are calculated and optimal parameters of the algorithm can be found.

2.1 Introduction

Understanding cardiac motion dynamics through the heart beat is fundamental for
providing useful insights into cardiac diseases. Analyzing medical images is one way
to better understand the complex dynamics of the heart and in recent years, cardiac
motion tracking algorithms have been developed to attempt to estimate the observed
motion. We refer the reader to [Mansi 2011] for the state of the art on cardiac motion
tracking. A cardiac motion tracking challenge was introduced in the STACOM 2011
MICCAI workshop which allowed participants to apply algorithms to a given data-
set of healthy volunteers with cine-magnetic resonance, ultrasound, and tagged-
magnetic resonance image sequences. In this work we describe the application of
the incompressible log-domain demons algorithm (iLogDemons for short) to a set
of synthetic ultrasound image sequences for which the ground truth deformation is
known and provided for training within the STACOM 2012 MICCAI cardiac motion
tracking challenge. From this we are able to compute the error between the ground
truth and the estimated deformation for the training data.

2.2 Methodology

The iLogDemons algorithm is a consistent and e�cient framework for tracking left-
ventricle heart tissue through the cardiac cycle using an elastic, incompressible non-
linear registration algorithm based on the LogDemons algorithm [McLeod 2012,
Mansi 2011]. Applying a non-linear registration to pairs of medical images is a
common method to estimate the motion and the deformation of the tissue in the
image.

2.2.1 LogDemons

The LogDemons [Vercauteren 2008] non-linear registration aligns a template image
T (x) to a reference image R(x) by estimating a dense non-linear transformation
φ(x), where x ∈ R3 is the space coordinate. This transformation φ(x) is associated
with the displacement vector �eld u(x) and is parameterized by the stationary ve-
locity vector �eld v(x), φ(x) = x+u(x) = exp(v(x)). This ensures the invertibility
of the deformation. The LogDemons algorithm contains two steps, which are the
optimization and the regularization step. The optimization step �nds the interme-
diate correspondence transformation φc(x) = exp(vc(x)) = φ(x) ◦ exp(δv(x))) by
minimizing the LogDemons energy
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ε(v,vc) =
‖ R− T ◦ exp(vc) ‖2L2

λ2i
+
‖ log(exp(−v) ◦ exp(vc)) ‖2L2

λ2x
+
‖ ∇v ‖2

λ2d

with respect to vc(x), where λ2i is the parameter that estimates the noise in the
image λ2i (x) = |R(x)−T ◦φ(x)|2, λ2x is the parameter that controls the uncertainty
of the correspondences and λ2d is the parameter that controls the regularization
strength. vc parameterizes the intermediate transformation φc(x) which models the
voxel correspondences of the two images without considering the regularity of the
transformation. The optimal update velocity writes

δv(x) = − R(x)− T ◦ φ(x)

‖ J(x) ‖2 +λ2i /λ
2
x

J(x),

where J(x) is the symmetric gradient J(x) = (∇R(x) +∇(T ◦ φ(x)))/2. The cor-
respondence velocity vc is updated using the the Baker-Campbell-Hausdor� (BCH)
formula vc = Z(vc, δv) [Vercauteren 2008]. Finally, the optimal regularized trans-
formation φ(x) is estimated in the regularization step by minimizing the LogDemons
energy with respect to v, which is approximated by smoothing the correspondence
velocity vc with a Gaussian kernel Gσ.

2.2.2 iLogDemons

iLogDemons adds physiological constraints; elasticity and incompressibility, to the
LogDemons algorithm. It proposes an elastic regularizer to �lter the correspondence

velocities by the elastic-like kernel: v =
(
GσId+ σ2κ

1+κHGσ

)
? vc = Gσ,κ ? vc, where

HGσ is the Hessian of the Gaussian kernel Gσ and Gσ,κ is the elastic-like vector
�lter. Incompressibility is achieved by constraining the stationary velocity �eld
v(x) to be divergence-free. The complete algorithm of the iLogDemons is described
in Algorithm 1.

Algorithm 1 iLogDemons: Incompressible Elastic LogDemons Registration

Require: Stationary velocity �eld v0. Usually v0 = 0 i.e. φ0 = Id.
1: loop[over n until convergence]
2: Compute the update velocity: δvn (see [Mansi 2011]).
3: Fluid-like regularization: δvn ← Gσf ? δv

n , Gσf is a Gaussian kernel.
4: Update the correspondence velocity using the Baker-Campbell-Hausdor�

(BCH) formula: vn ← Z(vn−1, δvn) (see [Vercauteren 2008]).
5: Elastic-like regularization: vn ← Gσ,κ ? v

n (see [Mansi 2011]).
6: Solve: ∆p = ∇ · vn with 0-Dirichlet boundary conditions. This is done in

order to achieve the incompressibility.
7: Project the velocity �eld: vn ← vn −∇p.
8: Update the warped image T ◦ φn = T ◦ exp(vn).
return v, φ = exp(v) and φ−1 = exp(−v).
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R(x) Ti-1(x) Ti(x)vTi→Ti-1vTi-1→R

Z(vTi→Ti-1
, vTi-1→R)vTi→R

Figure 2.1: The concatenation of the velocity �eld vTi→Ti−1 and vTi−1→R using the
BCH formula is used to initiate the registration of the template image Ti(x) to the
reference image R(x).

2.2.3 Cardiac Motion Tracking Strategy

We initialize the registration of the template image Ti(x) at frame i to the refer-
ence image R(x) with the concatenation of the previous frame (i − 1) to reference
velocity �eld vTi−1→R and the current-to-previous frame velocity �eld vTi→Ti−1 by
Z(vTi−1→R,vTi→Ti−1) with Z is the BCH operation, as a strategy to track the my-
ocardium (cf. Fig. 2.1) [Mansi 2011]. The �nal registration is always calculated to
the same end diastolic reference image R(x).

2.3 Application to Challenge Data

2.3.1 Algorithm Parameter Setting

We used the standard parameters that were used previously in [McLeod 2012]. How-
ever, since the ground truth motion is available for the synthetic ultrasound sequence
provided, we also tested di�erent parameters of the iLogDemons as described in Ta-
ble 2.3.1.

iLogDemons non-rigid registration was previously applied to the STACOM 2011
challenge data-set [Tobon-Gomez 2012a, McLeod 2012]. It showed reasonable re-
sults in term of the alignment of the registered frames in the cardiac sequence with
the reference end diastolic image. Using the estimated transformations, it could also
track the myocardium along the cardiac cycle. The calculated strain curve was also
comparable to literature for healthy strain values [Moore 2000].

2.3.2 Simulated ultrasound cardiac sequence data

The simulated data-set consisted of 10 synthetic ultrasound sequences with 23 frames
per case, with image spatial resolution of 267×355×355, and isotropic voxel size of
0.33 mm. For each sequence, the left ventricle (LV) is almost fully visible while
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Input parameters: Value

Multi-resolution levels (frame-by-frame registration) 3
Multi-resolution levels (re�nement step) 2
Number of iterations / level 100
σf update �eld in mm 0.5
κf update �eld in mm 0
σ stationary velocity �eld in mm 1 or 1.5 or 2
κ stationary velocity �eld in mm 1
Incompressibility update �eld (0-Disable,1-Enable) 0
Incompressibility velocity �eld (0-Disable,1-Enable) 1 or 0

Table 2.1: iLogDemons parameters used in the application

the right ventricle is only partially visible in the ultrasound acquisition cone. To
compensate for the part of the LV which is out-of-window region, we arti�cially
expanded the acquisition pyramid. The boundary voxels were copied to �ll this
region and additional noise was also added. The data-set contains di�erent motion
and deformation patterns (normal, LBBB, RBBB, pacing) with the ground truth
deformation provided as the deformation of volumetric meshes in a cardiac cycle
(See [Craene 2012a] for further details on the synthetic data-set).

2.3.3 Application to the synthetic data
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Figure 2.2: The registration error (calculated using the method described in Sec-
tion. 2.3.4 ) of the full resolution and down-sampled dataset of the �rst case are
compared. They show relatively small di�erence. .

In order to �nd the optimal parameters of the algorithm that are able to handle
large deformations, we processed the �rst case of the ultrasound synthetic data-set
since it simulates normal heart motion with large contraction. We launched the pa-
rameters that were used previously in [McLeod 2012] to the full resolution data-set.
We also applied our algorithm on down-sampled images to reduce the computational
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time. We down-sampled the data to a resolution of 88×117×117 with isotropic voxel
size of 1.02 mm The computation time of the whole sequence processing was reduced
from the order of days to hours. The current implementation can be optimized to
handle large volumes by improving the memory access scheme since the addition
of computation time of current implementation is not caused by the addition of
computational complexity. One con�guration of parameters was tested for both the
full and down-sampled data to verify the accuracy of the down-sampled registration
compared to the full-resolution registration and found very small di�erences in the
results (cf. Fig. 2.2). Other con�gurations of the key parameters were tested on the
down-sampled data.

2.3.4 Quantitative Evaluation

2.3.4.1 Displacement Error

Figure 2.3: The mean and standard deviation of the displacement error calculated
on the whole left ventricle for varying values of σ for the �rst case.

To evaluate quantitatively the performance of each set of the parameters used
for the iLogDemons with incompressibility on the velocity �eld set to 0 or 1, we
calculated the ground truth displacement vector �eld from the deformation of the
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provided simulated meshes. We rasterized the displacement vectors to the im-
age uGT (x) in order to be able to compare them to the iLogDemons estimated
displacement �eld ue(x). The norm of the di�erence of the two vector �elds
||uGT (x) − ue(x)|| is calculated. The global mean of this values over the whole
left ventricle are calculated for each time frame in the cardiac cycle (cf. Fig. 2.3).
Based on Fig. 2.3, the parameter σ = 1.5 without the incompressibility constraint
gives the lowest maximum error for the �rst case. We calculated the LV volume
of the ground truth deformed meshes in a cardiac cycle and we observed that the
current electromechanical model is not incompressible. Fig. 2.4 shows the mean
and standard deviation of the LV myocardium volume change in a cardiac cycle
for the whole data-set. There is a 10% change of volume during the maximum
contraction. In Fig. 2.5, we compare the ground truth displacement vector for each
American Heart Association (AHA) region of the left ventricle. We compare it to the
iLogDemons estimated displacement vector and calculated the di�erence for each
AHA segment. Fig. 2.5 also shows the error for the basal (regions 1-6), mid (regions
7-12) and apical (regions 13-17) regions. More error is observed in the apical region
since the longitudinal motion of the apex toward the base changes the intensity of
the apical region.

The result for the whole data-set processing is shown in Fig. 2.6. As also shown
in Fig. 2.5 for the �rst case, the registration of each frame to its previous frame
gives small error which is less than one voxel size. For the frame to reference result,
we observe that there is an error accumulation during the maximum contraction.
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Figure 2.4: The mean and standard deviation of the LV volume change of the ground
truth deformed meshes during a cardiac cycle. Current electromechanical model is
not incompressible since there is a 10% of volume change during the maximum
contraction.
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Figure 2.5: The comparison of the ground truth, incompressible and non-
incompressible iLogDemons estimated LV displacement norm for the �rst case on
each American Heart Association (AHA) region. In both cases, σ = 1.5 was used.
The mean displacement error is also calculated on each AHA region.

2.3.4.2 Strain Estimation

From the iLogDemons estimated displacement �eld u(x), we computed the strain
tensor and projected it to the local radial, circumferential and longitudinal direc-
tions. The strain tensor was calculated using the 3D Lagrangian �nite strain tensor

E(x) =
1

2
[∇u(x) +∇uT (x) +∇uT (x)∇u(x)]. The mean and standard deviation of

the strain estimation of the whole data-set is shown in Fig. 2.7. The result using in-
compressibility has more realistic range of value (from -15% to 25%) of the estimated
strain compared to the one without incompressibility (from 150% to 300%).

2.3.5 Myocardium Tracking

Qualitative evaluation of the algorithm is done by comparing the contour of the
simulated mesh at the frame with maximum contraction with the deformation of the
end diastolic mesh using the iLogDemons estimated displacement �eld at the same
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Figure 2.6: The displacement error of the whole training data-set
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Figure 2.7: The mean and standard deviation of the estimated strain for the whole
training data-set with and without incompressibility constrain. Incompressibility
constraint gives more realistic range of value of the estimated strain (from -15% to
25%). This range is shown as black horizontal lines on the result without incom-
pressibility.
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frame for the �rst case. Reasonable agreement of the contours can be observed in
Fig. 2.8, which indicated that the algorithm is able to capture realistic deformations,
even in the case of a synthetically simulated sequence.

Time 

frame 1

Time 

frame 8

Figure 2.8: Myocardium tracking result for the �rst case is shown (red for
iLogDemons and purple for iLogDemons without incompressibility) and compared
to the simulated ground truth (blue) at the time frame 8 which is at the maximum
contraction. The tracking result follow the contour of the ground truth, indicating
that the algorithm is able to capture reasonably well the dynamics of the motion.

2.4 Discussion

This evaluation shows that the iLogDemons with and without the incompressibility
constraint were able to recover the simulated motion in the ultrasound synthetic
sequence with reasonable accuracy. It is worth noting that the current electrome-
chanical model is not incompressible, therefore enforcing incompressibility in the
registration algorithm naturally does not improve the results, in comparison to the
iLogDemons method without the incompressibility constraint. Furthermore, we also
found that increasing or decreasing the sigma value does not always improve the re-
sult since the best value that we found here is σu = 1.5 while σu = 1 and σu = 2
do not yield signi�cantly better results.

2.5 Conclusion

The iLogDemons algorithm was applied to a data-set of synthetic ultrasound se-
quence with di�erent motion and deformation pattern. The algorithm was able to
reasonably estimate the ground truth deformation of the model. Since the provided
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data-set were created using an electromechanical model which is not incompress-
ible, the incompressibility constraint does not improve the result. However, the
incompressibility constraint gives more realistic range of estimated strain value. Fu-
ture work is needed to deal with the error accumulation during the maximum of
contraction.
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We propose a new approach for the generation of synthetic but visually realistic

time series of cardiac images based on an electromechanical model of the heart and

real clinical 4D image sequences. This is achieved by combining three steps. The

�rst step is the simulation of a cardiac motion using an electromechanical model of

the heart and the segmentation of the end diastolic image of a cardiac sequence. We

use biophysical parameters related to the desired condition of the simulated subject.

The second step extracts the cardiac motion from the real sequence using non-rigid

image registration. Finally, a synthetic time series of cardiac images correspond-

ing to the simulated motion is generated in the third step by combining the motion

estimated by image registration and the simulated one. With this approach, image

processing algorithms can be evaluated as we know the ground-truth motion underly-

ing the image sequence. Moreover, databases of visually realistic images of controls

and patients can be generated for which the underlying cardiac motion and some bio-

physical parameters are known. Such databases can open new avenues for machine

learning approaches.

3.1 Introduction

Diagnosis and therapy planning of cardiovascular diseases are often much improved
by the analysis of the dynamic cardiac function. The advances in medical imaging
o�er increasingly detailed visual information on the cardiac motion. However there
is a lack of quanti�cation tools and of methods to validate them. The manual
ground-truth generated by experts, which is typically used to validate segmentation
algorithms, cannot be extended to motion tracking. Experts can only manually track
a few landmarks, and doing this in sequences of volumetric images is very tedious,
provides very limited accuracy and is prone to inter and intra-expert variabilities. In
this article, we propose a framework to generate both cardiac ground-truth motion
and corresponding synthetic but visually realistic images in order to enable such
validation.

There are three main approaches to obtain quantitative data on cardiac mo-
tion. The �rst one is to use dedicated imaging modalities that directly measure
motion information. Echocardiographic Doppler Tissue Imaging [Ho 2006], Mag-
netic Resonance (MR) tagging [Liu 2010] and several other phase encoding MR
sequences [Ozturk 2003] have been developed to directly measure displacement or
velocity �elds for cardiac motion analysis [Elen 2008, Craene 2010, Mansi 2011].
However, those modalities are not widely used in clinics and give access to limited
components of these �elds (often one or two dimensional). Even with tridimensional
tagging [Rutz 2008], it remains challenging to extract accurately, and to evaluate
the quality of the recovered motion from another imaging modality [Mansi 2011] as
it requires intermodality temporal and spatial registration.

A second one is to image a physical phantom with known shape and controlled
motion [Daisne 2003, Boltz 2010]. However, those phantoms are costly to design and
manufacture and often lead to images with a limited realism compared to clinical
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images. This is due to the lack of the surrounding structures, and the di�culty to
reproduce the complex cardiac motion.

The third method is to completely model the physics of the image acquisition sys-
tem and of the organ of interest, and compute a numerical simulation of the resulting
image. This was applied in the context of MR brain images [Benoit-Cattin 2005,
Aubert-Broche 2006], cardiac MR sequences [Tobon-Gomez 2011], tridimen-
sional echocardiographic (US) sequences [Duan 2007, Butako� 2007, Elen 2008,
Kutter 2009] and Computed Tomographic (CT) images [Segars 2008, Veress 2011].
A platform was recently developed to facilitate the access to several medi-
cal image simulators [Marion 2011]. This approach has proved to be use-
ful for many validation tasks. For instance, synthetic cardiac SPECT im-
age sequences [Segars 1999] were created for the validation of the developed
4D cardiac image segmentation [Montagnat 2005]. Synthetic 2D ultrasound se-
quences [Jensen 1996] were also generated for the validation of a non-rigid registra-
tion method [Ledesma-Carbayo 2005]. Finally, in order to validate a 3D strain
estimation method of ultrasound images [Elen 2008], an adapted convolutional
model [Gao 2007] was used to simulate US data sets. However, these approaches
are computationally expensive and are restricted to a number of objects in the
simulated �eld of view due to the complexity of the physical models involved.
For cardiac sequence simulations, these constraints often impose to only simulate
an isolated myocardium without much consideration of the blood pool and sur-
rounding structures even though recently more complex models have been devel-
oped [Glatard 2012, Haddad 2007]. Therefore it limits the realism of the created
synthetic images.

In this paper, we propose a new approach for creating synthetic and visu-
ally realistic cardiac image sequences based on real clinical image sequences, an
electromechanical (E/M) model of the heart and an image registration algorithm.
The method described below bypasses the simulation of the physics of acqui-
sition by warping an original image sequence and replacing the observed mo-
tion of the myocardium by a simulated one. Without mimicking the physics
of the acquisition, it uses the existing information in the real sequence to cre-
ate the synthetic one. A key component to achieve this, is an E/M model
of the heart. We use here a simple model [Sermesant 2006a] and an improved
one [Sermesant 2012, Chapelle 2012], but the methodology would remain the same
with other models (see for instance [Smith 2000, Belik 2004, Sainte-Marie 2006] and
references therein). After the geometry and the biophysical parameters are per-
sonalised [Shi 2003, Wang 2009, Delingette 2012, Xi 2011, Chabiniok 2012], such a
model can beat similarly to the apparent cardiac motion in a given sequence. There-
fore we can have a simulated motion that is close to the one observed in the original
image. The output of the proposed approach is a synthetic image sequence includ-
ing the myocardium and its close environment (blood pools, valves...) that looks
similar to the original sequence but where the myocardial motion is modi�ed in a
controlled manner and results from a simulation with known biophysical parame-
ters. The motion of the structures surrounding the myocardium is slightly modi�ed
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to follow the simulated myocardium motion.
Compared to the previous methods, the proposed approach leads to images that

remain very similar to the original clinical images and where the cardiac motion
is known everywhere. It does not require complex physical simulations of the ac-
quisition system and may be applied to various modalities as shown in this paper.
Synthetic images of brain atrophy were simulated using MR images and generated
displacement �elds in [Camara 2006] but without taking into account real longitudi-
nal sequences, only from a single time-point. In [Clarysse 2011], simulated sequence
is created by using a kinematic model to deform a real tagged-MR image at end
diastolic time point. We propose here to use a full time sequence of real data and
a biophysical model of the heart, which are two very important points to obtain
realistic sequences with large deformations. Using the whole real sequence informa-
tion would also give better realism in the texture of the created sequence. It will
also contain the changes of the surrounding environment such as the motion of the
mitral valve.

The overall approach is described in Fig. 3.1 where the simulation of cardiac
motion, the clinical cardiac motion estimation and the generation of synthetic se-
quences are respectively described in Sec. 3.2, Sec. 3.3 and Sec. 3.4. In Sec. 3.5,
examples of synthetic sequences for cine MRI, 4D-CT and 4D-US imaging modal-
ities are provided with an evaluation of their realism. Then, two applications are
presented. The �rst one (Sec. 3.6) is the evaluation of a cardiac motion tracking
algorithm (iLogDemons). The quantitative analysis of the synthetic images with a
non-rigid registration algorithm allows to compare the estimated motion with the
ground truth motion. The second application is the creation of a database of syn-
thetic images (Sec. 3.7). It illustrates the application of this framework to help in
developing image analysis methods based on machine learning [Tobon-Gomez 2008].

3.2 Cardiac Motion Simulation using an Electromechan-

ical Model of the Heart

The �rst step in the proposed pipeline consists in simulating a cardiac motion. For
this purpose, we used the cardiac E/M model proposed in [Sermesant 2006a]. We
personalised the anatomy of the heart with the myocardium segmentation of a real
clinical image at a reference time (end diastole / ED). The segmentation was done
using an interactive 3D segmentation tool available within the CardioViz3D soft-
ware [Toussaint 2008] (cf. Fig. 3.2). Using this tool, the 3D left ventricle (LV) and
right ventricle (RV) endocardium and epicardium surfaces were segmented. Then
a binary mask of the compact biventricular myocardium was created. A computa-
tional tetrahedral mesh which is suitable for the simulation was then generated from
this myocardium mask using CGAL [Rineau 2009] available within the iso2Mesh tool
proposed by [Fang 2009].

From a personalised anatomy, we generated an electrophysiological activation
pattern using the dynamic multi-front Eikonal model which calculates the depolar-
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RV/LV endocardium

LV Initialization

RV Initialization

(2)

myocardium

(1)

Figure 3.2: Cardiac Segmentation, Mesh Geometry and Electrophysiolog-

ical Initialization. (1) Myocardium segmentation is obtained by using an in-
teractive segmentation tool within the CardioViz3D software. (2) Initial electrical
activation area is set for the LV (blue) and RV (red). RV/LV endocardium (purple)
is set to have higher conductivity v than the rest of the myocardium (green) to
represent the Purkinje network.

ization time Td at each point of the mesh [Sermesant 2007]. The Eikonal equation

v
√
∇T tdD∇Td = 1 was solved using the multi-front Fast Marching Method which

also calculates the repolarization time Tr. In this equation, v is the local conduc-
tion velocity and D = (1 − r)f ⊗ f + r.I is the anisotropic conductivity tensor in
Cartesian coordinates as de�ned in [Sermesant 2006a] where f is the �bre orienta-
tion and r is the conductivity anisotropy ratio. Synthetic myocardial �bres were
created by varying the elevation angle (w.r.t. the short axis plane) of the �bre from
−80◦ on the epicardium to 0◦ at mid-wall to +80◦ on the endocardium. The initial
electrical activation area was de�ned on the previously created cardiac mesh (cf.
Fig. 3.2). We de�ned some areas in the LV and the RV which prescribe the His
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bundle proximity where the electrical propagation wave starts. We also set the LV
and RV endocardium surfaces to have higher conductivity (larger v) compared to
the rest of the myocardium, to represent the Purkinje network.

The obtained Td and Tr were then used in the electromechanical coupling written
as {

if Td ≤ t ≤ Tr : σc(t) = σ0(1− e(αc(Td−t)))
if Tr < t < Td +HP : σc(t) = σc(Tr)e

(αr(Tr−t))

which gives the stress tensor σc at time t. HP is the heart period, αc is the con-
traction rate, and αr is the relaxation rate. The force vector Fc was obtained
from Fc =

∫
S(σcf ⊗ f)n dS with n the surface normal and S the element surface.

The dynamic equation which governs the displacement vector U was written as
MÜ+CU̇+KU = Fb+Fc whereM , C and K are the mass, damping, and sti�ness
matrices respectively. Fb is the external load from the boundary condition.

We also used an improved E/M model, Bestel-Clément-Sorine
(BCS) [Chapelle 2012], which includes a passive non linear elastic part and
an active part that describes more accurately the binding and unbinding processes
of the actin and myosin �laments in the sarcomere. It also allows the Starling

e�ect by which the maximum contraction depends on the �bre strain and includes
the dissipation due to friction during the contraction. As a result, the simulated
deformation incorporates twisting motion which makes it more realistic. This
model was shown to provide realistic simulation of LBBB and heart failure, as
well as accurate prediction of ventricular pressure changes with resynchronisation
therapy [Sermesant 2012].

For all the parameters of the electromechanical model we took into account the
known condition of the heart in the real image we used. We could for instance include
a Left Bundle Branch Block (LBBB) or a reduced contractility in an infarcted
area. For the LBBB case, a detailed personalisation of the electrophysiology and
mechanics models on two patients [Sermesant 2012] has allowed us to characterise
the parameter range associated with this pathology. From this experience, LBBB is
simulated using a lower electrical conduction velocity (v = 30 cm/s) and a reduced
contractility (σ0 = 50) compared to the simulation of the normal case with v =
50 cm/s and σ0 = 90. The Left Ventricle (LV) initialization (cf. Fig. 3.2) is also
blocked to simulate LBBB. This simple personalisation of LBBB leads to reasonable
simulated motion which is not too far from the observed one.

We also used a calibration method to assess the mechanical parameters of the
BCS model so that the simulation is close to the real clinical sequence in term of
ejected blood volume. We used the algorithm derived from the Unscented Trans-
form [Julier 1997], and described in [Marchesseau 2012b]. The algorithm �nds a set
of parameters that enable the simulation to match observations on the endocardial
volume of the LV (the minimum volume, the minimum and maximum of the �ow)
of the real clinical sequence in one iteration through the analysis of the covariance
matrix between the simulated observations and the variation of each parameter
independently.

This simulation provides a dense motion �eld within the myocardium for the
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whole cardiac cycle. This motion �eld can be sampled at the resolution of the
original image sequence both in space and time.

3.3 Cardiac Motion Estimation from Images using Non-

Rigid Registration

To be able to introduce a given cardiac motion within a clinical 4D image sequence,
one has �rst to estimate the motion visible in this image, in order to replace it.
To achieve this, we applied a non-rigid registration algorithm to the clinical 4D
cardiac sequence to �nd the deformation �eld between each pair of images. We
used the symmetric Log-Domain Demons (LogDemons) non-linear registration al-
gorithm proposed in [Vercauteren 2008]. The purpose of applying this non-linear
image registration is to �nd the displacement vector �eld u(x) associated with the
transformation φ(x) = x+ u(x) which aligns a template image T(x) to a reference
image R(x), where x ∈ R3 is the space coordinate (voxel (x,y,z)).

Here we took the end diastolic (ED) image as the reference image R(x). With
this non-rigid registration algorithm, the displacement �eld ui(x) between the ED
image and each image at frame i of the clinical 4D cardiac sequence was estimated
(cf. Fig. 3.1). An accurate registration transforms each image at frame i in the
clinical 4D sequence well aligned to the ED reference image. Transformation φi(x)

is parameterized by a stationary velocity �eld vi(x) through the exponential map
φi(x) = exp(vi(x)) = x+ui(x). Using this parameterization, we ensure the one-to-
one correspondence between all points in the transformation since this is a physical
property of the cardiac deformation (no tearing or destruction of tissue). With
this method, the clinical image sequence was "stabilised" or "freezed", meaning
that the apparent cardiac motion was removed from the sequence. We can then
introduce the ground-truth motion generated by the biophysical model. We use the
implementation of LogDemons algorithm in ITK [Dru 2009]. For the registration
parameters, 1 voxel size of regularization kernel and 3 or 5 multi-resolution levels
(depending on the resolution of the image) with 200 iterations for each level usually
gives good result.

3.4 Combination of Simulated and Estimated Motions

to Create Synthetic Sequences

To combine simulated and estimated motions, we �rst adjusted temporally the sim-
ulated motion and then sampled it in order to match the cycle length and temporal
resolution of the clinical 4D sequence. The sampling of the simulated motion consists
in computing the displacement �eld (DF) between the reference con�guration (ED)
and the deformed position at each time frame of the sequence. This displacement
is only known at the vertices of the tetrahedral meshes, but using the linear inter-
polation inside each tetrahedron, we rasterized the continuous DF into a volumetric
image having the same size and spatial resolution as the clinical 4D sequence.
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DF displacement �eld
SVF stationary velocity �eld
ED end diastolic
Ii(x) real clinical image at time i
Isynthetici(x) generated synthetic image at time i
usi(x) simulated DF at time i
vsi(x) simulated SVF at time i
ui(x) DF obtained from the registration of Ii(x) to the reference

ED real image.
vi(x) SVF obtained from the registration of Ii(x) to the reference

ED real image.
vci(x) combined SVF at time i
uci(x) combined DF at time i
φci(x) transformation which transform Ii(x) to Isynthetici(x).

φci(x) = x+ uci(x)

Table 3.1: Notations. De�nitions of the notation used in the combination of
simulated and estimated motion

(Sec. II) usi
(x)

(Sec. III) v
i
(x)

I
i
(x)

(Sec. IV) Combination of Motions

(3.) BCH composition

(4.) Exponentiation of vci
(x)

(5.) Myocardium Masking and 

(6.) Diffusion of uci
(x)

(7.) Transformation 

using ɸci
(x)

(1.)  Diffusion and 

(2.) SVF estimation of usi
(x)

vsi(x)

vci(x)

uci(x)

uci(x)

Isynthetici
(x)

Figure 3.3: Block Diagram of the Motion Combination Process. The simu-
lated and the estimated motions are combined to transform the real image.
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The steps are summarized in Fig 3.1. They include the warping of clinical image
Ii(x) at time i into the synthetic image Isynthetici(x). This warping mainly occurs
around the myocardium, and the amount of deformation depends on how much
the simulated cardiac motion di�ers from the one estimated in the original image
sequence.

The transformation φci(x) of the original image is obtained through several
computing stages. However, it can be simply formulated as resulting from the com-
position of the transformation from time i to ED estimated through the Symmetric
Log-Demons algorithm with the transformation from ED to time i which was simu-
lated by the electromechanical model of the heart. The pipeline to create φci(x) is
sketched in Fig. 3.1 and Fig. 3.3 and detailed in Alg. 2.

Algorithm 2 Motion combination and synthetic image generation at time i
Require: Synthetic DF usi(x), symmetric Log-Domain Demons stationary velocity

�eld (SVF) vi(x), real clinical image at time i Ii(x)

1: usi(x) ← di�usion of the synthetic DF usi(x) (cf. Alg. 3)
2: vsi(x) ← estimation of the SVF from usi(x) (cf. Alg. 4)
3: Baker-Campbell-Hausdor� (BCH) (see [Vercauteren 2008]) composition of the

SVFs:
4: vci(x) = vi(x) ◦ vsi(x) = vi(x)+ vsi(x)+ 1/2[vi(x),vsi(x)] + ...

5: Exponential of the combined SVF:
6: φci(x) = exp(vci(x)) = x+ uci(x)

7: Myocardium masking of the combined DF uci(x):
8: uci(x)← uci(x) for x ∈ simulated myocardium at time i and 0 otherwise
9: uci(x)← di�usion of the masked combined DF uci(x) (cf. Alg. 3)

10: Transformation of the real clinical image Ii(x):
11: Isynthetici(x) = Ii(φci(x)) = Ii(x+ uci(x)) return Isynthetici(x)

A �rst step consists of transforming the simulated DF usi(x) into a di�eomorphic
transformation parameterized by a stationary velocity �eld vsi(x). Indeed, it is
important to handle smooth and di�eomorphic transformations to avoid any tearing
or folding of the image textures. To achieve this, we extrapolated the simulated DF
outside the myocardium using a di�usion method described in Alg. 3.

The extrapolation is necessary to estimate the velocity �eld as it is sensitive
to discontinuity of displacements. The di�usion of a vector �eld outside the my-
ocardium is based on the iterative convolution of a Gaussian kernel followed by the
reinitialisation of vector values in myocardium and border voxels. We used the re-
cursive Gaussian �lter implemented in ITK with 1 voxel size of sigma. The process
is iterated until the di�erence in vectors between two iterations is less than 1% of
the smallest voxel size.

We then used the algorithm proposed by [Bossa 2008] as implemented
in [Dru 2009] to estimate the synthetic stationary velocity �eld vsi(x) from the
synthetic DF usi(x), see Alg. 4. The estimation of the velocity �eld from the dis-
placement �eld described in Alg. 4 requires the computation of the exponential of
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Algorithm 3 Synthetic Displacement Field (DF) Di�usion

Require: Input Synthetic DF usi(x)

1: Initialize the DF u0
si
(x) = 0, u1

si
(x) = usi(x), t=1

2:

3: while ||utsi(x)− u
t−1
si

(x)|| > threshold do

4: Smooth the DF:
5: ũtsi(x) ← Gσ ∗ utsi(x) with Gσ is a Gaussian Kernel
6: In the myocardium, replace the smoothed DF with the initial synthetic DF:
7: ut+1

si
(x) ← (1 − w(x))ũtsi(x) + w(x)utsi(x) with w(x) = 1 for x ∈ simulated

myocardium at time i and 0 otherwise. Set ut+1
i

(x) to 0 on border voxels.
8: t← t+ 1
return utsi(x)

a stationary velocity �eld. We used here a forward Euler integration scheme as the
more standard "Scaling and Squaring" method could have a limited accuracy in
large deformation cases.

Algorithm 4 Logarithm vs(x) of the synthetic DF us(x) s.t. φs(x) = exp(vs(x))

Require: Di�used synthetic DF us(x)

1: vs0(x) = φs(x)− x where φs(x) = x+ us(x)

2: for n = 0→ max iteration do
3: δ̃vsn(x) = exp(−vsn(x)) ◦ φs(x)− x
4: Smooth the stationary velocity �elds:
5: δ̃vsn(x) ← Gσ ∗ δ̃vsn(x), vsn(x) ← Gσ ∗ vsn(x)

6: with Gσ is a Gaussian Kernel
7: BCH composition of the stationary velocity �elds:
8: vsn+1(x) = vsn(x)+ δ̃vsn(x)+ 1/2[vsn(x), δ̃vsn(x)] + ...
return vs(x) = vsn+1(x)

In a second step, the symmetric Log Demons registration and the extrapolated
di�eomorphic simulated transformation are composed. Since the symmetric Log
Demons algorithm also estimates a transformation parameterized by a stationary
velocity �eld vi(x), this composition can be done conveniently in the space of ve-
locities using the Baker-Campbell-Hausdor� (BCH) rule (see [Vercauteren 2008]):
vci(x) = vi(x) ◦ vsi(x). This composition is meaningful because velocity �eld
vsi(x) shows the positions at ED for each point in the simulated myocardium at
time i and the velocity �eld vi(x) points to the position at time i in the real clinical
image for each point at ED. An important fact is that the simulated myocardium at
ED is the same as the myocardium segmented in the ED clinical image (cf. Sec. 3.2).
Therefore we are �lling the simulated myocardium at time i with the myocardium
intensity of real image at the same time.

In the last step, we corrected the displacement �eld uci(x) = exp(vci(x))−Id(x)
outside the myocardium in order to keep most of the synthetic image similar to
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the real clinical image. To this end, we set to zero the DF outside the simulated
myocardium by masking uci(x) with the simulated myocardium mask at time i.
Then, we applied the same di�usion process as in Alg. 3 to smooth the �eld and
enforce that structures surrounding the myocardium follow the motion of the my-
ocardium. Finally the resulting displacement �eld is applied to the image Ii(x) to
create Isynthetici(x).

3.5 Producing Synthetic 4D Image Sequences

The processes were performed on a desktop PC with Intel Xeon processor at 3.33
GHz. The computation time is a function of the resolution of the image. The
LogDemons registration takes 1 hour for each pair of CT images and 5 minutes for
MRI. For the cardiac motion simulation, we used the BCS E/M model which was
implemented in the SOFA simulation platform [Faure 2012]. It takes 20 minutes for
a cardiac cycle simulation. Without code optimization, the next steps which include
the motion combination up to the generation of the synthetic image take 3 hour for
a synthetic CT image and 2 minutes for MRI."

3.5.1 Synthetic Cine MRI Sequence

We applied our proposed approach to create a synthetic cine MRI sequence from a
clinical cine MRI sequence of an 84 years old male patient with dilated cardiomyopa-
thy and left bundle branch block (LBBB) acquired on Achieva MR Philips Medical
System scanner with the following acquistion protocol; Multi-slice steady state free
precession (SSFP) sensitivity encoding (SENSE) with 30 views per gating interval,
echo time of 1.5071 ms, repetition time of 3.0142 ms and �ip angle of 60◦. The
image size was 171 × 171 × 98 voxels with the resolution of 1.424 × 1.424 × 1.424
mm3 (the image was isotropically resampled from an image with an original slice
thickness of 8 mm). The number of images in the sequence was 30.

In order to be more illustrative, we simulated the resynchronisation of this heart
to create the synthetic cine MRI sequence. It allowed to have a correction �eld of a
larger magnitude and therefore to better evaluate the impact on the original image
(see Fig. 3.4).

The proposed sequence generation method produced a visually realistic syn-
thetic sequence with a seamless fusion of the simulated myocardial motion and the
neighbouring moving structures. The contraction of the created synthetic cine MRI
sequence follows the motion of the E/M simulation which is shown by the my-
ocardium contour which corresponds to the contour of the deformed mesh in the
E/M simulation (cf. Fig. 3.4).

We also created a personalised synthetic sequence and compared the intensity
histograms in the myocardium mask between the original and synthetic images. As
expected, we observe that both intensity histograms are similar (cf. Fig. 3.7). It
shows that the intensity distribution in the simulated myocardium is not too much
distorted.
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3.5.2 Synthetic 4D CT Sequence

A synthetic 4D CT sequence was created from a clinical 4D CT sequence obtained
from a public clinical image database [OSIRIX 2012], acquired using a Siemens
Sensation 64 CT system. Since the data is anonymized, no patient details are
available. The ejection fraction of this patient is 61%, therefore we believe this
sequence presents a normal ventricular function. The image size was 512 × 512 ×
377 voxels with the resolution of 0.402 × 0.402 × 0.402 mm3 (resampled from the
original slice thinkness of 2 mm). The number of images in the sequence is 10.

Again, in order to better demonstrate the method, we applied a simulation with
a di�erent condition than the original sequence. In this case, we created a left bundle
branch block.

The contraction of the synthetic 4D CT also showed a good agreement with the
motion of the E/M simulation, as demonstrated by the alignment of the contour
of the myocardium with the mesh from the E/M simulation (cf. Fig. 3.5). From
the created personalised simulation, the real and the synthetic CT image intensity
histograms are very similar (cf. Fig. 3.7)

3.5.3 Synthetic 4D US Sequences

We used a clinical sequence acquired with a iE33 Philips Echocardiography System
probe on a healthy 33 years old male volunteer. The image size was 224 × 208 ×
208 voxels with the resolution of 0.727 × 0.716 × 0.632 mm3. The iE33 system
acquired a fully sampled cardiac volume within four cardiac cycles. The number of
images in a cardiac cycle was 30.

Generating synthetic US sequences was more challenging than other modalities
because of the reduced �eld of view. The myocardium is not completely visible in the
image, thus one has to manage the di�erence between the myocardial tissue entering
the image during contraction in the clinical sequence and in the synthetic one.
Additional information might be needed for outside of the ultrasound acquisition
cone.

In order to tackle this, di�erent steps were added. First, the �eld of view was
arti�cially expanded by dilating the acquisition pyramid. We copied the boundary
voxels with additional noise to �ll this region. It provided an approximation of the
image intensity for voxels entering the cone. Then after the synthetic image was
generated, the image was cropped at the original size. Finally, the displacement
�eld outside the 3D US acquisition cone was set to be zero during the last di�usion
process of the masked displacement �eld as explained in Sec. 3.4.

We preserved the dynamics of the image, in particular the visible speckle pat-
tern. We also preserved the realism of the ultrasound image quality gradient from
base to apex in the synthetic image like in the clinical image where the apical quality
is better than the basal quality. The contraction of the synthetic sequence follows
the motion of the E/M simulation which was used to create the synthetic sequence.
In Fig. 3.6, the contour of the cardiac mesh at end systole was overlaid on the syn-
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thetic 3D image at the same time point. The myocardium contour of the synthetic
sequences correctly followed the contour of the deformed cardiac mesh from the E/M
simulation.

We compared the intensity histograms of the original and the personalised syn-
thetic images (cf. Fig. 3.7); they look similar and tend to follow a typical Rayleigh
distribution which is a characteristic of US cardiac tissue images [Gao 2007].
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Figure 3.7: Intensity Histograms Comparison. Similar intensity histograms are
shown from the synthetic and the real clinical image at ES.

3.6 Benchmark of Cardiac Motion Tracking

As an illustrative application we performed cardiac motion tracking on synthetic
sequences and compared the results with the ground-truth motion. Compared to
the images shown in the previous section, we used here the simple personalised
models so that the motion correction is reduced, and therefore the image texture
minimally modi�ed.

We tested here the iLogDemons algorithm [Mansi 2011]. Note that this method
is di�erent from the one which was used to generate the images, as this method en-
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forces the incompressibility of the myocardium during the cardiac motion tracking
to regularize the visible motion in the image sequence and better recover the full
motion. A binary mask from the ED segmentation is used to apply the incompress-
ibility. The parameters of the tracking algorithm were taken as in [McLeod 2012],
where a regularisation kernel of the size of the voxel was used.

Pathological Synthetic cine MRI 
from Patient Sequence

Normal Synthetic 4D US 
from Volunteer Sequence 

Normal Synthetic 4D CT 
from Patient Sequence
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Figure 3.8: Ground Truth and iLogDemons Estimated Displacement Field

Di�erence. From the synthetic sequences, the norm of the displacement �eld
di�erences between the E/M simulated and the iLogDemons estimated motion was
computed. The mean and standard deviation during the cardiac cycle are shown.

The motion tracking estimates the DF uri(x) between each image at time i in
the synthetic sequence and the ED reference image. To evaluate the iLogDemons
results, we computed the norm of the displacement di�erence between the ground
truth and the iLogDemons motion �elds: ||usi(x)

−1−uri(x)||. We needed to inverse
the ground truth motion that we used previously to generate the synthetic sequence
(cf. Sec. 3.4) in order to compute usi(x)

−1, but this is easily done as we directly
estimate this motion �eld from meshes. The results are shown in Fig. 3.8. The
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Figure 3.9: iLogDemons LV Volume Estimation. The simulation ground truth
(green) and the iLogDemons estimation (red) of the LV volume curve along a car-
diac cycle are compared. Similar curves and close ejection fraction (EF) values are
observed.

maximum value of the mean displacement di�erences in the sequence are 1.48 mm,
1.86 mm and 1.95 mm for the MRI, CT, and US sequences respectively. While we can
see that the iLogDemons achieves reasonable tracking results, it allows to quantify
precisely the remaining error and therefore optimise the algorithm to improve the
results.

We also measured the estimated LV volumes along the cardiac cycle by deforming
the mesh used for the simulation with the deformation �eld from the iLogDemons,
and compared them to the ground truth (Fig. 3.9). Similar curves are observed, the
di�erences of the end systolic volumes are 1.4 mL, -12.0 mL and -4.7 mL for MRI,
CT, and US sequences respectively.

As for some therapies, like Cardiac Resynchronisation Therapy (CRT), there is
an important interest in knowing regional di�erences of motion, we analysed in a
more detailed way the US sequence (which is the modality typically used in CRT).
We extracted a set of kinematic descriptors which describe in a compact way the
cardiac motion of each region. To this end, we characterized the motion of each of
the 17 LV American Heart Association (AHA) segments by �tting in the least-square
way an a�ne transformation f(p) = Ap + B [Sermesant 2003] to the iLogDemons
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Figure 3.10: Regional Motion Analysis on the E/M Simulation and the

Synthetic US Sequence. Motion descriptors were extracted from the simulated
and from the estimated motion. The last column presents the motion descriptors
di�erence. Di�erent colors show di�erent AHA segments.

estimated displacement �eld. We then extracted the norm of the displacement of
each zone centroid (invariant to any rigid transformation): ‖u‖ = ‖Ab + B − b‖,
with b the initial position of the centroid. Fig. 3.10 shows the comparison of the
kinematic descriptors extracted directly from the motion of the E/M simulation and
the ones estimated by the iLogDemons from the synthetic sequence. Similar curves
are observed. The calculated Root Mean Squared Error (RMSE) is 0.47 mm.

3.7 Database of Synthetic Sequences

We illustrate here another application of this method: it is possible to multiply the
number of images of a small database of typical clinical images, by creating similar
but slightly di�erent cases around each original sequence. To achieve this, we used
a simple model personalised to a given sequence, and varied the parameters around
the personalised values to generate additional cases.

The clinical sequences we used included a healthy volunteer and a heart failure
patient, with a Left Bundle Branch Block (LBBB). Therefore di�erent simulation
scenarios were performed, including normal and pathological cases. In LBBB, the
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Original Image Simulated Scenario Clinical Decision

Healthy sequence Healthy model Healthy heart
Pathological sequence Pathological model Pathological heart
Healthy sequence Pathological model Pathological heart
Failing heart sequence Normal activation pattern Resynchronised heart

Table 3.2: Clinical Evaluation. Clinical diagnosis done on synthetic sequences
generated from the given original clinical images and simulated scenarios.

left ventricle (LV) initial electrical activation was blocked (cf. Fig. 3.2). The nor-
mal and heart failure cases have also di�erent global contractility (adimensioned)
mechanical parameters namely the peak contractility of the E/M coupling σ0 previ-
ously discussed in Sec. 3.2. The heart failure case peak contractility value is set to
be lower than the normal case as failing hearts contract less. The global electrical
conductivity parameter v (cf. Sec. 3.2), which is the conduction velocity (cm/s) of
the electrophysiological model, is also set smaller in this failing heart.

We thus created a synthetic 4D US database containing the previous scenar-
ios. Such database is useful for CRT where the 4D cardiac US is widely used to
select the patients and evaluate the treatment. The normal simulation is used to
create a healthy synthetic cardiac sequence, with controlled healthy electrical prop-
agation and motion from the E/M simulation, using the volunteer clinical sequence.
The LBBB simulation is used to create a pathological synthetic sequence from a
pathological clinical sequence.

In order to test the limits of our approach, we also created a heart failure cardiac
sequence with LBBB (cf. Fig. 3.6) from the clinical healthy volunteer sequence and a
sequence with normal activation from the failing heart clinical image. A cardiologist
performed a diagnostic evaluation on the generated synthetic US sequences (cf.
Table. 3.2). The simulated conditions were correctly diagnosed in the four cases,
the normally activated failing heart being interpreted as a resynchronised heart,
which is expected to have the anatomy of a failing heart but a synchronous motion.

Such databases can be used to develop machine-learning approaches as was
shown in [Prakosa 2011, Prakosa 2010] with a preliminary version of the approach
described in this article.

3.8 Discussion

In this study, we used the information from an existing real image sequence and
deformed it using a known displacement �eld in order to create a synthetic new one.
As a result, both of them are similarly looking. However, possible artefacts might
occur in the synthetic sequence due to several reason.

First, if the deformation of the original real clinical sequence is too large, the
motion tracking may fail to entirely stabilize the clinical data. Therefore the �nal
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motion still contains part of the original motion. As explained in Sec. 3.4, the esti-
mated displacement �eld of the original sequence is used to construct the combined
known displacement �eld. The variability in clinical image quality could also a�ect
this motion tracking process since LogDemons registration method is based on the
intensity of the image.

Second, if the simulated motion is too far from the patient motion, this large
di�erence can warp the texture in an unrealistic way, as the original image has to
be resampled with roughly the di�erence between the two motion �elds. This is
why the database has to be generated by varying the E/M parameters around the
original patient motion.

Third, the resulting synthetic image will have similar quality to the real one.
For the MRI case, since we resampled our MR images to be isotropic, the resulting
synthetic sequence has similar smooth edge transition in the long axis direction as
the real sequence.

Finally, the generation of synthetic 4D US sequences requires delicate interpo-
lations between Polar and Cartesian coordinates, because the registration process
is performed in the Cartesian coordinates, as well as the computation of the next
steps. Ideally the process should be done in Polar coordinates and only the �nal
data should be re-interpolated in Cartesian coordinates in order to respect the e�ect
of the acquisition on the texture.

Another limitation is related to the heart shape which is related to the original
image sequence. Therefore the applied motion must correspond to the condition
of the observed heart to be realistic. For instance, if the original sequence is from
a patient with a dilated cardiomyopathy, this will appear in the synthetic images,
even if we use electromechanical parameters corresponding to a healthy heart. It
is better to simulate a closer motion to the original sequence. However, this can
still allow the production of a resynchronized heart sequence before remodelling for
instance. This could serve in the therapy planning.

Concerning the motion at the heart boundary, continuity is enforced by the
di�usion of the motion inside the myocardium. The formulation minimizes the
gradient of displacement �eld in order to avoid deforming as much as possible the
texture. Better boundary conditions next to surrounding structures could be used
to improve the motion pro�le in these areas, for instance through a pericardium
model. The atria are considered as the surrounding environment since the E/M
model does not include them. At the frontiers of the atria, continuity is preserved
using the displacement �eld di�usion method.

The developed software will be available at http://team.inria.fr/asclepios/
software/. The registration algorithm will be integrated in the medInria software
and the cardiac simulation will be available in the SOFA platform.

http://team.inria.fr/asclepios/software/
http://team.inria.fr/asclepios/software/
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3.9 Conclusion

We developed a pipeline to create visually realistic synthetic 4D cardiac sequences
using the deformation from an electromechanical model simulation. This pipeline
combines the simulated myocardium displacement with the estimated myocardium
displacement from the original clinical images. This combined displacement �eld
is then used to warp the original images in order to create the synthetic cardiac
sequence.

In this pipeline, we proposed a new approach based on Stationary Velocity Fields
to combine the motions. We also proposed a new method of motion di�usion in
order to maintain the continuity of the simulation and the real image with minimal
texture distortion. Thanks to the detailed interplay between image processing and
biophysical modeling, we can fully use a complete sequence in order to generate
several new ones. This method also gives better realism compared to the traditional
method, namely deforming an end-diastolic image, since the generated synthetic
sequence will also contain the changes of the surrounding environment such as the
motion of the mitral valve.

The new synthetic images are similar to the original ones except for the motion
of the heart which is modi�ed to follow the motion provided by a biophysical model.
The parameters of the biophysical model can be modi�ed to create variations around
this motion. This pipeline has been tested to generate di�erent synthetic sequences
from di�erent imaging modalities. It is generic and can be used with a di�erent
biophysical model or a di�erent image registration algorithm, and it can be extended
to other organs.

As these synthetic 4D cardiac sequences have kinematic ground truth infor-
mation, those sequences represent in themselves a valuable resource to benchmark
motion tracking methods or to train machine-learning algorithms.
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While abnormal patterns of cardiac electrophysiological activation are at the ori-

gin of important cardiovascular diseases (e.g. arrhythmias, asynchrony), the only

clinically available method to observe detailed left ventricular endocardial surface

activation pattern is through invasive catheter mapping. However this electrophys-

iological activation controls the onset of the mechanical contraction, therefore im-

portant information about the electrophysiology could be deduced from the detailed

observation of the resulting motion patterns. In this article, we present the study

of this inverse cardiac electro-kinematic relationship. The objective is to predict the

activation pattern knowing the cardiac motion from the analysis of cardiac image

sequences. To achieve this, we propose to create a rich patient-speci�c database of

synthetic time series of cardiac images using simulations of a personalised cardiac

electromechanical model, in order to study this complex relationship between electri-

cal activity and kinematic patterns in the context of this speci�c patient. We use

this database to train a machine learning algorithm which estimates the depolariza-

tion times of each cardiac segment from global and regional kinematic descriptors

based on displacements or strains and their derivatives. Experiments on the inverse

electro-kinematic learning are demonstrated on synthetic sequences and are evaluated

on clinical data with promising results.

4.1 Introduction

Since electrophysiological activation controls the onset of the mechanical contrac-
tion, important information about the electrophysiology could be gathered from
the detailed observation of the resulting motion patterns. Abnormal patterns of
this activation are at the origin of important cardiovascular diseases (e.g. arrhyth-
mias, asynchrony). However, only catheter-based intracardiac electrical mappings
are available to obtain such information, and these invasive procedures are not
classically used for diagnosis but rather for planning and guiding a therapy. Elec-
trocardiographic imaging[Ghanem 2005] (a.k.a. body surface potential mapping) is
a non-invasive technique for imaging activation times of the myocardium but still
remains to be validated thoroughly and is not widely available in clinical centres.
Therefore there is a strong need to quantitatively assess a patient electrophysio-
logical condition from non-invasive imaging modalities. Despite advances in both
medical image analysis and intracardiac electrophysiological mapping technology,
the understanding of the relationship between the cardiac electrophysiology and the
cardiac motion visible in images is only partial. Since non-invasive cardiac imaging
is readily available, unlike non-invasive detailed electrophysiology maps, it is im-
portant to investigate how the cardiac electrophysiology function can be estimated
from the analysis of cardiac motion.

This is speci�cally relevant, for example, in the evaluation of the Cardiac Resyn-
chronization Therapy (CRT) where the placement and tuning of pacemaker leads
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play a crucial role in the outcome of the therapy. In this context, cardiologists
need to interpret time series of cardiac images in order to detect and characterize
kinematic patterns (motion asynchrony, delayed contraction) and then infer possible
electrical conduction disorders. However, currently 30% of the patients with CRT
show no bene�t from this therapy [Helm 2007], which may be caused by the subop-
timal implementation of the therapy. Providing activation maps from a time series
of cardiac images would be of great interest to better select patients and to optimize
the lead placements and delays during and after therapy. For instance, in a recent
study, Sohal et al. [Sohal 2012] use time-volume curves of left ventricular segments
to identify two classes of contraction patterns, which seem to be correlated with
CRT response in patients with left bundle branch block (LBBB). More fundamen-
tally, understanding the relationship between cardiac motion and electrophysiology
is essential to improve the diagnosis and therapy of patients su�ering from heart
failure.

While there is an important literature on the estimation of the cardiac kinemat-
ics from cardiac sequences (see for instance [McLeod 2012, Tobon-Gomez 2012a,
Mansi 2011, Elen 2008] and references therein), there exists no such tools to es-
timate the electrical wave propagation from such image sequences. However, the
relationship between cardiac motion and electrical activation has been investi-
gated in several studies [Prakosa 2011, Prakosa 2010, Otani 2010, Provost 2010,
Sanchez-Ortiz 2004].

Electromechanical Wave Imaging (EWI) modality has been recently intro-
duced to image the Electromechanical Wave (EW) which was shown to correlate
with the myocardium electrical wave propagation [Provost 2010, Konofagou 2012].
In [Provost 2011], it was shown that the EW was able to be reproduced by an E/M
model. This imaging modality uses high ultrasound frequency to map the small,
transient deformation of the EW. However, this method is limited to this speci�c
modality, which has only been demonstrated in 2D (whereas the propagation pattern
is 3D) and is not often available clinically.

In this paper, we propose to study the inverse electro-kinematic relationship
through the creation of a patient-speci�c database of synthetic time series of cardiac
images based on our previous study in [Prakosa 2011]. Because it is di�cult to ob-
tain a large number of cases where both electrophysiological mapping and time series
of 3D images are available, we use an electromechanical (E/M) model of the heart
to produce synthetic but visually realistic image sequences for which the electrical
stimulation is known using our method [Prakosa 2012c]. On this database, invariant
kinematic descriptors were extracted from each synthetic sequence and then fed to a
machine learning algorithm which estimates the electrical pattern from kinematic de-
scriptors during the cardiac cycle. The creation of this database allows us to develop
this machine learning based study. Recently, many medical image analysis studies
are motivated by machine learning, for example in [Tobon-Gomez 2008] where a vir-
tual population is created to train an active shape models. As the electro-kinematic
relationship is very complex, we prefer here to generate a patient-speci�c database,
so that the learning is done on cases relatively close to the patient condition.
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Figure 4.1: Estimation of Electrophysiological Activation Pattern from Im-

ages. A cardiac mesh is created from image segmentation. Di�erent electromechan-
ical conditions are simulated close to the patient condition to generate the database
of electrophysiological patterns and synthetic cardiac sequences.The relationship
between the motion descriptors and the activation patterns is learned from this
database. The result is used to predict the patient electrophysiological activation
pattern.

Previous works [Provost 2010, Sanchez-Ortiz 2004] have mainly focused in de-
tecting E/M wave directly from the displacement and strain patterns estimated from
image sequences during the contraction and relaxation of the myocardium. Since the
relationship between those mechanical waves and electrical waves is very complex,
our approach is to learn it through an E/M model of the heart at a larger spatial and
temporal scale. In [Sanchez-Ortiz 2004] the cardiac motion descriptors are combined
in order to obtain the electrical activation time, but the weights are assigned manu-
ally for the descriptors. Another study by McVeigh et al. [McVeigh 1998] considers
only the circumferential strain estimated from tagged MR images as the mechanical
activation measure. Another approach has been developed using a mathematical
based computational technique to image the active stress from the displacement
using an inverse model [Otani 2010]. This method was able to reconstruct travel-
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ling plane wave of active stress from a mechanical deformation. The active stress
was initially used to generate this deformation using a forward model. However,
this method would still need to be evaluated in clinical application. Compared
to [Prakosa 2010], instead of estimating displacements and strains directly from the
E/M model, we propose a more realistic estimation by �rst simulating 3D images
and then using an image-based motion tracking algorithm. Furthermore, rather
than learning the activation forces over time, we have chosen to learn the depo-
larization times of all American Heart Association (AHA) segments. Finally, our
learning approach is optimized in order to detect which kinematic descriptor is most
correlated with the electrophysiology waves.

The overall approach is described in Fig. 4.1 and mainly consists in three stages.
First, right and left ventricles are segmented from an input cardiac image sequence
and the cardiac motion is tracked. An electromechanical model of the heart is me-
chanically calibrated from this data. In a second stage, a training set, a.k.a patient-
speci�c database, is created from this E/M model by changing electrophysiological
parameters related to di�erent pathological conditions. For each set of electrophys-
iology parameters, a di�erent cardiac motion is simulated and a realistic synthetic
image sequence is created. In the third stage, motion descriptors are estimated from
each sequence. A learning method is then trained to relate those descriptors with the
endocardial depolarization times. Finally, the depolarization times of the original
sequence are estimated from the knowledge of its motion descriptors. Evaluation
of the inverse electro-kinematic learning process on three patients is discussed in
Sec. 4.5.

4.2 Image Processing and Parameter Calibration

4.2.1 Image Segmentation and Registration

First we need to apply two image processing steps to the patient clinical image
sequence. These steps are the segmentation of the end diastolic (ED) myocardium
and the estimation of the myocardium motion. The purpose of the segmentation is
to personalize the cardiac mesh geometry required for the cardiac E/M simulation.
Furthermore, the estimation of patient cardiac motion allows us to also estimate
the patient's endocardial left ventricle (LV) volume curve. Using this information,
The E/M simulation can be calibrated with respect to this volume curve so that the
simulated ejection fraction as well as the ejection and �lling rates are similar to the
measured ones [Marchesseau 2012a].

The 3D epicardium and endocardium of the left and the right ventricles of the
ED clinical image were delineated using an interactive tool available within the Car-
dioViz3D software [Toussaint 2008]. These delineations were then used to create the
myocardium segmentation. Using CGAL software [Rineau 2009], a computational
tetrahedral mesh was created from the binary mask of the compact myocardium
segmentation (cf. Fig. 4.2). We label the di�erent tetrahedra of the mesh in order
to set di�erent electrical conduction parameters for each labelled region (Sec. 4.3.1).
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The labels include the scar, the Purkinje network (the tetrahedra next to the endo-
cardial surface), the scarred Purkinje network (the intersection of the scar and the
Purkinje network) and the cardiac muscle (the remaining tetrahedra). To create
bull-eyes plot, we also label the left ventricle according to the 17 AHA segments.

Applying a non-linear registration to pairs of medical images is a common
method to estimate the motion of the tissue in the image. Here we use the symmetric
log-domain di�eomorphic demons (LogDemons) [Vercauteren 2008] non-rigid regis-
tration method to align the template image Ti(x) to a reference image R(x), which
is the ED image of the clinical sequence, by estimating a dense non-linear trans-
formation φi(x), where x ∈ R3 is the space coordinate. Ti(x) is the image at each
time frame i in the cardiac sequence. This transformation φi(x) is associated with
the displacement vector �eld ui(x) and is parameterised by the stationary velocity
�eld vi(x) which ensures the invertibility of the deformation since we are working
in the log-domain. By having this estimated displacement �eld, we are also able to
estimate the patient's endocardial LV volume curve in time. We deformed the ED
tetrahedral mesh using the estimated displacement �eld ui(x) and then computed
the endocardial LV volume of the deformed mesh in time.

4.2.2 Electromechanical Model Calibration

We used the Eikonal model to simulate the electrophysiological activation patterns.
This model has the advantage to be fast to compute and involves few parameters.
More detailed models[Ten Tusscher 2004, Mitchell 2003] could also have been used
however such additional level of complexity is not necessary since we are only in-
terested in providing main patterns of conduction driven by few parameters. The

Eikonal equation v
√
∇T tdD∇Td = 1 was solved using Multi-Front Fast Marching

Method [Sermesant 2007] to calculate the depolarization time Td at each point of
the mesh. v is the local conduction velocity and D = (1 − r)f ⊗ f + r.I is the
anisotropic conductivity tensor where f is the �bre orientation, r is the conductiv-
ity anisotropy ratio and I is the identity matrix.

We base our approach on the Bestel-Clément-Sorine (BCS) E/M model
[Chapelle 2012] composed of a passive non linear elastic part and an active part
that describes the binding and unbinding process of the actin and myosin �laments
in the sarcomere by a di�erential equation that controls the active stress τc and the
sarcomere sti�ness kc:{

k̇c = −(| u | +α | ėc |)kc + n0k0 | u |+
τ̇c = −(| u | +α | ėc |)τc + ėckc + n0σ0 | u |+

(4.1)

where α is a constant related to the cross-bridge release due to a high contrac-
tion rate, k0 and σ0 are respectively the maximum sti�ness and contraction. n0
is a reduction factor that allows to take into account the Starling e�ect by which
the maximum contraction depends on the �bre strain ec. The control variable u
is derived from the electrical activation model and is a function of the free cal-
cium concentration only. It is modeled using electrophysiological inputs such as
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Figure 4.2: Cardiac Geometry and Electrical Stimulation. A personalized
cardiac mesh is created from the myocardium delineation of the clinical image. The
region on the surface of the LV and RV endocardium is set to have higher electrical
conduction velocity to simulate the Purkinje network. Di�erent RV initial electrical
activation position is set to simulate the extremities of the Bundle of His. These
positions are approximately set based on the septal LV AHA Zones.
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depolarization times (Td) and action potential durations (APD). The four-element
Windkessel model is used to model the arterial pressure [Marchesseau 2012a].

The BCS E/M model was implemented in the SOFA simulation plat-
form [Faure 2012] and to assess the mechanical parameters of the model, we used
the algorithm derived from the Unscented Transform [Julier 1997], and described in
[Marchesseau 2012a, Marchesseau 2012b]. The algorithm �nds a set of parameters
that enable the simulation to match observations on the endocardial LV volume
(the minimum volume, the minimum and maximum of the �ow) in one iteration
through the analysis of the covariance matrix between the simulated observations
and the variation of each parameter independently. The assessed calibrated param-
eters of the BCS E/M model are σ0, K, µ, APD and Rp. K is the Bulk modulus
of the passive part and µ is the viscosity parameter of the active part. APD is
the cell excitation duration. Rp is the peripheral resistance, one of the Windkessel
parameters.

4.3 Patient-Speci�c Database of Synthetic Image Se-

quences

A database of visually realistic synthetic cardiac sequences is created using the
method proposed in [Prakosa 2012c]. This database is required to train the ma-
chine learning algorithm. This synthetic sequence generation method consists in
the combination of the simulated motion and the real motion estimated from the
patient image sequence. The database is built using di�erent scenarios which are
performed to simulate a variety of conditions close to clinical condition of this pa-
tient. Since these datasets are taken from patients with a left bundle branch block
(LBBB), the scenarios consist of di�erent variations of electrophysiological and me-
chanical parameters that simulate this speci�c pathology.

4.3.1 Simulated Electromechanical Conditions

Electrical Conduction Velocities in cm/s of:
Onset Muscle Purkinje Scar Scarred Purkinje
Position vm vp vs vsp

1-2-3-4 40-50-80-110 160-240-350 5-10-20 120

Table 4.1: Patient-Speci�c Database of 144 Simulated Cases. We varied the
initial electrical activation position of the LBBB and the conduction velocities of
the di�erent components of the electrophysiological model.

An electrophysiological activation pattern which corresponds to each scenario is
generated using the Eikonal model in the personalized cardiac mesh geometry. The
scenarios are created based on a variation of the parameters of the Eikonal model
around the standard values. The varying parameters are the conduction velocity
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value of the Purkinje network vp, the value in the cardiac muscle vm, and also the
initial electrical activation position which simulates the extremities of the Bundle
of His. For datasets containing a scar region, a variation of the conduction velocity
value for this region vs and also a value of the scarred Purkinje network vsp are also
included in the scenarios (cf. Table 4.1 and Fig. 4.2).

For datasets that do not contain a scar region, we set a low conduction velocity
in the anterior lateral region (zone 6, 12, and 16 of the AHA segments) or in the
inferior lateral region (zone 5, 11, and 16 of the AHA segments) in order to mimic
the occurrence of a functional block in those regions (cf. Table 4.2). The overall
conduction velocities are also set lower compared to Table 4.1.

Electrical Conduction Velocities in cm/s of:
Onset Muscle Purkinje Block Blocked Purkinje
Position vm vp vb vbp

1-2-3-4 30-50-80 130-210-320 none- none-
30 (Anterior)- 30-90 (Anterior)-
30 (Posterior) 30-90 (Posterior)

Table 4.2: Patient-Speci�c Database of 180 Simulated Cases. Additional
con�gurations with low conduction velocity in the anterior lateral region or in the
inferior lateral region are added to mimic the functional block.

4.3.2 Generation of Synthetic Image Sequences

Visually realistic synthetic time series of MR images were created using the previ-
ously simulated deformation which was combined to the real clinical sequence es-
timated displacement using the method proposed in [Prakosa 2012c]. This method
applied non-rigid registration algorithm to extract the motion of the real clinical
MRI sequence. This extracted motion was then combined with the E/M simulated
motion in the log domain and then used to warp the original images in order to
create the synthetic cardiac sequence. With this method, a database of realistic
images of the patient was generated for which the underlying cardiac motion and
electrophysiological parameters are known. This database served as the training set
in our machine learning based study. For each di�erent initial electrical activation
position (RV Init 1, 2, 3 and 4) (cf. Fig. 4.2, Table 4.1 and Table 4.2), a mechanical
calibration is performed as described in section 4.2.2. Therefore, the variation of
the mechanical parameters were included as well in the database.

With the method described previously, a large database of synthetic 3D MR
images was created. We then tracked the cardiac motion from those synthetic images
by using the symmetric log-domain di�eomorphic demons (LogDemons) registration
algorithm [Vercauteren 2008]. More precisely, we registered all the images of the
synthetic sequence to its reference ED image as we did to the real clinical sequence.
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4.4 Inverse Electro-Kinematic Learning

4.4.1 Cardiac Motion Descriptors

As an input to a machine learning algorithm, we needed to �rst extract kinematic
descriptors which describe in a compact and discriminative way the cardiac motion
for each time point in the cardiac cycle. We wanted these descriptors to be regional,
as we aim for an activation pattern rather than local activation times, and also
intrinsic (frame invariant) as the orientation of the heart in the images varies.

To this end, we �rst characterized the motion of each AHA segment by �tting in
the least-squares sense an a�ne transformation f(p) = Ap + B to the LogDemons
estimated displacement �eld. The strain tensor E was then computed from the
a�ne matrix A as: E = (ATA− I)/2

We then extracted kinematic descriptors at each time of the cardiac cycle that
are invariant to any change of reference frame (or rigid transformation). For the
strain matrix E, the three Euclidean invariants are computed as:

x1 = trace(E), x2 = trace(E2), x3 = det(E)

For the displacement vector, we only extracted its norm as invariant:

x4 = ‖u‖ = ‖Ab+B − b‖,

where ‖u‖ is the displacement norm of the zone centroid with b the initial position
of the centroid. We also used the strain in the direction of displacement as the
invariant:

x5 = (uTEu)/(2‖u‖2)

LV 

barycenter
Vreg

Figure 4.3: Regional LV Volume. The Vreg is the volume of the region created
by the LV AHA segment surface and the LV barycenter.

Compared to our previous study [Prakosa 2011], we added here more descriptors
which are usually found in clinical records. We added the QRS duration x6 = tQRS
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which is the time needed for the whole myocardium to be activated. We also added
the LV volume curve x7 = V and the regional LV volume curve x8 = Vreg computed
for each AHA segment. More precisely, we divided the LV endocardial surface
according to the AHA segment surfaces and then computed the volume of the region
created by each displaced segment surface and the barycenter of the LV (cf. Fig. 4.3).

Furthermore, in order to learn the in�uence of the dynamics of some descriptors,
we added the derivative of the trace of the strain tensor, of the displacement, and
of the global and regional volume curves:

x9 = d trace(E)/dt, x10 = d‖u‖/dt,

x11 = dV/dt, x12 = dVreg/dt

These descriptors, except for the volume curve x7, its derivative x11 and the QRS
duration x6, are evaluated regionally for the 17 AHA zones during the n time in-
stances. The value n depends on the temporal resolution of the original clinical
sequence, n = number of frames − 1. The volume curve x7 and its derivative x11
are vectors with length of n and the QRS duration x6 is a single scalar value.

The di�culty in using a simulated database for machine-learning is that there
are limitations in both the electromechanical model used to simulate the motion
and the image processing methods used to extract the descriptors. Therefore there
can be discrepancies between the descriptors used in the learning phase compared
to the descriptors extracted from the real images.

In order to cope with this, and also because we are more interested in the rela-
tive dynamics of these descriptors which is related to the activation pattern than in
their absolute values, we normalized each descriptor. This normalization was done
regionally for the descriptors taken from the 17 AHA regions. With this normaliza-
tion, each descriptor has a range of values from 0 to 1, as we use the relationship
x = (x − xmin)/(xmax − xmin), where xmax and xmin are the maximum and the
minimum values of x respectively. .

These 12 descriptors (cf. Table. 4.3) were used to create a kinematic descriptor
vector x = (xi)i∈[1,12] ∈ Rd for each simulation with

d = 9(Descriptors1,2,3,4,5,8,9,10,12)× n(Times)× 17(Zones)

+ 2(Descriptors7,11)× n(Times)

+ 1(Descriptors6)

= 155n+ 1

For a cardiac image sequence with 30 images, the dimension d of the complete
vectorial kinematic descriptor is:

d = 155× (30− 1) + 1 = 4496.

4.4.2 Machine Learning Method

In the inverse electro-kinematic learning process, the non-linear relationship be-
tween the kinematic descriptors and the electrical propagation was estimated based
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Number Descriptor Vector Size

x1 trace(E) 17×n

x2 trace(E2) 17×n

x3 det(E) 17×n

x4 ‖u‖ 17×n

x5 (uTEu)/(2‖u‖2) 17×n

x6 tQRS 1

x7 V n

x8 Vreg 17×n

x9 dx1/dt 17×n

x10 dx4/dt 17×n

x11 dx7/dt n

x12 dx8/dt 17×n

Table 4.3: List of the Descriptors. The descriptors are extracted from the esti-
mated cardiac motion, their temporal derivation and also the QRS duration. n =
the number of frames in a cardiac cycle - 1.

on a training set extracted from the synthetic database. To represent the car-
diac electrophysiology, we considered the activation time when the electrical po-
tential starts to depolarize at a point of the myocardium. The activation time
was averaged for all points of the LV endocardial surface in each AHA seg-
ment. Therefore, the vector characterizing electrophysiology for each simulation

is y = (yi) ∈ Rr=17 (AHA Zones) = log(Activation Times).
We modeled the non-linear relationship using Least-Square Support Vector Ma-

chine (LS-SVM) for regression [Cawley 2006] which is similar to the Kernel Ridge
Regression (KRR).

LS-SVM extends the KRR method by adding a bias term. KRR itself is the
non-linear extension of Ridge Regression (RR) which searches a linear function y =

wTx that models the dependencies between the descriptor vectors x = xi ∈ Rd
and response vectors y = yi ∈ Rr (all vectors are column vectors) from a set
of N examples (x1, y1), (x2, y2), ..., (xN , yN ). Classically, we need to minimize the
quadratic cost

C(w) = (1/2)

N∑
i

(yi − wTxi)
2, (4.2)

where w is a d× r matrix. Regularizing this equation, the total cost function which
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needs to be minimized hence becomes

C(w) = (1/2)
N∑
i

(yi − wTxi)
2 + (1/2)λ ‖w‖2 , (4.3)

where λ > 0 is the regularization parameter. Introducing a N × d matrix X =

(x1, x2, ..., xN )T and a N × r matrix Y = (y1, y2, ..., yN )T , the equation can be
written as

C(w) = (1/2) ‖Y −Xw‖2 + (1/2)λ ‖w‖2 . (4.4)

Minimizing this function by taking its derivative with respect to w and equating it
to zero gives −XTY +XTXw + λw = 0⇒ w =

(
λI +XTX

)−1
XTY .

Ridge Regression can be extended to Kernel Ridge Regression by rewriting the
solution

y = wTx

=
((
λI +XTX

)−1
XTY

)T
x

= Y T
(
λI +XXT

)−1
Xx

= Y T (λI +K)−1 k (4.5)

with K = XXT and k = Xx. In this form, other type of Kernel function can be
used to substitute the linear Kernel function K = K(xi, xj) = xTi xj

We modelled the non-linear relationship using Kernel Ridge Regression with a
bias term or Least-Square Support Vector Machine (LS-SVM) for regression

y = f(x) = Ak(xi, x) + b (4.6)

with matrix A is computed as A = Y T (λI +K)−1 and k(xi, x) is a kernel vector.
We chose the Radial Basis Function (RBF) K(xi, xj) =

∑D
k=1 e

−zk as the Kernel

function where zk =
(∣∣∣xki − xkj

∣∣∣ /(σkαk))2, i, j = {1, ..., N} and D = 12 is the

number of descriptors. In this kernel function, σk is the standard deviation of
each descriptor and αk is a dimensionless coe�cient which weights the importance
of each descriptor in the learning process, where σ2k = (1/N)

∑N
i=1

∥∥xki − µ∥∥2 and

µ = (1/N)
∑N

i=1 x
k
i .

4.4.3 Parameter Optimization

The chosen λ and α parameters are optimized by using leave-one-out estimates
which train the model with all members of the training set but one and test the
performance on the singleton. The process is repeated for all the singletons in the
training set. We use Allen's PRESS (Predicted Residual Sum of Squares) criterion
for the optimization of the λ and α parameters PRESS =

∑N
i e2(i) [Cawley 2006]

where e(i) = yi−ŷ(i) is the residual for the ith example with the ith example excluded
from the training process and ŷ(i) is the predicted response for the ith example based
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on the training process. Fortunately, we have e(i) = ei/(1−hii) where ei = yi− ŷi is
the residual for the ith example in the training process which includes all examples
and ŷi is �tted response based on this training. hii is the ith element of the leading
diagonal of the hat matrix H = X(λI +XTX)−1XT = XXT (λI +XXT = K(λI +

K)−1. Therefore, in the end, we can have the PRESS for the chosen parameters λ
and α in one iteration without having to do N iterations for the leave-one-out cross
validation. We use the Powell's BOBYQA [Powell 2009, Johnson 2012] method to
optimize these parameters to have the smallest PRESS.

4.5 Results

4.5.1 Activation Pattern Validation on Synthetic Data
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Figure 4.4: RMS Residual vs Size of Training Data. Less than 8 ms RMS resid-
ual is obtained by using more than 13, 18 and 44 training cases for the Database I,
II and III respectively. The Database I, II, and III are the patient-speci�c databases
for patient I, II and III respectively described in Sec. 4.5.2. This means that a good
generalization is obtained by using less than 25% of the whole dataset.

First, we evaluated the learning process on the generated synthetic data and
estimated the minimum size of the training set to have a small regression error for
the remaining entries of the database. Fig. 4.4 shows a good generalization with a
root mean square (RMS) error of less than 8 ms of residual by using at least 13, 18
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and 44 training datasets for the Database I, II and III respectively. The Database
I, II, and III are the patient-speci�c databases for patient I, II and III respectively
described in Sec. 4.5.2. These numbers are less than 25% of the size of datasets of
each database.

4.5.2 Activation Pattern Evaluation on Clinical Data

We applied our proposed approach on three clinical cases from patients with di�erent
pathologies and etiologies or causes of diseases. However, in all three of them there
was a modi�ed activation pattern due to scars or functional blocks, as well as poor
ejection fraction, which are the characteristics of the patient groups we are aiming
at.

The �rst patient was a 60 years old woman with heart failure and NYHA class
III symptoms. She had subendocardial postero-lateral scar in the left ventricle.
Her left ventricular ejection fraction was 25% on maximal tolerated heart failure
medication. The surface ECG demonstrated signi�cant conduction disease with left
bundle branch block (LBBB) QRS duration of 154 ms (normal QRS is less than 120
ms). Echocardiography, including Tissue Doppler, con�rmed signi�cant mechanical
dysynchrony in keeping with the ECG �ndings.

The second patient was a 72 years old male patient with ischemic heart disease.
He had a myocardial infarction in the infero-lateral wall. His left ventricular ejection
fraction was 35% with the QRS duration of 99 ms.

The third patient was a seventy-seven year old woman with a much more de-
veloped dilated cardiomyopathy. She was in NYHA class III heart failure with a
LV ejection fraction of 18% and left bundle branch block QRS duration of 200 ms.
There was no late gadolinium enhancement images acquired but functional conduc-
tion block was observed in the electrophysiological mapping.

For all the cases, the clinical data used to set up the patient-speci�c models con-
sisted of a cine-MRI for the estimation of ventricular motion and late enhancement
images with gadolinium contrast agent for scar anatomy (in case of scars), acquired
on an Achieva MR Philips Medical System scanner. A non-contact mapping study
was performed using the Ensite 3000 multi-electrode array catheter system (St Jude,
Sylmar, CA). The array records intracavity far-�eld potentials that are sampled at
1.2 kHz and digitally �ltered at 0.1-300 Hz. The resulting signals allow the recon-
struction of over 3000 virtual unipolar electrograms superimposed on a model of
the left ventricle created using a locator signal on a roving endocardial catheter.
The XMR fusion provided the location of the Ensite mapping with respect to the
MR-derived information.

For each patient, a database of synthetic sequences which contains the scenarios
described in Sec. 4.3.1 was built. For the �rst patient, the total generated synthetic
3D MR images are 144 (scenarios) × 29 (number of frame -1) = 4176.

We did a �rst evaluation of this learning process on the clinical 3D MR sequence
of the patients. Using the relationship or the optimized parameters previously found,
we are able to predict the LV endocardial electrical activation time of the patient.
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We apply the same processing to this sequence as we did for the synthetic sequence.

After optimizing the PRESS criterion on the whole synthetic database of each
patient, the obtained LS-SVM parameters are shown in Table. 4.4. We listed the de-
scriptors with their (αmax−αi)/(αmax−αmin) value which describes the increasing
importance of the descriptor i (cf. Table. 4.4). αmax and αmin are respectively the
maximum and minimum α value of the descriptors for a patient database. There-
fore the value range is from 0 for the least important descriptor to 1 for the most
important one. Table. 4.4 shows that the kinematic descriptors x1 = trace(E) and
x5 = (uTEu)/(2‖u‖2) are consistently the most important ones to learn the electro-
kinematic relationship from the three databases since they have smaller optimized
αi values compared to the other descriptors.

Descriptor

����

��

Patient 1 Patient 2 Patient 3

trace(E) 1.000 0.408 0.854

trace(E2) 0.649 0.367 0.837

det(E) 0.632 0.248 0.841

� 0.597 0.651 1.000
1

2 � �
�	
� 0.713 1.000 0.999

t
QRS

0.459 0.284 0.748

V 0.470 0.299 0.759

V
reg

0.486 0.293 0.750

trace(E)� 0.572 0.289 0.774

�� 0.678 0.315 0.755

 V � 0.527 0.408 0.787

V
reg

 � 0.520 0.314 0.740

α
min

1.038 1.690 0.985

Descriptor

������

��������

Patient 1 Patient 2 Patient 3

trace(E) 1.000 0.522 0.514

trace(E2) 0.541 0.431 0.446

det(E) 0.506 0.000 0.464

� 0.428 0.823 1.000

�

� � �
�
	

� 0.659 1.000 0.998

t
QRS

0.000 0.167 0.040

V 0.046 0.227 0.097

V
reg

0.103 0.203 0.053

�	trace(E)

��

0.367 0.189 0.171

�	 �

��
0.597 0.282 0.078

� V 

��

0.239 0.520 0.232

�	Vreg
 

��
0.218 0.279 0.000

α
min

1.038 1.690 0.985

α
max

2.263 2.282 2.583

Table 4.4: Rank of the Optimized LS-SVM Parameters. The value of the
parameters (αmax − αi)/(αmax − αmin) after optimizing the PRESS criterion gives
the importance of each descriptor.
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After performing LogDemons non-rigid registration and extracting the vector
x of kinematic descriptors from the estimated displacement �eld, the electrophys-
iology vector y was estimated from the LS-SVM. Since we have the ground truth
LV endocardial electrical activation time of the patient acquired using non-contact
mapping study, we are able to compare our prediction with this measurement. Sim-
ilar estimated depolarization times were obtained for this patient (cf. Fig. 4.5) with
the root mean square error RMSE = 11.20 ms for the patient I, 13.51 ms for the
patient II and 22.42 ms for the patient III.
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Figure 4.5: Depolarization Time Estimation from Clinical 3D MR Se-

quences. First evaluation of the learning process in the prediction of the LV surface
depolarization time on a patient (right) is compared to the ground truth value (left).
Similar patterns in the same range are observed on the three of them.

We computed the mean and variance of the electrophysiological database created
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previously with the patient's LV endocardial electrical activation time ground truth
value. Then, we were able to compare our prediction with these values (cf. Fig. 4.6).
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Database I: 13.74 ± 4.79 ms, Prediction Error I: 11.20 ms

Database II: 16.28 ± 2.52 ms, Prediction Error II: 13.51 ms

Database III: 26.99 ± 5.68 ms, Prediction Error III: 22.42 ms

Figure 4.6: Distance (RMSE) of Each Simulated Electrophysiology with

respect to the Patient's Ground Truth. For each patient's database of simu-
lated electrophysiological patterns, the di�erence of each pattern with the patient's
electrophysiological pattern ground truth is calculated. These di�erences are shown
in a curve which describes the variation of the simulated electrophysiology. The
mean and standard deviation of each patient are shown in the legend. The predic-
tion errors in Fig. 4.5 are shown as horizontal lines with the values shown in the
legend.
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4.6 Discussion

In this study, we created patient-speci�c database of synthetic sequences in order
to learn the cardiac inverse electro-kinematic relationship. In the end, we used
the learned relationship to estimate patient's left ventricle endocardium electrical
activation time. For each dataset, the prediction error (cf. Fig. 4.5) is in the order
of 15 ms which represents typically between 7% and 14% of the QRS duration. This
is reasonable given the spatial and temporal accuracy of the invasive intra-cardiac
mapping systems and even more compared to the accuracy of non-invasive ECGI
systems.

The prediction error is also smaller compared to the average error in the
database. Patient I: 11.20 ms < 13.74 ms, Patient II: 13.51 ms < 16.28 ms, Patient
III: 22.42 ms < 26.99 ms. This shows the proper behavior of the LS-SVM method
since it basically consists in interpolating the depolarization times of the entries in
the learning set that are closest to the input kinematics descriptors.

With this learning process, the prediction error combines several types of possible
errors: noise in the non-contact mapping acquisition, errors in the learning process,
errors in modeling the cardiac electromechanics and discretization errors. Due to
the non-contact nature of the mapping, it is often di�cult to have an accurate match
between the electrophysiology maps and the endocardial surface reconstructed from
MR imaging. For example for Patient II, there is an uncertainty in the ground truth
data since the latest activated area is not in the region where the scar is. Applying
30 ◦ of clockwise rotation to the ground truth data would make the scarred region
last activated and reduce the prediction error from 13.51 ms to 8.73 ms. The learning
error mostly depends on the size of the electrophysiology scenarios as they should
be vast enough to include the actual pathology of the patient. In this paper, we
have restricted ourselves to LBBB cases with 5 parameter categories (onset position,
conduction velocity...) leading to between 144 and 180 simulated cases. Adding more
hypothesis of electrophysiology parameters in the training set would help capturing
more complex electrophysiology and kinematics patterns. However, this would also
lead to a much increased number of simulations and therefore a trade-o� must be
found between the range of pathologies and the computational requirements.

Then prediction errors also depend on the accuracy of the electrophysiology
model. For instance, applying an automated personalization method [Relan 2011]
of an electrophysiology model on the 3 patients' datasets described previously leads
to errors of 10.19 ms, 9.19 ms and 16.51 ms respectively. These errors after person-
alization capture the combined e�ect of acquisition, discretization and model errors.
Given that the prediction errors are respectively 11.20 ms, 13.51 ms and 22.42 ms, it
appears that the errors due to the learning process are relatively small. To decrease
further those errors may require to use a more complex electrophysiological model
or a �ner mesh. However, it is probable that improving the acquisition protocol
leading to higher spatial resolution would be most bene�cial. In practice, obtaining
ground truth electrophysiology data is currently di�cult due to the invasive nature
of the endocardial mapping systems. Using less invasive electrophysiology data from
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body surface potential mapping would allow to broaden the number of test cases.
In addition, to decrease the prediction errors, it is important that the cardiac

electromechanical model produces realistic simulations of the cardiac motion. This
not only implies that the cardiac physiology is well described by the chosen E/M
model, but it also means that this model is su�ciently well personalized. In our
approach, the chosen E/M has been shown to produce plausible simulations of the
cardiac motion and also shown some predictive behavior for the electrophysiology
and mechanics [Sermesant 2012]. Furthermore, in this study, we have performed
four di�erent mechanical calibrations for each onset position, in order to have sim-
ilar volume curves between the simulation and the patient data. To improve the
prediction, one would probably need to perform a calibration and even a person-
alisation of the mechanical parameters for each electrophysiology scenario. Indeed,
the calibration stage only tries to match the endocardial volume curves whereas
the personalisation stage tries to match more regional or local kinematic indices
(regional volume curves, estimated displacement...).

One limitation of this study is that the created database is patient-speci�c.
Therefore, numerous simulations need to be performed in order to predict another
patient's depolarization time. Currently, predictions from one training set built from
one patient does not generalize to another patient because of the di�erence in their
kinematic descriptor. The use of common atlas may overcome this limitation.

4.7 Conclusion

As the generated synthetic cardiac MR sequences have electro-kinematic "ground
truth" information, we have performed an inverse electro-kinematic learning on this
patient-speci�c database. Invariant kinematic descriptors were extracted from the
displacement �eld obtained from the sequence registration. The non-linear inverse
relationship between the electrical activation times and the kinematic descriptors
was modeled using LS-SVM. Evaluation of the learning process for the database of
synthetic sequence shows good generalization and a �rst evaluation on three clinical
MR sequences shows encouraging results.

This approach opens the possibility of using non-invasive cardiac motion imaging
as a way to estimate electrophysiological patterns. This could provide additional
information to the cardiologist during the optimization of the Cardiac Resynchro-
nization Therapy (CRT), for example allowing the placement of the pacemaker leads
in the cardiac region which is lately activated. An extension of this work would be
the application of this method to di�erent imaging modalities. This can be done
since the synthetic sequence generation method is generic and was already demon-
strated for di�erent imaging modalities [Prakosa 2012c].
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In this thesis we presented a novel approach for the generation of realistic syn-
thetic cardiac sequences which were used for the creation of a database for the
inverse cardiac electro-kinematic learning. This study aims at answering the follow-
ing question: can one estimate the electrophysiology characteristics of the heart by
observing its motion? The answer to this question is certainly not straightforward
but this work aims at providing more hindsight about this issue.

First, we evaluated the non-linear image registration method which is required to
analyze cardiac sequences. We then developed a novel method to combine simulated
cardiac electromechanical motion with the motion estimated from the real sequence
in order to create several synthetic but visually realistic cardiac sequences. This
method allowed the creation of large database of synthetic sequences which contains
the ground truth electro-kinematic relationship. Since the pairs of real clinical
sequence along with the electrical cardiac mapping are still di�cult to obtain, the
database of synthetic sequence allow us to use a machine learning based approach
to learn the inverse electro-kinematic relationship.

5.1 Contributions

This work has led to three main contributions.

Evaluation of iLogDemons Non-Rigid Registration Algorithm

The LogDemons and iLogDemons [Mansi 2011] non-linear registration algo-
rithms were evaluated on a dataset of healthy volunteers and phantoms and also on
a dataset of synthetic cardiac ultrasound sequences. The evaluation of the method
to the real dataset allowed us to compare the estimated cardiac strain curves with
the healthy strain curves from the literature. We observed that the strain esti-
mation showed reasonable result [McLeod 2012]. The strain curves provide some
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information about the cardiac motion which can help cardiologist to better analyse
the abnormal patterns of the cardiac motion.

In general, objective evaluation of non-linear registration methods is still chal-
lenging because of the lack of ground truth. However, with synthetic sequences, it
is possible to quantify the performance of these algorithms since the ground truth
motion was given. Using this quanti�cation, the best registration parameters can
be chosen. Furthermore, the limitations of the registration method during the sys-
tolic phase can be quanti�ed and analysed. The evaluation has been performed on
a dataset of synthetic ultrasound images generated using the simulated physics of
ultrasound acquisition [Prakosa 2012a] and also on a multimodal synthetic dataset
(Magnetic Resonance, Computed Tomography and Echocardiography) generated
using our proposed method [Prakosa 2012c].

This work was published in [McLeod 2012, Prakosa 2012a].

Generation of Synthetic but Realistic Cardiac Sequences

We developed a pipeline to create visually realistic synthetic 4D cardiac se-
quences using the cardiac motion simulated by an electromechanical model. This
pipeline combines the simulated myocardium displacement �eld with the estimated
myocardium displacement �eld from a registration method. This combined displace-
ment �eld is then used to warp the original images in order to create the synthetic
cardiac sequence.

In this pipeline, we proposed a new approach based on Stationary Velocity Fields
to combine the two motions. We also proposed a new method that di�uses velocity
�elds in order to maintain the continuity between the simulation and the real image
with minimal texture distortion. Thanks to the detailed interplay between image
processing and biophysical modeling, we can fully use a complete sequence in order
to generate several new ones. This method also gives better realism compared to
traditional methods based on the deformation of an end-diastolic image, since the
generated synthetic sequence will also contain the motion of surrounding tissues
such as the motion of the mitral valve.

The new synthetic images are similar to the original ones except for the mo-
tion of the heart which is modi�ed to follow the motion provided by a biophysical
model. The parameters of the biophysical model can be modi�ed to create variations
around this motion. This pipeline has been applied to generate di�erent synthetic
sequences from di�erent imaging modalities. It is generic and can be used with a
di�erent biophysical models or a di�erent image registration algorithm, and it can
be extended to other organs.

As these synthetic 4D cardiac sequences have kinematic ground truth infor-
mation, those sequences represent in themselves a valuable resource to benchmark
motion tracking methods or to train machine-learning algorithms.

This work was published in [Prakosa 2011, Prakosa 2012c].

Estimation of Cardiac Electrophysiology from Medical Images
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As the generated synthetic cardiac sequences have electro-kinematic "ground
truth" information, we have performed an inverse electro-kinematic learning on this
patient-speci�c database. Invariant kinematic descriptors were extracted from the
displacement �eld obtained from the sequence registration. The non-linear inverse
relationship between the electrical activation times and the kinematic descriptors
was modeled using LS-SVM. Evaluation of the learning process for the database of
synthetic sequence shows good generalization and a �rst evaluation on three clinical
MR sequences [Prakosa 2012b] and two clinical US sequences [Prakosa 2011] shows
encouraging results.

This approach opens the possibility of using non-invasive cardiac motion imaging
as a way to estimate electrophysiological patterns. This could provide additional
information to cardiologists during the optimization of the Cardiac Resynchroniza-
tion Therapy (CRT), for example allowing the placement of the pacemaker leads in
the cardiac regions that are lately activated.

This work was published in [Prakosa 2010, Prakosa 2011] and it is in preparation
for publication in [Prakosa 2012b].

5.2 Perspectives

This work brings the following perspectives both in the short and long term.

5.2.1 Short term perspectives

Evaluation of non-linear registration method on the multimodal synthetic

cardiac sequences

The evaluation of the non-linear registration method is still a challenging
task. In this thesis the iLogDemons algorithm was applied to a dataset of syn-
thetic ultrasound sequence with di�erent motion and deformation pattern. The
algorithm was able to reasonably estimate the ground truth deformation of the
model [Craene 2012a, Prakosa 2012a]. The evaluation of the algorithm on the syn-
thetic images of di�erent medical imaging modality will be important to better
understand the in�uence of the di�erent parameter values. An evaluation of the
method on synthetic sequences generated by simulating the physics of image acqui-
sition can be compared to the evaluation done in our developed multimodal synthetic
sequence [Prakosa 2012c].

Our current implementation could be optimized for instance by improving mem-
ory access so that it can handle large volumes faster and it can ease the selection of
the best registration parameters.

5.2.2 Long term perspectives

Automatic optimisation and additional constraint to the non-linear reg-

istration method
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The availability of the synthetic cardiac sequences and the underlying ground
truth motion allows the objective evaluation of the non-linear registration method.
Using this evaluation, the error given for a choice of registration parameters can be
estimated. Therefore, an automatic optimisation method can also be developed to
�nd the best registration parameter for a given objective.

Further improvement of the registration algorithms can be done in order to give
better performance. In our evaluation [Prakosa 2012a], a priori information on the
cardiac cycle could be used as a longitudinal constraint. It would improve the
registration result during the maximum contraction where we had the largest error.

Integration of the simulated physics of acquisition to the developed syn-

thetic sequence generation method

The synthetic sequence generation pipeline has been tested to generate di�erent
synthetic sequences from di�erent imaging modalities. It is generic and can be used
with a di�erent biophysical model or a di�erent image registration algorithm, and
it can be extended to other organs. The produced sequence is highly realistic and
similar to the one from clinics since the synthetic sequence uses the information
from the real one.

Further development in the integration of the simulated physics of acquisition
can improve the visible texture information. This can be useful for example in
echocardiography when parts of the myocardium is out of the �eld of view.

The application of the method to other organs should allow the evaluation of
di�erent image processing algorithm developed for that organ. For example in the
brain tumor growth simulation, combination of the simulated physics of acquisition
and the proposed pipeline could yield highly realistic brain image with simulated
tumor in the image.

Generalization of the cardiac inverse electro-kinematic learning to the

di�erent patient dataset

We developed a method to estimate patient's cardiac electrophysiology pattern
from the analysis of sequences of cardiac images. A patient speci�c database of
synthetic cardiac sequences was built as it is required to train a machine learn-
ing algorithm. This method opens the possibility of non-invasive cardiac electrical
mapping. Clinically, this could give additional information to the cardiologist in the
optimization of the Cardiac Resynchronization Therapy (CRT), for example in the
placement of the pacemaker leads in the cardiac regions that are lately activated.

The personalization of electromechanical models is one of key tasks to obtain
reasonable predictive results. Current personalization is done for one of the kine-
matic descriptor which is the LV endocardial volume curve. With the advance in
the cardiac model personalisation method, personalising each of the kinematic de-
scriptor will make the simulation and also the created database closer to the real
observation. Therefore the database will represent better the possible variation of
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the real data. It will also yield better prediction since the training set would be closer
to the real dataset. After the personalisation, the combination of di�erent datasets
from di�erent patients can improve the generalisation of the learning method.

Preliminary evaluation on the echocardiography images was performed
in [Prakosa 2011]. Since echocardiography is the most widely used medical imag-
ing modalities in the CRT, it is of great interest to estimate the cardiac electrical
mapping from the 4D US images. First evaluation can be done by applying the
learning method to di�erent patient images with di�erent pacing mode. However,
the real validation can only be done by using the patient cardiac electrical mapping
obtained using catheterisation.
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Non-Invasive Activation Times
Estimation using 3D
Echocardiography

Based on: [Prakosa 2010] A. Prakosa, M. Sermesant, H. Delingette, E. Saloux, P.
Allain, P. Cathier, P. Etyngier, N. Villain and N. Ayache. Non-Invasive Activation
Times Estimation using 3D Echocardiography. In Oscar Camara, Mihaela Pop,
Kawal Rhode, Maxime Sermesant, Nic Smith and Alistair Young, editors, Statistical
Atlases and Computational Models of the Heart, volume 6364 of LNCS, pages
212-221, Beijing, 2010. Springer, Heidelberg.
The further development in the estimation of cardiac electrophysiology activation
pattern from the analysis of the cardiac image sequence is described in Chapter 4
and in preparation for submission to [Prakosa 2012b].

Despite advances in both medical image analysis and intracardiac electrophysio-

logical mapping technology, the understanding of cardiac mechano-electrical coupling

is still incomplete. This knowledge is of high interest since it would help estimating

the cardiac electrophysiology function from the analysis of widely available cardiac

images, such as 3D echocardiography. This is important, for example, in the evalua-

tion of the cardiac resynchronization therapy (CRT) where the placement and tuning

of the pacemaker leads plays a crucial role in the outcome of the therapy. This pa-

per proposes a method to estimate activation times of myocardium using a cardiac

electromechanical model. We use Kernel Ridge Regression to �nd the relationship be-

tween the kinematic descriptors (strain and displacement) and the contraction force

caused by the action potential propagation. This regression model is then applied

to two 3D echocardiographic sequences from a patient, one in sinus rhythm and the

other one with left ventricle pacing, for which strains and displacements have been

estimated using incompressible di�eomorphic demons for non-rigid registration.

B.1 Introduction

The wide availability of cardiac imaging modalities especially 3D echocardiography
allows clinicians to estimate some geometrical characteristics of the myocardium
motion such as displacement, strain or strain rate. However, these quantities are
only related to the kinematics of the heart whereas in many cases it is important
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to also obtain information about the patient's cardiac electrical propagation. In-
deed contact or non-contact intracardiac electrical mappings are invasive procedures
which are not classically used for diagnosis but rather for applying a therapy. Elec-
trocardiographic imaging[Ghanem 2005] (a.k.a. body surface potential mapping) is
a non-invasive technique for imaging activation times of the myocardium but still
remains to be validated thoroughly and is not widely available in clinical centers.
Therefore there is a strong need to quantitatively assess a patient electrophysiolog-
ical condition from non-invasive imaging modalities such as 3D echocardiography.
This is especially valid in the context of cardiac resynchronization therapy (CRT) for
which up to 30% of the patients with pacemaker leads show no bene�t[Helm 2007].
Providing activation maps from a 3D echocardiography for instance, would be of
great interest to select patients responding to the therapy and to optimize the lead
placements and delays during and after therapy. More fundamentally, understand-
ing the relationship between cardiac mechanics and electrophysiology is essential to
improve the diagnosis and therapy of patients su�ering from heart failure.

A study on the relation between cardiac magnetic resonance (MR) motion
tracking and the electrical activation pattern has been published by Sanchez-
Ortiz et al.[Sanchez-Ortiz 2004] which combines some cardiac motion descriptors
in order to obtain the electrical activation time. However, in this study, the
weights were assigned manually to get an estimation of the activation. McVeigh
et al.[McVeigh 1998] also consider only the circumferential strain estimated from
tagged MR images as the mechanical activation measure. Very high frame rate ultra-
sound in electromechanical imaging (EWI), which could map the electromechanical
wave (EMW) correlated with cardiac electrical activation in 2D echocardiography,
has been published by Provost et al.[Provost 2010]. However, understanding the 3D
cardiac electrical propagation is still very important for clinicians.

In this paper, our main objective is to �nd a relationship between the di�erent
kinematic parameters obtained from cardiac image analysis and the activation times
of the myocardium using a machine learning method. The activation times are
de�ned as moments at which the activation forces at a given point sharply increase.
Activation times are strongly correlated with the action potential signal through the
mechano-electrical coupling.

The training stage is based on motion and contraction forces estimated from an
electromechanical model of the heart. This in silico cardiac model serves as a ref-
erence model in the absence of reliable intracardiac mapping information. Several
pathologies and pacing scenarios are considered in this training phase. Based on
this learning process, we can predict the cardiac electrical propagation from kine-
matic parameters estimated from cardiac image analysis. This approach has been
evaluated on synthetic cases as well as on one patient. The results are thoroughly
discussed and perspectives of this work are provided in a �nal section.
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B.2 3D Echocardiography Image Registration and Mo-

tion Estimation

We use 3D echocardiography images provided by the University Hospital of Caen,
Normandy - France. This data was acquired from patients under CRT with two
implanted electrodes, one in the left ventricle and the other in the right ventricle.
Two di�erent pacemaker stimulation modes were imaged and analysed. The �rst
mode corresponds to the sinus rhythm mode when no pacemaker lead is activated. In
the second mode, the left ventricle is stimulated. Left ventricle segmentation along
whole cardiac sequence was provided by the Medisys Group of Philips Healthcare,
Suresnes - France. The 3D echocardiography sequence begins at the end-diastolic
phase of the cardiac cycle.

B.2.1 Incompressible Di�eomorphic Demons

Cardiac motion is estimated through a non-linear image registration algorithm ap-
plied between consecutive frames of the same cardiac cycle. The purpose of applying
this non-linear image registration is to �nd the displacement vector �eld u(x) as-
sociated with the transformation φ(x) = x + u(x) which aligns a template image
T(x) to a reference image R(x), where x ∈ R3 is the space coordinate (voxel (x,y,z)).
This displacement vector �eld u(x) is considered as the cardiac displacement �eld.
All images in the cardiac sequence are registered to the same reference image which
is the �rst image of the 3D echocardiography sequence, corresponding to the end-
diastolic phase.

We take into account the myocardium near-incompressibility assumption (max-
imum 5 to 7% of volume variation during the cardiac cycle) by relying on
the incompressible demons algorithm proposed by Mansi et al.[Mansi 2009] to
estimate cardiac motion. This algorithm improves the di�eomorphic demons
algorithm[Vercauteren 2007] by adding 2 constraints: the myocardium near-
incompressibility and linear elastic regularization of velocity �elds. This method
has been developed and evaluated for cardiac motion estimation on cine MRI im-
ages [Mansi 2009].

A 3D myocardium segmentation for the �rst frame of the sequence is used as
the incompressible region. The 3D echocardiography sequence starts at the end-
diastolic phase of a cardiac cycle. All image frames in the 3D echocardiography
sequence are being registered to this end-diastolic frame.

The recovered displacement vector �eld is projected in the radial, circumferential
and longitudinal directions using the heart local coordinate system.

B.2.2 Strain Estimation

The displacement vector �eld u(x) which recovers the cardiac motion φ(x) = x +

u(x) is then used to compute the Lagrangian �nite strain tensor E = 1
2(∇u +

∇uT + ∇uT∇u). The strain is calculated by using the end-diastolic frame as the
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Figure B.1: 3D echocardiography myocardium motion estimation. My-
ocardium motion is tracked and then strains and displacements with respect to
the �rst reference image in the cardiac cycle are computed and projected in a lo-
cal frame representing the radial, longitudinal and circumferential directions. The
di�erent colors in the curves show the 17 di�erent AHA zones. The strain and dis-
placement curves shown are from a patient with LBBB and without any pacemaker
stimulation. The strain vertical axis is dimensionless while the displacement verti-
cal axis is in millimeters. The horizontal axis shows the image frame number in the
cardiac cycle.

reference image R(x). Similarly for the displacement vector �eld, the obtained strain
is projected in the radial, circumferential and longitudinal directions (cf. Fig. B.1).
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B.3 Inverse Mechano-electrical Coupling

B.3.1 Electromechanical Model

In order to learn how the cardiac kinematics are related to the cardiac electrophysi-
ology it is necessary to get for the same patient descriptors of the cardiac motion and
electrical wave propagation. This could be provided by 3D echocardiography and
intracardiac electrophysiological mapping acquired on the same patient. To merge
both information, the patient must be in the same stimulation mode and endocar-
dial surfaces reconstructed from intracardiac mappings must match those segmented
in 3D US. However, such joint acquisition was not available in our study. There-
fore, we proposed to use an electromechanical model of the heart [Sermesant 2006b]
to simulate patient cases. From those simulated cases, we could obtain both elec-
trophysiological and kinematic measurements. To be realistic, this model uses the
cardiac anatomy extracted from echocardiography images as a priori information
about the shape of the left ventricle (LV). We simulated four cardiac cases using
the electromechanical model to create a training database. First, we simulate the
cardiac propagation and contraction in normal sinus rhythm where the electrical
simulation is coming from the left and right ventricle endocardium. In the second
simulation, we simulate a left bundle branch block (LBBB) where the stimulation
is coming only from the right ventricle endocardium while the third simulation is
the right bundle branch block (RBBB) case where stimulation is coming only from
the left ventricle endocardium. The last case is the bi-ventricular pacing case where
we initiate the electrical propagation from a zone in the lateral freewall and a zone
in the right ventricle apex in order to simulate the pacemaker bi-ventricular pacing
(cf. Fig. B.2).

The simulation gives the deformation of the cardiac mesh along with the con-
traction value and the potential value for each point in the mesh. We perform a
thresholding in order to obtain the time at which the contraction value increases.
We also compute the displacement vector �eld which maps the myocardium at a
given time point to the end-diastolic image of the sequence. Kinematic descriptors
extracted from the obtained displacement vector �eld are the displacement and the
strain projected in the radial, longitudinal and circumferential directions.

B.3.2 Kernel Ridge Regression as a Learning Method

Using an electromechanical model of the heart, we learn the relationship between the
kinematic descriptors and the electrical activation. We use Kernel Ridge Regression
to �nd a relationship between these 2 quantities.

Ridge Regression searches a linear function y = wTx that models the dependen-
cies between the descriptor vectors xi ∈ Rd and the response vectors yi ∈ Rr (all
vectors are column vectors) from a set of T examples (x1,y1), (x2,y2), ..., (xT ,yT ).
Classically, we need to minimize the quadratic cost C(w) = 1

2

∑T
i (yi − wTxi)

2,
where w is a d × r matrix. Regularizing this equation, the total cost function
which needs to be minimized hence becomes C(w) = 1

2

∑T
i (yi−wTxi)

2 + 1
2λ ‖w‖

2,
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where λ > 0 is the regularization parameter. Introducing a T × d matrix
X = (x1,x2, ...,xT )T which contains the vectors xi in its row and a T × r ma-
trix Y = (y1, y2, ..., yT )T which contains the vectors yi in its row, the equa-
tion can be written as C(w) = 1

2 ‖Y −Xw‖
2 + 1

2λ ‖w‖
2. Minimizing this func-

tion by taking its derivative with respect to w and setting it equal to zero gives
−XTY +XTXw+ λw = 0⇒ w =

(
λI+XTX

)−1
XTY .

Ridge Regression can be extended to Kernel Ridge Regression by rewriting

the solution y = wTx =
((
λI+XTX

)−1
XTY

)T
x = Y T

(
λI+XXT

)−1
Xx =

Y T (λI+K)−1 k with K = XXT and k = Xx. We choose to use Radial Basis

Function as a Kernel function K(xi, xj) = e−
|xi−xj|
σ2 with i, j = {1, ..., T}.

B.3.2.1 Parameter Optimization

The chosen λ and σ parameters are optimized by using leave-one-out estimates
which train the model with all members of the training set but one and test the
performance on the singleton. The process is repeated for all the singletons in the
training set. We use Allen's PRESS (predicted residual sum of squares) statistic for
this process, PRESS =

∑T
i e

2
(i) [Cawley 2004], where e(i) = yi− ŷ(i) is the residual

for the ith example with the ith example excluded from the training process and
ŷ(i) is the predicted response for the ith example based on the training process.
Fortunately, we have e(i) = ei

1−hii where ei = yi − ŷi is the residual for the ith
example in the training process which includes all examples and ŷi is the �tted
response based on this training. hii is the ith element of the leading diagonal of
the hat matrix H = X(λI + XTX)−1XT = XXT (λI + XXT ) = K(λI + K)−1.
Therefore, in the end, we can have the PRESS for the chosen parameters λ and σ
in one iteration. We use the downhill simplex search method in MATLAB in order
to optimize these parameters to have the smallest PRESS.

With this approach, we learn a non-linear relationship (due to the choice of
Radial Basis Function as the Kernel function) between the kinematic descriptors and
the activation force caused by the action potential. We take the radial, longitudinal
and circumferential strains (Er,El,Ec ∈ Rtd) and also the radial, longitudinal and
circumferential displacements (ur,ul,uc ∈ Rtd) from points in the myocardium as
the components of the kinematic descriptor vector xi ∈ Rd=6×td , where td is the
number of each descriptor sampling time in a cardiac sequence. The contraction
force along a cardiac cycle tr is set as the response vector yi ∈ Rr=tr . The descriptor
sampling time td is taken for 20 time instances in order to follow the temporal
resolution of the real patient data. However, the response vector sampling time tr
is chosen as 100 time instances in order to have high temporal resolution of the
contraction force along a cardiac cycle, starting before the beginning of the P wave
of the ECG. The examples in the training set consist of the di�erent points in
the myocardium. We take 30 points from each of the American Heart Association
(AHA) 17 zones so we have 510 learning points along a cardiac cycle. We separate
the value σ for the displacement and the strain used in the Kernel K(xi, xj) =
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e
−
(
|ui−uj|
σu

− |Ei−Ej|
σ2
E

)
. Once the learning process is done, we obtain the optimal

values for λ, σu and σE . We use these parameters to predict the other points in the
myocardium in order to obtain the cardiac contraction force mapping caused by the
potential.

B.4 Results

B.4.1 Evaluation on Simulated Data

First, we tested our machine learning method using the simulated motion from the
electromechanical model for which we have a ground truth to compare to. The �rst
3 cases which have been described in section B.3.1 are included in our training
set, whereas the fourth case has not been included. The optimal parameters of
the regression have been found as λ = 0.0004, σu = 107.1030 and σE = 9.0276

which yield the root mean squared error (RMSE) value between the predicted and
the ground truth value 0.0016 MPa. This seems to imply that strains are more
correlated with activation times than displacements since their variances are smaller
(for a similar range of values). We applied the regression method to all points of
the �rst, second and third cases producing quite smooth predicted contraction force
curves (see Fig. B.3). Note that the training stage only included a very small subset
of those points thus showing that the kernel ridge regression is able to generalize
the correlations between strains and forces to the whole myocardium.

In the fourth case, the predicted force values are not as smooth as expected.
However the predicted and the ground truth value of the fourth case have the same
global bell shape where up and down slopes can be detected using thresholding. The
bull's eyes plot computed from the estimated activation times also correspond to
their expected value. In the second case (LBBB) we clearly have an early activation
from the septal wall whereas in the third case (RBBB) the early activation originated
from the endocardial wall of the left ventricle. In the fourth case (bi-ventricular
pacing), not included in the training set, the delays between right and left ventricles
are slightly decreased. The left ventricle RMSE value between the predicted and the
ground truth activation time is 7 ms for the �rst 3 cases and 37 ms for the fourth
case.

B.4.2 Application to Clinical Data

From the time series of 3D echocardiography images, we segmented the myocardium
and then estimated the cardiac motion using the incompressible demons algorithm.
The myocardium segmentation is used to specify the region where the incompress-
ibility constraint must be satis�ed. From the knowledge of the left ventricle axis, we
can de�ne the 3 local directions and then project strain tensors and displacements
along those three directions (cf. Fig. B.4). These values are then used as input
descriptors in the regression method.
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Figure B.4: Kinematic descriptors extracted from patient's 3D echocar-

diography. (a) (b) and (c) are the radial, circumferential and longitudinal strains
whereas (d), (e) and (f) are the radial, circumferential and longitudinal displace-
ments. Axis units are as explained in Fig. B.1.
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Figure B.5: Patient contraction force prediction. Predicted contraction force
time and activation time isochrone (bull's eyes) for two di�erent pacemaker stimu-
lation mode from the same patient. Axis units are as explained in Fig. B.3.

B.5 Discussion

The estimation of contraction forces for each AHA segment and for the two sim-
ulation modes are shown in Fig. B.5. The estimated curves of contraction forces
are noisy as in the case of simulated data but also no longer have a bell shape. In
particular, those curves have negative parts at the beginning of systole whereas they
have been trained to be positive. Those curves have been thresholded (value chosen
as 0.03) to obtain two bull's eyes plot of activation times for the sinus rhythm and
left ventricular pacing. It should be noticed that the late activation in green on
the lateral wall of the left ventricle at sinus rhythm has been activated much earlier
after pacing in the left ventricle which is expected.

From the preliminary results obtained on one patient with 2 stimulation modes,
the estimation of activation times seems to correspond to the expected values. How-
ever, the shape and negative values of the estimated contraction forces indicate that
the regression model does not capture well the observations. This may originate
from several factors. First of all, there may be a di�erence of patterns between
the simulated strains and displacement and the ones estimated by the non-linear
registration. Second, there is a slight error when choosing the reference end dias-
tolic image which produces signi�cant errors in the estimation of strains. One could
cope with those errors by having several regression methods corresponding to several
choices of reference images. Finally, it should be noted that the electromechanical
model involved for training the method used the anatomy of the left ventricle of
the patient (see section B.3.1) on which it was evaluated. Further evaluation on
more patient images should indicate whether the learning method is sensitive to the
patient anatomy.

B.6 Conclusion

We presented in this paper a method to estimate contraction forces and activation
times from echocardiographic images. A supervised learning method has been pro-
posed which relies on synthetic measurements from an electromechanical model of
the heart for the training stage. The method has been evaluated on synthetic data
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and a patient case. Further work will test the proposed method on a larger sets
of patients with various stimulation protocols. Sensitivity of our approach to the
estimation of strains and the choice of the reference image will be studied. Learn-
ing from intracardiac electrophysiological mapping and 3D echocardiography of the
same patient should improve the result and will be done as soon as the data is
acquired.
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Image Sequences for Cardiac

Inverse Electro-Kinematic
Learning

Based on: [Prakosa 2011] A. Prakosa, M. Sermesant, H. Delingette, E. Saloux,
P. Allain, P. Cathier, P. Etyngier, N. Villain and N. Ayache. Synthetic Echocardio-
graphic Image Sequences for Cardiac Inverse Electro-Kinematic Learning. In Gabor
Fichtinger, Anne Martel and Terry Peters, editors, Medical Image Computing and
Computer-Assisted Intervention - MICCAI 2011, volume 6891 of LNCS, pages
500-507, Toronto, Canada, September 2011. Springer, Heidelberg.
The further development in the generation of synthetic cardiac sequence is described
in Chapter 3 which was published in [Prakosa 2012c]. The further development
in the estimation of cardiac electrophysiology activation pattern from the analysis
of the cardiac image sequence is described in Chapter 4 and in preparation for
submission to [Prakosa 2012b].

In this paper, we propose to create a rich database of synthetic time series of

3D echocardiography (US) images using simulations of a cardiac electromechanical

model, in order to study the relationship between electrical disorders and kinematic

patterns visible in medical images. From a real 4D sequence, a software pipeline is

applied to create several synthetic sequences by combining various steps including

motion tracking and segmentation. We use here this synthetic database to train a

machine learning algorithm which estimates the depolarization times of each cardiac

segment from invariant kinematic descriptors such as local displacements or strains.

First experiments on the inverse electro-kinematic learning are demonstrated on the

synthetic 3D US database and are evaluated on clinical 3D US sequences from two

patients with Left Bundle Branch Block.

C.1 Introduction

Despite advances in both medical image analysis and intracardiac electrophysiolog-
ical mapping technology, the understanding of the relationship between the cardiac
electrophysiology and the cardiac motion visible in images is only partial. However
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such understanding would be very valuable as it would open possibilities in non-
invasive electrophysiological mapping. Since 3D echocardiography (US) is readily
available, an important topic of interest for cardiologists would be the estimation
of the cardiac electrophysiology function from the analysis of 3D US images. This
is speci�cally important, for example, in the evaluation of the Cardiac Resynchro-
nization Therapy (CRT) where the placement and tuning of pacemaker leads play
a crucial role in the outcome of the therapy. In this context, cardiologists need
to interpret time series of US images in order to detect and characterize kinematic
patterns (motion asynchrony, delayed contraction) and then infer possible electrical
conduction disorders.

While there is an important literature on the estimation of the cardiac kine-
matics from 3D US sequences (see for instance [Elen 2008] and references therein),
there exists no such tools to estimate the electrical wave propagation from such
image sequences. However, the relationship between cardiac motion and electri-
cal activation has been investigated in several studies [Prakosa 2010, Provost 2010,
Sanchez-Ortiz 2004].

In this paper, we propose to study the inverse electro-kinematic relationship
through the creation of a large database of synthetic 3D US images. Because it is
di�cult to obtain a large number of cases where both electrophysiological mapping
and 3D US images are available, we use an electromechanical (E/M) model of the
heart to produce synthetic but realistic image sequences for which the electrical
stimulation is known. Previous work [Provost 2010, Sanchez-Ortiz 2004] has mainly
focused in detecting E/M wave directly from the displacement and strain patterns
estimated from image sequences during the contraction and relaxation of the my-
ocardium. Since the relationship between those mechanical waves and electrical
waves is certainly complex, our approach is to learn it through an E/M model of the
heart. Compared to [Prakosa 2010], instead of estimating displacements and strains
from the E/M model, we propose a more realistic estimation by �rst simulating 3D
US images and then using an image-based motion tracking algorithm. Furthermore,
rather than learning the activation forces over time, we have chosen to learn the
depolarization times of all American Heart Association (AHA) segments. Finally,
our learning approach is optimized in order to detect which kinematic descriptor is
most correlated with the electrophysiology waves.

Di�erent studies have been conducted for the creation of simulated 3D US se-
quences, e.g. [Duan 2007, Elen 2008]. Instead of simulating the ultrasonic image
formation process, in this paper, we propose a new approach to create synthetic
3D US sequences by deforming a real 3D US sequence and combining simulated
myocardium displacements with the visible motion of the surrounding environment
(blood pool speckle, mitral valve). This approach has the advantage of providing
a realistic 3D US sequence at little computational cost and including all neighbor-
ing structures. A vast database of electrical propagations along with corresponding
synthetic sequences based on the E/M simulation was created. On this database, in-
variant kinematic descriptors were extracted from each synthetic sequence and then
fed to a machine learning algorithm which estimates the electrical pattern from kine-
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Figure C.1: Registration of Images and Meshes. iLog Demons registration
method is applied to all images in the sequence to register them to the ED reference
image. All meshes in a simulation cycle are also registered to the ED mesh.

matic descriptors during the cardiac cycle. The created synthetic 3D US sequences
are of realistic quality and �rst experiments on the inverse electro-kinematic learning
using this database are discussed.

C.2 Creating Synthetic 3D US Sequences

C.2.1 3D US Sequence Non-Rigid Registration

We use as input to our method a real 3D US sequence acquired by the iE33 Philips
probe on a patient su�ering from heart failure. The �rst step in the pipeline
was to segment semi-interactively or automatically the left ventricle (LV). The
binary mask was then used to apply the iLogDemons non-rigid registration algo-
rithm [Mansi 2011] which had been applied in the cardiac cine MR sequence analysis.
This motion tracking algorithm enforces the incompressibility of the myocardium
during the cardiac motion which provides an additional prior information to reg-
ularize the visible motion in the image sequence. With this non-rigid registration
algorithm, the displacement �eld (DF) u between the end diastole (ED) image and
each image of the real 3D US sequence was estimated (see Fig. C.1). Thanks to the
di�eomorphic nature of u, we computed its inverse and thus resampled each image
of the sequence in the ED geometry.
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(2) (3) (1) 

Figure C.2: Fusion of the Displacement Fields. (1) The DF estimated from
the iLog Demons registration (left) is combined with the myocardium DF from the
E/M simulation (second left). The two �elds are fused, (2) smoothed, (3) inversed
and cropped along the acquisition cone.

C.2.2 Deformation of Registered 3D US Images Using E/M Sim-
ulation

From the segmented images of the myocardium at ED, we created a computa-
tional tetrahedral mesh which was suitable for the simulation of a cardiac E/M
model [Sermesant 2006a] whose myocardium motion is used for the generation of
the synthetic sequences. This required additional work since only part of the LV
and right ventricle (RV) were visible in the image. Registration of a template mask
of the 2 ventricle was used to infer the missing parts.

With this model, we simulated the cardiac motion after specifying an electro-
physiological pattern (see Section C.2.3). We sampled the cardiac simulated motion
to follow the temporal resolution of the real 3D US sequence and then computed
the DF between the reference con�guration (ED) and the deformed position at each
time of the sequence using the linear interpolation of the displacement of each vertex
of the tetrahedral mesh rasterized in a 3D image having the same size and spatial
resolution as the real 3D US image (see Fig. C.2). This dense synthetic DF of
the myocardium was then merged with the DF estimated from the non-rigid reg-
istration. The synthetic DF completely overwrites the registration DF within the
myocardium. Additionally, the synthetic DF within the eroded myocardium is dif-
fused by solving the Laplace equation and fused with the registration DF to smooth
the transition outside the myocardium. Then, the new DF was inversed and applied
to each real image previously resampled in the ED con�guration. Finally, a 3D cone
mask was applied to remove all the displacements outside the cone, as observed in
real acquisitions. With this approach, most of the image will stay unchanged in the
synthetic image compared to the original sequence. We preserve the dynamics of
the image, in particular the speckle visible in 3D US for most voxels. Only in the
myocardium is the image texture slightly warped, the amount of warping depend-
ing on the di�erence between the simulated cardiac motion and the motion in the
original images.
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(1) (2) (3)

Figure C.3: Cardiac Geometry and Electrical Stimulation. (1) LV segmenta-
tion (2) Initial electrical activation area for the normal stimulation (3) Positions of
the stimulation leads in the LV AHA zones

Simulation Initial Electrical Global Global
Number Activation Position Conductivity Contractility
1-4 LVRV (Normal) 50/30 0.09/0.05
5-8 LV (RBBB) 50/30 0.09/0.05
9-12 RV (LBBB) 50/30 0.09/0.05
13-36 RV + AHA 1/5/6/7/11/12 (LV Pacing) 50/30 0.09/0.05
37-48 LV + AHA 3/9/14 (RV Pacing) 50/30 0.09/0.05
49-120 AHA 1/5/6/7/11/12 + AHA 3/9/14 50/30 0.09/0.05

(BV Pacing)

Table C.1: Simulation Database. Parameters of the 120 simulations. Global
conductivity (cm/s) is the conduction velocity of the electrophysiology model and
global contractility (adimensioned) is the peak contractility of the E/M coupling.

C.2.3 Generation of Healthy and Pathological Cardiac Motion

Di�erent simulation scenarios were performed including normal and pathological
cases such as left bundle branch block (LBBB) and right bundle branch block
(RBBB) by blocking the LV and RV initial electrical activation respectively, LBBB
with LV pacing, RBBB with RV pacing and also LBBB and RBBB with biventricu-
lar (BV) pacing. The di�erent pacing positions were based on the LV AHA segments
(see Fig. C.3). Table C.1 summarizes the electrical and mechanical parameters used
for the 120 simulations done from each real 3D US sequences.

C.3 Learning Electro-Kinematic Inverse Relationship

C.3.1 Kinematic Descriptors

With the method described previously, a large database of synthetic 3D US images
was created. We then tracked the cardiac motion from those synthetic images by
using the iLogDemons registration algorithm [Mansi 2011]. More precisely, we reg-
istered all the images of the synthetic sequence to its reference ED image. As an
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input to a machine learning algorithm, we needed to �rst extract kinematic descrip-
tors which describe in a compact and exhaustive way the cardiac motion. To this
end, we characterized the motion of each AHA segment by �tting in the least-square
sense an a�ne transformation f(p) = Ap+B to the iLogDemons estimated DF. The
strain tensor was computed from the a�ne matrix E = 1

2(ATA − I). We propose
to extract kinematic descriptors that are invariant to any change of reference frame
(or rigid transformation). For the strain matrix E, the three Euclidean invariants
are written as x1 = trace(E), x2 = trace(E2), and x3 = det(E). For the displace-
ment vector, we only extracted its norm as invariant: x4 = ‖u‖ = ‖Ab + B − b‖,
where ‖u‖ is the displacement norm of the zone centroid with b the initial po-
sition of the centroid. Finally, we also used the strain in the direction of dis-
placement as the last invariant x5 = 1

2‖u‖2 (uTEu). These 5 descriptors for the

17 AHA zones during the 19 time instances of a cardiac cycle were used to cre-
ate a vectorial kinematic descriptor for each simulation: X = xi ∈ Rd where
d=5 (Descriptors)× 19 (Times)× 17 (Zones) = 1615.

C.3.2 Inverse Electro-Kinematic Learning

In the inverse electro-kinematic learning process, the non-linear relationship between
the kinematic descriptors and the electrical propagation was estimated based on a
training set extracted from the synthetic database. To represent the cardiac electro-
physiology, we considered the activation time when the electrical potential starts to
depolarize at a point of the myocardium. The activation time was averaged for all
points in each AHA segment. Therefore, the vector characterizing electrophysiology

for each simulation is Y = yi ∈ Rr=17 (AHA Zones) = log(Activation Times).

We modelled the non-linear relationship using Least-Square Support Vector Ma-
chine (LS-SVM) Y = f(X) = Ak(xi, X) + b with the Radial Basis Function (RBF)

K(xi, xj) = e−z as the Kernel function where z =
∑5

k=1

(
|xki−xkj |
σkαk

)2

. In this kernel

function, σk is the standard deviation of each descriptor and αk is a dimensionless
coe�cient which weights the importance of the descriptor in the learning process.
Finally, following the LS-SVM theory, k(xi, X) is a kernel vector while matrix A
is computed as A = Y T (λI +K)−1. In order to have a good generalization of the
model, the αk parameters and the regularization parameter λ were optimized with
a downhill simplex method using leave-one-out cross-validation based on Allen's
predicted residual sum-of-squares (PRESS) statistic [Cawley 2006].

C.4 Results

The proposed synthetic 3D US generation method produces realistic synthetic 3D
US sequence (cf. Fig. C.4) with a seamless fusion of simulated myocardium motion
with neighboring moving structures. The created synthetic 3D US database contains
120 di�erent cardiac cases consisting of a sequence of 19 3D US images describing
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Figure C.4: Synthetic 3D US. (1) original real image with (2) contour of the
mesh at the corresponding time from the model simulation overlayed, (3) synthetic
image generated with the model simulation with model contour overlay, (4) synthetic
image.
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Figure C.5: RMS Residual vs Size of Training Data. Less than 10 ms RMS
residual is obtained by using more than 15 training cases.

a complete cardiac cycle. In total, 120 × 19 = 2280 synthetic 3D US images were
generated.

C.4.1 Machine Learning Validation on Synthetic Data

We evaluated the learning process on synthetic data and estimated the minimum
size of the training set to have a small regression error for the remaining entries of
the database. Fig. C.5 shows a good generalization with a root mean square (RMS)
error of less than 10 ms of residual by using at least 15 training datasets.

C.4.2 Machine Learning Evaluation on Real Data

After optimizing the PRESS criterion on the whole synthetic database, we obtained
the following LS-SVM parameters : λ = 7.89×10−31, α1 = 463.65, α2 = 2.29×1013,
α3 = 8.02×1012, α4 = 14.37 and α5 = 174.51. This clearly shows that the kinematic
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Figure C.6: Depolarization Time Estimation from Clinical 3D US Se-

quences. First evaluation of the learning process on patient (1) and patient (2).
Both patients have LBBB.

descriptors x1, x4 and x5 are the only meaningful ones to learn the electro-kinematic
relationship. We did a �rst evaluation of this learning process on clinical 3D US
sequences for two patients with LBBB. After performing non-rigid registration and
extracting the vector X of kinematic descriptors, the electrophysiology vector Y
was estimated from the LS-SVM. Very similar estimated depolarization times were
obtained for these two patients (cf. Fig. C.6). Moreover, the activation patterns
correspond to what was expected: depolarization starts from the septum towards
the lateral wall, and the di�erence between the �rst activated zone and the last
activated zone, which indicates the QRS duration, is around 150 ms which is also a
characteristic of the LBBB.

C.5 Conclusion

We developed a pipeline to create realistic synthetic 3D US sequences using the de-
formation from an E/M model simulation. Those sequences represent in themselves
a valuable result for instance to benchmark motion tracking algorithms. As these
synthetic 3D US sequences have electro-kinematic "ground truth" information, we
thus performed an inverse electro-kinematic learning on this database. Invariant
kinematic descriptors were extracted from the DF obtained from the synthetic 3D
US images registration. The non-linear inverse relationship between the electrical
activation times and the kinematic descriptors was modelled using LS-SVM. Eval-
uation of the learning process for the synthetic 3D US sequences database shows
good generalization and the �rst evaluation on clinical 3D US sequences shows en-
couraging results.
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