

Associated Team Shapes: Three Year Evaluation

http://www-sop.inria.fr/ariana/Projets/Shapes/

Josiane Zerubia lan Jermyn Ariana research group, INRIA/I3S

Inverse problems in earth observation and cartography

Visits

- Joint publications and further output
- ♦ Science:
 - Tree crown classification.
 - Marked point processes for arbitrarily-shaped objects and multiple birth and death dynamics.
 - Shape analysis of curves in Euclidean spaces.
 - Looking for shapes in two-dimensional, cluttered point clouds.

♦ INRIA

- Senior
 - ◆ X. Descombes, I. H. Jermyn, J. Zerubia.
- Junior
 - ♦ M. S. Kulikova, A. El Ghoul, C. Benedek.
- ♦ FSU
 - Senior
 - ◆ A .Srivastava, E. Klassen, V. Patragenaru, A. Barbu.
 - Junior
 - ◆ S. Joshi, J. Su. S. Kurtek, W. Liu.

Visits

◆ 2007:

- April: Visit to FSU. Participants: X. Descombes, I. Jermyn, M.S. Kulikova.
 - "Shape Day" Workshop, Statistics Department, FSU. Plenary speaker: Prof. Kanti Mardia, Univ of Leeds. Participants: X. Descombes, I.Jermyn, S. Joshi, M. S. Kulikova, A. Srivastava.
- June: Visit to INRIA. Participant: S. Joshi.
- September: Visit to INRIA. Participants: V. Patrangenaru, A Srivastava.

♦ 2008:

- April: Visit to FSU. Participants: X. Descombes, I. Jermyn.
- June: Visit to INRIA. Participant: A. Srivastava.
- July: Visit to INRIA. Participants: E. Klassen, A. Barbu.
- December: Visit to FSU. Participants: **A. El Ghoul**, **C. Benedek** (+ seminars).
- December: Visit INRIA. Participant: J. Su.

♦ 2009:

- February: Visit to FSU. Participant: M. S. Kulikova (+ seminar).
- March: Visit to FSU. Participant: I. Jermyn.
- June: Visit to INRIA. Participants: A. Srivastava, S. Kurtek, W. Liu.

Joint publications

Conference papers

- "Tree classification using radiometry, texture and shape based features", M. S.
 Kulikova, M. Mani, A. Srivastava, X. Descombes, J. Zerubia. Proc. EUSIPCO, 2007.
- "An efficient representation for computing geodesics between n-dimensional elastic shapes", S. Joshi, E. Klassen, A. Srivastava, I. H. Jermyn. Proc. CVPR, 2007.
- "Riemannian analysis of probability density functions with applications in vision", A.
 Srivastava, I. H. Jermyn, S. Joshi. Proc. CVPR, 2007.
- "Removing shape-preserving transformations in square-root elastic (SRE) framework for shape analysis of curves", S. Joshi, E. Klassen, A. Srivastava, I. H. Jermyn. Proc. EMMCVPR, 2007.
- "Bayesian classification of shapes hidden in point cloud data", A. Srivastava, I. H. Jermyn, Proc. IEEE DSP Workshop, 2009.

Journal papers

- "Looking for shapes in two-dimensional cluttered point clouds", A. Srivastava, I. H. Jermyn. IEEE Trans. Pattern Analysis and Machine Intelligence, 2009.
- "Shape analysis of elastic curves in Euclidean spaces", S. Joshi, E. Klassen, W. Liu, I. H. Jermyn, A. Srivastava. IEEE Trans. Pattern Analysis and Machine Intelligence (under review).

Further output

Conference papers

- "A marked point process model with strong prior shape information for extraction of multiple, arbitrarily-shaped objects", M. S. Kulikova, I. H. Jermyn, X. Descombes, E. Zhizhina, J. Zerubia. Proc. IEEE SITIS, 2009.
- "Extraction of arbitrarily shaped objects using stochastic multiple birth-and-death dynamics and active contours", M. S. Kulikova, I. H. Jermyn, X. Descombes, E. Zhizhina, J. Zerubia. Proc. IS&T/SPIE Electronic Imaging Conference, 2010.

PhD defences

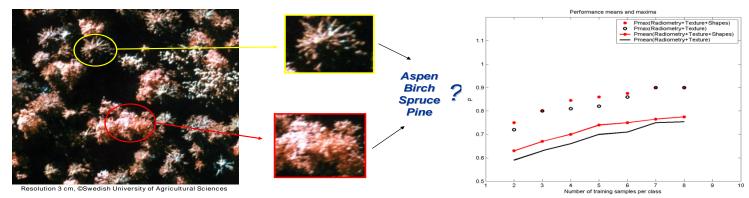
- **S. Joshi**: July, 2007. "Inference in shape spaces with applications to computer vision".
- M. S. Kulikova: December, 2009. "Shape recognition for image scene analysis". (A. Srivastava is a member of PhD committee.)

Training

- M. S. Kulikova, A. El Ghoul, C. Benedek all gave seminars during their visits to FSU.
- M. S. Kulikova benefited greatly from in-depth discussions on theory and code with A. Srivastava and S. Joshi.

Improving tree species classifiers based on radiometry and texture using shape descriptors

- Motivation: facilitate the task of forest inventory and assessment.
- Obtain information about:
 - Density of planting;
 - Age of trees;
 - Stem volume;
 - Tree species composition;
 - Biotopes and habitats.



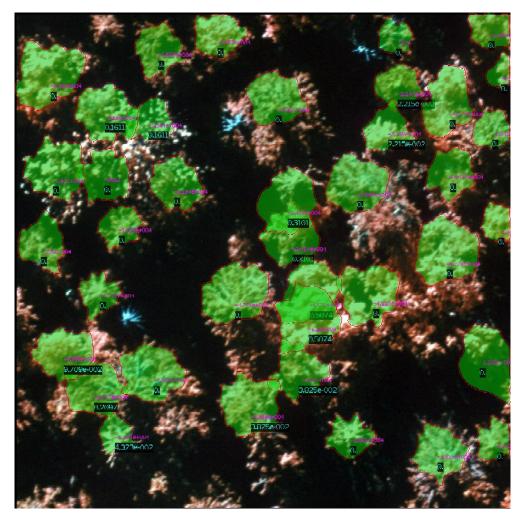
Improving tree species classifiers based on radiometry and texture using shape descriptors

- Classical radiometric and textural descriptors:
 - Histogram; Haralick features.
- Shape descriptors:
 - Distance to a circle; total curvature; number of convexities; size of irregularities.
- SVM with Gaussian kernel.

Ariana

Multi-object detection using point process models of arbitrary shapes

- Goal: improve the geometric accuracy of marked point process models.
- Objects are no longer parametric (circle, rectangle,...) but are arbitrary closed curves.
 - But objects are chosen to be local minima of single-object energy (active contour):
 - The possible objects are adapted to the data;
 - Keeps computational complexity under control.
 - Shape models can be included as a prior.
- Optimization is performed using a multiple birth and death algorithm (*cf.* EA Odessa).

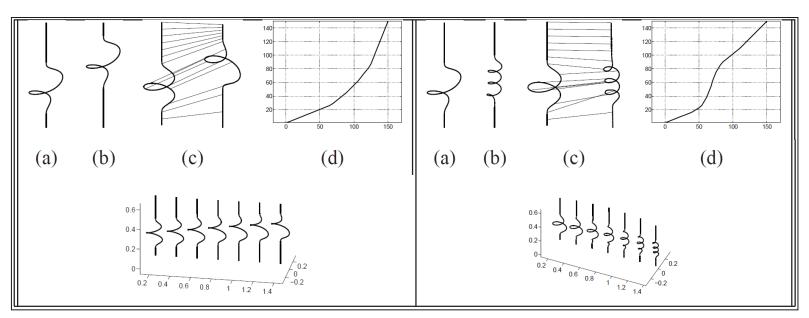


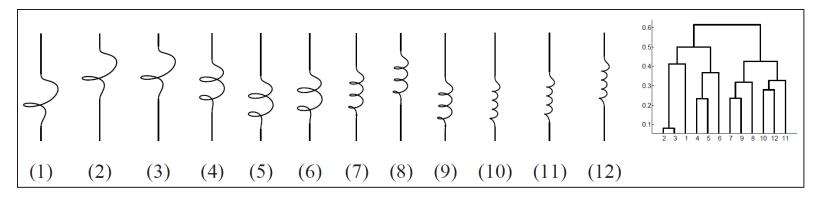
Result of tree crown delineation

- Space Γ of curves $\gamma: I \to \mathbb{R}^n$.
- ◆ Place Diff(I) × Sim(ℝⁿ) equivariant metric G on Γ to measure shape similarity.
- Popular choice: elastic metric.
 - Measures changes in orientation and stretching.
 - Preserves corners and other 'shape' features.
- ♦ One-parameter family G_c , $c \in \mathbb{R}^+$.
 - Problem: how to choose?

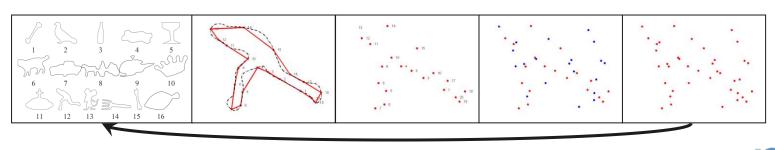
Shape analysis in \mathbb{R}^n

- For n = 2, Younes et al. (2008) used $c = \frac{1}{2}$.
 - Analytically tractable, but does not extend to n > 2.
- We showed:
 - n = 2: *\(\Gamma\)* is flat for all c except for singularity at origin. Singularity disappears for c = 1.
 - n > 2: *Γ* is curved for all c ≠ 1, with singularity at origin. Only for c = 1 is *Γ* flat, and this for all n.
- Thus c = 1 and its Euclidean 'coordinates' are uniquely selected as a shape representation
 Leads to greatly simplified algorithms.





Synthetic result



Looking for shapes in 2d cluttered point clouds

- Image formation:
 - An object has a bounding contour in the image.
 - Sensor produces noisy, sub-sampled contour.
 - The background and interior also produce 'clutter'.
- Problem: given the cluttered, noisy, sampled points, recognize the object from a given set of object classes.

Looking for shapes in 2d cluttered point clouds

• MAP estimation: $C^* = \arg \max_C P(C \mid y)$.

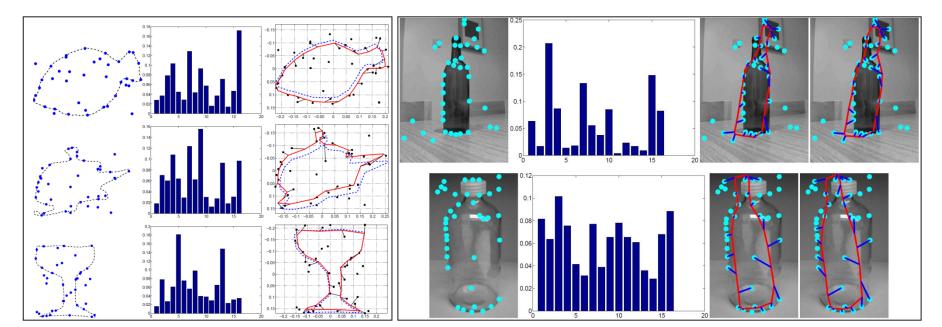
Under some (removable) assumptions:

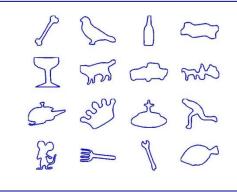
 $\mathbf{P}(C|\mathbf{y}) \propto \mathbf{P}(C) \ \mathbf{P}(\mathbf{y}|C) \propto \sum_{i} \iiint dq \ d\sigma \ dg \ \mathbf{P}(\mathbf{y}|i,\sigma,g,q) \ \mathbf{P}(\sigma|C) \ \mathbf{P}(q|C)$

• Where:

iana

- q ∈ Γ / (Diff(I) × Sim(ℝ²)); g ∈ Sim(ℝ²); σ is a sampling of the curve (random number n of random points on the curve); i is an injection of these n points into the m data points.
- Compute integrals by sampling q and σ and maximizing over g and i.





Results¹⁶

Ariana

Future

- ◆ Work on shape will continue with FSU, on:
 - Making precise the mathematical framework of shape space.
 - Extending the approach to surfaces $\Sigma: S^2 \to \mathbb{R}^n$.
- Work of M. S. Kulikova will lead to further work in Ariana combining marked point processes with higher-order active contours.
- Ariana will participate, along with several other EPIs, in a new Shapes WG at INRIA SAM.
- EADS Foundation grant 2010–2012 will fund a PhD on modelling complex shapes with HOACs.

