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ABSTRACT

An interesting challenge in image processing is to classify
shapes of polygons formed by selecting and ordering points
in a 2D cluttered point cloud. This kind of data can re-
sult, for example, from a simple preprocessing of images
containing objects with prominent boundaries. Taking an
analysis-by-synthesis approach, we simulate high-probability
configurations of sampled contours using models learnt from
the training data to evaluate the given test data. To facili-
tate simulations, we develop statistical models for sources of
(nuisance) variability: (i) shape variations of contours within
classes, (ii) variability in sampling continuous curves into
points, (iii) pose and scale variability, (iv) observationnoise,
and (v) points introduced by clutter. Finally, using a Monte
Carlo approach, we estimate the posterior probabilities of
different classes which leads to a Bayesian classification.

Index Terms— shape models, Bayesian shape estima-
tion, clutter model, Monte Carlo inference

1. INTRODUCTION

The classification and recognition of objects in images is an
important problem in biometrics, medical image analysis, and
many other branches of science. A common approach is to
represent the objects of interest with certain discriminant fea-
tures, and then use some statistical models on these feature
spaces for classification. An important feature of many ob-
jects is theirshape and, as a consequence, shape analysis
has become an integral part of object classification [1]. One
way to use shape analysis is to estimate the boundaries of
the objects (in images) and to analyze the shapes of those
boundaries in order to characterize the original objects. To-
wards that end, there have been several papers in the liter-
ature on analyzing the shapes of continuous, closed, planar
curves (see for example [2,3] and others referenced therein).
While such continuous formulations are fundamental in un-
derstanding shapes and their variability, practical situations
mostly involve heavily under-sampled, noisy, and cluttered
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discrete data, often because the process of estimating bound-
aries uses low-level techniques that extract a set of primitives
(points, edges, arcs, etc.) in the image plane. We will restrict
attention to points in this paper, but the method generalizes to
more complex primitives. Therefore, an important problem in
object recognition is to relate (probabilistically) a given set of
primitives to pre-determined (continuous) shape classes and
to classify this set using afully statistical framework.

1.1. Problem Challenges

The biggest challenge is to select and organize a large subset
of the given primitives into shapes that resemble the shapes
of interest. Through an example presented in Figure1, we
will explain these components. The number of permutations
for organizing primitives into shapes is huge. For example,
if we take the primitives to be points, the number of possible
polygons using40 distinct points is of the order of1047. If we
select only20 points out of the given40 and form a polygo-
nal shape, the number of possibilities is still1029. To form
and evaluate all these shape permutations is impossible. Our
solution is to analyze these configurations through synthesis,
i.e. to synthesize high-probability configurations from known
shape classes and then to measure their similarities with the
data. Although this approach has far smaller complexity than
the bottom-up combinatoric approach, the joint variability of
all the unknowns is still enormous. To go further, one must
use the structure of the problem to break down the variability
into components, and then probabilistically model the compo-
nents individually. Through an example presented in Figure1,
we will try to explain these components.

2. PROBLEM FORMULATION AND OVERVIEW

The classification problem is described by the probability
P(C|y), whereC ∈ C is the class of the object represented
by the data set, andy ⊂ Y is the data,i.e. a finite set of
primitives. (Because we are restricting attention to primitives
that are simply points inR2, we haveY = R2m for m prim-
itives.) Classification can then be performed by maximizing
the probability: Ĉ = argmaxC P(C|y). The difficulty of
the problem is contained inP(y|C), which describes the for-
mation of the data starting from the object class. To make
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Fig. 1. Problem Challenges: The point cloud in (a) contains
clutter as well as the shape of interest. The removal of clut-
ter leads to the points in (b), which when ordered result in a
polygon (c). Subsequently, this polygon can be used for shape
classification, as in (d).

any further progress, this probability must be broken down
into components corresponding to simpler stages in the data
formation process.

First, we introduce some variables: Letg ∈ G, whereG ≡
(SO(2) ⋉ R2) × R+, be a similarity transformation that in-
cludes rotation, translation, and scale. The symbol⋉ denotes
the semi-direct product. Letq ∈ Q be a shape,i.e. an object
boundary modulo similarity transformations and reparameter-
izations. Thus, a specific boundary is given bygq. Let s ∈ S
representn point-primitives on the shape boundary; among
other variabless containsn. We will call this a “sampling”.
Thenqs will be a set ofn point primitives modulo a similar-
ity transformation, while a specific set of point primitivesis
given byx = gqs. Finally, letI ∋ ι : [0, . . . n] → [0, . . .m]
be a one-to-one map,i.e. an injection, relating each element
of x to a unique element ofy.

Now, we can write (making certain independence assump-
tions, to be discussed later)

P(y|C) =
∑

ι∈I

∫∫∫

g∈G
s∈S
q∈Q

P(y|ι, gqs) P(ι|s) P(g|q, C) ×

P(s|q, C) P(q|C)dg ds dq . (1)

We will takeP(ι|s) andP(g|q, C) to be uniform. With these
assumptions,g and ι appear solely in the first factor in the
integrand,P(y|ι, gqs).

Our algorithmic strategy for dealing with this complexity
is based on two approximate methods for evaluating the in-
tegrals and sums: Monte Carlo integration and the Laplace’s
method. We use the first for the integrals overq ands, gener-
ating realizations from their probability distributions and then
summing the values of the integrand evaluated at these real-
izations. We use the second for the integral overg and the
sum overι. Using a combination of the Hungarian algorithm

Fig. 2. Illustration of sampling variability for a curve.

and Procrustes alignment, we solve the joint registration (g)-
transformation (injection) problem. The cost function for
this optimization is the likelihoodP(y|ι, gqs), which must
include a stochastic model of the clutter points. The result
of these procedures is an approximation toP(y|C) for each
value ofC, i.e. each class, and thus, after a trivial normaliza-
tion, to the value ofP(C|y). Classification is then immediate.

To construct a fully statistical framework, then, we have
to develop probability models and computational methods for
the variability in shape(P(q|C)), sampling(P(s|q, C)), and
observation noiseand clutter(P(y|ι, gqs)). We now discuss
each of these in more detail, beginning with sampling, since
our approach here is novel.

3. MODELING SAMPLING VARIABILITY

By a sampling of a continuous curve, we mean selecting an
ordered finite number of points on that curve. (We under-
line the distinction between our use of “sampling a continu-
ous curve” and the phrase “sampling from a probability”. To
avoid this confusion, we will use “simulation” for the latter.)
The sampling step results in a loss of information about the
original shape. Figure2 shows some examples of samplings
of a single shape. Since the sampled points are ordered, we
can draw a polygon to improve the visualization of the sam-
pled points.

3.1. Representation

How can we mathematically represent a sampling? The pro-
cess of sampling, by itself, is seldom studied in the literature,
although the related problem of matching sampled shapes has
received a lot of attention. A sampling involves two ele-
ments: a certain number of points,n, and their placement on
the curve. The latter can be expressed by parameterizing the
curve in terms of its arc length, and then selectingn values in
the interval[0, L], whereL is the length of the curve. Since
we will be sampling the points from shapes, we can assume



thatL = 1. Note that this assumes that the probability of
a sampling does not depend on the position, orientation, and
scale of a curve, which is implicit in Eqn.1.

Let Γ be the set of increasing, differentiable functions
from [0, 1] to itself, such that for allγ ∈ Γ, γ(0) = 0 and
γ(1) = 1, or, in other words, the groupΓ of positive diffeo-
morphisms of the unit interval. Now letU = [0 . . . n]/n be
a uniform partition of the interval[0, 1] into n sub-intervals.
A sampling s will be represented by an equivalence class
of triples 〈n, τ, γ〉 ∈ N × S1 × Γ, with the actual samples
on a (arc-length parameterized, unit length curve)β being
β(τ + γ(0)), β((τ + γ(1/n)),...,β((τ + γ(1)). The advan-
tage of this representation is that we can changen without
changingγ, and vice-versa. We still have to decide, however,
how to representγ. The functions inΓ can be thought of as
cumulative distribution functions for nowhere-zero probabil-
ity densities on[0, 1], with which they are in bijective corre-
spondence, and this gives rise to a number of possibilities for
representing such functions:
Diffeomorphism: An element ofΓ is represented as itself,
i.e. as an increasing function from[0, 1] to itself, such that
γ(0) = 0 andγ(1) = 1. The advantage of this representation
is that the action of the group of diffeomorphisms on itself is
particularly simple, by composition.
Probability density: Here an element ofΓ is represented by
its derivative, denotedP ∋ p = γ̇, which is an everywhere
positive probability density on[0, 1], i.e. a positive function
that integrates to1.
Log probability : Here an element ofΓ is represented by the
logarithm of a probability density. It is an arbitrary function
whose exponential integrates to1. The advantage of this rep-
resentation is that the values of log-probability functionare
unconstrained, apart from the overall normalization.
Square-Root Form: An element ofΓ is represented by the
square root of a probability density,Ψ ∋ ψ = p

1

2 . This is a
positive function whose square integrates to1, i.e. its L2 norm
is 1. The set of these functions thus forms the positive orthant
of the unit sphere in the spaceL2([0, 1]). The advantage of
this representation is that it greatly simplifies the form ofthe
most natural Riemannian metric one can place onΓ, as we
will now discuss.

3.2. Riemannian Structure onΓ

While there are clearly a large number of Riemannian met-
rics one could place onΓ, it is a remarkable fact, proved
by Čencov [4], that on spaces of probability distributions on
finite sets, there is a unique Riemannian metric that is invari-
ant to “Markov mappings”. This Riemannian metric is the
so calledFisher-Rao(F-R) metric. The F-R metric extends
naturally to the space of probability measures on continuous
spaces such as[0, 1], where it is invariant to the (reparam-
eterization) action of the diffeomorphism group. SinceΓ
is isomorphic to the space of probability measures, we can

view the F-R metric as a metric onΓ too. Because of its
invariance properties, this is the metric we choose to use. In
terms of the probability density representation, it takes the
following form: the inner product between tangent vectors
δp andδ′p to the space of probability distributions on[0, 1]
(here tangent vectors are functions that integrate to zero)at
the pointp ∈ P is 〈δp, δ′p〉p =

∫ 1

0
δp(s) δ′p(s) 1

p(s) ds.
It turns out, however, that the F-R metric simplifies greatly
under the half-density representation. Indeed, it becomes
L

2, becauseψ2 = p means that2ψδψ = δp, and thus that
〈δψ, δ′ψ〉ψ =

∫ 1

0 δψ(s) δ′ψ(s) ds. We have already seen
thatΨ is the positive orthant of the unit sphere inL2([0, 1]),
and now we see that the F-R metric is simply theL

2 Rie-
mannian metric onL2([0, 1]) restricted toΨ. The spaceΨ
endowed with the F-R metric is thus the positive orthant of the
unit sphere inL2([0, 1]) with the induced Riemannian metric.
Consequently, geodesics under the F-R metric are nothing but
great circles on this sphere, while geodesic lengths are simply
the lengths of shortest arcs on the sphere. Arc-length distance
on a unit sphere has been used to measure divergences be-
tween probability density functions for a long time [5]. This
metric also plays an important role in information geometry
as developed by Amari [6].

Now we list some analytical expressions that are use-
ful for statistical analysis onΨ and thus onΓ. As Ψ is an
infinite-dimensional sphere insideL2([0, 1]), the length of the
geodesic inΓ between any two functionsγ1 andγ2 under the

F-R metric is given byd(γ1, γ2) = cos−1(
〈

γ̇
1

2

1 , γ̇
1

2

2

〉

), where

the inner product isL2. The geodesic between two pointsγ1

andγ2 of Γ is similarly derived. Forψi = γ̇
1

2

i , the correspond-
ing geodesic inΨ is given byψ(t) = 1

sin(θ)

[

sin((1−t)θ)ψ1+

sin(tθ)ψ2

]

, wherecos(θ) = 〈ψ1, ψ2〉. The desired geodesic
in Γ is then given byγ(t), whereγ(t)(s) =

∫ s

0
ψ(t)(τ)2 dτ .

Due to this additional integration step, it is sometimes easier
to perform the Riemannian analysis inΨ and to map the
final result back toΓ. This is especially true for computing
means and variances of sampling functions, for construct-
ing probability densities onΓ, and for simulating from these
probability densities.

In Ψ, the geodesic starting from a pointψ, in the direc-
tion v ∈ Tψ(Ψ), can be written as:cos(t)ψ + sin(t) v

‖v‖

(with theL2 norm). As a result, the exponential map,exp :
Tψ(Ψ) → Ψ, has a very simple expression:expψ(v) =
cos(‖v‖)ψ + sin(‖v‖) v

‖v‖ . The exponential map is a bijec-
tion between a tangent space and the unit sphere if we re-
strict ‖v‖ so that‖v‖ ∈ [0, π), but for large enough‖v‖,
expψ(v) will lie outsideΨ, i.e.ψ may take on negative val-
ues. We will discuss this further when we define prior prob-
abilities onΓ. For anyψ1, ψ2 ∈ Ψ, we definev ∈ Tψ1

(Ψ)
to be the inverse exponential ofψ2 if expψ1

(v) = ψ2; we
will use the notationexp−1

ψ1
(ψ2) = v. This can be com-

puted using the following steps:u = ψ2 − 〈ψ2, ψ1〉ψ1, v =
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Fig. 3. Examples of Karcher means inΓ: In each case, (a)
shows tenγi, (b) shows their Karcher meanµγ , and (c) shows
the cost functions vs. iterations.

u cos−1(〈ψ1, ψ2〉)/〈u, u〉
1

2 .

3.3. Statistics onΓ

Consider the task of computing the statistical mean of a set
of sampling functions{γ1, γ2, . . . , γk} intrinsically in Γ. As
mentioned earlier, we will use the square-root forms of these
functions to perform such calculations. Let the corresponding
set of square-root forms be given by{ψ1, ψ2, . . . , ψk}, ψi =

γ̇
1

2

i . We define their Karcher mean as:

µ = argmin
ψ∈Ψ

k
∑

i=1

d(ψ, ψi)
2 ,

where d is the geodesic distance onΨ. The minimum
value

∑k

i=1 d(µ, ψi)
2 is called the Karcher variance of that

set. The search forµ is performed using a gradient ap-
proach where an estimate is iteratively updated according
to: µ → expµ(ǫv), v = 1

k

∑k
i=1 exp−1

µ (ψi). Here, exp

andexp−1 are as given in the previous section, andǫ > 0
is a small number. The gradient process is initialized to

ψ̄/
√

〈

ψ̄, ψ̄
〉

, whereψ̄ = 1
k

∑

i ψi.

In Figure3, we show two examples of Karcher means.
Column (a) shows examples of sampling functionsγ1, γ2, . . . , γ10,
and column (b) shows their Karcher meansµγ (the sampling
function obtained by squared integration ofµ ∈ Ψ).

3.4. Probability Distributions and Simulations

Having established a representation and a Riemannian met-
ric on the spaceΓ of sampling functions, we now turn to the
question of constructing a probability distribution. Recall that
a samplings is a triple〈n, τ, γ〉 ∈ N × S1 × Γ. We can write
the probability fors asP(s|C) = P(n)P(τ |C)P(γ|τ, C); we
will use a geometric distribution forn. The most interesting
part of the distribution is the factorP(γ|C, τ). Clearly the
possibilities here are enormous. We will restrict ourselves to
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Fig. 4. Curvature-driven sampling: (a) a curve; (b) a
smoothed version, withexp(|κ(s)|/ρ) displayed as a normal
vector field; (c)γq.

“Gaussian” distributions of the form

P(γ|τ, C) = Z−1e
− 1

2σ
2
s

d2(γ̇
1

2 ,ψ0)
, (2)

whered is the geodesic distance under our chosen Rieman-

nian metric, and whereψ0 = γ̇
1

2

0 is, in consequence, the mode
of the distribution. We discuss two possibilities forγ0 andσs.

The simplest possibility is to emphasize the samplings of
a curve that are uniform with respect to its arc-length param-
eterization, independently ofC, by choosingγ0(s) = s, or
equivalentlyψ0 ≡ 1. Alternatively,γ0 may depend on local
geometrical properties,e.g. sampling density may increase
with increasing curvature of the underlying curve. Define
E(s) =

∫ s

0 exp(|κ(s′)|/ρ) ds′, whereκ(s′) is the curvature
of q at arc-length parameter points′ andρ ∈ R+ is a con-
stant. The ratioγI(s) = E(s)/E(1) is a diffeomorphism,
from [0, 1] to itself, and the desired sampling for that curve
is γq = τ + γ−1

I . The inverse ofγI can be numerically esti-
mated using a spline interpolation. To define a singleγ0 for
each class, we use training curves from that class. First we
computeγq for each training curve, and then, using the tech-
niques presented in Section3.3, we compute their Karcher
mean, which we use asγ0, using the Karcher variance asσ2

s .
We now illustrate these ideas with some examples.

Shown in Figure4, column (a), are two shapesq. We
smooth these curves using Gaussian filters: their smoothed
versions are shown in column (b). For these smoothed curves,
we computeκ and thenE(s). This function is displayed as a
normal vector field on the smoothed curve in (b). Finally,γq
is computed; it is shown in column (c). Figure5 shows some
examples of class-specific means of theγq for two classes.
By using these means asγ0 for each class, we can form class-
specific priors of the form given in Eqn.2.

To simulate from probability densities of the form in
Eqn.2, we first randomly generate a functionf ∈ Tψ0

(Ψ)

such that|f | = 1, where, as before,ψ0 = γ̇
1

2

0 . Then, we gen-
erate a normal random variablex ∼ N(0, σ2

s), and compute
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0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 6. Random samples fromP(γ|C) with σ2
s increasing

from left to right.

a pointψ = cos(x)ψ0 + sin(x)f/‖f‖. The random sampling
function is then given byγ(s) =

∫ s

0
ψ(s′)2 ds′. Figure6

shows some examples of random simulations from such a
class-specific prior density for increasing values ofσ2

s .

4. SHAPE AND SHAPE VARIABILITY

We now turn to the construction of the shape model,P(q|C).
While objects of a given class are similar in their shapes, there
is naturally also variability within each class. It is this com-
monality and variability thatP(q|C) must describe. There
have been several recent papers that develop tools for analyz-
ing the shapes of planar closed curves,e.g.[2,3]. The main
differences amongst these articles lie in the choice of repre-
sentation for the curves and of the metric used to compare
shapes. Two recent papers [7, 8] present an efficient repre-
sentation under which an elastic metric becomes a simpleL2

metric, with the result that shape analysis simplifies consider-
ably. This has been called the square-root elastic framework,
and we describe it briefly here.

Consider a closed, parameterized curve, a differentiable
mappingβ from S1 to R2, whose shape we wish to ana-
lyze. As described in [7, 8], we will represent a curveβ by
its square-root velocity function:q : S1 → R2, whereq(t) =
β̇(t)

|β̇(t)|
1

2

, | · | is the Euclidean norm inR2, andt is an arbitrary

coordinate onS1. Restricting to unit length, closed curves, we

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15 16

Fig. 7. Karcher means of the 16 shape classes used.

obtainC = {q|
∫

S1(q(t)·q(t))dt = 1,
∫

S1 q(t)‖q(t)‖dt = 1},
where(·) is the Euclidean inner product inR2.

We want our shape analysis to be invariant to rigid mo-
tions, uniform scaling and re-parameterizations of the curves.
The translation and scaling groups have already been removed
in definingC. The remaining two: rotationsSO(2) and repa-
rameterizationsDiff(S1) are removed as follows. Since the
actions of these two groups onC are isometric, with respect to
theL

2 metric, we can define the shape space to be the quotient
spaceQ = C/(SO(2) × Diff(S1)) and inherit theL2 metric
from C. In other words, for a pointq ∈ Q the Riemannian
metric takes the form〈δq1, δq2〉q =

∫

S1 δq1(t) · δq2(t) dt. To
perform statistical analysis inQ, however, which is our goal,
one needs to construct geodesics inQ. Joshiet al. [8] de-
scribe a gradient-based technique for computing geodesicsin
Q. The technique uses path-straightening flows: a given pair
of shapes is first connected by an initial, arbitrary path that is
then iteratively “straightened” so as to minimize its length [7].
The length of the resulting path is then the geodesic distance
between the shapes. Since one of the effects ofDiff(S1) is dif-
ferent placements of the origin on closed curves, its removal
results in an alignment of shapes in that regard. One can de-
fine and compute the mean of a collection of shapes using the
Karcher mean, now based on the geodesic computations [9].
The Karcher means for all the 16 classes used in later experi-
ments are displayed in Figure7.

The next step is to impose a probability model onQ. Per-
haps the simplest model is the one used forΓ, Eqn.2. As
suggested in [9], it is much easier to express this distribution
using the tangent spaceTq0Q to Q at the mean shapeq0 than
usingQ itself, because the former is a vector space. In that
space, one can use principal component analysis (PCA) and
impose a standard Gaussian distribution on the PCA coeffi-
cients, then use the exponential map to “push forward” these
tangent vectors toQ itself. Empirical study shows, however,
that the histograms of these tangent principal coefficientsare
often far from Gaussian. We therefore use kernel estimates
of the underlying densities to capture this more complex be-
havior. To simulate fromP (q|C) described above, we first



Fig. 8. Some random shapes from a TPCA model.

simulate from the estimated density of the tangent principal
coefficients, and then use the exponential map to generate the
corresponding elements ofQ. Figure8 shows some examples
of simulations from one such non-parametric model.

5. EXPERIMENTAL RESULTS

Shown in the top three rows of Figure9 are experimental re-
sults on the simulated data withm = 40 andn0 = 20. In each
case, the left panel shows the true underlying curve which was
sampled to generate the datay which are also shown there.
The next panel displays a bar chart of estimatedP (Ci|y)
for this y, i = 1, 2, . . . , 16 usingJ = 300 samples. The
last figure shows a high probability polygon formed using the
subsetsys. In each of the three cases, the amount of clutter
is quite high – the number of points on the curve equals the
number of clutter points. Still, the algorithm puts the highest
probability on the correct class for all cases. As these exper-
iments suggest, the algorithm is able to put high probability
on the correct shape class despite the presence of clutter.

6. SUMMARY

We have presented a Bayesian approach for finding shape
classes in a given configuration of points that is characterized
by under sampling of curves, observation noise, and back-
ground clutter. Rather than trying all possible permutations
of points, we take a synthesis approach and simulate configu-
rations using prior models on shape and sampling. The class
posterior is estimated using a Monte Carlo approach.
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[4] N. N. Čencov,Statistical Decision Rules and Optimal In-
ferences, vol. 53 ofTranslations of Mathematical Mono-
graphs, AMS, Providence, USA, 1982.

[5] A. Bhattacharya, “On a measure of divergence between
two statistical populations defined by their probability
distributions,”Bull. Calcutta Math. Soc., vol. 35, pp. 99–
109, 1943.

[6] S. Amari, Differential Geometric Methods in Statistics,
Lecture Notes in Statistics, Vol. 28. Springer, 1985.

[7] S. H. Joshi, E. Klassen, A. Srivastava, and I. H. Jermyn,
“A novel representation for efficient computation of
geodesics betweenn-dimensional curves,” inIEEE
CVPR, 2007.

[8] S. H. Joshi, E. Klassen, A. Srivastava, and I. H. Jermyn,
“Removing shape-preserving transformations in square-
root elastic (SRE) framework for shape analysis of
curves,” inEMMCVPR, LNCS 4679, A. Yuille et al., Ed.,
2007, pp. 387–398.

[9] A. Srivastava, S. Joshi, W. Mio, and X. Liu, “Statistical
shape analysis: Clustering, learning and testing,”IEEE
Trans. on Pattern Analysis and Machine Intelligence, vol.
27, no. 4, pp. 590–602, 2005.


	 Introduction
	 Problem Challenges

	 Problem Formulation and Overview
	 Modeling Sampling Variability
	 Representation
	 Riemannian Structure on 
	 Statistics on 
	 Probability Distributions and Simulations

	 Shape and Shape Variability
	 Experimental Results
	 Summary
	 References

