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Abstract

We propose an efficient representation for studying
shapes of closed curves inRn. This paper combines the
strengths of two important ideas - elastic shape metric and
path-straightening methods - and results in a very fast al-
gorithm for finding geodesics in shape spaces. The elastic
metric allows for optimal matching of features between the
two curves while path-straightening ensures that the algo-
rithm results in geodesic paths. For the novel representation
proposed here, the elastic metric becomes the simpleL2

metric, in contrast to the past usage where more complex
forms were used. We present the step-by-step algorithms
for computing geodesics and demonstrate them with 2-D as
well as 3-D examples.

1. Introduction

Over the last few years, a number of mathematical rep-
resentations and metrics have been proposed to analyze
shapes of planar, closed curves. Despite the multitudes
of metrics proposed, there is an emerging consensus on
the suitability of the elastic metric for curve-shape analy-
sis. This metric uses a combination of bending and stretch-
ing/compression to find optimal deformations from one
shape to another. On pre-defined spaces of shapes, these de-
formations are computed as the shortest paths, or geodesics,
under this chosen metric. This metric was first suggested
by Younes [9] and subsequently utilized by Mio et al. [5]
who developed an algorithm to compute geodesic paths be-
tween arbitrary shapes. Several other authors, including Mi-

chor and Mumford [4], have also highlighted the advantages
of this H1 metric. Shah [8] has also proposed a similar
H2 metric and computed geodesics in the space of planar
curves.

In view of the past ideas on representations and metrics,
is there a need or scope for yet another representation, or
a new shape analysis method in this area? We argue that
the computational evaluations of different approaches are
yet to be performed. The elastic metric is widely accepted
for shape analysis as it is the only metric that remains in-
variant to arbitrary re-parameterizations of curves. It is also
known in the computer vision community as the Fisher-Rao
metric. We consider the question: Under what represen-
tation of curves is this metric most efficient computation-
ally. Different authors have used different representations
for parameterized curves: normal vector fields, coordinate
functions, angle functions, curvature functions, speed func-
tions, etc. For example, Mio et al. have used a pair of
functions: an angle function and a speed function, to rep-
resent closed curves. For a parameterized curveβ in R2,
one represents the velocity vectorβ̇(s) as a complex scalar
r(s)eiθ(s). Herer(s) is the instantaneous speed andθ(s) is
the angle made bẏβ(s) with the positiveX axis. Mio et al.
used the pair(φ, θ), with φ = log(r), to represent and an-
alyze shape ofα. In their case, the Riemannian metric that
translates into elastic deformations of shapes is then given
by:

〈(h1, g1), (h2, g2)〉(φ,θ) =
∫

h1(s)h2(s)eφ(s)ds

+
∫

g1(s)g2(s)eφ(s)ds . (1)



Similarly, other researchers have usedr directly, or its inte-
gral form

∫
r(s)ds as representatives of speeds of curves.

This gives rise to various difficulties. Firstly, the elas-
tic metrics under these representations, owing to speed-
invariance, assumes complicated forms. Secondly, they
may not be computationally efficient. As an example,
the elastic metric under the log-speed(φ, θ) representation
(Eqn. 1) varies from point to point on the shape manifold,
and is thereby complicated to implement.

We propose a new representation using the square-root
speed (

√
r(s)) of the curve, that addresses the above issues

and provides the following advantages:

• It uses a single function,
√

r(s)eiθ(s), instead of a pair,
to represent the curve.

• It is the only representation, where the elastic metric
reduces to a simpleL2 metric. Not only is the met-
ric same at all points, but also much simpler to im-
plement and study. With this representation, the pre-
shape space is actually a subset of a unit sphere inside
a Hilbert space. The use of geometry of the sphere
helps simplify computations to a large extent.

• This paper combines the strengths of the elastic met-
ric and the path straightening method for finding
geodesics.

• Furthermore, there are convenient, isometric mappings
from the proposed representation to other forms used
previously.

• The new representation makes re-parameterization of
curves by diffeomorphisms an action by isometries.

• This approach is general and works for curves inn di-
mensions. We are not aware of any past paper on elas-
tic shape analysis for curves in three or higher dimen-
sions.

This paper is organized as follows. Section 2 introduces the
proposed representation of curves for shape analysis. Sec-
tion 3 defines the pre-shape space of open as well as closed
curves inRn. A Riemannian structure is imposed on this
pre-shape space in Sec. 4 followed by the computation of
geodesics in Sec. 5. We also provide step-by-step proce-
dures for implementations of the ideas presented in the pa-
per.

2. Curve Representation

For an unit intervalI ≡ [0, 2π], let β : I → Rn be an
L2

1(I) curve. Any functionf is said to be anL2
1(I) function,

if both f and its derivativef
′

areL2(I) functions. In order
for the curve to stretch, shrink and bend freely, we represent

the shape of the elastic curveβ by the functionq : I → Rn

as follows,

q(s) =
β̇(s)√
||β̇(s)||

∈ Rn . (2)

Here, s ∈ I, || · || ≡
√

(·, ·)Rn , and (·, ·)Rn is taken to
be the standard Euclidean inner product inRn. The quan-
tity ||q(s)|| represents the square-root of the instantaneous
speed of the curveβ, whereas the ratioq(s)

||q(s)|| is the direc-
tion function for eachs ∈ [0, 2π) along the curve. Thus the
curveβ can be recovered usingβ(s) =

∫ s

0
||q(t)|| q(t) dt.

3. Pre-Shape Space of Curves

LetQ ≡ {q = (q1, q2, . . . , qn)|q(s) : I → Rn} be the
space of all vector valued functions representing all elastic
curves described above. This is an infinite-dimensional vec-
tor space of all functions inL2(Rn). Each element of this
set represents a simple elastic curve (not necessarily closed)
onRn. Similar to the idea by Kendall [2], we would like to
study shapes of curves as equivalences under rigid motions,
uniform scaling and other such “shape-preserving” transfor-
mations. In the following subsections, we identify spaces of
such curves where one or more indeterminacies in the shape
representation are removed. We refer to such spaces as pre-
shape spaces of elastic curves inRn.

3.1. Open curves

We denoteB ≡ {q : I → Rn| ∫ 2π

0
(q(s), q(s))Rnds =

1} as the space of all unit-length, elastic curves. The space
B is in fact an infinite-dimensional unit-sphere and rep-
resents the pre-shape space of all open elastic curves in-
variant to translation and uniform scaling. The tangent
space ofB is easy to define and is given asTq(B) =
{w = (w1, w2, . . . , wn)|w(s) : I → Rn ∀s ∈
[0, 2π) | ∫ 2π

0
(w(s), q(s))Rn ds = 0}.

Geodesics on a sphere are great circles and can be speci-
fied analytically. The geodesic onB between the two points
x1, x2 ∈ B along a unit directionf ∈ Tx1(B) towardsx2

for time t is given as,

χt(x1; f) = cos
(

t cos−1

∫ 2π

0

(x1, x2)Rn ds

)
x1

+ sin
(

t cos−1

∫ 2π

0

(x1, x2)Rn ds

)
f (3)

Any tangent vector transported along this geodesic pre-
serves its length as well as its angle w.r.t the geodesic.
For any two pointsx1 andx2 on this unit sphere, the map
π : Tx1(B) → Tx2(B) parallel-transports a tangent vectora



from x1 to x2 and is given by,

π(a; x1, x2) = a− 2
(x1 + x2)

∫ 2π

0
(a, x2)Rn ds∫ 2π

0
(x1 + x2, x1 + x2)Rnds

(4)

3.2. Closed curves (C)

Although, matching of open curves has important ap-
plications involving 2-D or 3-D anatomical or biological
curves, it is a relatively easier problem than comparing
closed curves. This is due to the fixed extremities, and the
fact that geodesics between open curves are straight lines
in the appropriate space. In contrast, the choice of origin
is completely arbitrary in the case of closed curves. Ad-
ditionally, the deformation between any two closed curves
is expected to yield closed intermediate curves along the
geodesic. The closure condition for a curveβ requires that∫ 2π

0
β̇(t)dt = 0. For our shape representation scheme, this

translates to
∫ 2π

0
||q(s)||q(s) ds = 0. We define a mapping

G ≡ (G1,G2, . . . ,Gn) asG1 =
∫ 2π

0
q1(s) ||q(s)||ds, G2 =∫ 2π

0
q2(s) ||q(s)||ds, . . . , Gn =

∫ 2π

0
qn(s) ||q(s)||ds. The

space obtained by the inverse imageA = G−1(0, 0, . . . 0︸ ︷︷ ︸
n

)

is the space of all closed, elastic (arbitrary speed parameter-
izations) curves. Then the subsetC = A ∩ B ⊂ Q is the
space of all closed, elastic curves, invariant to translation
and scaling. For the remainder of this paper, we concen-
trate on the pre-shape space of closed curves (C) and study
its properties under an appropriate Riemannian metric on
this space.

4. Riemannian Geometry ofC
The length of a geodesic or the “shortest path” between

two points on a manifold depends on the Riemannian met-
ric associated with an inner product defined on the tan-
gent space of the manifold. Thus we would like to con-
struct a tangent spaceTq(C) at each pointq . We ob-
serve that the tangent space ofQ is the spaceQ itself.
Any tangent vectorw of Q, wherew = (w1, w2, . . . , wn)|
w(s) : I → Rn ∀s ∈ [0, 2π) of Q has the property that
||w(s)|| ∈ L2, ∀s. We define an inner-product onQ as fol-
lows.

Definition 1. Given a curveq ∈ Q, and the first order per-
turbations ofq given by u, v ∈ Tq(Q), respectively, the
inner product between the tangent vectorsu, v toQ at q is
defined as,

〈u, v〉 =
∫ 2π

0

(u(s), v(s))Rnds. (5)

The inner product given in Eqn. 5 induces a Riemannian
metric onC.

4.1. Tangent Space ofC
In order to define the space of tangent vectors toC, we

derive a notion of the normal space ofC atq at first. The di-
rectional derivative of the mapG at a pointq in the direction
of w ∈ Tq(Q) is given by

dG1(w(s)) =
∫ 2π

0

(
w(s),

q1(s)
||q(s)||q(s) + ||q(s)||e1

)

Rn

ds,

...

dGn(w(s)) =
∫ 2π

0

(
w(s),

qn(s)
||q(s)||q(s) + ||q(s)||en

)

Rn

ds

∴ dG1(w(s)) =
〈

w,
q1(s)
||q(s)||q(s) + ||q(s)||e1

〉
,

...

dGn(w(s)) =
〈

w,
qn(s)
||q(s)||q(s) + ||q(s)||en

〉

whereei is the ith column ofIn, an identity matrix. The
normal space ofA is now the span of the gradient vectors
of G as follows,

Nq(A) = span{∇G1(s) =
q1(s)
||q(s)||q(s) + ||q(s)||e1,

. . . ,∇Gn(s) =
qn(s)
||q(s)||q(s) + ||q(s)||en}, ∀s ∈ [0, 2π)

(6)

Remark 1. Given a curveq ∈ Q, and the tangent vectorw
toQ at q, the tangent space ofC at q is defined asTq(C) =
{w : I → Rn|w ∈ Tq(B), w ⊥ Nq(A)}.

The inner product given by Def. 1 is a symmetric, bi-
linear positive-definite form onTq(C) and results inC be-
ing a Riemannian manifold. A useful tool in constructing
geodesics under this Riemannian metric is the projection
of a curveq ∈ Q in the space of closed curvesC. This
is achieved by projecting the curveq to A by an iterative
method and further projecting it toC. The idea is to define
a residual vectorl(q) = −G(q), l ∈ Rn and evolveq in
the direction normal to the level set ofG so as to move the
residuall quickly to the origin0. Algorithm 1 describes the
procedure to project an open curveq ∈ Q, to C.

Figure 1 shows examples of projecting 2-D and 3-D open
curvesq ∈ Q ontoC using Algorithm 1.

Another important tool in constructing geodesic paths is
the projection of a tangent vectorw ∈ Tq(Q) into Tq(C).
Algorithm 2 outlines the procedure.

5. Geodesics using Path straightening Flows

There have been two prominent approaches for comput-
ing geodesic paths between shapes of closed curves. One



Algorithm 1 Projection ofq ∈ Q to C
1: Initialize l(q)i = 1n. Let ε > 0.
2: while ||l(q)|| > ε do
3: Computel(q)i = −Gi(q), i = 1, . . . , n.
4: Calculate the Jacobian matrix, Ji,j =

〈∇Gi(q),∇Gj(q)〉 as follows,

Jij = 3
∫ 2π

0

qi(s)qj(s)ds, i = 1, . . . , n

.
5: Solve the equationJ(q)xT = lT (q) for x.
6: Updateq = q +

∑n
i=1 xi∇Gi(q)δ, δ > 0.

7: q = q√
〈q,q〉q

8: end while
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Figure 1. Algorithm 1 applied to project open curves (top row) on
C (bottom row).

Algorithm 2 Projection ofw ∈ Tq(Q) into Tq(C)
1: Start by projectingw into Tq(B) by

w̃ ≡ w − 〈w, q〉 q (7)

2: Compute an orthonormal basis
{
ei
G(q)

}
for

{∇Gi(s)} , i = 1, . . . , n. w.r.t. the inner prod-
uct given in Eqn. 5.

3: Then the projection of̃w into Tq(C) is given as,

wproj ≡ w̃ −
n∑

i=1

〈
w̃, ei

G(q)

〉
ei
G(q). (8)

approach uses the shooting method as demonstrated by
[3, 5]. Here, given a pair of shapes, one finds a tangent di-
rection, such that its image under the exponential map at the
first shape yields the target shape. The search for the tan-

gent direction uses a shooting method which successively
refines the tangent vector estimate based upon some exter-
nal criteria.

We will use another, more stable approach that uses path-
straightening flows to find a geodesic between two shapes.
In this approach, the given pair of shapes is connected by
an initial arbitrary path that is iteratively “straightened” so
as to minimize its length. The curve-straightening method
is supposed to overcome some of the limitations in the ear-
lier approach as suggested by [7] who compare geodesics
between the two approaches.

Given two curvesq0 andq1, our goal is to find a geodesic
between them. Letα : [0, 1] → C be any path connecting
q0, q1 ∈ C. Then the critical points of the energy

E[α] =
1
2

∫ 1

0

〈α̇(t), α̇(t)〉 dt (9)

are geodesics inC. In order to minimize the integral in Eqn.
9, we need to find the gradient of the energyE[α] in the
space of all paths onC. For this purpose, we defineF as the
collection of all paths inC, andF0 ⊂ F as the collection of
all paths going fromq0 to q1. Since each element along the
pathα is a curve inC, the tangent spaceTα(F) is written as
Tα(F) = {w|w(t) ∈ Tα(t)(C) ∀t ∈ [0, 1]}. We adopt the
Palais metric [6] onTα(F) to impose a Riemannian struc-
ture on the space of all pathsF . For u1, u2 ∈ Tα(F), the
Palais metric is given by the inner product,

〈〈u1, u2〉〉 = 〈u1(0), u2(0)〉+
∫ 1

0

〈
Du1

dt
(t),

Du2

dt
(t)

〉
dt

(10)
The gradient ofE[α] is a vector field in the tangent space
of F0, whereTα(F0) = {w ∈ Tα(F)|w(0) = w(1) = 0}.
Herew(t) is a tangent vector field on the curveα(t) ∈ C.
Before deriving the energy minimization framework in the
spaceF , we review some definitions below.

Definition 2. Covariant derivative [1]: For a pathα ∈ C,
the covariant derivative of a vector fieldw ∈ Tα(F) is de-
fined as the orthogonal projection of the derivativedw

dt on
the tangent spaceTα(t)(C) for all t and is denoted asDw

dt .

Similarly thecovariant integralof w alongα is given by
the vector fieldu ∈ TαF such thatDu

dt = w. Algorithm
3 describes the procedure for computing the covariant inte-
gration of the velocity vector fielddα

dt alongα. To derive
the gradient vector field ofE[α] on Tα(F), we state the
following theorem without proof.

Theorem 1. The gradient vector field ofE in Tα(F) is
given byv such thatDv

dt = α̇, andv(0) = 0.

Theorem 1 implies that the gradient ofE in Tα(F) is
given by covariant integration of the velocity vector field
along the curveα. For this purpose, we need to compute



Algorithm 3 Covariant integration ofdα
dt

1: Let w(0) = 0.
2: for τ = 1 to k do
3: w( τ

k ) = Π
(
w( τ−1

k ); α( τ−1
k ), α( τ

k )
)

+ 1
k

dα
dt ( τ

k )
4: Projectw( τ

k ) into Tα( τ
k )(C) using Algorithm 2.

5: end for

the path velocitydα
dt . Since we are dealing with discretized

curves in computer implementations, we will compute an
approximation to the velocity vector field for discrete inter-
vals along the path by computing the derivative ofα(τ) on
the sphereB, and projecting it onC. Algorithm 4 outlines
the procedure to computedα

dt .

Algorithm 4 Velocity vector fielddα
dt for a pathα

1: Let dα
dt (0) = 0.

2: for τ = 1 to k do
3: θ = cos−1

〈
α

(
τ−1

k

)
, α

(
τ
k

)〉
4: f = −α

(
τ−1

k

)
+ α

(
τ
k

)
cos(θ)

5: dα
dτ

(
τ
k

)
= kfθ√

〈f,f〉
6: Projectdα

dτ

(
τ
k

)
into Tα( τ

k )(C) using Algorithm 2
7: end for

Definition 3. Parallel Transport: Letw0 ∈ Tα(0)(C) be a
vector field along a curveα : [0, 1] → C. Then there exists
a unique parallel vector fieldw(t) such thatDw(t)

dt = 0 and
w(0) = w0. Furthermorew(t1) (w̃(t1) = w(1− t1)) is the
forward (backward) parallel transport ofw0 alongα at t1.

Algorithm 5 outlines the procedure for the parallel trans-
port of a tangent vector fieldw ∈ Tα(τ)F to w‖ ∈
Tα(τ+1)F . It is noted that the same algorithm can perform
forward as well as a backward parallel transport.

Algorithm 5 Parallel transport of tangent vec-
tor field w from α( τ

k ) to α( τ+1
k ) denoted as

w‖ = Π(w;α( τ
k ), α( τ+1

k ))

1: Let lw = 〈w, w〉.
2: w‖ = π(w; α( τ−1

k ), α( τ
k ))

3: Projectw‖ into T(α( τ
k )(C) using Algorithm 2 and call it

w
‖
proj .

4: Rescale the length asw‖proj =
lww

‖
proj

〈w‖proj ,w
‖
proj〉

Definition 4. Geodesic: A pathα : [0, 1] → F is a geodesic
if the covariant derivative of it’s velocity vector field is iden-
tically zero at allt ∈ [0, 1], i.e. D

dt (
dα
dt ) = 0, ∀t ∈ [0, 1].

Lemma 1. The orthogonal complement of the tan-
gent spaceTα(F0) is given by T⊥α (F0) ≡ {w ∈
Tα(F) | D

dt

(
Dw
dt

)
= 0}.

Proof. Let w ∈ Tα(F) be a vector field such that
D
dt

(
Dw
dt

)
= 0. In this casew(t) is a covariantly linear vector

field. Letu ∈ Tα(F0) be an arbitrary vector field. Then

〈〈u,w〉〉α =
∫ 1

0

〈
Du

dt
,
Dw

dt

〉
dt

=
〈

u(t),
Dw

dt

〉
|10 −

∫ 1

0

〈
u(t),

D

dt

(
Dw

dt

)〉
= 0

Using Lemma 1, a tangent vector fieldv ∈ Tα(F) can
be projected ontoTα(F) by subtracting a covariantly lin-
ear vector field given bytṽ(t), whereṽ(t) is a backward
parallel transport of the vector fieldv(1) alongα. Algo-
rithm 6 describes the procedure for backward parallel trans-
port of the gradient vector fieldw(1) alongα̃ = α(1 − τ).
The verification thattṽ(t) is a covariantly linear vector field

Algorithm 6 Backward parallel transport ofw(1) along
α̃ = α(1− τ)

1: Let w̃(1) = w(1)
2: for τ = k − 1 to 0 do
3: w̃( τ

k ) = Π
(
w̃( τ+1

k ); α( τ+1
k ), α( τ

k )
)

4: end for

is straightforward. Algorithm 7 describes the procedure
for projecting the gradient vector fieldw ∈ Tα(F) to v ∈
Tα(F0). After obtaining the gradient of the energyE[α] in

Algorithm 7 Project the gradient vector fieldw ∈
Tα(F) to v ∈ Tα(F0)

1: for τ = 0 to k do
2: v( τ

k ) = w( τ
k )− τ

k w̃( τ
k )

3: end for

F0, we can update the pathα in the direction of the gradi-
ent fieldv. Algorithm 8 describes the simple procedure for
updating the pathα.

Algorithm 8 Gradient update forα in the directionv
1: for τ = 0 to k do
2: α( τ

k ) = χ1

(
α( τ

k );−v( τ
k )

)
3: Projectα( τ

k ) into C using Algorithm 1
4: end for



5.1. Computing geodesics betweenq0 and q1 on C
In this subsection, we combine all the algorithms de-

scribed above and use them to compute geodesics in the
pre-shape spaceC. In practice, we deal with discretized ver-
sions of the curves and tangent spaces. The first step is the
initialization of a pathα onC and is described in Algorithm
9.

Algorithm 9 Initialization of a pathα onC betweenq0, q1 ∈
C.

1: Let α(0) = q0. Let k be the number of steps along the
discretized path.

2: f = q1 − 〈q1, q0〉q0, f = f
〈f,f〉

3: for all τ = 1 to k do
4: α( τ

k ) = χ τ
k
(q0, f)

5: Projectα( τ
k ) into C using Algorithm 1.

6: end for

Using the initialized pathα, Algorithm 10 summarizes
various steps using the path-straightening approach in com-
puting the geodesic. The geodesic distance between the two

Algorithm 10 Given q0, q1 ∈ C, compute a geodesic be-
tween them

1: Initialize a pathα betweenq0 andq1 using Algorithm
9.

2: repeat
3: Compute the path velocityαt ≡ dα

dt alongα using
Algorithm 4.

4: Calculate the covariant integral (w) of αt using Al-
gorithm 3.

5: Parallel translate (backward)w(1) alongα asw̃ us-
ing Algorithm 6.

6: Compute the gradient of the energyE and project it
toF0 asv using Algorithm 7.

7: Update the pathα in the directionv using Algorithm
8.

8: Compute path energyE = 1
2k

∑k
0〈αt(τ), αt(τ)〉.

9: until ||∇E|| > ε

curves is then given by
∫ 1

0

√〈
˙̂α(t), ˙̂α(t)

〉
dt, whereα̂ is the

resulting geodesic path.

6. Experimental Results and Future Directions

Lastly, we present some experimental results for comput-
ing elastic geodesics by implementing the above algorithms
in MATLAB R©. Figure 2 shows pairwise geodesics between
2-D curves inC. Intermediate shapes along the geodesics
have tick-marks placed around the curve, that help identify
parts of the curve traversed by non-uniform speed. Figure 3

shows two different views of a geodesic path computed be-
tween a pair of 3-D curves. It is emphasized that the inter-
mediate curves along the geodesic do not cross each other.

In the previous sections, we have constructed geodesics
in the pre-shape space of translation and scale invariant
curves. In fact, the shape of a curve also remains unchanged
by rigid rotation. Further, if we are dealing with closed
curves, the shape also remains same every time a differ-
ent starting point is chosen along the curve. Since we allow
the curves to stretch, shrink and bend freely, its shape re-
mains invariant to the speed of traversal along the curve.
Then we can define the elastic shape space as the quotient
spaceS = C/(S1 × SO(n) ×D). The problem of finding
geodesics between two shapes inS can now be modified as
finding the shortest path among all possible paths between
the equivalence classes of the given pair of shapes. This is
a consideration for future work.

7. Summary

We have presented a differential geometric approach for
studying shapes of elastic curves inRn. The novelty in our
approach is the representation of elastic curves by a sin-
gle vector valued function that incorporates both stretching
and bending along the curve. The Riemannian metric is
a simpleL2 metric that remains same at all points in the
space. Geodesics between curves are obtained using a path-
straightening approach. We have also provided detailed al-
gorithms for computing these geodesics, along with exam-
ples.

References

[1] W. M. Boothby.An Introduction to Differential Manifolds and
Riemannian Geometry. Academic Press, Inc., 2003.

[2] D. G. Kendall. Shape manifolds, procrustean metrics and
complex projective spaces.Bulletin of London Mathematical
Society, 16:81–121, 1984.

[3] E. Klassen, A. Srivastava, W. Mio, and S. H. Joshi. Analysis
of planar shapes using geodesic paths on shape spaces.IEEE
Trans. Pattern Analysis and Machine Intelligence, 26(3):372–
383, 2004.

[4] P. W. Michor and D. Mumford. Riemannian geometries on
spaces of plane curves.J. Eur. Math. Soc., 8:1–48, 2006.

[5] W. Mio and A. Srivastava. Elastic-string models for repre-
sentation and analysis of planar shapes. InProc. IEEE Conf.
Comp. Vision and Pattern Recognition, pages 10–15, 2004.

[6] R. S. Palais. Morse theory on hilbert manifolds.Topology,
2:299–349, 1963.

[7] F. R. Schmidt, M. Clausen, and D. Cremers. Shape matching
by variational computation of geodesics on a manifold. In
Pattern Recognition (Proc. DAGM), volume 4174 ofLNCS,
pages 142–151, Berlin, Germany, September 2006. Springer.

[8] J. Shah. AnH2 type riemannian metric on the space of pla-
nar curves. InWorkshop on the Mathematical Foundations of
Computational Anatomy, MICCAI, 2006.



Figure 2. Row-wise geodesic paths inC between the pair of curves shown to the left.
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Figure 3. Example of a geodesic between a pair of 3-D curves shown to the left. Two different views of the geodesic are shown to the right.


