

Wavelet-based restoration methods: application to 3D microscopy images

Caroline CHAUX, Laure BLANC-FÉRAUD and Josiane ZERUBIA

ARIANA Project-team, INRIA/CNRS/UNSA

Overview

Introduction

Background

Wavelet Transforms

Deconvolution algorithms

Simulation results

Perspectives

Introduction

- Encountered problems
- State of the art in microscopy
 - Methods acting in the space domain
 - Methods acting in a transformed domain
- Wavelet transforms
 - Classical discrete wavelet transform
 - Anisotropic version
- Proposed methods
 - Splitting denoising and deconvolution steps
 - Combining denoising and deconvolution steps
- Simulation results
- Future works

INTRODUCTION

Overview

Introduction

Background

Wavelet Transforms

Deconvolution algorithms

Simulation results

Perspectives

Image formation model :

 $i = \mathscr{P}(o * h)$

where \mathscr{P} is a Poisson noise, *i* the observed image, *o* the object and *h* the PSF.

> Our objective is to estimate the original image, *i.e.* obtaining \hat{o} only having an observation *i*.

> In order to preserve thin structures, we want to use wavelet transforms to reach this goal.

Pre-processings (Anscombe, Fisz) used to stabilize the noise variance in order to apply common methods of image restoration.

Background

- Richardson-Lucy
- Pre-processings
- Denoising + Deconvolution
- Deconvolution + denoising

Wavelet Transforms

Deconvolution algorithms

Simulation results

Perspectives

Background in confocal microscopy image restoration

RICHARDSON-LUCY ALGORITHM

1
/

Introduction

Background

- Richardson-Lucy
- Pre-processings
- Denoising + Deconvolution
- Deconvolution + denoising

Wavelet Transforms

```
Deconvolution algorithms
```

```
Simulation results
```

Perspectives

Under Poisson process assumption :

$$p(i \mid o) = \prod_{\mathbf{x}} \left(\frac{(h * o)(\mathbf{x})^{i(\mathbf{x})} e^{-(h * o)(\mathbf{x})}}{i(\mathbf{x})!} \right)$$

Maximum likelihood estimation :

Minimize $J_1(o) = \sum_{\mathbf{x}} (-i(\mathbf{x}) \log [(h * o)(\mathbf{x})] + (h * o)(\mathbf{x})) + c^{st}$

Iterative algorithm :

$$o_{n+1}(\mathbf{x}) = \left\{ \left[\frac{i(\mathbf{x})}{o_n(\mathbf{x}) * h(\mathbf{x})} \right] * h(-\mathbf{x}) \right\} . o_n(\mathbf{x})$$

➤ Regularisation by Total Variation [Dey et al., 2004] :

$$J_1(o) + J_{reg}(o) = J_1(o) + \lambda \sum_{\mathbf{x}} |\nabla o(\mathbf{x})|$$

Associated iterative algorithm :

$$o_{n+1}(x) = \left\{ \left[\frac{i(x)}{o_n(x) * h(x)} \right] * h(-x) \right\} \frac{o_n(x)}{1 - \lambda \, di \, v \left(\frac{\nabla o_n(x)}{|\Delta o_n(x)|} \right)}$$

■ Anscombe transform :

$$\mathscr{A}(i(x, y, z)) = 2\sqrt{i(x, y, z) + \frac{3}{8}}.$$

- **Fisz** transform :
 - 1. Process a non normalized Haar transform
 - 2. Transform the detail coefficients $d_{j,\mathbf{m}}(\mathbf{k})$ of level j, subband \mathbf{m} and spatial position \mathbf{k} as

$$d_{j,\mathbf{m}}(\mathbf{k}) = \begin{cases} d_{j,\mathbf{m}}(\mathbf{k}) / \sqrt{a_{j,\mathbf{m}}}(\mathbf{k}) & \text{if } a_{j,\mathbf{m}}(\mathbf{k}) \neq 0\\ 0 & \text{if } a_{j,\mathbf{m}}(\mathbf{k}) = 0 \end{cases}$$

where $a_{j,\mathbf{m}}$ denotes the approximation coefficients.

- 3. Reconstruct using the inverse non normalized Haar transform.
- \rightarrow After such processings, the noise can be asymptotically considered as $\mathcal{N}(\mu, 1)$.

Background

- Richardson-Lucy
- Pre-processings
- Denoising + Deconvolution
- Deconvolution + denoising

Wavelet Transforms

Deconvolution algorithms

Simulation results

Perspectives

DENOISING + DECONVOLUTION ALGORITHM

Introduction

Background

- Richardson-Lucy
- Pre-processings
- Denoising + Deconvolution
- Deconvolution + denoising

```
Wavelet Transforms
```

```
Deconvolution algorithms
```

```
Simulation results
```

Perspectives

- Step 1 : Denoising by coefficient thresholding using Steerable pyramids [Rooms *et al.*, 2005] or using wavelets [Boutet de Monvel *et al.*, 2001], [Colicchio *et al.*, 2007]
- Step 2 : Deconvolution using the RL algorithm or a MAP
- > Pre-processing stage to stabilize the noise variance

> DIFFICULTIES :

- Is the PSF modified during Step 1? (In [Rooms et al., 2005] they estimate it after denoising)
- What is the nature of the residual noise after Step 1?

DECONVOLUTION + DENOISING

Introduction

Background

- Richardson-Lucy
- Pre-processings
- Denoising + Deconvolution
- Deconvolution + denoising

```
Wavelet Transforms
```

```
Deconvolution algorithms
```

```
Simulation results
```

Perspectives

Step 1 : Inversion of the PSF [McNally et al., 1999] taking into account it has zeros

Step 2 : Denoising by coefficient thresholding using wavelet transforms

> Noise estimation stage : variance estimation ...

> DIFFICULTIES :

- The noise is amplified during Step 1
- What is the noise nature after Step 1?

Background

Wavelet Transforms

• 3D Dyadic DWT

• 3D Dyadic anisotropic DWT

Deconvolution algorithms

Simulation results

Perspectives

Wavelet Transforms

3D DYADIC DISCRETE WAVELET TRANSFORM

Dyadic analysis filter bank - 1 resolution level

3D DYADIC DISCRETE WAVELET TRANSFORM

Dyadic analysis filter bank - 1 resolution level

- > Fully decimated transform (no redundancy)
- ➤ Using 2-band filter banks

3D DYADIC ANISOTROPIC DISCRETE WAVELET TRANSFORM

Dyadic analysis filter bank, \neq filters in *z* direction - 1 level

3D DYADIC ANISOTROPIC DISCRETE WAVELET TRANSFORM

> The z direction is processed by an other wavelet

Background

Wavelet Transforms

Deconvolution algorithms

- First approach
- Second approach
- Proposed algorithm

Simulation results

Perspectives

Deconvolution algorithms

FIRST APPROACH

Introduction

Background

Wavelet Transforms

- Deconvolution algorithms
- First approach
- Second approach
- Proposed algorithm

Simulation results

Perspectives

Considering deconvolution then denoising

- Step 1 : Deconvolution by PSF inversion
- Step 2 : Denoising using 3D DWT (thresholding).
- Considering denoising then deconvolution

- Step 1 : Denoising by coefficient thresholding using 3D DWT
- Step 2 : Deconvolution using the RL algorithm or a standard algorithm if the noise is no longer Poisson.

SECOND APPROACH

Overview

Introduction

Background

Wavelet Transforms

Deconvolution algorithms

First approach

Second approach

Proposed algorithm

Simulation results

Perspectives

Consider a combined approach operating in the transform domain

- Using an algorithm as in [Daubechies et al., 2004] or [Combettes et al., 2005]
- First considering wavelet bases (3D DWT)
- Then extending this approach to wavelet frames (redundant decomposition like the 3D CWT transform) which implies more complicated algorithms (future work).

PROPOSED ALGORITHM

Overview

Introduction

Background

Wavelet Transforms

Deconvolution algorithms

First approach

Second approach

Proposed algorithm

Simulation results

Perspectives

Considering an additive noise *n* leading to the observation i = h * o + n. Objective :

$$\underset{o \in \mathbf{H}}{\text{minimize}} \ \frac{1}{2} \|h * o - i\|^2 + \sum_{k \in K} \phi_k(\langle o \mid e_k \rangle).$$

Algorithm :

$$o_{n+1} = o_n + \lambda_n (\operatorname{prox}_{\gamma_n \phi_k} < o_n + \gamma_n (h^*(i - h * o_n)) | e_k > -o_n)$$

- e_k stands for an orthonormal basis.
- We can choose

$$\phi = \omega |.|$$
$$\phi = \omega |.|^2$$

• ω is a a fixed parameter and ϕ a fixed regularization function.

• γ : step size and $\lambda = 1$: relaxation parameter.

Background

Wavelet Transforms

Deconvolution algorithms

Simulation results

- Tested methods
- Synthetic image
- Phantom image
- Real image

Perspectives

Simulation results

erview
erview

Background

Wavelet Transforms

Deconvolution algorithms

- Simulation results

 Tested methods
- Synthetic image
- Phantom image
- Real image
- Perspectives

Tested methods :

- Method 1 :
- 1. Preprocessing
- 2. Wavelet denoising
- 3. Inverse Preprocessing
- 4. RL algorithm

- Method 2 :
- 1. PSF inversion
- 2. Noise estimation
- 3. Wavelet denoising

- Method 3 :
- 1. Preprocessing

- 2. Deconvolution
 + denoising
- 3. Inverse Preprocessing

SYNTHETIC IMAGE

Overview

Introduction

Background

Wavelet Transforms

Deconvolution algorithms

Simulation results

- Tested methods
- Synthetic image
- Phantom image
- Real image

Perspectives

Ariana

Original

Degraded

I-div Init.	Meth. 1	Meth. 2	Meth. 3	Meth. 3 anis
6.98	1.17	2.11	1.09	0.90

PHANTOM IMAGE

•	Οv	erv	/iew	

Introduction

Background

Wavelet Transforms

Deconvolution algorithms

Simulation results

Tested methods

 \bullet Synthetic image

Phantom image

Real image

Perspectives

15 µm

PHANTOM IMAGE

Overview

Introduction

Background

Wavelet Transforms

Deconvolution algorithms

Simulation results

Tested methods

• Synthetic image

Phantom imageReal image

Perspectives

Ariana

Observed

Restored meth. 1

Restored meth. 3

PHANTOM IMAGE

OverviewIntroduction

Background

Wavelet Transforms

Simulation results

Tested methods
Synthetic image

Phantom imageReal image

Perspectives

Deconvolution algorithms

35

30

Original Method 1

Method 3

REAL IMAGE

Overview

Introduction

Background

Wavelet Transforms

Deconvolution algorithms

Simulation results

Tested methods

Synthetic image

Phantom image

Real image

Perspectives

Original

Restored

©UMR 6543 CNRS / Institute of Signaling, Developmental Biology and Cancer.

REAL IMAGE

Overview

Introduction

Background

Wavelet Transforms

Deconvolution algorithms

Simulation results

Tested methods

Synthetic image

Phantom image

Real image

Perspectives

Original

Restored

©UMR 6543 CNRS / Institute of Signaling, Developmental Biology and Cancer.

Background

Wavelet Transforms

Deconvolution algorithms

Simulation results

Perspectives

Future works

Perspectives

Overview	

Background

Wavelet Transforms

Deconvolution algorithms

Simulation results

Perspectives

Future works

- Considering an *M*-band wavelet transform instead of a dyadic wavelet transform
- Using the dual-tree wavelet transform which is directional and which has a limited redundancy
- Directly considering Poisson noise instead of pre-processing data
- Consider a mixture of Poisson and Gaussian noise (MPG) [Zhang et al., 2007]
- Using a "local" method partitioning the image into smaller areas in order to make assumptions on "local" noise properties

■ ..