Deconvolution in Fluorescence Microscopy-Phase I

Praveen Pankajakshan*, Laure Blanc-Féraud*, Josiane Zerubia*

*ARIANA Project-team, INRIA/CNRS/UNSA Sophia-Antipolis, France

P2R Meeting, October 15, 2007, Sophia-Antipolis

Problem Statement Image Formation Process

Problem Statement

- Images of biological specimens obtained from fluorescence microscopes are corrupted by two primary sources:
 - blurring due to the band-limited nature of the optical system
 - under low illumination conditions, noise due to reduced number of photons reaching the detector.
- Blurring kernel is unknown (blind deconvolution).
- Openoising the image can induce artifacts.
- Restoration of the images is ill-posed.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ クタペ

Problem Statement Image Formation Process

Poisson Statistic for the Image Formation Model

• The statistics for the image formation is described by a Poisson process as:

$$i(\mathbf{x}) = \mathcal{P}[h * o](\mathbf{x})$$

(1)

where * denotes 3D convolution.

• Likelihood of the observed data *i* knowing the specimen *o* is given as,

$$P(i|o) = \prod_{\mathbf{x}\in\Omega} \frac{[h*o](\mathbf{x})^{i(\mathbf{x})} e^{-[h*o](\mathbf{x})}}{i(\mathbf{x})!}$$
(2)

Sac

・ロ ・ ・ 同 ・ ・ 回 ・ ・ 日 ・

Constraints on the Object Point-Spread function model Restoration Model

Gibbsian distribution with Total Variation (TV)

Gibbsian distribution P(X = o) with TV functional captures the prior knowledge of the object, and is the regularization model.

$$P(o) \propto \frac{1}{Z_{\lambda}} e^{-\lambda \sum_{\mathbf{x} \in \Omega} |\nabla o(\mathbf{x})|},$$
(3)
where, $|\nabla o(\mathbf{x})| = (\sum_{\mathbf{x}' \in V_{\mathbf{x}}} (o(\mathbf{x}) - o(\mathbf{x}'))^2)^{\frac{1}{2}}; \ Z_{\lambda} = \sum_{o} e^{-\lambda \sum_{\mathbf{x}} |\nabla o(\mathbf{x})|}$

= 900

・ロト ・ 同ト ・ ヨト ・ ヨト

Constraints on the Object Point-Spread function model Restoration Model

Diffraction-limited Point-Spread Function (PSF) model

• For a fluorescent microscope,

$$h(\mathbf{x}) = |P_{\lambda_{em}}(\mathbf{x})|^2 \cdot |P_{\lambda_{ex}}(\mathbf{x})|^2$$
(4)

where, *h* is the PSF, $P_{\lambda}(\mathbf{x})$ is the pupil function for a wavelength λ .

• If the pinhole model *A_R* is included, then the analytical CLSM PSF model is,

$$h(\mathbf{x}) = |A_R(\mathbf{x}) * P_{\lambda_{em}}(\mathbf{x})|^2 \cdot |P_{\lambda_{ex}}(\mathbf{x})|^2$$
(5)

SQA

Constraints on the Object Point-Spread function model Restoration Model

Parametric approach to PSF modeling

• Assumptions:

- Infinitely small pinhole, stationary PSF, ignore aberrations (mirror symmetry about z-axis).
- 2 Circular symmetry on xy-plane.
- Diffraction-limited PSF approximation (in the LSQ sense) [*Zhang et al.* 06]:

$$h_{\sigma_r,\sigma_z}(r,z) = \frac{1}{Z_{\sigma_r,\sigma_z}} e^{\left(\frac{-r^2}{2\sigma_r^2} - \frac{z^2}{2\sigma_z^2}\right)},$$
(6)
where, $Z_{\sigma_r,\sigma_z} = (2\pi)^{\frac{3}{2}} \sigma_r^2 \sigma_z$

Sac

Constraints on the Object Point-Spread function model Restoration Model

Bayesian model for the restoration

From the Bayes theorem, the Posterior probability is,

$$P(X = o|Y = i) \propto P(Y = i|X = o)P(X = o)$$
(7)

• Thus, the conditional probability can be written as:

$$P(o|i) \propto \frac{e^{-\lambda \sum_{\mathbf{x} \in \Omega} |\nabla o(\mathbf{x})|}}{\sum_{o} e^{-\lambda \sum_{\mathbf{x} \in \Omega} |\nabla o(\mathbf{x})|}} \prod_{\mathbf{x} \in \Omega} \frac{[h * o](\mathbf{x})^{i(\mathbf{x})} e^{-[h * o](\mathbf{x})}}{i(\mathbf{x})!}$$
(8)

P2R Meeting, Sophia-Antipolis

Alternate Minimization Algorithm Penalized Maximum Likelihood Estimation PSF model parameter estimate

Alternate Minimization Algorithm

• The Cost Function to be minimized has the form:

$$\mathcal{L}(o,h) = -\lambda \sum_{\mathbf{x} \in \Omega} |\nabla o(\mathbf{x})| - \log[Z_{\lambda}] + \sum_{\mathbf{x} \in \Omega} (i(\mathbf{x})\log[h*o](\mathbf{x})) - \sum_{\mathbf{x} \in \Omega} [h*o](\mathbf{x})$$
(9)

• Sub-optimal solution alternatively maximizes the joint-likelihood in *o* and *h* to find \hat{o} and $h(\hat{\theta})$ [Hebert etal. 1989] satisfying :

$$\mathcal{L}(\hat{o}_{new}, h(\hat{\theta}_{new})) \le \mathcal{L}(\widehat{o}_{old}, h(\hat{\theta}_{old}))$$
 (10)

500

Alternate Minimization Algorithm Penalized Maximum Likelihood Estimation PSF model parameter estimate

Maximum A Posteriori (MAP) estimate of the specimen

Minimizing the cost function (9) w.r.t o,

$$\frac{\partial}{\partial o(\mathbf{x})} \mathcal{L}(o(\mathbf{x})|\lambda, \hat{\boldsymbol{\theta}}) = 0$$
(11)

Richardson-Lucy with TV Regularization [Dey et al. 2004]

$$o_{n+1}(\mathbf{x}) = \left[\frac{i(\mathbf{x})}{(o_n * h_{\hat{\sigma}_r, \hat{\sigma}_z})(\mathbf{x})} * h_{\hat{\sigma}_r, \hat{\sigma}_z}(-\mathbf{x})\right] \cdot \frac{o_n(\mathbf{x})}{1 - \lambda \operatorname{div}(\frac{\nabla o_n(\mathbf{x})}{|\nabla o_n(\mathbf{x})|})}$$
(12)

SQA

Alternate Minimization Algorithm Penalized Maximum Likelihood Estimation PSF model parameter estimate

PSF parameter estimate

• If we denote $\theta = (\sigma_r, \sigma_z)$ as the unknown parameters, the log-likelihood can be written as:

$$\mathcal{L}(\theta|\hat{o}) = -\sum_{\mathbf{x}\in\Omega} (i(\mathbf{x})\log[h(\theta)*\hat{o}](\mathbf{x})) + \sum_{\mathbf{x}\in\Omega} [h(\theta)*\hat{o}](\mathbf{x}) \quad (13)$$

• and the gradient w.r.t θ as,

$$\nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}) = \sum_{\mathbf{x} \in \Omega} ((h_{\theta_j} * \hat{o}(\mathbf{x})) - \frac{i(\mathbf{x})}{h * \hat{o}(\mathbf{x})} h_{\theta_j} * \hat{o}(\mathbf{x}))$$
(14)

Sac

イロト 不得 トイヨト イヨト

Alternate Minimization Algorithm Penalized Maximum Likelihood Estimation PSF model parameter estimate

Analysis of Cost Function

P2R Meeting, Sophia-Antipolis

Alternate Minimization Algorithm Penalized Maximum Likelihood Estimation PSF model parameter estimate

PSF parameter estimate

• Conjugate-Gradient algorithm:

$$\hat{\boldsymbol{\theta}}_{k+1} = \hat{\boldsymbol{\theta}}_k - \alpha_k \nabla_{\boldsymbol{\theta}} \mathcal{L}(\hat{\boldsymbol{\theta}}_k | \hat{\boldsymbol{o}})$$
(15)

Stopping criteria,

$$\chi_{k+1} = \frac{|\hat{\boldsymbol{\theta}}_{(k+1)} - \hat{\boldsymbol{\theta}}_{(k)}|}{\hat{\boldsymbol{\theta}}_{(k)}} < \epsilon, \ (\epsilon \le 10^{-3}) \tag{16}$$

P2R Meeting, Sophia-Antipolis

12/20

Synthetic Data Real Data Conclusions and Future Work

Analysis on synthetic data

P2R Meeting, Sophia-Antipolis

Synthetic Data Real Data Conclusions and Future Work

Results on synthetic data

500

イロト イポト イヨト イヨト

Synthetic Data Real Data Conclusions and Future Work

Results on Synthetic Data

P2R Meeting, Sophia-Antipolis

Sac

イロト イポト イヨト イヨト

Synthetic Data Real Data Conclusions and Future Work

Preliminary results on real data

Root meristem of the plant Arabidopsis thaliana scanned by Zeiss LSM 510, C-Apochromat lens, Δ_{XY} : 0.29 μ m, Δ_Z : 0.44 μ m (depth of about 14.08 μ m), ©INRA Sophia-Antipolis

P2R Meeting, Sophia-Antipolis

Sac

イロト 不得 トイヨト イヨト

Synthetic Data Real Data Conclusions and Future Work

Preliminary results on real data

P2R Meeting, Sophia-Antipolis

Synthetic Data Real Data Conclusions and Future Work

Conclusions and Future Work

© The alternate minimization algorithm jointly estimates a separable 3D Gaussian PSF and the object.

- © TV regularization preserves borders very well.
- Small structures close to noise are not well restored (staircase effect) and some corners are rounded.
- © Model chosen is for the diffraction-limited PSF and does not include spherical aberrations.

► Additional experimentation on confocal image data of specimens.

► Investigate and extend to the spherically-aberrated PSF [*Gibson & Lanni*, 1991] or [*P. Török et al.*, 1995] and improve the prior representation of the specimen.

Sac

Synthetic Data Real Data Conclusions and Future Work

References

- [Hebert89] T. Hebert and R. Leahy, "A Generalized EM Algorithm for 3-D Bayesian Reconstruction from Poisson Data using Gibbs Prior," IEEE Trans. on Medical Imaging, vol. 8, no. 2, June 1989.
- [Dey et.al 04] N. Dey, L. Blanc-Feraud, J. Zerubia,
 C. Zimmer, J-C. Olivo-Marin and Z. Kam, "A Deconvolution Method for Confocal Microscopy with Total Variation Regularization," Proc. ISBI'2004, pp.1223-1226, Apr. 2004.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Synthetic Data Real Data Conclusions and Future Work

References

- [Gibson & Lanni 91] S. F. Gibson and F. Lanni, "Experimental test of an analytical model of aberrations in an oil-immersion objective lens used in three-dimensional light microscopy," Journal of Microscopy, vol. 8, no. 10, pp. 1601-1613, Oct. 1991.
- [Zhang et al 06] B. Zhang, J. Zerubia and J-C. Olivo-Marin, "A study of Gaussian approximations of fluorescence microscopy PSF models," SPIE Conf. on microbiology, San Jose, Jan. 2006.

SQA

イロン 不良 とくほう 不良 とう