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Problem Statement

1 Images of biological specimens obtained from
fluorescence microscopes are corrupted by two primary
sources:

blurring due to the band-limited nature of the optical system
under low illumination conditions, noise due to reduced
number of photons reaching the detector.

2 Blurring kernel is unknown (blind deconvolution).
3 Denoising the image can induce artifacts.
4 Restoration of the images is ill-posed.
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Poisson Statistic for the Image Formation Model

The statistics for the image formation is described by a
Poisson process as:

i(x) = P[h ∗ o](x) (1)

where ∗ denotes 3D convolution.
Likelihood of the observed data i knowing the specimen o
is given as,

P(i |o) =
∏
x∈Ω

[h ∗ o](x)i(x)e−[h∗o](x)

i(x)!
(2)
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Gibbsian distribution with Total Variation (TV)

Gibbsian distribution P(X = o) with TV functional captures the
prior knowledge of the object, and is the regularization model.

P(o) ∝ 1
Zλ

e
−λ

P
x∈Ω

|∇o(x)|
, (3)

where, |∇o(x)| = (
∑

x′∈Vx

(o(x)− o(x′))2)
1
2 ; Zλ =

∑
o

e
−λ

P
x
|∇o(x)|
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Diffraction-limited Point-Spread Function (PSF) model

For a fluorescent microscope,

h(x) = |Pλem(x)|2 · |Pλex (x)|2 (4)

where, h is the PSF, Pλ(x) is the pupil function for a
wavelength λ.
If the pinhole model AR is included, then the analytical
CLSM PSF model is,

h(x) = |AR(x) ∗ Pλem(x)|2 · |Pλex (x)|2 (5)
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Parametric approach to PSF modeling

Assumptions:
1 Infinitely small pinhole, stationary PSF, ignore aberrations

(mirror symmetry about z-axis).
2 Circular symmetry on xy -plane.

Diffraction-limited PSF approximation (in the LSQ sense)
[Zhang et al . 06]:

hσr ,σz (r , z) =
1

Zσr ,σz

e
(−r2

2σ2
r
− z2

2σ2
z
)
, (6)

where, Zσr ,σz = (2π)
3
2 σ2

r σz
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Bayesian model for the restoration

From the Bayes theorem, the Posterior probability is,

P(X = o|Y = i) ∝ P(Y = i |X = o)P(X = o) (7)

Thus, the conditional probability can be written as:

P(o|i) ∝ e
−λ

P
x∈Ω

|∇o(x)|

∑
o

e
−λ

P
x∈Ω

|∇o(x)|

∏
x∈Ω

[h ∗ o](x)i(x)e−[h∗o](x)

i(x)!
(8)
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Alternate Minimization Algorithm

The Cost Function to be minimized has the form:

L(o, h) = −λ
∑
x∈Ω

|∇o(x)|−log[Zλ]+
∑
x∈Ω

(i(x)log[h∗o](x))−
∑
x∈Ω

[h∗o](x)

(9)

Sub-optimal solution alternatively maximizes the joint-likelihood
in o and h to find ô and h(θ̂) [Hebert etal . 1989] satisfying :

L(ônew , h(θ̂new )) ≤ L(ôold , h(θ̂old )) (10)
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Maximum A Posteriori (MAP) estimate of the specimen

1 Minimizing the cost function (9) w.r.t o,

∂

∂o(x)
L(o(x)|λ, θ̂) = 0 (11)

2 Richardson-Lucy with TV Regularization [Dey et al . 2004]

on+1(x) = [
i(x)

(on ∗ hσ̂r ,σ̂z )(x)
∗hσ̂r ,σ̂z (−x)]· on(x)

1− λdiv( ∇on(x)
|∇on(x)|)

(12)
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PSF parameter estimate

If we denote θ = (σr , σz) as the unknown parameters, the
log-likelihood can be written as:

L(θ|ô) = −
∑
x∈Ω

(i(x)log[h(θ) ∗ ô](x)) +
∑
x∈Ω

[h(θ) ∗ ô](x) (13)

and the gradient w.r.t θ as,

∇θL(θ) =
∑
x∈Ω

((hθj ∗ ô(x))− i(x)

h ∗ ô(x)
hθj ∗ ô(x)) (14)
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Analysis of Cost Function

Cost Function as a property of the radial PSF parameter when the initial object and observation are known.

Oct. 15, 2007 P2R Meeting, Sophia-Antipolis 11/20



Background
System Model

Proposed Approach
Results

Alternate Minimization Algorithm
Penalized Maximum Likelihood Estimation
PSF model parameter estimate

PSF parameter estimate

Conjugate-Gradient algorithm:

θ̂k+1 = θ̂k − αk∇θL(θ̂k |ô) (15)

Stopping criteria,

χk+1 =
|θ̂(k+1) − θ̂(k)|

θ̂(k)

< ε, (ε ≤ 10−3) (16)
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Analysis on synthetic data

Convergence plot of the radial PSF parameter (σr ) by the Conjugate-Gradient method.
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Results on synthetic data
X

-Y
X

-Z

(a) (b) (c) (d)

(a) Composite synthetic object, (b) observed image with the analytical blur model and Poisson noise, (c) after
RL+TV deconvolution with the estimated PSF, (d) reconstructed diffraction-limited PSF.
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Results on Synthetic Data

Comparison of the analytically and the estimated parametric diffraction-limited PSF models.
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Preliminary results on real data

Root meristem of the plant Arabidopsis thaliana scanned by Zeiss LSM 510, C-Apochromat lens, ∆XY : 0.29µm,
∆Z : 0.44µm (depth of about 14.08µm), c©INRA Sophia-Antipolis
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Preliminary results on real data

Deconvolved Image after restoration by the RL+TV algorithm and PSF parameter estimation
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Conclusions and Future Work

, The alternate minimization algorithm jointly estimates a
separable 3D Gaussian PSF and the object.
, TV regularization preserves borders very well.
/ Small structures close to noise are not well restored
(staircase effect) and some corners are rounded.
/ Model chosen is for the diffraction-limited PSF and does not
include spherical aberrations.
�Additional experimentation on confocal image data of
specimens.
�Investigate and extend to the spherically-aberrated PSF
[Gibson & Lanni , 1991] or [P. Török et al., 1995] and improve
the prior representation of the specimen.
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