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Problem formulation

The problem at hand can be formulated as

g=n(h* f)

 f denotes the imaged object

* h denotes the iImaging system point spread function, (psf)
which is assumed to be linear and space invariant

» g denotes the image acquired by the imaging system*
* n denotes a pixel - wise noise function

« * denotes the 3D convolution operator.




Prior knowledge avalilable

Prior knowledge assumed to be available:

1. The psfis symmetridi(x,y,z2)=h(-X,-y,-2)

2. The psfis radial - symmetric in the x-y plane:

h(X’ y, Z) = hrad (\/X2 T y2 ’Z) = I’l'ad (r !Z)

3. The object is non-negative:f (x,y,z)= 0,0x,y,z

4. The noise is a Poisson process and therefore can

be characterized by Poisson statistics with anaapen
f*h:

f* X\, g(x,y,Z)e—(f*h)(x,y,Z)
gy, 2)| f =t %2

gx y,2)!




Simulation framework

psf simulation

The psf has been simulated according to the follgwin
formula (Born and Wolf, Principles of Optics):

hrad(riz): IO




J,is a Bessel function of the first kind
27m,

k is the wave frequency in the mediurk = g

A 1s the light wavelength
NA is the numerical aperture
n, IS the refractive index in the immersion medium

mis the CCD magnification.

|, is a scaling factor and was chosen so thategrate
to unity.

Typical values used for our psf simulation:

n,=1.518, A= 0.m ,NA= 1.45m=




Simulated psf (displayed with a logarithmic colorrhap
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An x-y plane section at z=0 A y-z plane section at x=0




Object simulation

In order to simulate an imaged object, an image toirus was
generated
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An x-y plane section at z=0. A y-z plane section at x=0




Data modeling

* The blurred image was simulated by convolving theahwith the psf.

» Poisson noise was generated by first linearly scahadlurred image to
a maximal pixel value of 1000, which is typical fowide - field
fluorescence image acquired under good conditions.

Then, for each pixel, a Poisson distributed randambyer was drawn
out of a Poisson distribution with a mean (and var@ equal to the

pixel value.




Blurred object.
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An x-y plane section at z=0. A y-z plane section at x=0




Blurred and noisy object.
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Visually inspecting previous figures, it is notablattthe noise is not
overwhelming.

Wide - field microscope is a sensitive imaging devige,there is little
photon loss.

Therefore, the acquired image has a typical sigm@hsity of approximately
200 to 1000 photons per detector pixel, dependintp@mmaging conditions.

For the simulated signal, the maximal pixel valus 4800 = noise standard
deviation (for Poisson noise), namely,

STD... =+/1000= 31 6= 3160 of signal

noise

For a weaker signal of approximately 200 photon t®per pixel,

=+200=14 14 7 0% of signal

STD

noise
Although the noise may seem to be visually insignificave will
later observe that it might have an adverse effethemlind

deconvolution process, unless properly accounted for.




Maximum Likelihood Expectation
Maximization (MLEM)

The MLEM algorithm seeks to find

f =argmax {p@ |f ))

Recall

f*h XV, Z g(xyy,Z)e-(f*h)(X,y,Z)
p(g| )= XD
Xy, g(x,y,2)!
For simplicity, we can equivalently find the extrepwnts
of any monotonic increasing functionm|f), and specifically ofog(p(g|f)).

Simplifying the expression, we get:

log(p(g| f))=> [glog (f *h)-f *h-log(g")]

X,Y,Z




Differentiating w.r.tf(i,j,k) and equating to zero, yields:

o 9(%y,2) _,||=
X,Zy,z{h(x e k)((f*h)(xy,z) ﬂ C

This is true since

(T*h(xy,2) =2 1(1, J,k)h(x=1,y-J,Z2=k)

i,j.k

0
of (i, J k)

(f*h) =hx-1,y—J,z—k)

So that

v x| IXY,Z)
ey ((f*h)(wz) 1j ’




Assuming thah sums to unity, we get

9(xy.2) ).
h(-x,~y—2)* =1
S ((f*h)(x,y,z)]

Multiplying both sides by yields

f_[ 9(x,Y,2)

(f*h(x Yy 2
Which leads to the basic MLEM iteration

j*h(—x,—y—z) = i

fn+1: fn( "g ]*hs
f *h

Where f_ denotes an estimateffat iterationn.

The superscript denotes symmetrical reflection:

& (X, Y,2)=¢(-x,—y,~2)




Blind MLEM

In blind deconvolution algorithmsyis unknown.

In order to derive an algorithm that will overcothes by
simultaneously estimating botlandh, we differentiate the
log likelihood expression w.r.(i,j,k) and equate to zero

v vy 9% Y,Z)
YT Tk v, 1j "N

f(~x,y-2)*| 9.2 j= > (% .2

(f*h(xy,2)

X,Y,Z

Multiplying both sides by yields:

h (9 Y.2) Voo o
Zf(x’y’z)((f*h)(X,y,z)] f(=x-y-2)=h

X,Y,Z




Which leads to the MLEM iteration fadr.

(i
X f
g =

> (% Y.2)

X,Y,Z




As> f(xy,z) Isconstantvalue arfdsums to unity, we can drop

X,Y,Z

the denominator term and get the blind MLEM equegio

[
" fh,

[ 9 Jezs
l‘ln(i:‘n*lflnj 1:n

Where fn, ﬁn denote estimatesffandg, at iteratiomn, respectively.




Prior knowledge enforcement

Each MLEM iteration is followed by a projection gé&a where prior

knowledge Is enforced.

psf symmetry

P(h)(r,z) = 2.#(; e );Z;Zh(R,Z)

WhereP denotes the projection operator.




Deblurred object (noiseless) using the psf symmetry prior.

An x-y plane section at z=0. A y-z plane section at x=0




Phase prior

h symmetric = H real

—> under noiseless conditions, the phasEof equafshtee of 5 .

= P(f)(xy,2)= F{IF Uv,w) €™} gy z.

Deblurred object (noiseless), using phase prior and pshgym prior.




It can be seen that the incorporation of the phase iptroduces false noise
Into the reconstructed image.

The source is unreliable phase values in areas Wheranishes, or almost
vanishes, due to numerical errors.

In order to verify this assumption, additional pmwiormation was introduced
to the algorithm, in the form of the psf frequenon@in support.

|F(u,v,w) [€7C 0 H gy w e
F(u,v,w), €else

} (X,¥,2)

P(f)(X,y,Z)=F'1{

Wherec is a positive constant.

Namely, the phase prior is enforced only at frequelmyain locations
whereH does not 'vanish'.




Deblurred object (noiseless), using phase, psf frequamayort
and psf symmetry priors.




We note that the psf frequency support prior sigmiiisaimproves the
reconstruction results.

However, we thought that this information is usualby available.

Attempts were made to estimate the psf frequency doswgport out of
the corrupted imageg, as well as out of the psf estimatés , yielding
poor results (similar to those without the supporpri

The above leads to the conclusions:

e The phase prior is a way to introduce valuablermgttion regarding

the imaged object into the deconvolution process.

 However, in order to effectively use the phase ponoe must possess a
accurate estimate of the psf frequency support.




Simulations including Poisson noise

An attempt was made to apply the MLEM algorithm twogsy blurred
Image.

Deblurred object
(noisy), using only psf
symmetry prior.

As can be seen, the presence of Poisson noise prévents
algorithm from converging, yielding a result whishstill noisy
and blurred.




Overcoming the noise

T overcome the noise, a general scheme of incorpgre@noising within
the MLEM framework (Starck, Pantin and Murtagh) wasdi

This is based on the observation tHat- #. kedylito be smooth
henceR, will contain the noise.




As an initial experiment, the RD-MLEM was implementesing a 3x3x3
median filter for thédenoise() function yielding promising results.




Penalized MLEM

In our latest result we note that even in the absehneise, or when
the noise is handled well, there are oscillatoryats in the vicinity
of the edges in the reconstructed image.

In an attempt to overcome this phenomenon we dect¢aedroduce
Into the algorithm some additional prior knowleddé. o

The penalized MLEM (P.J. Green, 1990) attempts tuslothat by looking for:

f =argmax {p(f |g9))

Using Bayes law, the log of this expression is
log(p(f |g))=log(p(g |f))+log(p(f))-log(p@©))

standard MLEM prior for f




A general prior probability function can have tloenh:
p(t) = u-exptP (f )

WhereP(f) can be any function which retuavs Values for inputs that
agree with prior knowledge of f and vice versaéaaity function).

Then
log(p(f |g9))=> [glog (f *h)~f *h-log(g") | - B P( ) +constan

X,Y,Z

Differentiating with respect to f and some furthewdlopment leads to:

fn{Ag j*hs
- f *h
f =

n+1 a f
1+ —P ().




We note thata%P(f) IS evaluated at the previous iteratshimate, in order

to keep calculations manageable.
This is often referred to in literature as the "Gtep Late" (OSL) regularizatio

Since the expression here differs from the original @mly by terms

that are independent of h, the iteration for h dadshange.

Hence, the blind P-MLEM iteration Is:

— f”a n, The additional term
1+ 5-—P(f))
B pr (f )




Total Variation penalty

One option for the functioR(f) is to take it as the total variation (TV) fof

P(E)=[[[II" fllaxdydz=[ [ [+ 7+ fdxdydz

XYy z ; XYy z

Where

_of _of _of
X=_’f =—,fZ=—
ox oy 0z

f

The logic behind this choice Is that minimizatiortlod TV leads to
suppression of small oscillations while maintaining ¢redarp edges
(Rudin, Osher and Fatemi, 1992).




aifp(f) cannot be calculated directly.

But, writing P :J'”L(x, y,z,f,f,,f,,f,)dxdydz and using

Xy z

the Euler - Lagrange equation

0, 0L 00 o4 0oL
of ~ of oxof, odyof dzof,

We get in the TV case

d 9 f d f, d

—_ X z

of &\/fx2 +f7+ f) a_y\/fxz+ f o+ f,2 _E\/fxﬁ i+ fzz_

which can be calculated in each iteration.




We note that the terrrtﬁv(:—fl has aslay interpretation and can be
recognized as the mean UDUHL turé. of

Hence, the TV P-MLEM iteration becomes

£ g s
f =%
. 7% )

i} f’[ H

n+l —

Our first experiment with the TV P-MLEM was debluginf a noiseless imagg

The first choice was3=0.002 as suggested by Dey et. al. (¢maap).

Deblurred object, using the
TV P-MLEM and psf
symmetry prior,5= 0.002.




Clearly, the oscilatory artifacts around the edgeswedéminated, but the
Image is still somewhat blurry.

It seems like that the penalty term prevented thdisalfrom converging.

To further investigate this effect we reduced theeaf 8
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Deblurred object, using the TV P-MLEM and psf
symmetry prior,5= 0.000125.




Encouraged by this result, the next step was tryiagtgorithm with a
noisy image:
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Deblurred noisy object, using the TV P-MLEM and psf syetry prior,5=
0.000125.

It seems that the penalty term is not effective irpsegsing the Poisson noise.




Therefore, higher values @  were tried, again.

Deblurred noisy
object, using the
TV P-MLEM and
psf symmetry prior
£=0.002.

It seems that higf  values suppress the noise, but &sgerirthe
reconstruction of sharp edges.
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Deblurred noisy
object, using the TV
P-MLEM and psf
symmetry prior3=
0.001.

Deblurred noisy
object, using the TV
P-MLEM and psf
symmetry prior3=
5.625e-4.




It seems that higi# values suppress the noise, but &gerjrthe
reconstruction of sharp edges.

If the value of 8 is lower, the noise prevents the ieagtimate from

converging.

This leads to:




The Residual Denoised Penalized
MLEM

Combine the TV-P-MLEM with the RD-MLEM to give usd residual
denoised penalized MLEM (RDP-MLEM).

The overall iteration will then be:




The RDP-MLEM algorithm has been tested with the 3x3wglian filter

as theDenoise() function and a few values f@ Results are brought in the
following figures:

Deblurred noisy object, using the TV RDP-MLEM and painmetry
prior, = 0.000125.




Deblurred noisy object, using
the TV RDP-MLEM and psf
symmetry prior 5= 6.25e-5.

Deblurred noisy object, using
the TV RDP-MLEM and psf
symmetry prior 3= 4.6875e-




Our next planned steps

e Turns out that the supports of both the psf and itgiEp
transform depend on two parameters only: The numileric
aperture (NA) and the refractive index of immersmin
As both these parameters are available we can fueiperiment
with the phase prior with hope of achieving imprdyerformance.

* A more realistic model of the pdf is not symmetriche Z-axis.
We intend to modify our model to accommodate fos thct and
repeat all the experiments we have seen.

 As a final test of the resulting blind deconvolat@igorithm
we intend to test in on real images from fluroescewtoscopes.




