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Problem formulation
The problem at hand can be formulated as

( * )g n h f=

where:
• f denotes the imaged object

• h denotes the imaging system point spread function (psf), 
which is assumed to be linear and space invariant

• g denotes the image acquired by the imaging system* 

• n denotes a pixel - wise noise function

• * denotes the 3D convolution operator.

The goal is to estimate f and possibly also h from g and any 
additional prior knowledge available.



Prior knowledge available

Prior knowledge assumed to be available:

1. The psf is symmetric: h(x,y,z)=h(-x,-y,-z)

2. The psf is radial - symmetric in the x-y plane: 
2 2( , , ) ( , ) ( , )rad radh x y z h x y z h r z= + ≡

3. The object is non-negative: ( , , ) 0, , ,f x y z x y z≥ ∀

4. The noise is a Poisson process and therefore can 
be characterized by Poisson statistics with an expectation 
f*h: 
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Simulation framework
psf simulation
The psf has been simulated according to the following 
formula (Born and Wolf, Principles of Optics): 
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• is a Bessel function of the first kind0J

• k is the wave frequency in the medium 02 n
k

π
λ

=

• is the light wavelengthλλλλ

• NA is the numerical aperture

• is the refractive index in the immersion medium0n

• m is the CCD magnification.

• is a scaling factor and was chosen so that h integrate 
to unity.

0I

Typical values used for our psf simulation:

0 1.518,   0.5 ,   1.45,   1n m NA mλ µ= = = =



Simulated psf (displayed with a logarithmic colormap).

An x-y plane section at z=0 A y-z plane section at x=0



Object simulation

In order  to simulate an imaged object, an image of a torus was 
generated

An x-y plane section at z=0. A y-z plane section at x=0



Data modeling

• Poisson noise was generated by first linearly scaling the blurred image to    

a maximal pixel value of 1000, which is typical for a wide - field 

fluorescence image acquired under good conditions. 

Then, for each pixel, a Poisson distributed random number was drawn 

out of a Poisson distribution with a mean (and variance) equal to the 

pixel value. 

• The blurred image was simulated by convolving the object with the psf. 



Blurred object.

An x-y plane section at z=0. A y-z plane section at x=0



Blurred and noisy object.

An x-y plane section at z=0. A y-z plane section at x=0



Visually inspecting previous figures, it is notable that the noise is not 
overwhelming.

Wide - field microscope is a sensitive imaging device, i.e. there is little 
photon loss.

Therefore, the acquired image has a typical signal intensity of approximately 
200 to 1000 photons per detector pixel, depending on the imaging conditions.

For the simulated signal, the maximal pixel value was 1000 = noise standard
deviation (for Poisson noise), namely,

1000 31 6 3 16. . %noiseSTD = == == == = ⇒⇒⇒⇒ of signal

For a weaker signal of approximately 200 photon counts per pixel,

200 14 14 7 07. . %noiseSTD = == == == = ⇒⇒⇒⇒ of signal

Although the noise may seem to be visually insignificant, we will 

later observe that it might have an adverse effect on the blind 

deconvolution process, unless properly accounted for.



Maximum Likelihood Expectation 
Maximization (MLEM)

ˆ argmax { ( | )}ff p g f=
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The MLEM algorithm seeks to find

Recall

For simplicity, we can equivalently find the extreme points 
of any monotonic increasing function of p(g|f), and specifically of log(p(g|f)).

Simplifying the expression, we get:
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Differentiating w.r.tf(i,j,k) and equating to zero, yields: 

This is true since

Namely

So that



Assuming that h sums to unity, we get 
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The superscript s denotes symmetrical reflection:

Where     denotes an estimate for f at iteration n.

Which leads to the basic MLEM iteration

Multiplying both sides by f yields



Blind MLEM
In blind deconvolution algorithms, h is unknown.

In order to derive an algorithm that will overcome this by 
simultaneously estimating both f and h, we differentiate the 
log likelihood expression w.r.t. h(i,j,k) and equate to zero
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Multiplying both sides by h yields:
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Which leads to the MLEM iteration for h:
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As is constant value and h sums to unity, we can drop

the denominator term and get the blind MLEM equations:

ˆ ˆ,n nf hWhere           denote estimates for f and g, at iteration n, respectively.



Prior knowledge enforcement

Each MLEM iteration is followed by a projection stage, where prior 

knowledge is enforced.

psf symmetry

,
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Where      denotes the projection operator.P



Deblurred object (noiseless) using the psf symmetry prior.

An x-y plane section at z=0. A y-z plane section at x=0



Phase prior

symmetrich   H⇒⇒⇒⇒ real

under noiseless conditions, the phase of     equals the phase of .F  ⇒⇒⇒⇒ G

{ }1 ( ( , , )): ( )( , , ) | ( , , ) |· ( , , )i G u v wf x y z F u v w e x y zϕ−=P F⇒⇒⇒⇒

Deblurred object (noiseless), using phase prior and psf symmetry prior.



It can be seen that the incorporation of the phase prior introduces false noise 
into the reconstructed image.

The source is unreliable phase values in areas where      vanishes, or almost 
vanishes, due to numerical errors.

H

In order to verify this assumption, additional prior information was introduced 
to the algorithm, in the form of the psf frequency domain support.
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Where c is a positive constant. 

Namely, the phase prior is enforced only at frequency domain locations 
where H does not 'vanish'.



Deblurred object (noiseless), using phase, psf frequency support 
and psf symmetry priors.



k̂h

We note that the psf frequency support prior significantly improves the 
reconstruction results.

However, we thought that this information is usually not available.

Attempts were made to estimate the psf frequency domain support out of 
the corrupted image g, as well as out of the psf estimates      , yielding 
poor results (similar to those without the support prior).

The above leads to the conclusions:

• The phase prior is a way to introduce valuable information regarding 

the imaged object into the deconvolution process. 

• However, in order to effectively use the phase prior, one must possess an 
accurate estimate of the psf frequency support.



Simulations including Poisson noise
An attempt was made to apply the MLEM algorithm to a noisy blurred 
image.

As can be seen, the presence of Poisson noise prevents the 
algorithm from converging, yielding a result which is still noisy 
and blurred.

Deblurred object 
(noisy), using only psf
symmetry prior. 



Overcoming the noise
T overcome the noise, a general scheme of incorporating denoising within 
the MLEM framework (Starck, Pantin and Murtagh) was used.
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This is based on the observation that             is likely to be smooth
hence       will contain the noise. 
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As an initial experiment, the RD-MLEM was implemented using a 3x3x3 
median filter for the Denoise() function yielding promising results. 



Penalized MLEM
In our latest result we note that even in the absence of noise, or when 
the noise is handled well, there are oscillatory artifacts in the vicinity 
of the edges in the reconstructed image. 

In an attempt to overcome this phenomenon we decided to introduce 
into the algorithm some additional prior knowledge of f. 

The penalized MLEM (P.J. Green, 1990) attempts to do just that by looking for:

ˆ arg max { ( | )}ff p f g=
Using Bayes law, the log of this expression is 
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standard MLEM prior for f



( ) ·exp( ( ))p f P fµ= −

A general prior probability function can have the form:

Where            can be any function which returns low values for inputs that 
agree with prior knowledge of f and vice versa (a penalty function).
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Differentiating with respect to f and some further development leads to:
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We note that is evaluated at the previous iteration estimate, in order 

to keep calculations manageable. 
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This is often referred to in literature as the "One Step Late" (OSL) regularization.

Since the expression here differs from the original one only by terms 

that are independent of h, the iteration for h does not change. 

Hence, the blind P-MLEM iteration is:
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Total Variation penalty
One option for the function P(f) is to take it as the total variation (TV) of f: 

. 
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Where

The logic behind this choice is that minimization of the TV leads to 
suppression of small oscillations while maintaining crisp, sharp edges 
(Rudin, Osher and Fatemi, 1992).
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We get in the TV case

which can be calculated in each iteration.



Hence, the TV P-MLEM iteration becomes 
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Deblurred object, using the 
TV P-MLEM and psf
symmetry prior, β = 0.002. 

We note that the term                     has a physical interpretation and can be 
recognized as the mean curvature of f.

Our first experiment with the TV P-MLEM was deblurring of a noiseless image. 

The first choice was as suggested by Dey et. al. (Inriagroup). 0.002ββββ ====



It seems like that the penalty term prevented the solution from converging. 

Deblurred object, using the TV P-MLEM and psf
symmetry prior, β = 0.000125. 

Clearly, the oscilatory artifacts around the edges were eliminated, but the 
image is still somewhat blurry.

To further investigate this effect we reduced the value of ββββ



Encouraged by this result, the next step was trying the algorithm with a 
noisy image:

Deblurred noisy object, using the TV P-MLEM and psf symmetry prior, β = 
0.000125. 

It seems that the penalty term is not effective in suppressing the Poisson noise.



Deblurred noisy 
object, using the 
TV P-MLEM and 
psf symmetry prior, 
β = 0.002. 

Therefore, higher values of were tried, again.ββββ

It seems that high values suppress the noise, but also prevent the 
reconstruction of sharp edges.

ββββ



Deblurred noisy 
object, using the TV 
P-MLEM and psf
symmetry prior, β = 
0.001. 

Deblurred noisy 
object, using the TV 
P-MLEM and psf
symmetry prior, β = 
5.625e-4. 



It seems that high values suppress the noise, but also prevent the 
reconstruction of sharp edges. 

ββββ

If the value of is lower, the noise prevents the image estimate from 

converging.

ββββ

This leads to:



The Residual Denoised Penalized 
MLEM
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The overall iteration will then be: 

Combine the TV-P-MLEM with the RD-MLEM to give us the residual
denoised penalized MLEM (RDP-MLEM).



The RDP-MLEM algorithm has been tested with the 3x3x3 median filter 
as the Denoise() function and a few values for β. Results are brought in the 
following figures:

Deblurred noisy object, using the TV RDP-MLEM and psfsymmetry 
prior, β = 0.000125. 



Deblurred noisy object, using 
the TV RDP-MLEM and psf
symmetry prior, β = 6.25e-5. 

Deblurred noisy object, using 
the TV RDP-MLEM and psf
symmetry prior, β = 4.6875e-
5. 



Our next planned steps

• Turns out that the supports of both the psf and its Fourier 
transform depend on two parameters only: The numerical 
aperture (NA) and the refractive index of immersion oil. 
As both these parameters are available we can further experiment
with the phase prior with hope of achieving improved performance.

• A more realistic model of the pdf is not symmetric in the Z-axis. 
We intend to modify our model to accommodate for this fact and 
repeat all the experiments we have seen.

• As a final test of the resulting blind deconvolution algorithm
we intend to test in on real images from fluroescent microscopes.


