

Déconvolution d'images satellitaires par paquets d'ondelettes complexes

André Jalobeanu, Laure Blanc-Féraud, Josiane Zerubia

Projet ARIANA INRIA Sophia Antipolis, France CNRS / INRIA / UNSA

www.inria.fr/ariana

- Position du problème
- Représentations efficaces et choix de la base
- Transformée en ondelettes complexes
- Transformée en paquets d'ondelettes complexes
- Seuillage de la transformée
 - Différentes méthodes
 - Estimation des paramètres
 - Deux algorithmes : COWPATH 1 et 2
 - Résultats
- Conclusion et perspectives

Équation d'observation

Les images observées sont dégradées :

 $\mathbf{Y} = \mathbf{h} * \mathbf{X}_0 + \mathbf{N}$

Image observée

Noyau de convolution (RI connue)

Image originale

Bruit :

Blanc et gaussien

(variance connue)

Position du problème

Problème inverse mal posé [Hadamard 23]

- existence,
- unicité,
- stabilité de la solution ?

Inversion → amplification du bruit

Petites erreurs sur $Y \rightarrow$ grandes erreurs sur X

Introduction

 Méthodes monoéchelle [Geman & McClure 85, Charbonnier 97, ...] Régularisation + préservation des contours Trouver X qui minimise U(X) : U(X) = ||Y-h*X||²/2s² + F(X) Attache aux données Terme de régularisation

Terme de régularisation non quadratique

• Méthodes multiéchelle [Mallat 89, Bijaoui 94, ...]

Analyse multirésolution → ondelettes

- Régularisation de méthodes itératives classiques (statistiques) (seuillage d'une transformée invariante par translation)
- Modèles variationnels multirésolution

Introduction

- Filtrage après inversion [Donoho, Mallat, Kalifa 99]
 - Inversion non régularisée (domaine de Fourier)
 - Transformée (changement de base)
 - Seuillage des coefficients
 - **Transformée inverse** (retour à l'espace image)

Représentations pour un filtrage efficace

Séparation efficace du signal et du bruit déconvolué :

- représentation compacte du signal
- compression du bruit dans les hautes fréquences

Transformée

Filtrage du bruit déconvolué

- Annuler les coefficients correspondant au bruit seul
- Seuillage des coefficients contaminés par le bruit

Le bruit déconvolué est coloré !

Dans la nouvelle base, les coefficients de la transformée du bruit doivent être **independants** → permet un seuillage **séparé**

covariance du bruit « presque diagonalisée » [Kalifa 99]

Choix de la base

- Représentation compacte
- Covariance du bruit « presque diagonale »

L'estimateur de seuillage est optimal [Donoho, Johnstone 94]

Construction de l'algorithme

Ondelettes complexes

☆ Invariance par translation
 ☆ Sélectivité directionnelle
 ☆ Reconstruction parfaite
 ☆ Algorithme rapide O(N)

- quad-arbre (4 arbres d'ondelettes parallèles) [Kingsbury 98]
- filtres décalés d'1/2 et 1/4 de pixel entre les arbres
- combinaison des arbres \rightarrow coefficients **complexes**
- Ondelettes **biorthogonales**

Propriétés :

• Implantation par banc de filtres

Quad-arbre : 1^{er} niveau

Transformée non decimée

Arbres parallèles ABCD

Quad-arbre : niveau j

Filtres de **longueur différente** : h^{o} , g^{o} , h^{e} , $g^{e} \rightarrow décalage < pixel$

Coefficients complexes

L'ondelette continue n'est pas une fonction complexe. Ce ne sont pas *exactement* des ondelettes complexes !

Necessité des paquets d'ondelettes

Ondelettes complexes :

Représentation compacte

Mauvaise représentation du bruit déconvolué

Image déconvoluée sans régularisation

Transformée

Hautes fréquences non récupérables₁₅

Paquets d'ondelettes

Choix de l'arbre

- Absence d'unicité de l'arbre de décomposition
- dépend de l'application
- déconvolution : l'arbre doit s'adapter au bruit déconvolué

Paquets d'ondelettes complexes (CWP)

décomposer les espaces de détails de la transformée en ondelettes complexes

pour chaque arbre A,B,C,D

Image originale

Transformée

Paquets d'ondelettes complexes (CWP)

Paquets d'ondelettes complexes :

Représentation compacte

Bonne représentation du bruit déconvolué

Image déconvoluée sans régularisation

Transformée hautes fréquences récupérables

Partition du plan fréquentiel

Sélectivité directionnelle réponses impulsionnelles – partie réelle

Ondelettes complexes

Paquets d'ondelettes complexes

Sélectivité directionnelle réponses impulsionnelles – partie imaginaire

Ondelettes complexes

Paquets d'ondelettes complexes

Comparaison avec les paquets d'ondelettes réels

Réponses impulsionnelles

Pas d'invariance par translation
→ artefacts (moyenne sur translations)

Pas d'invariance par rotation Directions privilégiées : horizontale / verticale

mauvaise représentation des textures orientées (diagonales)

Image test, 512x512

Transformée en paquets d'ondelettes complexes, niveau 6

Seuillage de la transformée

Filtrer uniquement le module \rightarrow invariance par translation $\hat{\mathbf{x}} = \Theta_T(\mathbf{x}) = \mathbf{x} \, \mathbf{a}_T(|\mathbf{x}|)$

rappel - les images observées sont dégradées :

 $\mathbf{Y} = \mathbf{h} * \mathbf{X}_0 + \mathbf{N}$

Chaque coefficient de la sous-bande **k** de la transformée en ondelettes complexes est dégradé :

 $\mathbf{x} = \mathbf{x} + \mathbf{n}$

Coefficient observé (transformée CWP de l'image déconvoluée)

de (c) Coefficient original inconnu (transformée de l'image originale) Déconvolution d'images satellitaires / CWP **Bruit déconvolué** écart-type σ_k

Fonctions de seuillage

Données : image déconvoluée sans régularisation

Fixer une fonction de seuillage **q**_T

Calcul du seuil optimal : minimiser un risque

Risque minimax [Donoho 94]modélisation des sous-bandes

Méthodes bayésiennes :

Estimation des coefficients par MAP \rightarrow fonction \mathbf{q}_{T}

Modèle pour les sous-bandes :

- Gaussien généralisé homogène
- Gaussien adaptatif

Variance du bruit déconvolué

Estimation de σ_k :

- simulation (transformée d'un bruit blanc)
- calcul direct, avec h et σ connus

$$\sigma_{k}^{2} = \sigma^{2} \sum_{i,j} \frac{|FFT[R^{k}]_{ij}|^{2}}{|FFT[h]_{ij}|} \xrightarrow{Réponse impulsionnelle}{pour la sous-bande k}$$

Risque optimal

• Imposer une fonction de seuillage $\mathbf{q}_{\mathbf{T}}$

- Minimiser le risque de l'estimateur de seuillage $r(\hat{X}, X_0) = E\left[\left\|\hat{X} - X_0\right\|^2\right] = E\left[\sum_{m} |\theta_{T}(x) - \xi|^2\right]$
- Résultats théoriques [Donoho, Johnstone 94] non applicables en pratiques (seuil trop grand) [Kalifa 99]
- Modélisation des sous-bandes (Gaussienne Généralisée [Mallat 89])
 → estimation des paramètres du modèle

Modélisation des sous-bandes

Gaussienne Généralisée :
$$P(\xi) = \frac{1}{Z_{\alpha,p}} e^{-|\xi/\alpha|^{p}}$$

α,p paramètres du modèle

Étude expérimentale :

Méthodes bayésiennes

- Modélisation des sous-bandes \rightarrow estimation des paramètres
- On n'impose pas la fonction de seuillage
- estimer **x** par **Maximum A Posteriori** (MAP) $Max P(\xi|x) = Max P(x|\xi)P(\xi)$ $P(\xi) \propto e^{-|\xi/\alpha|^{p}}$ $P(x|\xi) \propto e^{-|x-\xi|^{2}/2\sigma^{2}}$

Estmation des paramètres α ,p: maximum de vraisemblance, etc.

$$\hat{\mathbf{x}} = \mathrm{Min}_{\xi} |\mathbf{x} - \xi|^2 / 2\sigma^2 + |\xi/\alpha|^p$$

Fonctions de seuillage classiques pour certaines valeurs de p_k

COWPATH 1.0

« COmplex Wavelet Packets Automatic Thresholding »

Modèle gaussien inhomogène

Insuffisance des modèles homogènes (zones constantes / contours / textures)

Paramètre s_{ij} : dépend de la position du coefficient ξ_{ij}

$$P(\xi_{ij}) = \frac{1}{2\pi s_{ij}^2} e^{-|\xi_{ij}|^2/2s_{ij}^2}$$

Problèmes d'estimation des paramètres s_{ij} (données insuffisantes / nombre de paramètres inconnus !)

Méthode hybride : estimation des paramètres à partir d'une « bonne » approximation de l'image originale Maximum de vraisemblance en données complètes

COWPATH 2.0

Nîmes, image originale 512 x 512 © CNES

Nîmes, image floue et bruitée (σ ~1.4)

Nîmes déconvoluée par COWPATH 1

Nîmes déconvoluée par COWPATH 2

Nîmes déconvoluée par COWPATH 2 - zoom

Nîmes, déconvolution par paquets d'ondelettes réels [Kalifa, Mallat 99]

Nîmes, déconvolution par RHEA (fonction φ non quadratique [Jalobeanu 98])

Nîmes, déconvolution avec régularisation quadratique (~Wiener)

Comparaison des résultats

Résultats en Astronomie (RI Hubble)

Déconvolution COWPATH 2

Déconvolution d'images satellitaires / CWP

Conclusions et perspectives

Amélioration des résultats :

★ Adapter la structure de l'arbre au problème

 → prise en compte des images et des réponses impulsionnelles

 ★ Meilleure modélisation des sous-bandes

 → Modèle gaussien généralisé adaptatif ?

 ★ Terme d'attache aux données plus précis

 → les coefficients du bruit ne sont pas indépendants

 ★ Prendre en compte l'interaction entre les échelles

 → Arbres de Markov cachés [Nowak *et al.* 98]

Méthode hybride : DEPA [Jalobeanu et al. 00]

Résultat de COWPATH \rightarrow estimation des paramètres d'un modèle de régularisation **adaptatif**