2 0 0 3
Titre
Intervenant
Date
Heure
Lieu
Modelisation et rendu de surfaces 3D pour la reconstruction d'objets a partir de plusieurs images
Andre Jalobeanu

NASA Ames Research, USA
06 janvier 14:30 Salle E006
A tree-structured Markov random field model for bayesian image segmentation.
Giuseppe Scarpa

Université Federico II de Naples
Dip. Ingegneria Elettronica
e Telecomunicazioni
03 février 10:30 Salle E003
Detection of small tracks by the Gibbs sampler and multispectral noisy image classification.
Alexey Teterukovskyi

PhD, Swedish University of Agricultural Sciences
Umeå, Suede
Dept of Forest Resource Management and Geomatics
21 février 10:30 Salle E003
Spatially Adaptive Wavelet Transforms with No Side Information.
Charith Abhayaratne

CWI, Amsterdam
10 mars 14:30 Salle E003
Sampling and Estimation of Continuous-Variable Systems
Paul Fieguth

Dept. of Systems Design
University of Waterloo, Canada
21 mars 10:30 Salle E003
Multiresolution Image Segmentation
Roland Wilson

Dept of of Computer Science, University of Warwick, Coventry, UK
4 avril 10:30 Salle E003
Advanced classification techniques for the analysis of multitemporal remote-sensing images: partially supervised approaches
Roberto Cossu

post-doc Ariana,
Universite de Trento, Italie
12 mai 10:30 Fermat jaune (F322)
In Pursuit of the Big-bang Signature: Separation of Independent Sources in Astrophysical Radiation Maps
Ercan Engin Kuruoglu

Statistical Image Processing Group
ISTI-CNR, Pisa, ITALY
16 mai 14:30 Salle E003
Tatouage des images résistant aux transformations géométriques
Benoit Macq

Communications and Remote Sensing Laboratory
Unviersite Catholique de Louvain, Belgique
2 juin 10:30 Salle E003
Quantitative microscopy in cell Biology
Zvi Kam

Israel Pollak Professor of Biophysics
Molecular Biology of the Cell
Weizmann Institute of Science, Israel
6 juin 14:30 Salle E003
L'utilisation de la matrice de Pascal pour le dessin des filtresnumériques
Francisco Garcia-Ugalde

UNAM,
Faculté d' Ingénierie, Mexico
11 juin 10:30 Salle E003
Wavelet-based Image Processing using Non-Stationary Stochastic Image Priors
Sviatoslav Voloshynovskiy

University de Geneve (Suisse)
30 juin 10:30 Salle E006
Estimating Inhomogeneous Fields Using Sensor Networks
Robert Nowak

ECE Departments
Rice University and
University of Wisconsin-Madison
03 juillet 14:30 Salle E003
Multiscale Analysis of Photon-Limited Signals and Images
Rebecca Willett

Rice University
Houston, USA
15 juillet 10:30 Salle E003
Extraction des batiments complexes a partir d'images aeriennes et de MNE
Laurent Cohen

CEREMADE
Universite Paris IX Dauphine
21 juillet 10:30 Salle E003
Information-Hiding Games
Pierre Moulin

University of Illinois
at Urbana-Champaign, USA
12 septembre 10:30 Salle E003
Flattening of 3-D data
Robert Acar

Prof. invite Projet Ariana
Ass. Prof. a l'Universite de Puerto Rico
29 septembre 10:30 Salle E003
Vers une cartographie de la connectivité du cortex
Jean-Francois Mangin

McConnell Brain Imaging Centre, Montreal Neurological Inst.
McGill University, Montreal
&
Service Hospitalier Frédéric Joliot
Dept de Recherche Médicale
6 Octobre 10:30 Coriolis
Bayesian Approaches to Image Segmentation
Daniel Cremers

Computer Science Department
University of California, Los Angeles USA
20 Octobre 10:30 E003
Traitement et analyse myopes des images numériques. Applications à l’imagerie multispectrale et hyperspectrale
Khacem Chehdi

Directeur du LASTI
Université de Rennes
17 Novembre 10:30 E006
Deux facons de combiner les methodes variationnelles et d´ondelettes pour restaurer des images
François Malgouyres

LAGA
Université Paris 13
15 Decembre 10:30 E003
Segmentation of Textured Satellite and Aerial Images by Bayesian Inference and Markov Random Fields
Simon Wilson

Department of Statistics
Trinity College Dublin
19 Decembre 10:30 E003






Autres Séminaires prévus








Résumés



Andre Jalobeanu
Modelisation et rendu de surfaces 3D pour la reconstruction d'objets a partir de plusieurs images

La reconstruction dense de surfaces 3D a partir d'images 2D est un probleme particulierement mal pose. Notre equipe a choisi d'utiliser une approche bayesienne. Cela permet d'introduire des contraintes sur l'objet a reconstruire, afin de stabiliser la solution, au moyen d'un modele statistique de la surface.

Nous presentons d'abord un modele possible de surface, qui peut etre utilise pour decrire des asteroides, aussi bien que pour modeliser des surfaces planetaires. Le support consiste en un reseau triangulaire de topologie spherique, appele surface subdivisee, car il est obtenu par subdivision recursive d'un polyedre initial. Sur ce support nous definissons un modele statistique, qui decrit aussi bien la geometrie de l'objet que sa reflectance. En introduisant une transformee en ondelettes sur le reseau subdivise, nous construisons ainsi un modele multiechelle qui permet de prendre en compte le comportement fractal des surfaces naturelles.

Ensuite, nous presentons une nouvelle methode de rendu recemment developpee, qui permet de generer des images a partir d'une surface 3D. Elle est nettement plus precise que les algorithmes de rendu existants, tout en tenant compte des occlusions et des ombres. Elle genere egalement, pour chaque pixel, les derivees de l'intensite par rapport a tous les parametres. Cette technique, couplee au modele multiechelle, permet en principe de reconstruire la surface inconnue a partir de plusieurs observations prises par differentes cameras. Nous presenterons notre contribution par rapport aux travaux deja effectues dans l'equipe en matiere de reconstruction de terrain 3D.




Giuseppe Scarpa
A tree-structured Markov random field model for bayesian image segmentation.

We present a new image segmentation algorithm based on a tree-structured binary MRF model. The image is recursively segmented in smaller and smaller regions until a stopping condition, local to each region, is met. Each elementary binary segmentation is obtained as the solution of a MAP estimation problem, with the region prior modeled as a MRF. Since only binary fields are used, and thanks to the tree structure, the algorithm is quite fast, and allows one to address the cluster validation problem in a seamless way. In addition, all field parameters are estimated locally, allowing for some spatial adaptivity. To improve segmentation accuracy, a split-and-merge procedure is also developed and a spatially adaptive MRF model is used. Moreover, a recent implementation, that allows to define different and independent binary fields on unconnected region of the same class, is presented. This last solution presents improved capacity of detail description, while no additional computing time is required.




Alexey Teterukovskyi
Detection of small tracks by the Gibbs sampler and multispectral noisy image classification.

The seminar will consist of two parts. I will start with presenting a method for extracting small tracks from the remotely sensed imagery. The method is Bayesian and the MAP estimate is sought by the Gibbs sampler coupled with simulated annealing. Second half of the seminar will be devoted to the results of evaluation of the Gibbs sampler ability to improve the quality of the initial classification (by QDA or ICM) of the multispectral noisy images.




Charith Abhayaratne
Spatially Adaptive Wavelet Transforms with No Side Information.

Discrete Wavelet transforms are usually realised using the filterbank framework. The polyphase matrix of such filterbanks can be factored into lifting steps, to achieve the lifting framework of wavelet transforms. The lifting framework provides an useful and flexible tool for constructing new wavelets from the existing ones. In this talk, we present the designing of spatially adaptive wavelet transforms using the lifting framework. The high pass and low pass filters of the resulting in wavelet transform are chosen spatially adaptively by considering the statistics of the underlying signal. The perfect reconstruction can be achieved without coding any side information regarding to the filter selection. The performance of such transforms in lossless, lossy and scalable image and video coding is presented.




Paul Fieguth
Sampling and Estimation of Continuous-Variable Systems

This talk concerns two problems of continuous-parameter annealing: large-scale pixellated models, and small-state parameterized models (such as Markov point processes).

The estimation of large-scale images from sparse and/or noisy data is highly-developed, however although estimates are optimum under some criterion, they do not represent a typical or representative sample of the system being studied, which may be desired for purposes of visualization, further analysis, Monte Carlo studies etc. Instead, what is required is that we find a random sample from the posterior distribution, a much more subtle and difficult problem than estimation, and, crucially, one which cannot be formulated as an optimization problem. I will present a little-known property of multiscale statistical models to formulate a posterior sampler, exact in the case of Gauss-Markov random fields, and approximate for other distributions.

For parameterized models, widely-scattered problems such as formant tracking, boundary estimation and phase-unwrapping can all be approached as the annealed minimization of continuous parameters. In virtually all such annealing problems the Metropolis sampler is used, where the effectiveness of the annealing is highly-dependent on a user-formulated query function. I will propose an alternative - to use the Gibbs sampler, which requires no query, but which requires the difficult sampling of nonparametric, multimodal distributions.




Roland Wilson
Multiresolution Image Segmentation

Image segmentation is the art of describing image data, which tend to be highly complex, in terms of simpler entities, such as regions of homogeneous gray level, colour or texture. This amounts to attaching an integer label to each pixel in an image, representing its class. In the last decade or so, it has become widely accepted that the problem can be formalised as a maximisation of a posteriori probability, based on a stochastic image model, such as a Markov Random Field (MRF). While this puts segmentation on a firm footing, it raises a significant issue in terms of computation: how can one possibly maximise the posterior probability over the huge number of possible image segmentations, given a set of data? In recent years, two methods have found widespread use: stochastic simulation samples from the posterior distribution of the image model; multiresolution methods exploit the self-similarity of image data to solve a sequence of successively finer approximations to the problem. It has occurred to a number of authors that these two approaches might be usefully combined in a multiresolution MRF. The work we have done using these models has thrown up interesting results in both the theory and practice of image segmentation. In the talk, I will examine the segmentation problem and present some of our results.




Roberto Cossu
Advanced classification techniques for the analysis of multitemporal remote-sensing images: partially supervised approaches

One of the major problems in geographical information systems (GISs) consists in defining strategies and procedures for a regular updating of land-cover maps stored in the system databases. This crucial task can be carried out by using remote-sensing images regularly acquired by space-born sensors in the specific investigated areas. Such images can be analysed with automatic classification techniques in order to derive updated land-cover maps. However, at the operating level, such techniques are usually based on supervised classification algorithms. Consequently, they require the availability of ground truth information for the training of the classifiers. Unfortunately, in many real cases, it is not possible to rely on training data for all the images necessary to ensure an updating of land-cover maps that is as frequent as required by applications. In this seminar, advanced classification techniques for a regular updating of land-cover maps are proposed that are based on the use of multitemporal remote sensing images. Such techniques are developed within the framework of partially supervised Bayesian approaches and are able to address the updating problem under the realistic but critical constraint that, for the image to be classified (i.e., the most recent of the considered multitemporal dataset) no ground truth information is available. Two different approaches are considered. The first approach is based on an independent analysis of the information contained in each single image of the considered multitemporal series; the second approach exploits the temporal correlation between pairs of images acquired at different times in the classification process. In the context of these approaches, both parametric and non-parametric classifiers are considered. In addition, in order to design a reliable and accurate classification system, multiple classifier architectures composed of partially supervised algorithms are investigated. Experimental results obtained on a real multitemporal and multisource dataset are presented that confirm the effectiveness of the proposed system.




Ercan Engin Kuruoglu
In Pursuit of the Big-bang Signature: Separation of Independent Sources in Astrophysical Radiation Maps

Since the discovery of the cosmic microwave background (CMB) radiation in 1965 by Penzias and Wilson, a number of missions have been planned to measure the CMB including the ESA satellite PLANCK. CMB radiation is of interest from a number of aspects: 1) it is the most important evidence for the hot big-bang model, 2) it provides us a picture of the universe in its very early moments 3) the anisotropies in it provide the seed map of the universe of today 4) It provides us information about the fundamental constants of the universe. Unfortunately, the task of measuring CMB is not an easy one, since radiation measurements of the sky contain contributions from various sources from our galaxy such as syncrotron, galactic dust and free-free emission as well as extragalactic radio sources. In this talk, I will present our efforts at ISTI-CNR to separate various radiation sources in astronomy images. We adopt a source separation rather than a noise elimination approach since we value the information in other sources as well. I will start with our work using independent component analysis (ICA) as a fully blind technique and then will move into more informed techniques such as independent factor analysis (IFA) which assume a generic source model and a full Bayesian approach using MCMC. Talk will end with the description of the future activities we plan.




Benoit Macq
Tatouage des images résistant aux transformations géométriques

Le tatouage des images consiste à insérer de manière secrète et indélébile de l'information d'indexation ou de protection contre les copies au sein du signal. Dans un certain nombre de situations, le signal à protéger subit des transformations géométriques importantes (par exemple, une version de l'image imprimée sur du papier, ou une image projetée sur un écran dans une salle de cinéma). Nous établirons un état de l'art sur les méthodes permettant de retrouver l'information de tatouage malgré ces déformations. Nous exposerons des nouvelles techniques originales basées sur le lien entre l'information de tatouage et des caractéristiques essentielles du signal, invariantes lors des transformations géométriques.




Zvi Kam
Quantitative microscopy in cell Biology

The light microscope is unique in its ability to image cells and display morphology and molecular localization at sub-cellular resolutions. As such, it served biological research for centuries, based on human understanding of microscopic scenes. Digital imaging added the quantitative capability, mainly based on fluorescent immunostaining, which enabled to study molecular localization and displacements inflicted by various experimental manipulations and drugs. Today modified cDNA allows to express in cells inherently fluorescent tagged proteins and follow them as cells respond to stimuli. With cDNA libraries, the design of cell-based large scale experiments open ways to identify the protein networks that underlie complex cellular mechanisms. But such experiments depend on automated acquisition and analysis of microscope images from many samples. Various analysis methods applied to cell-based assays will be described. Specialized aspects of biological quantitative imaging will be discussed, and examples of segmentation, quantification and comparison of multicolor and time-lapse images will be shown.




Francisco Garcia-Ugalde
L'utilisation de la matrice de Pascal pour le dessin des filtres numériques

Dans ce séminaire nous allons étudier la convenance sur l'utilisation de la matrice de Pascal dans le dessin des filtres numériques. Cette matrice nous permet d'effectuer la transformation de la fonction de transfert H(s) pour obtenir sa version discrète H(z) d'une manière simple. Egalement la matrice inverse de Pascal est utilisée pour transformer H(z) dans H(s) sans avoir besoin de calculer le déterminant du système.




Sviatoslav Voloshynovskiy
Wavelet-based Image Processing using Non-Stationary Stochastic Image Priors

The presentation is dedicated to emerging aspects of stochastic image modeling in critically sampled and overcomplete transform domains for image restoration and denoising and consists of three main parts. In the first introduction part, we briefly present stochastic image processing (SIP) group and its current research activity. The second part of presentation reviews robust image restoration for radar and radiometry imaging systems.

First, we consider the general problem formulation and corresponding solution based on a penalized maximum likelihood estimate. The relationship to robust M-estimators and maximum a posteriori probability methods will be indicated for different stochastic image priors and noise distributions. We also consider non-coherent imaging systems based on sparse antenna arrays and demonstrate some practical results. The third part of presentation is dedicated to the important problem of stochastic image modeling in the transform domains. We consider the! state-of-the-art stochastic image models and different classes of multiresolution transforms. We will focus on important class of non-stationary image models in different applications and will analyze its main shortcomings based on an example of estimation-quantization (EQ) model. Finally, we will introduce a novel edge process (EP) model for critically sampled and overcomplete domains and demonstrate its main advantages. In conclusion, some upper bounds for the EP model performance in image denoising application will be demonstrated.




Robert Nowak
Estimating Inhomogeneous Fields Using Sensor Networks

Sensor networks have emerged as a fundamentally new tool for monitoring spatial phenomena. This talk will describe a theory and methodology for estimating inhomogeneous fields using wireless sensor networks. Inhomogeneous fields are composed of two or more homogeneous regions (e.g., constant-valued, smoothly-varying, stationary Gaussian, etc.) separated by boundaries. The boundaries, which correspond to abrupt spatial changes in the field, are non-parametric 1-d curves or 2-d surfaces (in a 2-d or 3-d field, respectively). The sensors make noisy measurements of the field, and the goal is to obtain an accurate estimate of the field at some desired destination (typically remote from the sensor network). The presence of boundaries makes this problem especially challenging. There are two key questions: 1. Given n sensors, how accurately can the field be estimated? 2. How much energy will be consumed by the communications required to obtain an accurate estimate at the destination? Theoretical upper and lower bounds on the estimation error and energy consumption will be discussed. A practical strategy for estimation and communication will be presented. The strategy, based on a hierarchical data-handling and communication architecture, provides a near-optimal balance of accuracy and energy consumption.




Rebecca Willett
Multiscale Analysis of Photon-Limited Signals and Images

The nonparametric multiscale algorithms presented here are powerful new tools for photon-limited signal and image denoising and Poisson inverse problems. Unlike traditional wavelet-based multiscale methods, these algorithms are both well suited to processing Poisson data and capable of preserving image edges. The recursive partitioning scheme underlying these methods is based on multiscale likelihood factorizations of the Poisson data model. These partitions allow the construction of multiscale signal decompositions based on polynomials in one dimension and multiscale image decompositions based on platelets in two dimensions. We originally developed platelets for medical image reconstruction problems, and more recently we have successfully applied them to problems in astronomical imaging. Platelets are localized functions at various positions, scales and orientations that can produce highly accurate, piecewise linear approximations to images consisting of smooth regions separated by smooth boundaries. Polynomial- and platelet-based maximum penalized likelihood methods for signal and image analysis are both tractable and computationally efficient. Simulations establish the practical effectiveness of these methods in applications such as Gamma Ray Burst intensity estimation and medical and astronomical image reconstruction; statistical risk analysis establishes the theoretical near-optimality of these methods.




Laurent Cohen
Extraction des batiments complexes a partir d'images aeriennes et de MNE

Ce seminaire presente une chaine de traitement pour l'extraction des batiments a partir d'images aeriennes. Dans un premier temps, nous nous focalisons sur la d´etection des batiments rectangulaires qui sont le type de construction le plus repandu. Nous etendons notre methode aux batiments plus complexes, qui peuvent etre decomposes en plusieurs rectangles. Les rectangles obtenus permettent d'ameliorer la reconstruction 3D du Modele Numerique d'Elevation (MNE). La segmentation du MNE et de l'ortho-image permet l'extraction du sur-sol. Nous calculons un critere de ressemblance entre chaque region et leur meilleur rectangle associe. Pour les batiments complexes, nous proposons un algorithme de division des regions. Le decoupage optimise iterativement notre critere de ressemblance. L'approche est illustree sur des donnees synthetiques et reelles. L'estimation des structures rectangulaires n'est pas correctement localisee ni dimensionnee. Nous presentons un modele parametrique deformable qui permet d'ameliorer ces caracteristiques. Les estimations rectangulaires finales sont utilisees avec leur altitude extraite du MNE pour obtenir une scene 3D precise.




Pierre Moulin
Information-Hiding Games


The area of information hiding encompasses emerging applications such as watermarking, fingerprinting and steganography. In these applications, information is hidden within a host data set and is to be reliably communicated to a receiver. The host data set is intentionally corrupted, but in a covert way, designed to be imperceptible to a casual analysis. Next, an attacker may seek to destroy this hidden information, and for this purpose, introduce additional distortion to the data set.

This talk surveys recent research in this area and focuses on two information-hiding problems. The first one is the development of binning schemes, which are fundamental to all problems of communication with side information. Here binning schemes will be introduced as noise shaping techniques. The second problem is the development of binning schemes in the context of a game between an information hider and an attacker. Finally, applications to image watermarking will be presented.




Robert Acar
Flattening of 3-D data


The digital library project strives to digitise special collections of libraries; this consists in storing as binary data, photographs of the content of ancient or rare manuscripts. The object is typically not in a flat plane. One collects, along with the photograph of the unflattened object (and the inevitably distorted text), a positional reading of its surface using laserometer. It is then a mathematical problem of how to use the latter information to undo the distortion of the photograph before storing the digitised image. We discuss a variational formulation and implementation of this.




Jean-Francois Mangin
Vers une cartographie de la connectivité du cortex


Les modèles actuels du fonctionnement cérébral associent chaque système cognitif à un ensemble de modules communiquant à travers un réseau de faisceaux d'axones. Alors que l'imagerie fonctionnelle permet de mettre en évidence ces modules depuis une vingtaine d'année, aucune technique ne permettait de cartographier ces faisceaux chez l'homme. L'imagerie IRM de diffusion, qui fournit des informations sur le mouvement brownien des molécules d'eau dans le cerveau, permet aujourd'hui d'accéder à l'organisation géométrique de ces faisceaux.

Durant cet exposé, je décrirai dans un premier un temps un cadre markovien permettant de régulariser la reconstruction des faisceaux en minimisant leur courbure. Dans un second temps, je décrirai une méthode permettant de reconnaitre automatiquement les principaux plis de la surface du cortex de manière à pouvoir la subdiviser de manière reproductible d'un individu à l'autre. Cette subdivision générique devrait permettre à terme d'inférer la matrice de connectivité des circonvolutions du cortex et d'étudier ses anomalies dans certaines pathologies.




Daniel Cremers
Bayesian Approaches to Image Segmentation


When segmenting their environment into meaningful regions, human observers exploit a number of low-level cues (such as intensity, color, texture or motion information) and higher level knowledge about objects of interest.
In my presentation, I will present ways to incorporate such information into image segmentation methods. In particular, I will present:
- the 'Diffusion Snake' as a fast spline-based implementation of the Mumford-Shah functional
- 'Motion Competition' as an extension of the Mumford-Shah framework from intensity segmentation to motion segmentation. Segmenting contours are represented either by splines or by level sets.
- the integration of higher-level statistical shape priors into the segmentation processes. This permits to cope with noise, background clutter and partial occlusions of the objects of interest.

More information can be found under http://www.cs.ucla.edu/~cremers The talk will be given either in English or in French.






Kacem Chehdi
Traitement et analyse myopes des images numériques. Applications à l’imagerie multispectrale et hyperspectrale


Les différents traitements associés aux domaines d'application utilisant le support image comme moyen d'information deviennent de plus en plus complexes. En effet, l'exploitation de la masse importante d'information hétérogène que véhicule une image exige des opérateurs de plus en plus élaborés et la qualité des résultats attendue doit répondre à plusieurs exigences. Traiter une image de manière optimale avec une seule méthode quel que soit le domaine d'application devient une tâche de plus en plus délicate.

Dans cet exposé une démarche fondée sur la coopération de méthodes sera présentée. Des critères de décision sont utilisés à tous les niveaux de la chaîne de traitement pour adapter les différentes méthodes employés au contenu informationnel de l'image. Ceci avec le minimum de connaissance a priori. Des exemples de prétraitement et de segmentation des images multicomposantes seront présentés.






François Malgouyres
Deux facons de combiner les methodes variationnelles et d´ondelettes pour restaurer des images


Dans cet expose, nous presenterons deux methodes permettant de restaurer des images. Elles sont toutes les deux basees la minimisation de la variation totale et sur l´utilisation de decompositions de type ondelette (dans les exemples, nous utiliserons des paquets d´ondelettes). La premiere est rapide mais demande le reglage de deux parametres (intuitivement: un pour le sketch de l´image et un pour les textures). La seconde a l´avantage de n´avoir qu´un unique parametre mais repose sur un modele dont les solutions sont difficiles a calculer. Nous passerons en revue les differents resultats obtenus sur ces modeles.






Simon Wilson
Segmentation of Textured Satellite and Aerial Images by Bayesian Inference and Markov Random Fields


We investigate Bayesian solutions to image segmentation based on the double Markov random field model, originally proposed by Melas and Wilson. Inference on the number of classes in the image is done via reversible jump Metropolis moves. These moves, usually implemented by splitting and merging classes, can be very slow, making them impractical for large images. We investigate simpler reversible jump moves that are quick to implement but show that they may mix very slowly. We propose a more complex split and merge scheme and compare its performance. Tests are conducted on satellite and aerial images.