|
|
|
|
|
|
|
Chercheur a l'INRS Telecommunications Universite du Quebec a Montreal, Canada |
21 janvier | 10:30 | Salle 006 |
|
Department of Electrical and Computer Engineering Rice University, USA |
4 fevrier | 10:30 | Salle Coriolis Batiment Galois |
The Statistical Learning Approach |
Institut fur Informatik III Universitat Bonn |
11 mars | 10:30 | Salle 006 |
|
Institute of Telecommunications Instituto Superior Tecnico Lisboa (Portugal) |
15 avril | 10:30 | Salle 006 |
|
INRIA Rhone-Alpes Projet IS2 |
27 mai | 10:30 | Salle 006 |
|
Service d'Astrophysique Centre d'Etudes de SACLAY |
17 juin | 10:30 | Salle 006 |
|
Rice University, Houston Electrical and Computer Engineering |
18 juin | 10:30 | Coriolis |
|
Electrical and Computer Engineering Dept North Carolina State University, Raleigh USA |
27 juin | 16:00 | Salle 006 |
|
Computer Vision Lab Swiss Federal Institute of Technology Zurich, Suisse |
1er juillet | 14:30 | Salle 003 |
|
Department of Statistics Florida State University Tallahassee, USA |
15 juillet | 10:30 | Salle 003 |
|
Centre for Mathematics and Computer Science (CWI) Amsterdam, The Netherlands |
16 septembre | 10:30 | Salle Coriolis |
|
Vision Lab, Dept of Physics University of Antwerp Belgique |
14 octobre | 10:30 | Salle E006 |
|
Institut fur Informatik III Rhein. Friedrich-Wilhelms-Universitat Bonn |
4 novembre | 10:30 | Salle E006 |
|
Universitat Pompeu-Fabra Barcelone |
18 novembre | 10:30 | Salle E003 |
|
Cemagref Clermont-Ferrand |
6 decembre | 10:30 | Salle Coriolis |
|
ENST Paris Dept Traitement du Signal et des Images |
9 decembre | 10:30 | Salle E006 |
|
Computer Vision Lab Caltech Pasadena, USA |
16 decembre | 10:30 | Salle E006 |
De nombreux travaux ont ete effectues sur le suivi de regions dans les
sequences d'images et plus recemment, sur le suivi par equations
d'evolution de courbes de niveau (level sets). C'est la un des problemes
importants de la vision par ordinateur, avec quantite d'applications en
codage et en analyse d'images. La plupart de ces travaux se basent
cependant sur des hypotheses contraignant severement le mouvement de la
region suivie (region supposee en mouvement sur fond immobile) ou ses
proprietes d'intensite (fort contraste d'intensite entre la region et le
fond). Ainsi, les equations de suivi obtenues sont fortement tributaires
de ces hypotheses a tel point que le suivi n'est plus qu'un sous-produit
de la detection de frontieres d'intensite ou de regions en mouvement.
Le but de ce travail est de definir la forme generale des equations
d'evolution de courbes de niveau pour le suivi de
regions, sans hypothese directe ni sur le mouvement, ni sur la forme, ni
sur les proprietes d'intensite de la region suivie. Le point de depart
de ce travail est la formulation du probleme du suivi en tant que
probleme d'estimation Bayesienne. Nous presenterons en detail les etapes
menant a la solution de ce probleme d'estimation et nous illustrerons la
performance des equations obtenues sur de nombreuses sequences contenant
divers types de mouvement (rigide et non rigide, grands et petits
deplacements, fond fixe et mobile) et de contraste entre la region
suivie et le fond.
There currently exist two distinct paradigms for modeling images. In
the first, images are regarded as functions from a deterministic
function space, such as a Besov smoothness class. In the second,
images are treated statistically as realizations of a random process.
This talk with review and indicate the links between the leading
deterministic and statistical image models, with an emphasis on
multiresolution techniques and wavelets. To overcome the major
shortcomings of the Besov smoothness characterization, we will develop
new statistical models based on mixtures on graphs. To illustrate, we
will discuss applications in image estimation and segmentation.
Robust models and efficient algorithms for inference are the central
focus of pattern recognition and, in particular, of computational
vision. Methods for data analysis should include three components: (i)
Structures in data have to be mathematically defined and evaluated,
e.g., partitions, hierarchies and projections are widely studied in
the literature. This design step is highly task dependent and might
yield different answers for the same data. (ii) Efficient search
procedures should be devised for prefered structures. (iii) Solutions
of this optimization process should be validated. As an example, this
program for robust modeling and algorithms design is demonstrated for
the problem of image segmentation based on texture and color cues. The
assignment variables of pixels or image patches to segments are
robustly estimated by entropy maximizing algorithms like Markov Chain
Monte Carlo methods or deterministic annealing with EM-like iterative
updates of model parameters. Multi-scale coarsening of the
optimization variables yields a significant acceleration of the
optimization process. To validate the optimization results we have to
determine a minimal approximation precision to become robust against
overfitting to data fluctuations. Information theoretic methods can be
used to derive upper bounds for large deviations of the optimization
procedure.
In the second part of the talk I will present applications of this
program to selected data analysis problems, e.g., to joint color
quantization and dithering, to the analysis of remote sensing data
with adaptive polygonalization, to multi-scale shape description of
line drawings and to the traveling salesman problem with unreliable
travel times.
Supervised learning is one of the central topic of pattern
recognition and machine learning; its goal is to find a functional
relationship that maps an "input" to an "output", given a set of
(maybe "noisy") examples. The obtained function is evaluated by
how well it generalizes, that is, by how accurately it performs
on new data, assumed to follow the same distribution from which
the training data was obtained.
To achieve good generalization, it is necessary to control the
"complexity" of the learned function. In Bayesian approaches,
this is done by placing a prior on the parameters defining the
function being learned. We propose a Bayesian approach to
supervised learning which leads to sparse solutions, that is, in
which irrelevant parameters are automatically set exactly to zero.
Other ways of achieving this "selection behavior" involve
(hyper)parameters which have to be somehow adjusted/estimated
from the training data. In contrast, our approach does not involve
any (hyper)parameters to be adjusted or estimated.
Experiments with several benchmark data sets show that the proposed
approach exhibits state-of-the-art performance. In particular, our
method outperforms support vector machines and performs competitively
with
the best alternative techniques, although it involves no tuning
or adjusting of sparseness-controlling hyper-parameters.
Les modeles de champs de Markov caches apparaissent naturellement
dans des problemes tels que la segmentation d'image ou il s'agit
d'attribuer chaque pixel a une classe a partir des observations.
Pour cela, choisir le modele probabiliste qui prend le mieux en
compte les donnees observees est primordial.
Un critere de selection de modele communement utilise est le
Bayesian Information Criterion (BIC) de Schwarz mais dans le cas
des champs de Markov caches, la structure de dependance dans le modele
rend le calcul exact du critere impossible. Nous proposons des
approximations de BIC qui se fondent sur le principe d'approximation
en champ moyen issu de la physique statistique. La theorie du champ
moyen fournit une approximation des champs de Markov par des systemes
de variables ind\'ependantes pour lesquels les calculs sont alors
faisables.
A l'aide de ce principe, nous introduisons d'abord une
famille de criteres obtenus en approximant la loi markovienne qui
apparait
dans l'expression usuelle de BIC sous forme de vraisemblance
penalisee. Nous considerons ensuite une reecriture de BIC en termes
de constantes de normalisation (fonctions de partition) qui a l'avantage
de permettre l'utilisation d'approximations plus fines. Nous en
deduisons
de nouveaux criteres en utilisant des bornes optimales des fonctions de
partitions.
Pour illustrer les performances de ces derniers, nous
considerons
le probleme du choix du bon nombre de classes pour la segmentation.
Les resultats observes sur des donnees simulees et reelles sont
prometteurs.
Ils confirment que ce type de criteres prend bien en compte
l'information
spatiale. En particulier, les resultats obtenus sont meilleurs qu'avec
le critere BIC calcule pour des modeles de melanges independants.
Les ondelettes ont eu un immense succes au cours des
dix dernieres annees, et ont ete utilisees pour de nombreuses
applications
comme le filtrage, la deconvolution ou la compression d'images.
Si les ondelettes sont particulierement efficaces pour la detection
de structures isotropes de differentes echelles, elles ne sont
par contre pas optimales pour la recherche d'objets anisotropes,
tels que des contours. De nouvelles transformees
multi-echelles ont recemment ete developpees, les ridgelets et les
curvelets, qui permettent de rechercher des objets de maniere optimale,
quand ces objets presentent de fortes anisotropies.
Nous decrirons la transformee en ridgelets
et la transformee en curvelets, et nous montrerons comment ces nouveaux
outils peuvent etre appliques dans des applications de traitement
d'images.
Tree-based methods are powerful tools for signal and image estimation
and classification. The CART (Classification and Regression Trees)
program aims to balance the fitness of a tree (classifier or
estimator) to data with the complexity of the tree (measured by the
number of leaf nodes). The basic idea in CART is a standard
complexity regularization approach: the empirical error (squared error
or misclassification rate) is balanced by a penalty term proportional
to the number of degrees of freedom in the model (leaf nodes in the
tree). The form of the CART optimization criterion is error+a*k,
where k is the number of leaf nodes in the tree. This form of
regularization leads to a very efficient, bottom-up tree pruning
strategy for optimization, and is the ``correct'' form of complexity
regularization for estimation/regression problems. However, in the
classification case the linear growth of the penalty outpaces the
growth of the expected misclassification error, and consequently
penalizes larger trees too severely. Rather than employing the same
regularization for classification *and* regression, one should
consider classification *or* regression as two quite different
problems. The appropriate optimization criterion for classification
trees takes the form error+a*k^{1/2}.
We review performance bounds for estimation/regression trees and
derive new bounds on the performance of classification trees using the
square-root complexity regularization criterion. The adaptive
resolution of tree classifiers enables them to focus on the d*
dimensional decision boundary, instead of estimating the full d > d*
dimensional posterior probability function. Under a modest regularity
assumption (in terms of the box-counting measure) on the underlying
optimal Bayes decision boundary, we show that complexity regularized
tree classifiers converge to the Bayes decision boundary at nearly the
minimax rate, and that no classification scheme (neural network,
support vector machine, etc.) can perform significantly better in this
minimax sense. Although minimax bounds in pattern classification have
been investigated in previous work, the emphasis has been on placing
regularity assumptions on the posterior probability function rather
than the decision boundary. Studying the impact of regularity in
terms of the decision boundary sheds new light on the ``learning from
data'' problem and suggests new principles for investigating the
performance of pattern classification schemes.
In recent years curve evolution, applied to a single contour or to the
level sets of an image via partial differential equations, has emerged
as an important tool in image processing and computer vision. Curve
evolution techniques have been utilized in problems such as image
smoothing, segmentation, and shape analysis. We give a stochastic
interpretation of the basic curve smoothing equation, the so called
geometric heat equation, and show that this
evolution amounts to a tangential diffusion movement of the particles
along the
contour.
Moreover, assuming that a priori information about the shapes of objects
in an image is known, we present generalizations of the geometric heat
equation designed to preserve certain features in these shapes while
removing noise. We also show how these new flows may be applied to
smooth noisy curves without destroying their larger scale features, in
contrast to the original geometric heat flow which tends to circularize
any closed curve.
We will also briefly discuss their applications for shape approximation.
Many textures require complex models to describe
their intricate structures. Their modeling can be simplified if they
are considered composites of simpler subtextures. After an initial,
unsupervised segmentation of the composite texture into the
subtextures, it can be described at two levels. One is a label map
texture, which captures the layout of the different subtextures.
The other consists of the different subtextures. This scheme includes
also the mutual influences between subtextures, mainly found near
their boundaries
For analyzing shapes of planar, closed curves, we propose a mathematical
representation
of closed curves using ``direction" functions (integrals of the signed
curvature functions with respect to arc lengths). Shapes are represented
as elements of an infinite-dimensional
manifold and their pairwise differences are quantified using the lengths
of geodesics connecting them on this manifold. Exploiting the periodic
nature of these representations,
we use a Fourier basis to discretize them and use a gradient-based
shooting method
for finding geodesics between any two shapes. Lengths of geodesics
provide a metric for comparing shapes. This metric is intrinsic to the
shapes and does not require any deformable template framework.
In this talk, I will illustrate some applications of this shape metric:
(i) clustering of planar objects based on their shapes, and (ii)
statistical analysis of shapes including computation of intrinsic means
and covariances.
This research is being performed in collaboration with
Prof. Eric Klassen of FSU.
In this talk I will discuss a criterion for cluster-validity that is
based on distribution-free statistics. Given a dataset, the idea is to
construct the simplest possible data-density that is still compatible
with
the data. Compatibility is measured by means of statistical tests that
quantify
how likely the hypothesized underlying distribution is in view of the
observed data. Combining this with a criterion for smoothness yields a
functional
that can be minimized explicitly. The advantage of this approach is that
the resulting clustering depends on just one parameter that has a clear
probabilistic interpretation.
I will discuss the 1-dimensional case in detail and outline
how this strategy can be generalized to higher dimensions.
In this work, a wavelet representation of multiband images is presented.
The representation is based on a multiresolution extension of the First
Fundamental Form that accesses gradient information of vector-valued
images.
With the extension, multiscale edge information of multiband images is
extracted. Moreover, a wavelet representation is obtained that, after
inverse transformation, accumulates
all edge information in a single greylevel image. In this work, a
redundant wavelet representation is
presented using dyadic wavelet frames. It is then extended towards
orthogonal wavelet bases using the Discrete Wavelet Transformation
(DWT). The representation is shown to be a natural
framework for image fusion. An algorithm is presented for fusion and
merging of multispectral images. The concept is successfully applied to
the
problem of multispectral and hyperspectral image merging.
Other problems that will be discussed are anisotropic diffusion
filtering,
enhancement and denoising and segmentation of multiband images.
In this talk, I introduce a novel adaptive image segmentation algorithm
which represents images by polygonal segments. The algorithm is based on
an
intuitive generative model for pixel intensities. Its associated cost
function can
be effectively optimized by a hierarchical triangulation algorithm,
which
iteratively refines and reorganizes a triangular mesh to extract a
compact
description of the essential image structure. After analyzing
fundamental
convexity properties of our cost function, an information-theoretic
bound is
adapted to assess the statistical significance of a given triangulation
step. The bound effectively defines a stopping criterion to limit the
number of
triangles in the mesh, thereby avoiding undesirable overfitting
phenomena. It
also facilitates the development of a multi-scale variant of the
triangulation
algorithm, which substantially improves its computational demands. The
algorithm
has various applications in contextual classification, remote sensing,
and
visual object recognition. It is particularly suitable for the
segmentation of
noisy imagery.
We shall discuss a variational approach for filling-in
regions of missing data in 2D and 3D
digital images. Applications of this
technique include the restoration of old photographs and removal
of superimposed text like dates, subtitles, or publicity,
or the zooming of images.
The approach we shall discuss
is based on a joint interpolation of the image gray-levels and
gradient/isophotes directions, smoothly extending
the isophote lines into the holes of missing data.
The process underlying this
approach can be considered as an interpretation of the
Gestaltist's principle of good continuation. We study
the existence of minimizers of our functional
and its approximation by smoother functionals.
Then we present the numerical algorithm used
to minimize it and display some numerical experiments.
Dans un contexte où la qualité des produits agricoles devient une préoccupation majeure du consommateur, la mesure de leurs
propriétés physico-chimiques est un enjeu important pour notre société. Si cette remarque est indiscutablement vraie pour le produit final vendu, elle se vérifie
également tout au long de la chaîne de production. Nos projets s'inscrivent dans cette démarche en traitant de la mesure indirecte de caractéristiques de produits ou
de cultures agricoles. Dans ce vaste champ d'applications, nos développements se sont orientés vers l'analyse d'images de ces produits à partir de données d'un
capteur vision. Nous nous sommes intéressés plus particulièrement à la texture de ces images. En effet, pour de nombreux produits agricoles la notion de forme ne peut
être directement appréhendée (textures végétales, produits d'ensilage, cultures à l'échelle aérienne), et l'étude de la texture de l'image peut permettre une mesure
indirecte de caractéristiques physico-chimiques, ouconstituer un outil de segmentation. Il s'agit donc de rechercher les paramètres qui sont liés le plus possible aux
caractéristiques des produits étudiés. Certains sont très classiques, mais d'autres proposés plus récemment sont issus d'études visant à construire des milieux
complexes dont la statistique est connue (sols, vent....). Ces nouveaux paramètres ajoutent à une bonne discrimination de la texture de l'image, la possibilité de se
rapprocher de certaines propriétés physico-chimiques des scènes observées (rugosité des lits de semence, statistiques géométriques des morceaux d'ensilage de
maïs...)
On récapitule dans cet exposé un ensemble de travaux de stages et de thèses menés récemment ou en cours à l'ENST.
Les caractéristiques des caractères imprimés ou manuscrits de type latin permettent d'effectuer une analyse conjointe de l'image d'un caractère selon les deux directions privilégiées : verticale ("colonnes") et horizontale ("lignes"). Dans une premiere approche (caractères imprimés) on considère deux chaînes verticale et horizontale indépendantes (non couplées)
On analyse alors les hypothèses permettant de combiner
leurs scores de reconnaissance (fusion).
On compare les performances obtenues avec celles d'un modèle HMM unique
traitant simultanément les observations verticales et horizontales
(fusion de données). L'influence des paramètres sous-jacents :
nombre d'états cachés, etc., est analysée pour ces deux stratégies.
Des variantes nouvelles ont été introduites pour l'étude des
caractères manuscrits: modèle gauche-droite généralisé,
analyse "avant-arrière" etc ...
Enfin on presente la modélisation par réseaux bayesiens ainsi que des
résultats
expérimentaux prometteurs récents qui permettraient de traiter de façon
très générale le couplage entre plusieurs HMMs.
Les problemes de reconnaissance sont un aspect fondamental en intelligence artificielle. Pour etre autonome, un robot doit etre capable d'identifier des points de repere tels que batiments, route, obstacles.
- La premiere partie de la presentation est axee sur la reconnaissance de classes. Celle-ci a pour but de distinguer entre images contenant une voiture, images contenant un animal, etc., sans necessairement identifier precisement quelle voiture ou quel animal. Une question immediate consiste a identifier ce qui est caracteristique d'une classe donnee. Notre modele de "constellation d'elements" represente une classe comme etant un assemblage de parties rigides, dotees de positions relatives variables. La position de chaque element est representee par une densite de probabilites, calculee dans la phase d'apprentissage.
- La deuxieme partie de la presentation s'interessera a la
reconnaissance
d'objets. Ici l'objectif est plus precis, il s'agit d'identifier les
images contenant une voiture ou animal specifique. Chaque objet est
represente par un grand nombre de points d'interet, caracterises par
leur
position, echelle, orientation et apparence. La phase de reconnaissance
procede par appariements entre points d'interet de la nouvelle image et
points d'interets stockes dans la base de donnees. Le resultat est une
transformation entre une image de la base de donnees et la nouvelle
image.
Le grand nombre de points d'interet mis en jeu assure la fiabilite de la
transformation retenue, meme si certains appariements de points
d'interet
sont inexacts.