Résolution de quelques problèmes inverses pour Δ en 2 et 3D par des techniques d'approximation de fonctions ; applications à l'EEG.

Juliette Leblond

joint work with
B. Atfeh, L. Baratchart, F. Ben Hassen, M. Clerc, J.-P. Marmorat, T. Papadopoulo, J.R. Partington, S. Rigat
from INRIA Sophia (Apics, Odyssée), EMP (CMA Sophia-Antipolis),
ENIT-Lamsin (Tunisia), Univ. Leeds (U.K.), LATP-CMI Marseille

Overview

- EEG inverse problem, cortical mapping, source localization, spherical model
- Cauchy problems for Δ
- Harmonic and analytic functions, Hardy spaces, approximation issues in the disk
[or 2D (conformally equiv. to) circular (or annular) domains]
- Also in 3D balls, using spherical harmonics
(or spherical shells)
- Few numerical examples
- Source recovery in balls
- Rational approximation on disks (2D slices)
- Numerical examples
- Conclusion

Overview

$$
\begin{aligned}
& \nabla \cdot(\sigma \nabla u)=\delta \text { in } D \subset \mathbb{R}^{m}, m=2,3, \\
& \text { given conductivity } \sigma>0 \text { (isotropic) } \\
& \text { available data: } u, \partial_{n} u \text { on } T_{+} \subset \partial D \\
& \sigma \text { cst or } \mathrm{pcw} \rightarrow \Delta u=\delta / \sigma
\end{aligned}
$$

(i) $\delta=0$
find (data on) T_{-}
Cauchy pb, EEG cortical map.,
Robin, bdy geometry
best harmonic / analytic approx. best rational / meromorphic approx. BEP in Hardy spaces, 2 and 3D 2D quadrature domains
also, smooth variable σ for $m=2, \delta=0$ (Beltrami, tokamak)

EEG inverse problem

Models for the head $D=\cup_{i=1}^{3} D_{i}$, brain D_{1}, skull D_{2}, skin D_{3}

recover cerebral current (source term) δ inside the brain $D_{1} \subset D \subset \mathbb{R}^{3}$ from electroencephalographic (EEG) measurements on part T_{+}of scalp ∂D of a solution to

$$
-\operatorname{div}(\sigma \operatorname{grad} u)=-\nabla \cdot(\sigma \nabla u)=\delta
$$

(Maxwell, electrostatic [Feynman, F\&al, H\&al])
(IP): potential diff., current flux $\left(u, \partial_{n} u\right)_{\left.\right|_{+}} \rightarrow \delta$ supported in D_{1}

EEG - IP: which head!?

given piecewise constant conductivity: $\sigma_{\mid D_{i}}=\sigma_{i}, 1 \leq i \leq 3$ usually; D union of homogeneous layers D_{i} (scalp, skull, brain,...)
spherical model (a): ∂D_{i} spheres T_{i}
conductivity defaults $=$ pointwise dipolar sources $\left\{C_{k}\right\}$ in brain $D_{1}=\mathbb{B}$, unit ball

$$
\left\{\begin{array}{l}
\Delta u=0 \text { in } D_{3} \text { and } D_{2} \\
\Delta u=\delta=\sum_{k=1}^{L} m_{k} \cdot \nabla \delta_{C_{k}} \text { in } D_{1} \\
u, \sigma \partial_{n} u \text { continuous on } T_{i} \\
u=\nu \text { on } T_{+} \subset T_{3} \\
\partial_{n} u=\phi \text { on } T_{+}
\end{array}\right.
$$

(IP): from $\left(u, \partial_{n} u\right)_{\left.\right|_{T_{+}}}$, find moments $\left\{m_{k}\right\}$, sources $\left\{C_{k}\right\}$ in \mathbb{B} (pointwise values of ν, while $\phi=0$ on T)

EEG - IP : well posedness

- existence of solution to direct problem $(\delta, \phi) \rightarrow u$ (unique up to additive cst) if compatibility condition:

$$
\int_{\partial D} \phi d s=0
$$

- $\phi \in L^{2}(\partial D) \Rightarrow u \in$ Sobolev $W^{1,2}(D)$, Hölder $\bar{D} \backslash\left\{C_{k}\right\}$
- identifiability, uniqueness of solution to (IP)
- stability/continuity: partial results, need for SC

EEG - IP

(i) (Cauchy-IP): get Cauchy data - current flux, potential diff. from $T_{+} \subset T_{3}$ to $T_{1}=\mathbb{S}:\left(u, \partial_{n} u\right)_{\mid \mathbb{S}}$ (cortical mapping)

$$
(\mathrm{C}-\mathrm{IP}) \begin{cases}\Delta u=0 & \text { in } D_{3} \text { and } D_{2} \\ u=\nu & \text { on } T_{+} \\ \partial_{n} u=\phi & \text { on } T_{+} \\ u, \sigma \partial_{n} u & \text { continuous on } T_{i}\end{cases}
$$

$$
\begin{gathered}
\nu, \phi \text { on } T_{+} \subset T_{3} \rightarrow u, \partial_{n} u \text { on } T_{-}=T_{2} ? \\
u, \partial_{n} u \text { on } T_{+}=T_{2} \rightarrow u, \partial_{n} u \text { on } T_{-}=T_{1} ?
\end{gathered}
$$

using best analytic approximation on T_{+}then

EEG - IP

(ii) (Sources-IP): from propagated data $u, \partial_{n} u$ on T_{1}, recover (dipolar pointwise) sources C_{k} in (brain) D_{1} :

$$
\begin{aligned}
& (\mathrm{S}-\mathrm{IP}) \Delta u=\delta=\sum_{k=1}^{L} m_{k} \cdot \nabla \delta_{C_{k}} \text { in } D_{1}=\mathbb{B} \\
& u, \partial_{n} u \text { on } T_{+}=T_{1} \rightarrow L, m_{k} \in \mathbb{R}^{3}, C_{k} \in D_{1} ?
\end{aligned}
$$

using best rational approximation on 2D slices (disks)

Here:

- best analytic approximants and extremal problems
\rightarrow constructive solutions to Cauchy inverse problems (C-IP), data propagation (from T_{+}to T_{-})
\rightarrow also for Robin type coeff., from incomplete data, or geometrical boundary problems
- best rational / meromorphic approximants and behaviour of their poles
\rightarrow constructive solutions to inverse sources problems (S-IP), localization of $\left\{C_{k}\right\}$
\rightarrow also for cracks and others geometrical issues

Cauchy problems for Δ

$D \subset \mathbb{R}^{m}, m=2,3$, domain with smooth boundary $T=T_{+} \cup T_{-}$ $T_{ \pm}$with disjoint interiors both of positive Lebesgue measure

From prescribed data ϕ (flux) and associated measurements ν (potential) on T_{+}, find $u, \partial_{n} u$ on T_{-}:
(C-IP) $\quad\left\{\begin{array}{lll}\Delta u=0 & \text { in } & D \\ u=\nu & \text { on } & T_{+} \\ \partial_{n} u=\phi & \text { on } & T_{+}\end{array} \quad \nu, \phi\right.$ on $T_{+} \rightarrow u, \partial_{n} u$ on T_{-}?

Cauchy problems for Δ

(C-IP) $\left\{\begin{array}{lll}\Delta u=0 & \text { in } & D \\ u=\nu & \text { on } & T_{+} \\ \partial_{n} u=\phi & \text { on } & T_{+}\end{array} \quad \nu, \phi\right.$ on $T_{+} \rightarrow u, \partial_{n} u$ on T_{-}?
(C-IP) admits unique solution u on T_{-} $\phi \in L^{2}\left(T_{+}\right) \Rightarrow u \in W^{1,2}(T)$
but ill-posed: strongly discontinuous w.r.t. data
\exists (many) resolution algorithms
but need for numerical robustness w.r.t. errors and stronger convergence results for non compatible data

Cauchy problems for $\Delta \rightarrow$ approximation

(C-IP) $\left\{\begin{array}{lll}\Delta u=0 & \text { in } & D \\ u=\nu & \text { on } & T_{+} \\ \partial_{n} u=\phi & \text { on } & T_{+}\end{array} \quad \nu, \phi\right.$ on $T_{+} \rightarrow u, \partial_{n} u$ on T_{-}?
(C-IP) stated as best approximation issue on T_{+}constrained on T_{-}
(regularization) in Hilbert classes of analytic functions in D
\rightarrow Bounded Extremal Problems (BEP) in Hardy spaces
of analytic / harmonic functions bounded in L^{2} norm
well-posed
(not interpolation)
constructive resolution algorithms for $m=2,3$

Harmonic/analytic functions 2D

Because $\Delta u=0$ in $D \subset \mathbb{R}^{2} \simeq \mathbb{C}$, the function $G=u+i v$ is analytic in D, for conjugate harmonic function v

Cauchy-Riemann equations on bdy $T \simeq \mathbb{T}$, for simply connected $D \simeq \mathbb{D}$ unit disk up to conformal map

$$
\frac{\partial u}{\partial n}=\frac{\partial v}{\partial \theta}, \frac{\partial u}{\partial \theta}=-\frac{\partial v}{\partial n}
$$

Hence the function F given from boundary data:

$$
F\left(e^{i \theta}\right)=\nu\left(e^{i \theta}\right)+i \int^{\theta} \phi\left(e^{i \tau}\right) d \tau=u+i \int^{\theta} \partial_{n} u, \quad e^{i \theta} \in T_{+}
$$

is the trace on T_{+}of a function analytic in \mathbb{D}.

Recovery of harmonic/analytic fos in \mathbb{D}

- from (noisy) boundary data on $T_{+} \subset \mathbb{T}$, get

$$
F\left(e^{i \theta}\right)=\nu\left(e^{i \theta}\right)+i \int^{\theta} \phi\left(e^{i \tau}\right) d \tau=u+i \int^{\theta} \frac{\partial u}{\partial n}, \quad e^{i \theta} \in T_{+}
$$

Recovery of harmonic/analytic fos in \mathbb{D}

- from (noisy) boundary data on $T_{+} \subset \mathbb{T}$, get

$$
F\left(e^{i \theta}\right)=\nu\left(e^{i \theta}\right)+i \int^{\theta} \phi\left(e^{i \tau}\right) d \tau=u+i \int^{\theta} \frac{\partial u}{\partial n}, \quad e^{i \theta} \in T_{+}
$$

- recover analytic function G in \mathbb{D} from its values $F=G_{T_{+}}$on

$$
T_{+} \subsetneq T \longrightarrow \text { solution } u \text { to (C-IP): }
$$

$$
u=\operatorname{Re} G
$$

Recovery of harmonic/analytic fos in \mathbb{D}

- from (noisy) boundary data on $T_{+} \subset \mathbb{T}$, get

$$
F\left(e^{i \theta}\right)=\nu\left(e^{i \theta}\right)+i \int^{\theta} \phi\left(e^{i \tau}\right) d \tau=u+i \int^{\theta} \frac{\partial u}{\partial n}, \quad e^{i \theta} \in T_{+}
$$

- recover analytic function G in \mathbb{D} from its values $F=G_{T_{+}}$on $T_{+} \subsetneq T \longrightarrow$ solution u to (C-IP): $u=\operatorname{Re} G$
- III-posed boundary interpolation issue
\Rightarrow best approximation in Hardy spaces H^{2} of \mathbb{D}
(functions analytic in \mathbb{D} bounded $L^{2}(\mathbb{T})$)

Hardy spaces $H^{2}(\mathbb{D})$

Functions analytic in \mathbb{D} bounded in $L^{2}(r \mathbb{T}), r \leq 1$, or, $L^{2}(\mathbb{T})$ functions with vanishing negative Fourier coeff.

$$
\begin{aligned}
H^{2}=H^{2}(\mathbb{D})= & \left\{G(\zeta)=\sum_{p \geq 0} g_{p} \zeta^{p}, \sum_{p \geq 0}\left|g_{p}\right|^{2}<\infty, \zeta \in \mathbb{D}\right\} \\
& \rightarrow G\left(e^{i \theta}\right)=\sum_{p \geq 0} g_{p} e^{i p \theta} \in L^{2}(\mathbb{T})
\end{aligned}
$$

Example $g \in H^{2}$: polynomials, or rationals without poles in $\overline{\mathbb{D}}$, \exp or \log with singularities out of $\overline{\mathbb{D}} \ldots$
Also, bdd analytic fos in $\mathbb{C} \backslash \overline{\mathbb{D}}$:

$$
\bar{H}_{0}^{2}=H_{0}^{2}(\mathbb{C} \backslash \overline{\mathbb{D}})=\left\{G(\zeta)=\sum_{p<0} g_{p} \zeta^{p}, \sum_{p<0}\left|g_{p}\right|^{2}<\infty\right\} \quad \zeta \in \mathbb{C} \backslash \mathbb{D}
$$

Hardy spaces, notations, properties

$$
\begin{aligned}
& \text { disk } \mathbb{D} \subset \mathbb{R}^{2} \simeq \mathbb{C}, \partial \mathbb{D}=\mathbb{T} \\
& L^{2}=L^{2}(\mathbb{T})=H^{2} \oplus \bar{H}_{0}^{2}
\end{aligned}
$$

(or conformally equiv. simply connected D, or annular domain)

$\mathbb{T}=T_{+} \cup T_{-}, L_{ \pm}^{2}=L^{2}\left(T_{ \pm}\right)$, norm/inner product $\left\|\|_{ \pm},<,>_{ \pm}\right.$
uniqueness on subsets T_{+}of \mathbb{T} of positive measure:
if $G \in H^{2}$ and $\left.G\right|_{T_{+}}=0$, then $G \equiv 0$
if $T_{-}=\mathbb{T} \backslash T_{+}$of positive measure, $H_{\left.\right|_{+}}^{2}$ dense in L_{+}^{2}; however, if
$F \in L_{+}^{2}$ and $G_{n} \rightarrow F$ in L_{+}^{2}, then either $F \in H_{\left.\right|_{+}}^{2}$, or $\left\|G_{n}\right\|_{-} \rightarrow \infty$

Hardy spaces in 3D

ball \mathbb{B} (or 3D spherical shell), $\partial \mathbb{B}=\mathbb{S}=T_{+} \cup T_{-}$
$H^{2}(\mathbb{B}): G=\nabla u$ gradients of functions harmonic in \mathbb{B} (analytic),
G bounded in $L^{2}(\mathbb{S})$ norm,

$$
G=\left(\frac{\partial u}{\partial n}, \nabla_{\mathbb{S}} u\right)
$$

Cauchy-Riemann equations for analytic functions, Riesz systems $\nabla \cdot G=\nabla \times G=0$

$$
\begin{aligned}
& \mathcal{L}^{2}=\mathcal{L}_{\nabla}^{2}(\mathbb{S})=\left\{\left(f, \nabla_{\mathbb{S}} \phi\right): f \in L^{2}(\mathbb{S}), \phi \in W^{1,2}(\mathbb{S})\right\}, \\
& \text { with normaizazion } \int_{\mathbb{S}} f d \sigma=\int_{\mathbb{S}} \phi d \sigma=0, \\
& L_{ \pm}^{2}=\mathcal{L}_{\left.\right|_{T_{ \pm}}}^{2}, \text { norm/inner product }\left\|\|_{ \pm},<,>_{ \pm}\right.
\end{aligned}
$$

Still: $\mathcal{L}^{2}=H^{2}(\mathbb{B}) \oplus H_{0}^{2}(\mathbb{B})$
and uniqueness on T_{+}, density of $H_{\left.\right|_{T_{+}}}^{2}$ in L_{+}^{2} (but unbdd on $T_{-} \ldots$)

From (C-IP) to (BEP)

Back to inverse problem (C-IP) in (2D) and (3D) situations: extension issue of finding $G \in H^{2},\left.G\right|_{T_{+}}=F$ from (noisy) boundary data on T_{+}:

$$
\text { 2D: } F=u+i \int^{\theta} \partial_{n} u, \quad \text { 3D: } F=\left(\phi, \nabla_{\mathbb{S}} \nu\right)=\left(\frac{\partial u}{\partial n}, \nabla_{\mathbb{S}} u\right)
$$

One can fit arbitrarily closely to noisy data F on $T_{+}\left(F \notin H_{\left.\right|_{+}}^{2}\right)$ But with unstable behaviour elsewhere, on T_{-}

Related to ill-posedness of Cauchy type or interpolation issues
Add a T_{-}norm constraint on the H^{2} function G : well-posed best constrained approximation issues

Bounded extremal problems

Given $F \in L_{+}^{2}, M \geq 0$, find $G_{*} \in H^{2},\left\|G_{*}\right\|_{-} \leq M$
(BEP) $\quad\left\|F-G_{*}\right\|_{+}=\inf \left\{\|F-G\|_{+}: G \in H^{2},\|G\|_{-} \leq M\right\}$
admits unique solution G_{*}
[JuL\&al]
Further, if $F \notin\left\{G \in H^{2},\|G\|_{-}<M\right\}_{\left.\right|_{+}}$, then $\left\|G_{*}\right\|_{-}=M$

Proof: best approximation projection onto closed cvx subsets of Hilbert spaces
(BEP) also in Sobolev norm $W^{k, 2}$, in Banach spaces H^{p} / L^{p}, or in $H^{p}(\mathbb{A})$ for the annulus, with other constraints (mixed: L^{2} / L^{∞}, or on $\operatorname{Re} / \operatorname{Im}$ parts), criteria (in Re/Im part)

Bounded extremal problems

$$
(\mathrm{BEP}): \min _{G \in H^{2}}\left(\|F-G\|_{+}^{2}+\lambda\|G\|_{-}^{2}\right)
$$

$\pi \perp$ projection L^{2} or $\mathcal{L}^{2} \rightarrow H^{2}, \chi_{ \pm}$characteristic function of $T_{ \pm}$
Toeplitz operator \mathcal{T} on H^{2} defined by

$$
\mathcal{T}_{k, j}=\mathcal{T}_{k-j}
$$

$<\mathcal{T} G, \Gamma>=<G, \Gamma>_{-}=\int_{T_{-}} G \cdot \Gamma \quad$ or $\mathcal{T} G=\pi\left(\chi_{-} G\right) \in H^{2}$
Construct the solution, solve variational equation:
$<(I+(\lambda-1) \mathcal{T}) G_{*}, \Gamma>=<F, \Gamma>_{+}=<\chi_{+} F, \Gamma>$, for all $\Gamma \in H^{2}$ for (unique) value $\lambda>0$ (Lagrange param.): $\left\|G_{*}\right\|_{-}=M$

Toeplitz operator \mathcal{T} in 2D

Computations, Toeplitz matrices on bases of L^{2} and H^{2}
(2D) $D=\mathbb{D}$, Fourier basis of $L^{2}(\mathbb{T})$,

$$
\pi \chi_{+} F\left(e^{i \theta}\right)=\sum_{k=0}^{\infty} \hat{F}_{k} e^{i k \theta}
$$

$T_{+}=\left(e^{-i \theta_{0}}, e^{i \theta_{0}}\right) ;$ Cauchy formula: $\mathcal{T}=\left(\mathcal{T}_{k, j}\right)_{k, j \geq 0}$

$$
\mathcal{T}_{k, m}= \begin{cases}1-\frac{\theta_{0}}{\pi} & k=j \\ -\frac{\sin (k-j) \theta_{0}}{(k-j) \pi} & k \neq j\end{cases}
$$

for $D=\mathbb{A}$, add $r \mathbb{T}$ and Fourier coefficients $\hat{F}_{k}, k<0$

Toeplitz operator \mathcal{T} in 3D

Computations, Toeplitz matrices on bases of \mathcal{L}^{2} and H^{2}
(3D) $D=\mathbb{B}$, basis of spherical harmonics

$$
\begin{gathered}
\pi \chi_{+} F(\sigma)=\nabla \sum_{k=0}^{\infty} p_{k}(\sigma) \\
<\mathcal{T} \nabla p_{k}, \nabla p_{j}>=<\nabla p_{k}, \nabla p_{j}>_{-} \\
=j(j+k+1)\left(\int_{T_{-}} p_{k} p_{j}+\int_{\partial T_{-}} p_{k} \partial_{3} \bar{p}_{j}\right)
\end{gathered}
$$

for $D=\mathbb{S} \backslash r \mathbb{S}$, add Kelvin transforms $\mathcal{K}\left[p_{k}\right]$

Bounded extremal problems

Convergent and robust algorithms in 2D and 3D

- compute an adequate L^{2} extension $\chi_{+} F$ of F to the whole T from pointwise data, approx. interpolate (splines, ...)

Bounded extremal problems

Convergent and robust algorithms in 2D and 3D

- compute an adequate L^{2} extension $\chi_{+} F$ of F to the whole T from pointwise data, approx. interpolate (splines, ...)
- take its \perp (analytic) projection $\pi \chi_{+} F$ onto H^{2}

Bounded extremal problems

Convergent and robust algorithms in 2D and 3D

- compute an adequate L^{2} extension $\chi_{+} F$ of F to the whole T from pointwise data, approx. interpolate (splines, ...)
- take its \perp (analytic) projection $\pi \chi_{+} F$ onto H^{2}
- compute (iteratively) $G=(I+(\lambda-1) \mathcal{T})^{-1} \pi \chi_{+} F$

$$
\text { varying } \lambda>0 \text { (dichotomy) until }\|G\|_{-}=M: G_{*}
$$

Bounded extremal problems

Convergent and robust algorithms in 2D and 3D

- compute an adequate L^{2} extension $\chi_{+} F$ of F to the whole T from pointwise data, approx. interpolate (splines, ...)
- take its \perp (analytic) projection $\pi \chi_{+} F$ onto H^{2}
- compute (iteratively) $G=(I+(\lambda-1) \mathcal{T})^{-1} \pi \chi_{+} F$

$$
\text { varying } \lambda>0 \text { (dichotomy) until }\|G\|_{-}=M: G_{*}
$$

- approximation of L_{+}^{2} functions: (robust interpolation for $H_{T_{+}}^{2}$) compromize between $\left\|G_{*}\right\|_{-}=M$ and error $\left\|F-G_{*}\right\|_{+}$

(Cauchy-IP)

From $G *$ in \mathbb{D} and on T_{-}, get u :

$$
2 \mathrm{D}: u \simeq \operatorname{Re} G_{*}, \quad \frac{\partial u}{\partial n} \simeq \frac{\partial \operatorname{Im} G_{*}}{\partial \theta}
$$

or

$$
\text { 3D: from } \left.G_{*} \simeq\left(\frac{\partial u}{\partial n}, \nabla_{\mathbb{S}} u\right) \quad \text { (in fact, algo. } \rightarrow u, \frac{\partial u}{\partial n}\right)
$$

Numerical computations, example (EEG)

3 -sphere model, radii $\rho_{i}=.87, .92,1$, conductivities $\sigma_{i}=1,1 / 30,1$ one dipolar source at $C=(.7, .2, .1)$
(BEM), [MC\&al]
ν numerically generated on $T_{+}=S_{3}$ from $u(X) \simeq \frac{<p, X-C>}{\|X-C\|^{3}}$
(BEP) solved with $T_{-}=S_{2}$, then with $T_{+}=S_{2}$ and $T_{-}=S_{1}$ hence (IP), $G_{*} \simeq \nabla u$, cortical potential u on S_{1} :
explicit data

(BEP) solution

Numerical computations, example

$f=\nabla u, u(X)=\sum_{k=1}^{3} \frac{1}{\left\|X-C_{k}\right\|}$ monopolar s surces
$D=$ ball $\mathbb{B}, T_{+}=$upper $1 / 2$ sphere $\mathbb{S} \cap\left\{x_{3}>0\right\}$

error $\left\|F-G_{*}\right\|_{+} \simeq .07$ for $\lambda=4^{-20}$ still too many, coeffs.,

More about harmonic/analytic mD functions

- Cauchy-Riemann equations for analytic functions $G=\left(G_{1}, \cdots, G_{m}\right)$ in $D \subset \mathbb{R}^{m} \quad$ Riesz systems

More about harmonic/analytic 3D functions

In $\mathbb{B} \subset \mathbb{R}^{3}$, analytic functions $G=\nabla g$ for g harmonic in \mathbb{B}
Hardy spaces $H^{2}(\mathbb{B})$:
$G=\left(G_{1}, G_{2}, G_{3}\right)$ analytic in D, with $G_{i}=\partial_{i} g$ bounded in $L^{2}(T)$
For spherical domains

$$
\left\{\begin{array}{l}
H^{2}(\mathbb{B}): g(X)=\sum_{k \geq 0} p_{k}(X) \\
\left(p_{k}\right) \text { homogeneous harmonic polynomials degree } k: \\
X \cdot \nabla p_{k}(X)=k p_{k}=\partial_{n} p_{k} \text { on } \mathbb{S} \\
\sum_{k \geq 0} k(2 k+1)\left\|p_{k}\right\|_{L^{2}(\mathbb{S})}^{2}<\infty
\end{array}\right.
$$

Spherical harmonics

Spherical harmonics \mathcal{H}_{k} :
traces on \mathbb{S} of homogeneous harmonic polynomials degree k
$L^{2}(\mathbb{S})=\oplus_{k \geq 0} \mathcal{H}_{k}$

$$
\left\{\begin{array}{l}
p_{k}(X)=p_{k}(r, \sigma)=r^{k} \sum_{m=-k}^{k} \gamma_{k}^{m} Y_{k}^{m}(\sigma) \\
Y_{k}^{m}(\sigma)=Y_{k}^{m}(\theta, \varphi)=P_{k}^{|m|}(\cos \theta) e^{i m \varphi} \text { in } \mathbb{C}
\end{array}\right.
$$

$P_{k}^{m}(t)$ 1st kind Legendre functions $\quad\left(1-t^{2}\right) P^{\prime \prime}-2 t P^{\prime}+\left(k(k+1)-\frac{m^{2}}{1-z^{2}}\right) P=0$

Example:

$$
p_{5}(X)=63 x_{1}^{5}-70 x_{1}^{3}+15 x_{1},\left.p_{5}\right|_{\mathbb{S}} \in \mathcal{H}_{5}, \text { on } \mathbb{S}, p_{5}(X)=-40 x_{1}^{3} x_{3}^{2}+30 x_{1} x_{2}^{2} x_{3}^{2}+15 x_{1} x_{3}^{4}
$$

$$
\sum_{m=-k}^{k} Y_{k}^{m}(\theta, \varphi) Y_{k}^{m}\left(\theta^{\prime}, \varphi^{\prime}\right)=c_{k} P_{k}^{0}(\cos \psi)
$$

$$
\psi \text { spherical distance }, \cos \psi=\cos \theta^{\prime} \cos \theta+\sin \theta^{\prime} \sin \theta \cos \left(\varphi^{\prime}-\varphi\right)
$$

Spherical harmonics

Bases of spherical harmonics and Fourier coefficients
In 2D: \mathcal{H}_{k} spanned by $\left\{e^{ \pm i k \theta}\right\}$
(complex, or $\{\cos (k \theta), \sin (k \theta)\}$ real)

Spherical harmonics

For spherical domains $\mathbb{B}, \mathbb{R}^{3} \backslash \mathbb{B}$

$$
\left\{\begin{array}{l}
\bar{H}_{0}^{2}(\mathbb{B}): \quad g=\sum_{k \geq 0} \mathcal{K}\left[p_{k}\right] \\
\mathcal{K} \text { Kelvin transform : } \\
\mathcal{K}\left[p_{k}\right](X)=\frac{1}{|X|} p_{k}\left(\frac{X}{|X|^{2}}\right)=\frac{p_{k}(X)}{|X|^{2 k+1}}
\end{array}\right.
$$

$\mathcal{K}\left[p_{k}\right](r, \sigma)=r^{-(k+1)} \sum_{m=0}^{k} \gamma_{k}^{m} \gamma_{k}^{m}(\sigma)$
$\mathcal{K}[g]=g$ on $\mathbb{S} ; \quad \quad g$ harmonic in $\mathbb{B} \Rightarrow \mathcal{K}[g]$ harmonic in $\mathbb{R}^{3} \backslash \mathbb{B} ;$
$\mathcal{K}[\mathcal{K}[g]]=g$

Inversion $X \mapsto X /|X|^{2}$ conformal

(S-IP) 3 D sources recovery $\mathbb{B} \rightarrow \cup_{p} \mathbb{D}_{p}$

$$
\begin{gathered}
\Delta u=\delta=\sum_{k=1}^{L} m_{k} \cdot \nabla \delta_{C_{k}} \text { in } \mathbb{B} \\
(\mathrm{S}-\mathrm{IP}) \quad \nu, \phi \text { on } \mathbb{S}=\partial \mathbb{B} \rightarrow m_{k} \in \mathbb{R}^{3}, C_{k} \in \mathbb{B} ?
\end{gathered}
$$

$\mathbb{B} \subset \mathbb{R}^{3}$, convolution with fundamental solution
(Newton or Green potential), $X \in \mathbb{B} \backslash\left\{C_{k}\right\}$

$$
u(X)=H(X)+\sum_{k=1}^{L} \frac{<m_{k}, X-C_{k}>}{4 \pi\left\|X-C_{k}\right\|^{3}}=H(X)+f(X)
$$

H harmonic in $\mathbb{B}: f=P_{-} u$ (spherical harmonics)
$X_{p}=\left(x, y, z_{p}\right) \simeq$ complex var. $\xi=x+i y$,
$\xi \in \operatorname{disk} \mathbb{D}_{p}=\left(\left\{z=z_{p}\right\} \cap \mathbb{B}\right) \subset \mathbb{R}^{2} \simeq \mathbb{C}$
$f\left(X_{p}\right)=\tilde{f}_{p}(\xi), f_{p}(\xi)=P_{-} \tilde{f}_{p}(\xi)$ (Fourier coeffs <0 index)

$\ldots \mathbb{B} \rightarrow \cup_{p} \mathbb{D}_{p}, 2 \mathrm{D}$ statements

fix p, \mathbb{D}_{p} :

$$
f_{p}(\xi)=\sum_{k=1}^{m} \frac{P_{k, p}(\xi)}{\left(\xi-\xi_{k, p}\right)^{3 / 2}}
$$

f_{p}^{2} has poles and branchpoints $\left\{\xi_{k, p}\right\} \in \mathbb{D}_{p}, P_{k, p}^{2}$ analytic in \mathbb{D}_{p}, $\mathbb{T}_{p}=\partial \mathbb{D}_{p}$
$C_{k}=\left(x_{k}, y_{k}, z_{k}\right)$, affix $\xi_{k}=x_{k}+i y_{k} ;$ assume $\xi_{k} \neq 0$

- $\left(\xi_{k, p}\right)_{p} / / \xi_{k}$
- $\left|\xi_{k, p}\right|$ maximum at p^{*} such that $z_{p^{*}}=z_{k}$ where $\xi_{k, p^{*}}=\xi_{k}$ (S-IP): from $\left(f_{p}\right)_{p}$ on $\left(\mathbb{T}_{p}\right)_{p}$, find $L,\left(\xi_{k, p}\right)_{p}, 1 \leq k \leq L$ and sort them out to get $\left(\xi_{k}, z_{k}\right)=C_{k}, m_{k}$
$\ldots \rightarrow \mathbb{D}_{p}, 2 \mathrm{D}$
For 2 dipoles $\left\{C_{1}, C_{2}\right\} \subset \mathbb{B},\left\{\xi_{k, p}\right\}_{p}$:
$\mathbb{B} \rightarrow \cup_{p} \mathbb{D}_{p}:$ compute $\xi_{k, p}$ wrt ξ_{k}, z_{k}, z_{p}
at $X=\left(x, y, z_{p}\right)$ and with $\xi=x+i y$,

$$
\left\|X-C_{k}\right\|^{3}=Q_{p, k}(\xi)^{3 / 2}
$$

where, if $h_{p, k}=z_{p}-z_{k}$,

$$
Q_{p, k}(\xi)=\left|\xi-\xi_{k}\right|^{2}+h_{p, k}^{2}=-\frac{\xi_{k}}{\xi}\left(\xi-\xi_{p, k}^{+}\right)\left(\xi-\xi_{p, k}^{-}\right)
$$

has 1 root in \mathbb{D}_{p} at $\xi_{p, k}^{-}$: pole and branchpoint to f_{p}^{2} with $r_{p}^{2}=1-z_{p}^{2}$,

$$
\xi_{p, k}^{ \pm}=\frac{\xi_{k}}{2\left|\xi_{k}\right|^{2}}\left\{\left|\xi_{k}\right|^{2}+r_{p}^{2}+h_{p, k}^{2} \pm \sqrt{\left(\left|\xi_{k}\right|+r_{p}\right)^{2}\left(\left|\xi_{k}\right|-r_{p}\right)^{2}+h_{p, k}^{2}}\right\}
$$

2D (S-IP) $)_{p}$

$(\mathrm{S}-\mathrm{IP})_{p}$: given $f_{\left.p\right|_{\mathbb{T}}}$, find L singularities $\xi_{k, p} \subset \mathbb{D}_{p}$, functions (moments) $P_{k, p}$, such that

$$
f_{p}(\xi)=\sum_{k=1}^{L} \frac{P_{k, p}(\xi)}{\left(\xi-\xi_{k, p}\right)^{3 / 2}}
$$

fix $p: \xi \rightarrow f_{p}^{2}\left(r_{p} \xi\right)$
continous in $\mathcal{C}_{\varepsilon}=\{z \in \overline{\mathbb{D}} ; 1-\varepsilon<|z| \leq 1\}$, analytic in $\stackrel{\circ}{\mathcal{C}}_{\varepsilon}$,
can be analytically extended in \mathbb{D} except for finit. many
(poles or) branchpoints
\Rightarrow poles of its best L^{2} (or $L^{\infty} \ldots$) meromorphic or rational approximants r_{n} "cv" to singularities $\left\{\xi_{k, p}\right\}_{k}$

Poles of $r_{n} \rightarrow$ singularities $\left\{\xi_{k, p}\right\}_{k}$

$$
f_{p}^{2}(\xi)=\sum_{k=1}^{L} \frac{\Pi_{k, p}(\xi)}{\left(\xi-\xi_{k, p}\right)^{3}}+\sum_{k=1}^{L} \frac{\Pi_{j, k, p}(\xi)}{\left(\xi-\xi_{k, p}\right)^{3 / 2}\left(\xi-\xi_{j, p}\right)^{3 / 2}}
$$

n poles of r_{n} in \mathbb{D}_{p} discretize / approximate singularities $\left\{\xi_{k, p}\right\}_{k}$ of f_{p} in \mathbb{D}_{p}
accumulate to branchpoints $\left\{\xi_{k, p}\right\}_{k}$ on curve joining them of minimal Green capacity
($m=2$: hyp. geodesic arc between $\left\{\xi_{1, p}, \xi_{2, p}\right\}$)

Meromorphics and rationals in Hardy classes

Hardy class of \mathbb{D}, hilbertian case:

$$
H^{2}=H^{2}(\mathbb{D})=\left\{f \text { analytic in } \mathbb{D}, \sup _{r<1}\|f\|_{L^{2}\left(\mathbb{T}_{r}\right)}<\infty\right\}
$$

and meromorphics:

$$
\begin{gathered}
H_{n}^{2}=H_{n}^{2}(\mathbb{D})=\left\{\frac{h}{q_{n}}, h \in H^{2}, q_{n}(z)=\prod_{j=1}^{n}\left(z-\eta_{j}\right), \eta_{j} \in \mathbb{D}\right\} \\
=H^{2}+\text { rational with less than } n \text { poles all in } \mathbb{D}
\end{gathered}
$$

Best L^{2} rational approximation

$f_{\left.p\right|_{\mathbb{T}}} \rightarrow r_{n} \in H_{n}^{2}$, best $L^{2}(\mathbb{T})$ meromorphic approximant deg. $\leq \mathrm{n}$

$$
\begin{gathered}
\min _{h / q \in H_{n}^{2}}\left\|f_{p}^{2}-\frac{h}{q}\right\|_{L^{2}(\mathbb{T})}=\Psi_{n} \rightarrow r_{n}=\frac{h_{n}}{q_{n}} \\
f_{p}^{2} \simeq r_{n} \text { and poles }\left(0 \text { of } q_{n}\right) \rightarrow \text { singularities of } f_{p}
\end{gathered}
$$

existence and constructive results, parametrization, gradient algorithms (local minima...)
(also H_{n}^{∞}, [Nehari, AAK, Hankel op.] and $H_{n}^{\prime}, 2<1<\infty,[L B+F S]$, matrices,...)

3D sources on 2D slice

Behaviour of poles on 2D slice

$$
n=9
$$

Behaviour of poles on 2D slice

$n=15$

Behaviour of poles on 2D slice

Algorithms... $\rightarrow \cup_{p} \mathbb{D}_{p} \rightarrow \mathbb{B}$

- $g=u_{\mid \mathrm{s}}, \phi=\partial_{n} u_{\mid \mathrm{s}} \rightarrow f_{\mathrm{Is}}$
- for each $p,-P \leq p \leq P, 2 D$:
- $\rightarrow f_{p}^{2}\left(r_{p} \xi\right)$ on \mathbb{T}
- best meromorphic approximation on \mathbb{T}, (ARL2) [Apics], Matab: iterate a gradient algorithm from $n=0$ to $\Psi_{n} \simeq 0: n \geq m \rightarrow r_{n}$ poles accumulate to $\left\{\xi_{k, p}\right\}_{k}$
(or AAK; also Endymion, C++)
- sort out aligned $\left(\xi_{k, p}\right)_{p}$, then $/ / \xi_{k}$
- for each k, find p^{*} such that $\left|\xi_{k, p^{*}}\right|=\max _{p}\left|\xi_{k, p}\right|$: $\xi_{k, p^{*}}=\xi_{k} \rightarrow x_{k}, y_{k}$ and $z_{p^{*}}=z_{k}$

2 dipoles, $n=6$

Numerical computations, example (EEG)

True source $C \bullet$ localized by best L^{2} rational approximation •

Numerical computations, example (EEG)

Several sources • localized by best L^{2} rational approximation • (explicit data)

1 dipole, numerical data (Odyssée), $n=3$

- The Eoure

2 dipoles, numerical data (Odyssée), $n=2$

sections $p \perp 0 y, 0 z$

Triple poles degree $3 n, n=3$

$u=\left(\Sigma W_{k} /\left(z-z_{k}\right)^{3 / 2}\right)^{2}$

$u=\left(\Sigma W_{k} /(z-z)^{32}\right)^{2}$

More realistic geometries

Ellipsoids (ellips. harmonics)

1 source

2 sources

Comments, conclusion

Under study / to be done:

- EEG: pre-/post-treatments + (BEM) + approx. on sections \rightarrow FindSources3D software
(Sphere2Circle, orient. spherical harmo., moments computation, several sections)
- \rightarrow experimental EEG data (electrodes)?
- add MEG model and data
- other geometries
(3D: 1/2-ellipsoid+1/2-sphere? 2D: quadrature domains)
- 3D (BEP) from partial data (computational issues / spherical harmo.)
- approx. / multiple poles and multipolar expansions distributed sources
- variable conductivity, Beltrami equation (for plasma confinment in tokamak)
- inverse problem of conductivity recovery (EIT)
- geodesy... and inverse pbs for gravitational potential
+ various elliptic inverse pbs / related approximation, geometrical IP for corrosion detection or plasma recov.
(unknown boundary part, Bernoulli), 3D / quaternionic approximation?

References

Atfeh, Baratchart, Leblond, Partington. "Bounded extremal and Cauchy-Laplace problems on 3D spherical domains", subm.
Baratchart, Leblond, Marmorat. "Sources identification in a 3D ball from best meromorphic approximation on 2D slices", Elec. Trans. Num. Anal., 2006.
Baratchart, Ben Abda, Ben Hassen, Leblond. "Recovery of pointwise sources or small inclusions in 2D domains and rational approximation", Inverse Problems, 2005.
Baratchart, Mandréa, Saff, Wielonsky. "2D inverse problems for the laplacian: a meromorphic approximation approach", J. Maths Pures Appl., 2006.
Clerc, Leblond, Atfeh, Baratchart, Marmorat, Papadopoulo, Partington. "The Cauchy problem applied to cortical imaging: comparison of a boundary element method and a bounded extremal problem", Proc. Brain Topography, Springer Sci.\& Bus. Media, 2005.

Clerc, Leblond, Marmorat, Baratchart, Papadopoulo. EEG source localization by best approximation of functions. Proc. Human Brain Mapping, 2006.
Leblond, Paduret, Rigat, Zghal. "Sources localisation in ellipsoids by best meromorphic approximation in planar sections", subm.
Baratchart, Leblond, Rigat, Russ. "Beltrami equation and generalized analytic functions, and extremal problems", in preparation.
and many other references....
[Dautray-Lions, ABR, Feynman, F\&al, H\&al, HD-EB, Kozlov, Alessandrini, Vessela, Hammari, Dassios, Baillet, Vogelius, Rudin, Stein-Weiss, ...]

