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Overview

• EEG inverse problem, cortical mapping, source localization,
spherical model

• Cauchy problems for ∆
• Harmonic and analytic functions, Hardy spaces, approximation

issues in the disk [or 2D (conformally equiv. to) circular (or annular) domains]

• Also in 3D balls , using spherical harmonics
(or spherical shells)

• Few numerical examples

• Source recovery in balls (or ellispoids)

• Rational approximation on disks (2D slices)
• Numerical examples
• Conclusion



Overview

T+

T−
D

x

x

x ∇.(σ∇u) = δ in D ⊂ Rm, m = 2, 3,

given conductivity σ > 0 (isotropic)
available data: u, ∂nu on T+ ⊂ ∂D

σ cst or pcw → ∆u = δ/σ

(i) δ = 0 (ii) δ 6= 0
find (data on) T− find (supp) δ
Cauchy pb, EEG cortical map., singularities, EEG source (MEG)
Robin, bdy geometry
best harmonic / analytic approx. best rational / meromorphic approx.
BEP in Hardy spaces, 2 and 3D 2D quadrature domains

also, smooth variable σ for m = 2, δ = 0 (Beltrami, tokamak)



EEG inverse problem

Models for the head D = ∪3
i=1Di , brain D1, skull D2, skin D3

recover cerebral current (source term) δ inside the brain
D1 ⊂ D ⊂ R3 from electroencephalographic (EEG) measurements
on part T+ of scalp ∂D of a solution to

−div (σ grad u) = −∇ · (σ∇u) = δ

(Maxwell, electrostatic [Feynman, F&al, H&al])

(IP): potential diff., current flux (u, ∂nu)|T+
→ δ supported in D1



EEG - IP: which head!?

given piecewise constant conductivity: σ|Di
= σi , 1 ≤ i ≤ 3 usually;

D union of homogeneous layers Di (scalp, skull, brain,...)

spherical model (a): ∂Di spheres Ti

conductivity defaults = pointwise dipolar sources {Ck} in brain
D1 = B, unit ball

D3

D1

 

    T3

T2T1

x

x


∆u = 0 in D3 and D2

∆u = δ =
∑L

k=1 mk · ∇ δCk
in D1

u , σ∂nu continuous on Ti

u = ν on T+ ⊂ T3

∂nu = φ on T+

(IP): from (u, ∂nu)|T+
, find moments {mk}, sources {Ck} in B

(pointwise values of ν, while φ = 0 on T )



EEG - IP : well posedness

• existence of solution to direct problem (δ, φ) → u (unique up
to additive cst) if compatibility condition:∫

∂D
φ ds = 0

• φ ∈ L2(∂D) ⇒ u ∈ Sobolev W 1,2(D), Hölder D̄ \ {Ck} [...]

• identifiability, uniqueness of solution to (IP) [HD-EB]

• stability/continuity: partial results, need for SC [Al,Ve]



EEG - IP

(i) (Cauchy-IP): get Cauchy data - current flux, potential diff. -
from T+ ⊂ T3 to T1 = S: (u, ∂nu)|S (cortical mapping)

D3

D1

T1 T2

    T3
 

(C-IP)


∆u = 0 in D3 and D2

u = ν on T+

∂nu = φ on T+

u , σ∂nu continuous on Ti

ν, φ on T+ ⊂ T3 → u, ∂nu on T− = T2 ?

u, ∂nu on T+ = T2 → u, ∂nu on T− = T1 ?

using best analytic approximation on T+ then ....



EEG - IP

(ii) (Sources-IP): from propagated data u, ∂nu on T1, recover
(dipolar pointwise) sources Ck in (brain) D1:

C1

C2

T

(S-IP) ∆u = δ =
L∑

k=1

mk · ∇ δCk
in D1 = B

u , ∂nu on T+ = T1 → L,mk ∈ R3,Ck ∈ D1 ?

using best rational approximation on 2D slices (disks)



Here:

• best analytic approximants and extremal problems

→ constructive solutions to Cauchy inverse problems (C-IP),
data propagation (from T+ to T−)

→ also for Robin type coeff., from incomplete data, or geometrical boundary problems

• best rational / meromorphic approximants and behaviour of
their poles

→ constructive solutions to inverse sources problems (S-IP),
localization of {Ck}

→ also for cracks and others geometrical issues



Cauchy problems for ∆

D ⊂ Rm , m = 2, 3, domain with smooth boundary T = T+ ∪ T−
T± with disjoint interiors both of positive Lebesgue measure

From prescribed data φ (flux) and associated measurements ν
(potential) on T+, find u, ∂nu on T−:

(C-IP)


∆u = 0 in D
u = ν on T+

∂nu = φ on T+

ν, φ on T+ → u, ∂nu on T−?

T+
T−

D

T+T

A

−



Cauchy problems for ∆

(C-IP)


∆u = 0 in D
u = ν on T+

∂nu = φ on T+

ν, φ on T+ → u, ∂nu on T−?

(C-IP) admits unique solution u on T− φ ∈ L2(T+) ⇒ u ∈ W 1,2(T )

but ill-posed: strongly discontinuous w.r.t. data

∃ (many) resolution algorithms [Kozlov, MC&al., ...]

but need for numerical robustness w.r.t. errors
and stronger convergence results for non compatible data



Cauchy problems for ∆ → approximation

(C-IP)


∆u = 0 in D
u = ν on T+

∂nu = φ on T+

ν, φ on T+ → u, ∂nu on T−?

(C-IP) stated as best approximation issue on T+ constrained on T−

(regularization) in Hilbert classes of analytic functions in D

→ Bounded Extremal Problems (BEP) in Hardy spaces [JuL&al]

of analytic / harmonic functions bounded in L2 norm

well-posed (not interpolation)

constructive resolution algorithms for m = 2, 3



Harmonic/analytic functions 2D

Because ∆u = 0 in D ⊂ R2 ' C, the function G = u + iv is
analytic in D, for conjugate harmonic function v

Cauchy-Riemann equations on bdy T ' T, for simply connected
D ' D unit disk up to conformal map [Rudin, ...]

∂u

∂n
=
∂v

∂θ
,
∂u

∂θ
= −∂v

∂n

Hence the function F given from boundary data:

F (e iθ) = ν(e iθ) + i

∫ θ

φ(e iτ ) dτ = u + i

∫ θ

∂nu , e iθ ∈ T+

is the trace on T+ of a function analytic in D.



Recovery of harmonic/analytic fos in D

• from (noisy) boundary data on T+ ⊂ T, get

F (e iθ) = ν(e iθ) + i

∫ θ

φ(e iτ ) dτ = u + i

∫ θ ∂u

∂n
, e iθ ∈ T+

• recover analytic function G in D from its values F = G|T+
on

T+ ( T −→ solution u to (C-IP): u = Re G

• Ill-posed boundary interpolation issue
⇒ best approximation in Hardy spaces H2 of D

(functions analytic in D bounded L2(T))
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Hardy spaces H2(D)

Functions analytic in D bounded in L2(rT), r ≤ 1, or,
L2(T) functions with vanishing negative Fourier coeff.

H2 = H2(D) = {G (ζ) =
∑
p≥0

gp ζ
p ,

∑
p≥0

|gp|2 <∞ , ζ ∈ D}

→ G (e iθ) =
∑
p≥0

gp e ipθ ∈ L2(T)

Example g ∈ H2: polynomials, or rationals without poles in D, exp or log with singularities out of D...

Also , bdd analytic fos in C \ D:

H
2
0 = H2

0 (C \ D) = {G (ζ) =
∑
p<0

gp ζ
p ,

∑
p<0

|gp|2 <∞} ζ ∈ C \D



Hardy spaces, notations, properties

disk D ⊂ R2 ' C, ∂D = T
L2 = L2(T) = H2 ⊕ H

2
0

(or conformally equiv. simply connected D, or annular domain)

T+
T−

D

T = T+ ∪ T−, L2
± = L2(T±), norm/inner product ‖ ‖±, < , >±

uniqueness on subsets T+ of T of positive measure:
if G ∈ H2 and G|T+

= 0, then G ≡ 0

if T− = T \ T+ of positive measure, H2
|T+

dense in L2
+; however, if

F ∈ L2
+ and Gn → F in L2

+, then either F ∈ H2
|T+

, or ‖Gn‖− →∞



Hardy spaces in 3D

ball B (or 3D spherical shell), ∂B = S = T+ ∪ T−

H2(B): G = ∇u gradients of functions harmonic in B (analytic),
G bounded in L2(S) norm,

G = (
∂u

∂n
,∇Su)

Cauchy-Riemann equations for analytic functions, Riesz systems ∇ . G = ∇ × G = 0 [SteinWeiss]

L2 = L2
∇(S) =

{
(f ,∇Sφ) : f ∈ L2(S), φ ∈ W 1,2(S)

}
,

with normalization

Z
S

f dσ =

Z
S
φ dσ = 0,

L2
± = L2

|T±
, norm/inner product ‖ ‖±, < , >±

Still: L2 = H2(B)⊕ H
2
0(B) H

2
0(B):... outside B...

and uniqueness on T+, density of H2
|T+

in L2
+ (but unbdd on T−...)



From (C-IP) to (BEP)

Back to inverse problem (C-IP) in (2D) and (3D) situations:

extension issue of finding G ∈ H2, G|T+
= F from (noisy)

boundary data on T+:

2D: F = u + i

∫ θ

∂nu , 3D: F = (φ,∇Sν) = (
∂u

∂n
,∇Su)

One can fit arbitrarily closely to noisy data F on T+ (F 6∈ H2
|T+

)

But with unstable behaviour elsewhere, on T−

Related to ill-posedness of Cauchy type or interpolation issues

Add a T− norm constraint on the H2 function G :
well-posed best constrained approximation issues



Bounded extremal problems

Given F ∈ L2
+, M ≥ 0, find G∗ ∈ H2, ‖G∗‖− ≤ M

(BEP) ‖F − G∗‖+ = inf{‖F − G‖+ : G ∈ H2, ‖G‖− ≤ M}

admits unique solution G∗ [JuL&al]

Further, if F 6∈ {G ∈ H2, ‖G‖− < M}|T+
, then ‖G∗‖− = M

Proof: best approximation projection onto closed cvx subsets of Hilbert spaces

(BEP) also in Sobolev norm W k,2, in Banach spaces Hp/Lp , or in Hp(A) for the annulus, with other constraints

(mixed: L2 / L∞, or on Re / Im parts), criteria (in Re / Im part) [Apics&al]



Bounded extremal problems

(BEP) : min
G∈H2

(
‖F − G‖2

+ + λ‖G‖2
−
)

π ⊥ projection L2 or L2 → H2, χ± characteristic function of T±

Toeplitz operator T on H2 defined by Tk,j = Tk−j

< T G , Γ >=< G , Γ >−=

∫
T−

G · Γ or T G = π (χ− G ) ∈ H2

Construct the solution, solve variational equation:

< (I + (λ− 1) T ) G∗, Γ >=< F , Γ >+=< χ+F , Γ > , for all Γ ∈ H2

for (unique) value λ > 0 (Lagrange param.): ‖G∗‖− = M



Toeplitz operator T in 2D

Computations, Toeplitz matrices on bases of L2 and H2

(2D) D = D, Fourier basis of L2(T),

πχ+F (e iθ) =
∞∑

k=0

F̂k e ikθ

T+ = (e−iθ0 , e iθ0); Cauchy formula: T = (Tk,j)k,j≥0

Tk,m =


1− θ0

π
k = j

−sin(k − j)θ0
(k − j)π

k 6= j

for D = A, add rT and Fourier coefficients F̂k , k < 0



Toeplitz operator T in 3D

Computations, Toeplitz matrices on bases of L2 and H2

(3D) D = B, basis of spherical harmonics

πχ+F (σ) = ∇
∞∑

k=0

pk(σ)

< T ∇pk ,∇pj >=< ∇pk ,∇pj >−

= j(j + k + 1)

(∫
T−

pkpj +

∫
∂T−

pk∂3p̄j

)
for D = S \ rS, add Kelvin transforms K[pk ]



Bounded extremal problems

Convergent and robust algorithms in 2D and 3D

• compute an adequate L2 extension χ+F of F to the whole T
from pointwise data, approx. interpolate (splines, ...)

• take its ⊥ (analytic) projection π χ+F onto H2

• compute (iteratively) G = (I + (λ− 1) T )−1 π χ+F

varying λ > 0 (dichotomy) until ‖G‖− = M: G∗

• approximation of L2
+ functions: (robust interpolation for H2

|T+
)

compromize between ‖G∗‖− = M and error ‖F − G∗‖+
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(Cauchy-IP)

From G∗ in D and on T−, get u:

2D: u ' Re G∗ ,
∂u

∂n
' ∂Im G∗

∂θ

or

3D: from G∗ ' (
∂u

∂n
,∇Su) (in fact, algo. → u ,

∂u

∂n
)



Numerical computations, example (EEG)

3-sphere model, radii ρi = .87, .92, 1, conductivities σi = 1, 1/30, 1
one dipolar source at C = (.7, .2, .1) (BEM), [MC&al]

ν numerically generated on T+ = S3 from u(X ) ' < p,X − C >

‖X − C‖3

(BEP) solved with T− = S2, then with T+ = S2 and T− = S1

hence (IP), G∗ ' ∇u, cortical potential u on S1:

explicit data (BEP) solution



Numerical computations, example

f = ∇u, u(X ) =
∑3

k=1
1

‖X−Ck‖ monopolar sources

D = ball B , T+ = upper 1/2 sphere S ∩ {x3 > 0}

0

pipi/4

pi/2 

3

3.5

4

φ

approximated solution  λ = 4−5 on S
+
 

θ 0

pipi/4

pi/2 
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4.5

φ

 exact solution on S
+

θ
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φ

approximated solution λ = 4−20 on S
+
 

θ 0
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φθ

3
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3.4

3.6

3.8

4

4.2

2.5

3

3.5

4

4.5

error ‖F − G∗‖+ ' .07 for λ = 4−20
still too many coeffs...



More about harmonic/analytic mD functions

• Cauchy-Riemann equations for analytic functions [SteinWeiss]

G = (G1, · · · ,Gm) in D ⊂ Rm Riesz systems
∂jGi = ∂iGj or ∇ × G = 0 ⇒ G = ∇g or Gi = ∂ig
m∑

j=1

∂jGj = 0 or ∇ .G = 0 ⇒ g harmonic



More about harmonic/analytic 3D functions

In B ⊂ R3, analytic functions G = ∇g for g harmonic in B

Hardy spaces H2(B): [SteinWeiss]

G = (G1,G2,G3) analytic in D, with Gi = ∂ig bounded in L2(T )

For spherical domains [Axler&al, DautrayLions]

H2(B) : g(X ) =
∑
k≥0

pk(X )

(pk) homogeneous harmonic polynomials degree k :
X · ∇pk(X ) = kpk = ∂npk on S∑

k≥0 k(2k + 1)‖pk‖2
L2(S) <∞



Spherical harmonics

Spherical harmonics Hk :
traces on S of homogeneous harmonic polynomials degree k

L2(S) = ⊕k≥0Hk
pk(X ) = pk(r , σ) = rk

∑k
m=−k γ

m
k Y m

k (σ)

Y m
k (σ) = Y m

k (θ, ϕ) = P
|m|
k (cos θ) e imϕ in C

Pm
k (t) 1st kind Legendre functions (1− t2)P′′ − 2tP′ + (k(k + 1)− m2

1−z2 )P = 0

Example: p5(X ) = 63x5
1 − 70x3

1 + 15x1, p5|S ∈ H5, on S, p5(X ) = −40x3
1 x2

3 + 30x1x2
2 x2

3 + 15x1x4
3∑k

m=−k Y m
k (θ, ϕ) Y m

k (θ′, ϕ′) = ckP0
k (cosψ)

ψ spherical distance , cosψ = cos θ′ cos θ + sin θ′ sin θcos(ϕ′ − ϕ)



Spherical harmonics

Bases of spherical harmonics and Fourier coefficients

In 2D: Hk spanned by {e±ikθ} → L2(T)
(complex, or {cos(kθ), sin(kθ)} real)



Spherical harmonics

For spherical domains B, R3 \ B [Axler&al, DautrayLions]

H
2
0(B) : g =

∑
k≥0K[pk ]

K Kelvin transform :

K[pk ](X ) =
1

|X |
pk

(
X

|X |2

)
=

pk(X )

|X |2k+1

K[pk ](r, σ) = r−(k+1) Pk
m=0 γ

m
k Y m

k (σ)

K[g ] = g on S; g harmonic in B ⇒ K[g ] harmonic in R3 \ B; K[K[g ]] = g

Inversion X 7→ X/|X |2 conformal



(S-IP) 3D sources recovery B → ∪pDp

∆u = δ =
L∑

k=1

mk · ∇ δCk
in B

(S-IP) ν, φ on S = ∂B → mk ∈ R3,Ck ∈ B ?

B ⊂ R3, convolution with fundamental solution
(Newton or Green potential), X ∈ B \ {Ck}

u(X ) = H(X ) +
L∑

k=1

< mk , X − Ck >

4π ‖X − Ck‖3
= H(X ) + f (X )

H harmonic in B: f = P−u (spherical harmonics)

Xp = (x , y , zp) ' complex var. ξ = x + i y ,
ξ ∈ disk Dp = ({z = zp} ∩ B) ⊂ R2 ' C

f (Xp) = f̃p(ξ) , fp(ξ) = P− f̃p(ξ) (Fourier coeffs < 0 index)



... B → ∪pDp, 2D statements

fix p, Dp:

fp(ξ) =
m∑

k=1

Pk,p(ξ)

(ξ − ξk,p)3/2

f 2
p has poles and branchpoints {ξk,p} ∈ Dp, P2

k,p analytic in Dp,
Tp = ∂Dp

Ck = (xk , yk , zk), affix ξk = xk + iyk ; assume ξk 6= 0

• (ξk,p)p // ξk

• |ξk,p| maximum at p∗ such that zp∗ = zk where ξk,p∗ = ξk

(S-IP): from (fp)p on (Tp)p, find L, (ξk,p)p, 1 ≤ k ≤ L and sort
them out to get (ξk , zk) = Ck , mk



...→ Dp, 2D

For 2 dipoles {C1 , C2} ⊂ B, {ξk,p}p :



B → ∪pDp: compute ξk,p wrt ξk , zk , zp

at X = (x , y , zp) and with ξ = x + i y ,

‖X − Ck‖3 = Qp,k(ξ)3/2

where, if hp,k = zp − zk ,

Qp,k(ξ) = |ξ − ξk |2 + h2
p,k = −ξk

ξ
(ξ − ξ+p,k)(ξ − ξ−p,k)

has 1 root in Dp at ξ−p,k : pole and branchpoint to f 2
p

with r2
p = 1− z2

p ,

ξ±p,k =
ξk

2|ξk |2
{
|ξk |2 + r2

p + h2
p,k ±

√
(|ξk |+ rp)2(|ξk | − rp)2 + h2

p,k

}



2D (S-IP)p

(S-IP)p: given fp|T , find L singularities ξk,p ⊂ Dp, functions
(moments) Pk,p, such that

fp(ξ) =
L∑

k=1

Pk,p(ξ)

(ξ − ξk,p)3/2

fix p: ξ → f 2
p (rp ξ)

continous in Cε = {z ∈ D ; 1− ε < |z | ≤ 1} , analytic in
◦
Cε ,

can be analytically extended in D except for finit. many
( poles or ) branchpoints

⇒ poles of its best L2 (or L∞...) meromorphic or rational
approximants rn “cv” to singularities {ξk,p}k [Bar.&al]



Poles of rn → singularities {ξk,p}k

f 2
p (ξ) =

L∑
k=1

Πk,p(ξ)

(ξ − ξk,p)3
+

L∑
k=1

Πj ,k,p(ξ)

(ξ − ξk,p)3/2 (ξ − ξj ,p)3/2

n poles of rn in Dp discretize / approximate singularities {ξk,p}k of
fp in Dp

accumulate to branchpoints {ξk,p}k on curve joining them of
minimal Green capacity [Bar.&al]

(m = 2: hyp. geodesic arc between {ξ1,p, ξ2,p})



Meromorphics and rationals in Hardy classes

Hardy class of D, hilbertian case:

H2 = H2(D) = {f analytic in D , sup
r<1

‖f ‖L2(Tr ) <∞}

and meromorphics:

H2
n = H2

n(D) = { h

qn
, h ∈ H2 , qn(z) =

n∏
j=1

(z − ηj) , ηj ∈ D}

= H2 + rational with less than n poles all in D



Best L2 rational approximation

fp|T → rn ∈ H2
n , best L2(T) meromorphic approximant deg. ≤ n

min
h/q∈H2

n

‖f 2
p −

h

q
‖L2(T) = Ψn → rn =

hn

qn

f 2
p ' rn and poles (0 of qn) → singularities of fp

existence and constructive results, parametrization, gradient
algorithms (local minima...) [Miaou-Apics]

(also H∞n , [Nehari, AAK, Hankel op.] and H l
n , 2 < l <∞, [LB+FS], matrices,...)



3D sources on 2D slice
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Behaviour of poles on 2D slice

n = 9
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Behaviour of poles on 2D slice

n = 15
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Behaviour of poles on 2D slice

AAK, n = 21
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Algorithms... → ∪pDp → B

• g = u|S , φ = ∂nu|S → f|S
• for each p, −P ≤ p ≤ P, 2D:

• → f 2
p (rp ξ) on T

• best meromorphic approximation on T,
(ARL2) [Apics], Matlab: iterate a gradient algorithm from n = 0 to
Ψn ' 0: n ≥ m → rn poles accumulate to {ξk,p}k

(or AAK; also Endymion, C++)

• sort out aligned (ξk,p)p, then // ξk

• for each k, find p∗ such that |ξk,p∗ | = maxp |ξk,p|:
ξk,p∗ = ξk → xk , yk and zp∗ = zk

−→ Ck



2 dipoles, n = 6



Numerical computations, example (EEG)

True source C • localized by best L2 rational approximation •

explicit data (BEP) solution
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Numerical computations, example (EEG)

Several sources • localized by best L2 rational approximation •
(explicit data)

degree: n = 3 6 12



1 dipole, numerical data (Odyssée), n = 3
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2 dipoles, numerical data (Odyssée), n = 2

sections p ⊥ 0y , 0z
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Triple poles degree 3 n, n = 3
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More realistic geometries
Ellipsoids (ellips. harmonics) [JuL&al]

1 source 6 poles
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more generally? 3D domains of boundary ψ(x, y, z) = 1 such that {x + iy , ψ(x, y, zp) = 1} = φp(e iθ) where

φp conformal and rational (sections = quadrature domains)



Comments, conclusion

Under study / to be done:

• EEG: pre-/post-treatments + (BEM) + approx. on sections
→ FindSources3D software [RB, Apics+Odyssée]

(Sphere2Circle, orient. spherical harmo., moments computation, several sections)

• → experimental EEG data (electrodes)?

• add MEG model and data (also martian rocks [W])

• other geometries (3D: 1/2-ellipsoid+1/2-sphere? 2D: quadrature domains)

• 3D (BEP) from partial data (computational issues / spherical harmo.)

• approx. / multiple poles and multipolar expansions [Bail.&al]

distributed sources (small supports [Vo])

• variable conductivity, Beltrami equation (for plasma confinment in tokamak)

• inverse problem of conductivity recovery (EIT)

• geodesy... and inverse pbs for gravitational potential

+ various elliptic inverse pbs / related approximation, geometrical IP for corrosion detection or plasma recov.

(unknown boundary part, Bernoulli), 3D / quaternionic approximation?
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