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The Problem
 A gravitational antenna is a detector dominated by the 

noise

 The main part of this noise (when the detector is well-
behaved) is gaussian and almost stationary, i.e. 
stationary on a certain time scale

 Summed to this gaussian noise there are also 
“disturbances” (mainly pulses or spectral lines). This 
part of noise is intrinsically non-stationary and 
difficult to model

 The basic problem is to describe, simulate and manage 
(filter) the gaussian noise.



Virgo h spectral density

 To show the gaussian noise characteristics of a 
gravitational antennas, we compute the square root 
of the power spectrum of the noise observed at the 
output of the detection system, as it was caused by 
gravitational waves.

 The power spectrum is the Fourier transform of the 
autocorrelation.

 Because of the Wiener-Kinchin teorem, it can be 
computed by a mean of many periodograms. (A 
periodogram is the absolute value of a segment of data 
{x1, x2,…,xN})



Virgo h spectral density



Basic results for gaussian processes

 The model of the gaussian noise is a zero-mean 
gaussian stochastic process

 A gaussian stochastic process is completely described 
by the second-order distribution function 

or, else, by the autocorrelation function 

in case of stationarity, the autocorrelation depends 
only on the difference  τ=t2-t1 , so 

     1 2 1 2,xxR t t E x t x t   

     xxR E x t x t     



Basic results for gaussian processes (cont)

 The power spectrum is the Fourier transform of the 
autocorrelation, and often it is more convenient (and 
more easy to understand) to use the power spectrum 
instead of the autocorrelation

 To summarize:

A gaussian stochastic process is completely 
defined if the power spectrum is given



Gaussian processes and linear systems

 Any linear operation on a gaussian process produces a 
gaussian process

 So, if a gaussian process x, defined by the power spectrum 
Sx(ω), passes through a linear system with transfer function 
F(jω), it produces a gaussian process y with power 
spectrum

If the input noise is white,

      2| |y xS S F j   

    2| |yS k F j  



Gaussian processes and linear systems

 To summarize:

Any gaussian process can be modeled as the 
output of a proper linear system at whose input 
there is white gaussian noise.

And now let us see the systems. Because we use 
sampled data, the systems we are interested in are the 
discrete time systems, typically described by a 
difference equation.



Discrete-time linear system

A discrete-time system is a system that operates on discrete time 
sequences. If it is “linear”, it is completely described by the pulse 
response, i.e. the response to a “discrete delta”, a sequence {si} 
composed by all zeros and a 1 at i = 0. 

If {fi} is the pulse response, the output sequence to an input sequence {xi}  
is

Note that the system can be a-causal.

We have neglected the initial “status” (we consider it null).
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z-transform
The z-transform is a very useful instrument to study linear discrete-time system. 

The z-transform of a sequence {xi}  is

where z is a complex variable.

There are some similarities with the Laplace transform. As the variable s of the 
Laplace transform can be seen as the transform of the derivative operator, the 
variable z can be seen as the transform of the advance operator (and z-1 as the 
delay operator). So if the sequence is seen as the time function 

its Laplace transform is                  simply substituting                 .

Note that the frequency axis, that is the imaginary part of s, becomes the unit 
circle in the z plane.
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General linear difference equation

A linear discrete-time system can be described  also by the equation

Where {xi} is the sequence of the input and {yi}  is the sequence of the output.

Remembering the definition of  z-transform, we put

And we have
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Transfer function
We can reshape the equation as

and we have the (z domain) transfer function:

This is a division between two polynomials. If we perform this division, we obtain

that is the pulse response of the system and the inverse transform of the transfer 
function.
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The frequency response

Because the relation between z and s, we easily solve the 
problem of the frequency response of the system: 
simply compute the transfer function on the unit 
circle, putting                         . 

So
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The MA (moving-average) model

If the dependence on the past outputs is absent, the system equation is

and the transfer function have only the numerator, i.e. 

These systems are called FIR (finite impulse response) or MA systems. 
The impulse response is given by the m+1 coefficients.
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Particular case of MA system: 
first order, b0=1, b1=-1

1i i iy x x  

normalized frequency normalized frequency

Here and in some subsequent slide the absolute value and the phase of the 
transfer function is shown



Particular case of MA system:
N-1 order, simple mean
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Nyquist diagram
(polar coordinates)

On the axis there is the real and imaginary part of the transfer function



The AR (auto-regressive) model

If the output depends only on the present input and some of the past 
outputs, i.e. we have

and the transfer function is 

the system is called IIR (infinite impulse response) or AR.
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Particular case of AR system:
first order, -1 < a1 < 0   a1=-w
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Particular case of AR system:
first order, -1 < a1 < 0   a1=-w=0.9

Note that the normalized frequency arrives at 0.5



Particular case of AR system:
first order,  a1=-w complex   
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Particular case of AR system:
first order,  a1=-w complex (cont.)

Note that the normalized frequency arrives at 1

0 1, 0.95, 36b r      



Particular case of AR system:
second order,  two poles complex conjugate
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Simple ARMA filter: the high pass
one pole, one zero
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Operations on systems

 Two or more systems can be put “in series”, obtaining a 
new system whose transfer function is the product of 
the transfer functions

 Two or more systems can be put “in parallel”, obtaining 
a new system whose transfer function is the sum of the 
transfer functions

 One system can be “inverted”, taking as the inverse the 
system that has the inverse of the transfer function of 
the given system: the series of a system and its inverse 
is the identity system



Linear systems with white noise at the input
first order AR system, w>0

 In this case we have a so-called “first-order” process, with exponential 
autocorrelation and lorentzian zero centered spectrum

b0=1, a0=1, a1=-0.99

Autocorrelation spectrum



Linear systems with white noise at the input
first order AR system, w>0

First order process

a piece of the 
created process



Linear systems with white noise at the input
second order AR system, complex conjugate poles

Second order process

Autocorrelation Spectrum



Linear systems with white noise at the input
second order AR system, complex conjugate poles

a piece of the 
produced data

time samples



The synthesis problem

How to construct a system such that if we put a white 
gaussian noise at its input, we have at the output a 
normal stochastic process with given spectrum ?

 AR systems (by Yule and Walker equation, starting from 
the autocorrelation)

 MA systems  (operating in the frequency domain, 
starting from the power spectrum)



Toward the Yule and Walker equations

Consider the AR equation

now multiply the left and right members for yi-k and take the expected 
value. 

We have, for the definition of autocorrelation and because E[xiyi-k]=0 for 
k>0 ,

and putting  rk = Rxx(k), we have, for  1 ≤ k ≤ n ,
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The Yule and Walker equations
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and we can obtain the AR coefficients.
The symmetric matrix is of the Toeplitz type and the system 
can be solved by the Levinson and Durbin algorithm.

The problems arise if we don’t have the autocorrelation, but an 
estimation of the autocorrelation, with estimation errors, and 
this is particularly delicate if the number of coefficients is high.



The real data (power spectrum)



The real data (autocorrelation)



The real data
 Note the complexity of the spectrum. It is not just a simple 

collection of first order processes and a certain number of 
lorentzian peaks.

 On the other hand the complexity of the spectrum, 
uniformly scattered on the frequency axis, affects the 
autocorrelation mostly on the low amplitude samples of 
the autocorrelation.

 If there is also a little estimation error (unavoidable 
anyway, also for the non-stationarities), the computation of 
the AR coefficients can have big errors and the computed 
system can be also unstable.



MA model and frequency domain operations

 An alternative way to operate is to consider a (much more) complex 
MA model, i.e. a model with a very big number N of coefficients (also 
more then 106)

 This would need high computer power , but the use of the frequency 
domain operation (with the use of the FFT) reduce drastically this 
needs (for each sample we have a computing time proportional to 
log(N) instead of N).

 Operating in the frequency domain means that a convolution is 
substituted by a scalar product.

 Operating in the frequency domain also the computation of the MA 
coefficients is easy, derived in a simple way from the noise power 
spectrum.



MA model and frequency domain operations

 With the frequency domain operation, it is easy to construct non-causal, 
non de-phasing systems, that are often useful. This is accomplished using 
systems that are symmetric in t in the pulse response.

 One of the problems of operating in the frequency domain is that we have 
to operate on pieces (segments) of data and not in a continuous way

 The segments of data are seen as “rings”, so the filter in the time domain 
should have (typically) at least half of the values null (typically the central 
part) and (in this case) only the central part of the output segment is 
correctly processed.

 For this reason we need to take segments interlaced by the half, and for 
each segment only the half central part



Example of simulation with frequency 
domain MA system 

input spectrum

h-density of the 
produced data



Example of simulation with frequency domain 
MA system 

(log of h-density)



Example of simulation with frequency domain 
MA system 

(autocorrelation) 



Discrete time system operations

 The discrete systems we described can be used not 
only to model (or simulate) a gaussian stochastic 
process, but also to do a variety of operations on them, 
often called “filtering” .

 This can be done indifferently with MA or AR (or FIR 
or IIR) systems. And, obviously, in the time or 
frequency domain.



Filtering: whitening filter

 A filter that is sometimes useful is the whitening filter, 
that it is used to “equalize” in the frequency domain 
the gaussian noise.

 If the power spectrum is S(ω), the “generator” system 
is

 The whitening filter, in the frequency domain, is
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Filtering: Wiener filter

 In some cases we need the Wiener filter to estimate 
the innovation process. This filter is

for this reason, in the Virgese dialect it is called 
“double whitening”
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Filtering: matched filter



Filtering: anti-aliasing filter

 In order to reduce the sampling time, e.g. from 20 kHz to 4 kHz, we 
must use an anti-aliasing filter.

 This can be done by a Butterworth filter (an ARMA (6,6) low-pass filter, 
red) or by a frequency domain filter (16384 points, blue). Here are the 
results:

modulus of the 
transfer function

Note:  the butterworth
filter heavily dephases, the 
frequency domain filter is 
0-phase

http://grwavsf.roma1.infn.it/PSS/reports/FrDom-AA.pdf



Non-linear operations: resampling

 In the frequency domain we can also perform non-linear 
operations. 

 An example is the method used in Virgo in order to pass 
from 20 kHz of sampling time to 16384 and 4096.

 See the reports

 http://grwavsf.roma1.infn.it/PSS/reports/rep_res_1.pdf

 http://grwavsf.roma1.infn.it/PSS/reports/rep_res_1.pdf



Other uses of the AR systems for the gravitational 
wave detection

 An important feature of the gravitational wave 
antenna noise is that it is not stationary and the non-
stationarities are not easily modeled.

 In order to construct better estimators of various 
characteristics of the noise, we can construct AR 
estimators, defined with a given “τ” (or “memory”, or 
“length of stationarity”).



Example: AR(1) estimation of the power spectrum

 If we compute a series of periodograms of subsequent  
segments of data Pi(ω), if the process is stationary within a 
time scale of τ,  the estimation of the (varying) power 
spectrum can be done in the following way:

 A similar thing can be done with many type of estimation 
(mean, variance, frequency distribution,…).
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Example: AR(1) estimation of the power spectrum



Example: power spectrum innovation

 Sometimes the estimation of the spectral innovation is 
very useful. It can be computed from the previous 
estimation of the power spectrum in the following 
way:

or

It shows what is the spectrum variation.
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Power spectrum innovation



Example: adaptive threshold event finder

 If we do an AR estimation of the mean and of the 
standard deviation, we can compute an adaptive 
threshold in order to search for events with fixed CR 
(critical ratio).


