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Introduction

Bien que leurs outils d’analyse et de calcul soient en grande partie communs, les scientifiques
travaillant dans les trois axes que regroupe le colloque (Problèmes Inverses, Contrôle, Optimi-
sation de Formes) n’ont que peu d’opportunités de réunion, d’échange et de confrontation de
points de vue. C’était le constat fondateur de PICOF, qui veut d’abord être un lien régulier,
susceptible de favoriser les synthèses ainsi que de susciter et d’approfondir les collaborations.
Il a l’ambition de conforter ainsi son statut de manifestation d’envergure internationale sur ce
sujet dans l’espace francophone, en particulier méditerranéen.

Cette troisième édition du Colloque, faisant suite à celles tenues à Carthage (Tunisie) en
1998 et en 2002, s’inscrit dans la fidélité aux objectifs et à l’esprit initiaux, en même temps
qu’elle marque une nouvelle étape dans la poursuite de ces objectifs.

Fidélité aux origines, puisque le colloque reste un événement à dimension humaine, sans ses-
sions parallèles pour que tous les participants puissent s’écouter et échanger, largement ouvert
aux jeunes aussi bien par le biais des conférences invitées que par celui de la « session posters »
nouvellement introduite, ainsi qu’à la coopération scientifique sur le pourtour méditerranéen en-
fin. Mais il s’agit aussi d’une nouvelle étape, puisque le colloque adopte une fréquence biennale,
et qu’il se tiendra désormais à tour de rôle sur chacune des deux rives du bassin méditerranéen,
afin de mieux tenir son rôle d’aiguillon d’une coopération Nord-Sud au meilleur niveau. La
manifestation se veut de la sorte pleinement engagée dans le développement conjoint des math-
ématiques appliquées sur le pourtour de la Méditerranée. A cet égard, le colloque ne constitue
que la figure de proue d’un dispositif permanent d’échanges, mis en place depuis plusieurs an-
nées déjà, dispositif qui concerne autant les scientifiques confirmés que les plus jeunes et dont le
potentiel de progression demeure très important.

Le cru 2006 de PICOF, matérialisé par l’ouvrage que vous tenez entre les mains, s’annonce
à cet égard d’une qualité rare. Les quelques 34 conférences et posters couvriront largement le
spectre des problèmes inverses, du contrôle et de l’optimisation de formes. Ils en balayeront les
aspects théoriques d’existence, d’unicité, de stabilité, de contrôlabilité, aussi bien que les aspects
de la modélisation dans de multiples domaines applicatifs, sans oublier les aspects algorithmiques
et les méthodes numériques qui deviennent, le travail des chercheurs et le développement des
moyens de calcul aidant, de plus en plus effectives.

Les organisateurs de la conférence sont ravis de la transformation des deux essais de 1998
et de 2002 que la présente session constitue. Nous la devons en premier lieu aux conférenciers
qui ont accepté notre invitation, au travail rigoureux des membres du Comité Scientifique, et
en particulier à celui de son président Jacques Blum, ainsi qu’aux efforts et au dévouement des
membres du Comité d’Organisation. Nous la devons également à l’appui apporté par les trois
institutions organisatrices : ENIT (École Nationale d’Ingénieurs de Tunis), INRIA (Institut Na-
tional de Recherche en Informatique et Automatique) et UNSA (Université de Nice-Sophia An-
tipolis), ainsi que par le Conseil Régional PACA (Provence-Alpes-Côte d’Azur), l’AUF (Agence
universitaire de la francophonie), le CIMPA (Centre International de Mathématiques Pures et
Appliquées), le MAE (Ministère Français des Affaires Étrangères) et le Conseil Général des
Alpes Maritimes. Que toutes et tous trouvent ici l’expression de notre profonde gratitude.

Les Présidents de PICOF’06

Henda El Fekih Mohamed Jaoua Juliette Leblond
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Introduction

Although sharing numerous analytical and computational tools, the researchers involved
in the three topics of the conference seldom meet and exchange ideas in conferences. This
established fact was the reason for founding PICOF, which aims to constitute a steady link,
capable of fostering syntheses and partnerships, and to consolidate its position as the main
conference on these topics in the French-speaking area.

Following the two first meetings, which were held in Carthage, Tunisia, in 1998 and 2002,
the present one, though characterized by its faithfulness to the initial spirit and goals of the
Conference, shows a new step in pursuing these objectives.

Loyal to its original spirit, the Conference remains at a personal level, with no parallel
sessions, in order to allow all those attending to listen to each other and to exchange ideas. It
also remains open to younger researchers, through the invited conferences as well as the newly
created poster session. Finally, it is still widely open to cooperative action between scientists
from all around the Mediterranean sea.

On the other hand, the present meeting also represents a new move towards effectiveness,
by adopting a 2-year periodicity, and by crossing for the first time the Mediterranean sea, to
be held in turn on its Northern and Southern shores, in order to better fulfill its role as a
spearhead of a North/South partnership at the highest possible level. Besides conforming to
the highest scientific standards, the conference is fully concerned with the joint development of
Applied Mathematics all around the Mediterranean sea. It is actually the figurehead of a full
arrangement, that has been set up for a few years, including a collection of tools intended to
promote scientific exchanges, with a special focus on young researchers.

As evidenced by the booklet you have in your hands, the 2006 PICOF crop seems to be
exceptional. The 34 conferences and posters will cover the whole range of inverse problems,
control and shape optimization. They will deal with theoretical aspects related to existence,
uniqueness, stability, and controllability. They will also take care of the modeling aspects in
several areas of applications, as well as the algorithmic aspects and those related to numerical
methods, which are becoming more effective every day, thanks to the work of researchers and
the development of computing power.

The organizers are clearly delighted that this meeting continues in this way from the first
two experiments of Carthage 1998 and 2002. We owe this in the first instance to the guest
speakers who accepted the invitation, to the Scientific Commitee’s rigorous work, and especially
that of its President, Jacques Blum, as well as to the efforts and devotion of the Organization
Committee members. We also owe it to the support of three organizing institutions: ENIT
(École Nationale d’Ingénieurs de Tunis), INRIA (Institut National de Recherche en Informa-
tique et Automatique) and UNSA (Université de Nice-Sophia Antipolis), as well as the support
of the Conseil Régional PACA (Provence-Alpes-Côte d’Azur), AUF (Agence universitaire de
la francophonie), CIMPA (International Centre for Pure and Applied mathematics), the MAE
(Foreign Affairs French Ministry) and the Conseil Général des Alpes Maritimes To all of them,
we here express our deep gratitude.

The Chairs of the Conference

Henda El Fekih Mohamed Jaoua Juliette Leblond
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Stability and Reconstruction for the
determination of nonlinear corrosion
Giovanni Alessandrini 1 Eva Sincich2

We shall discuss an inverse boundary value problem arising in corrosion detection. The aim
of such a problem is to determine a nonlinear term in a boundary condition, which models the
possible presence of corrosion damage, by performing a finite number of current and voltage
measurements on the boundary. The physical problem is modeled as follows. A bounded
Lipschitz domain Ω in Rn represents the region occupied by the electrostatic conductor which
contains no sources and no sinks and this is modeled by the Laplace operator, so that the voltage
potential u satisfies

∆u = 0 in Ω. (1.1)

The simplified model of corrosion appearance reduces to the problem of recovering a coefficient
ϕ = ϕ(x) in a linear boundary condition of the type

∂u

∂ν
= −ϕu, (1.2)

where ν is the outward unit normal at the boundary and ϕ ≥ 0 is the so-called Robin coefficient.
The study of such a problem has been developed by many authors, among them we mention
Alessandrini, Del Piero, Rondi [1], Chaabane, Fellah, Jaoua, Leblond [6, 7, 8] and Fasino and
Inglese [11, 12, 13].

A more accurate model of corrosion requires a nonlinear relationship between voltage and
current density on the corroded surface. A model of this kind, known as the Butler and Volmer
model, postulates the boundary condition

∂u

∂ν
= λ(exp(αu)− exp(−(1− α)u)). (1.3)

Such a nonlinear boundary value problem, has been recently discussed by Bryan, Kavian,
Vogelius and Xu in [5, 16, 24]. The authors have examined the questions of the existence and
the uniqueness of the solution of the problem with a given nonlinearity of the type (1.3).

In the following we shall consider a more general choice of the nonlinear profile, namely of
the form

∂u

∂ν
= f(u) , (1.4)

1alessang@univ.trieste.it
2esincich@sophia.inria.fr

1



2 Giovanni Alessandrini & Eva Sincich

and we shall deal with the inverse problem of determining the nonlinear term f in the boundary
value problem 

∆u = 0 in Ω,
∂u

∂ν
= g on Γ2,

∂u

∂ν
= f(u) on Γ1,

u = 0 on ΓD.

(1.5)

Let us now give the formulation of our problem. We assume that the boundary of the
conductor, which is modeled by the domain Ω, is decomposed in three open, nonempty and
disjoint portions Γ1,Γ2,ΓD, one of which, say Γ2, is accessible to the electrostatic measurements,
whereas the portion Γ1, where the corrosion takes place, is out of reach. The remaining portion
ΓD, which separates Γ1 from Γ2, is assumed to be grounded. The inverse corrosion problem
thus consists in the determination of f when one pair of Cauchy data {u|Γ2 ,

∂u
∂ν |Γ2} is available

on the accessible portion Γ2 of the conductor.
Since the direct problem (1.5) might not be well-posed, it seems natural to require an a priori

energy bound on the electrostatic potential u within the conductor,∫
Ω
|∇u(x)|2 ≤ E2 . (1.6)

Next, we require an a priori bound of the Lipschitz continuity of f , namely

|f(u)− f(v)| ≤ L|u− v| , for every u, v ∈ R . (1.7)

Moreover, we shall assume the knowledge of some additional information on the measured current
density g on the accessible part of the boundary Γ2. More precisely, we assume a bound on the
Hölder continuity of g

‖g‖C0,α(Γ2) ≤ G . (1.8)

Also, we shall require a lower bound on the same current density g. Namely, we shall prescribe
that, for a given inner portion Γ2r0

2 of Γ2, and a given number m > 0, we have

‖g‖
L∞(Γ

2r0
2 )

≥ m > 0 . (1.9)

It has to be noticed that, since one can expect to identify the corrosion profile f only on the
range of values taken by the voltage potential u on the corroded part of the boundary and since
it is not a priori given, it follows that the unknown of the problem are indeed the domain upon
which f may be determined, beyond the profile f on such a domain. Thus in [2], as preliminary
step of the treatment of this inverse problem, we proved a lower bound on the oscillation of u
on Γ1, namely

osc
Γ1

u ≥ const. exp
(
−
(
const. m

)−γ
)
, (1.10)

where γ is a positive exponent such that γ > 1.
Next, as the main result achieved in [2], we showed that if u1 and u2 are two potentials

corresponding to nonlinearities f1 and f2 whose Cauchy data are close

‖u1 − u2‖L2(Γ2) ≤ ε ,∥∥∥∥∂u1

∂ν
− ∂u1

∂ν

∥∥∥∥
L2(Γ2)

≤ ε ,
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then the ranges of u1 and u2 on Γ1 agree on an interval V , such that

length of V ∼ exp
[
−
(
m

c

)−γ]
. (1.11)

On such an interval the nonlinearities f1 and f2 agree up to an error of the type∣∣∣∣log
(

1
ε

)∣∣∣∣−θ

, (1.12)

where 0 < θ < 1.

For what concerns the reconstruction issue, let us recall that we shall term reconstruction the
inverse problem of the approximate identification of the nonlinear term f by the approximate
electrostatic measurements {u|Γ2 ,

∂u
∂ν |Γ2}, u being the solution to (1.5). Indeed the Cauchy data

will be affected by errors since they are given by finitely many samples. Thus, as a consequence,
we can expect to recover the nonlinearity f only in an approximate manner.

In this setting the stability analysis just discussed, can be understood as a preliminary result
for the reliability of the reconstruction procedure.

Since the main cause of the ill-posedness of such an inverse problem relies on the solution of
a the severely ill-posed Cauchy problem with Cauchy data {u|Γ‘2 ,

∂u
∂ν |Γ2}, in [3] we have proposed

a method for the approximate resolution of the Cauchy problem. Such a method is based on the
reformulation of the Cauchy problem to a regularized inversion of a suitable compact operator,
fitting our problem in the widely developed theory of regularization for equations of the first
kind. Indeed, with appropriate reductions of the problem, we proved that the operator that maps
the unknown Cauchy data on Γ1 into the Cauchy data on Γ2, is compact. Such a compactness
result is strongly based on well-known regularity property for solution of elliptic equations. This
reformulation allows the method of singular value decomposition and the approximate inversion
by the technique of Tikhonov regularization.

Let us mention the most recent contributions to the approximate solution of the Cauchy
problem due to Berntsson, Cheng, Eldén, Elliott, Engl, Fomin, Hào, Heggs, Hon, Ingham,
Kabanikhin, Karchevskĭi, Kozlov, Marin, Maz’ya, Leit˜ao, Lesnic, Maz’ya, Wei, [4], [9], [10],
[14], [15], [18], [19], [20], [21], [22].

Finally we suggested an approximate expression of the nonlinearity f . Indeed by a formal
computation we selected a candidate minimizer of the so-called best-fit functional and we proved,
under further a priori assumptions, the pointwise convergence of such candidate minimizers to
the exact nonlinearity f (see [23]).
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Shape and Topology Optimization
by the Level Set Method

Grégoire Allaire1 François Jouve2

2.1 Introduction

Numerical methods of shape and topology optimization based on the level set representation and
on shape differentiation make possible topology changes during the optimization process. But
they do not solve the inherent problem of ill-posedness of shape optimization which manifests
itself in the existence of many local minima, usually having different topologies. The reason is
that the level set method can easily remove holes but can not create new holes in the middle
of a shape. In practice, this effect can be checked by varying the initialization which yields
different optimal shapes with different topologies. This absence of a nucleation mechanism is an
inconvenient mostly in 2-d: in 3-d, it is less important since holes can appear by pinching two
boundaries.

In [1] we have proposed, as a remedy, to couple our previous method with the topological
gradient method (cf. [5][6][7][13]). Roughly speaking it amounts to decide whether or not it is
favorable to nucleate a small hole in a given shape. Creating a hole changes the topology and is
thus one way of escaping local minima. Our coupled method of topological and shape gradients
in the level set framework is therefore much less prone to finding local, non global, optimal
shapes. For most of our 2-d numerical examples of compliance minimization, the expected
global minimum is attained from the trivial full domain initialization.

2.2 Setting of the problem

We restrict ourselves to linear elasticity. A shape is a bounded open set Ω ⊂ Rd (d = 2 or 3)
with a boundary made of two disjoint parts ΓN and ΓD, submitted to respectively Neumann
and Dirichlet boundary conditions. All admissible shapes Ω are required to be a subset of a
working domain D ⊂ Rd. The shape Ω is occupied by a linear isotropic elastic material with
Hooke’s law A defined, for any symmetric matrix ξ, by Aξ = 2µξ + λ

(
Tr ξ

)
Id, where µ and λ

are the Lamé moduli. The displacement field u is the solution of the linearized elasticity system
−div (Ae(u)) = f in Ω

u = 0 on ΓD(
Ae(u)

)
n = g on ΓN ,

(2.1)

1gregoire.allaire@polytechnique.fr
2francois.jouve@polytechnique.fr
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where f ∈ L2(D)d and g ∈ H1(D)d are the volume forces and the surface loads. If ΓD 6= ∅,
(2.1) admits a unique solution in u ∈ H1(Ω)d. The objective function is denoted by J(Ω). In
this paper, only the compliance will be considered:

J(Ω) =
∫

Ω
f · u dx+

∫
ΓN

g · u ds =
∫

Ω
Ae(u) · e(u) dx. (2.2)

To avoid working on a problem with a volume constraint, we introduce a Lagrange multiplier `
and consider the minimization

inf
Ω⊂D

L(Ω) = J(Ω) + `|Ω|. (2.3)

2.3 Shape derivative

To apply a gradient method to the minimization of (2.3) we recall the classical notion of shape
derivative (see e.g. [9][12]). Starting from a smooth open set Ω, we consider domains of the type
Ωθ = (Id + θ)(Ω), with Id the identity mapping of Rd and θ a vector field in W 1,∞(Rd,Rd).

Definition 2.1 The shape derivative of J at Ω is defined as the Fréchet derivative at 0 of the
application θ → J

(
(Id + θ)(Ω)

)
, i.e.

J
(
(Id + θ)(Ω)

)
= J(Ω) + J ′(Ω)(θ) + o(θ) with lim

θ→0

|o(θ)|
‖θ‖

= 0 ,

where J ′(Ω) is a continuous linear form on W 1,∞(Rd,Rd).

We recall the following classical result (see [3] and references therein).

Theorem 2.1 (shape derivative for the compliance) Let Ω be a smooth bounded open set
and θ ∈ W 1,∞(Rd; Rd). If f ∈ H1(Ω)d, g ∈ H2(Ω)d, u ∈ H2(Ω)d, then the shape derivative of
(2.2) is

J ′(Ω)(θ) =
∫

ΓN

(
2
[
∂(g · u)
∂n

+Hg · u+ f · u
]
−Ae(u) · e(u)

)
θ · nds

+
∫

ΓD

Ae(u) · e(u) θ · nds,
(2.4)

where H is the mean curvature defined by H = div n.

2.4 Topological derivative

One drawback of the method of shape derivative is that no nucleation of holes inside the domain
are allowed. Numerical methods based on the shape derivative may therefore fall into a local
minimum. A remedy to this inconvenience has been proposed as the bubble method, or topo-
logical asymptotic method, [6], [7], [13]. The main idea is to test the optimality of a domain to
topology variations by removing a small hole with appropriate boundary conditions.

Consider an open set Ω ⊂ Rd and a point x0 ∈ Ω. Introduce a fixed model hole ω ⊂ Rd,
a smooth open bounded subset containing the origin. For ρ > 0 we define the translated and
rescaled hole ωρ = x0 + ρω and the perforated domain Ωρ = Ω \ ω̄ρ. The goal is to study the
variations of the objective function J(Ωρ) as ρ→ 0.
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Definition 2.2 If the objective function admits the following so-called topological asymptotic
expansion for small ρ > 0

J(Ωρ) = J(Ω) + ρdDTJ(x0) + o(ρd),

then DTJ(x0) is called the topological derivative at point x0.

If the model hole ω is the unit ball, the following result gives the expression of the topological
derivative for the compliance J(Ω) with Neumann boundary conditions on the hole in 2d (see
[7], [13]).

Theorem 2.2 Let ω be the unit ball of R2. If f = 0, g ∈ H2(Ω)2 and u ∈ H2(Ω)2, then
∀x ∈ Ω ⊂ R2, if C2 = π(λ+ 2µ)/(2µ(λ+ µ)),

DTJ(x) = C2

{
4µAe(u) · e(u) + (λ− µ) Tr(Ae(u))Tr(e(u))

}
(x).

The above expression is nonnegative. This means that, for compliance minimization, there is
no interest in nucleating holes if there is no volume constraint. However, if a volume constraint
is imposed, the topological derivative may have negative values due to the addition of the
term −`|ω|. For the minimization problem (2.3), the corresponding topological gradient is
DTL(x) = DTJ(x) − `|ω|. At the points where DTL(x) < 0, holes are introduced into the
current domain.

2.5 Level set method for shape optimization

Consider D ⊂ Rd a bounded domain in which all admissible shapes Ω are included, i.e. Ω ⊂ D.
Following the idea of Osher and Sethian [10], the boundary of Ω is represented by means of a
level set function ψ such that ψ(x) < 0 ⇔ x ∈ Ω. The normal n to the shape Ω is recovered as
∇ψ/|∇ψ| and the mean curvature H is given by div (∇ψ/|∇ψ|).

During the optimization process, the shape Ω(t) is going to evolve according to a fictitious
time parameter t > 0 which corresponds to descent stepping. The evolution of the level set
function is governed by the following Hamilton-Jacobi transport equation [10]

∂ψ

∂t
+ V |∇ψ| = 0 in D, (2.5)

where V (t, x) is the normal velocity of the shape’s boundary. The choice V is based on the
shape derivative computed in Theorem 2.1

L′(Ω)(θ) =
∫

∂Ω
v θ · nds, (2.6)

where the integrand v(u, n,H) depends on the state u, the normal n and the mean curvature
H. The simplest choice is to take the steepest descent θ = −vn. This yields a normal velocity
for the shape’s boundary V = −v. Another choice consists in smoothing the velocity field vn
by applying the Neumann-to-Dirichlet map to −vn. The method described in details in [8] is
used in the numerical computations.

The main point is that the Lagrangian evolution of the boundary ∂Ω is replaced by the
Eulerian solution of a transport equation in the whole fixed domain D. Likewise the elasticity
equations for the state u are extended to the whole domain D by using the so-called “ersatz
material” approach. The Hamilton-Jacobi equation (2.5) is solved by an explicit upwind scheme
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(see e.g. [11]) on a Cartesian grid with a time stepping satisfying a CFL condition. To regularize
the level set function (which may become too flat or too steep), it is periodically reinitialized
by solving another Hamilton-Jacobi equation which admits, as a stationary solution, the signed
distance to the initial interface [11].

2.6 Optimization algorithm

For the minimization problem (2.3) we propose an iterative coupling of the level set method and
of the topological gradient method. Both methods are gradient-type algorithms, so our coupled
method can be thought of as an alternate directions descent algorithm.

The level set method relies on the shape derivative L′(Ω)(θ) of Section 2.3, while the topo-
logical gradient method is based on the topological derivative DTL(x) of Section 2.4. These two
types of derivative define independent descent directions that we simply alternate as follows.

In a first step, the level set function ψ is advected according to the velocity −v. Then, holes
are introduced into the current domain Ω where the topological derivative DTL(x) is minimum
and negative.

Our proposed algorithm is structured as follows:

1. Initialization of the level set function ψ0 corresponding to an initial guess Ω0 (usually the
full working domain D).

2. Iteration until convergence, for k ≥ 0:

(a) Elasticity analysis. Computation of the state uk solving a problem of linear elas-
ticity on Ωk. This yields the shape derivative, the velocity vk and the topological
gradient.

(b) Shape gradient. If mod (k, ntop) < ntop, the current shape Ωk, characterized by
the level set function ψk, is deformed into a new shape Ωk+1, characterized by ψk+1

which is the solution of the Hamilton-Jacobi equation (2.5) after a time interval ∆tk
with the initial condition ψk and a velocity −vk. ∆tk is chosen such that L(Ωk+1) ≤
L(Ωk).

(c) Topological gradient. If mod (k, ntop) = 0, nucleation step: Ωk+1 is obtained by
inserting new holes into Ωk according to the topological gradient.

For details about the shape gradient step and the topological gradient step, we refer to our
previous works [1][2][3].

2.7 A numerical example in 2-d

It is a variation of the classical cantilever, but its optimal solution have a more complex topology.
It consists in a rectangular domain of dimensions 10 × 8 with a square hole whose boundaries
are submitted to an homogeneous Dirichlet boundary condition. The domain is meshed with a
regular 150× 120 grid. Figure 2.1 shows the solution obtained by the algorithm coupling shape
and topological sensitivity, starting from the full domain, with 1 step of topological gradient
every 10 iterations.

The convergence history of Figure 2.2, for different numbers of initial holes, ranging from 0
to 160, gives some hints on the efficiency of the level set method without topological gradient:
first, it confirms that a “topologically poor” initialization cannot convergence to a good solution;
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Figure 2.1: The initial configuration (full domain) and the solution obtained by the level set
method with topological gradient.
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Figure 2.2: Convergence history of the homogenization method, the level set method with topo-
logical gradient (full domain initialization), and the plain level set method with 4 different initial
states.

second, it shows that initializing with “many holes” is not a good idea too. The good strategy lies
in between, but it is generally not easy to find. The topological gradient allows the convergence
to a good solution, starting from the full domain, without the need of adjusting any tricky
numerical parameters. Remark that the solution computed from initialization 3 (22 holes) is
also good, but it has been reached after an history where it had to escape from many local
minima, using the tolerance of the algorithm to small increases of the objective function.
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3-D electromagnetics, asymptotic
models and MUSIC-type imaging of
a collection of small scatterers
Habib Ammari1 Ekaterina Iakovleva2 Dominique Lesselier3

Gaële Perrusson4

3.1 Introduction

We consider a collection of small ellipsoidal electromagnetic inclusions buried within a homoge-
neous medium, with arbitrary contrasts of permittivity, conductivity and permeability vis-à-vis
this embedding medium. We assume that there exists a finite number m of electromagnetic
inclusions, each of the form zj +αBj , where the domains Bj are ellipsoids containing the origin.
The points zj ∈ R3, j = 1, . . . ,m, which determine the location of the inclusions, are assumed
to satisfy the following: |zj − zl| ≥ d0 > 0 for all j 6= l. The value of α, the common order of
magnitude of the diameters of the inclusions, is taken as a small fraction of the wavelength of
the wavefield at the operation frequency (time-harmonic regime), which enables us to speak of
small inclusions.

The collection is illuminated by an planar array (parallel to the xOy plane) of N vertical
electric and/or magnetic dipoles (parallel to the z axis), located at some, not necessary large
distance from it, see Fig. 3.1. (A general configuration is considered in [3].) The resulting electric
and/or magnetic field is collected by the same array as the transmitter one. This procedure yields
the multistatic data response (MSR) matrix that is characteristic of the collection of inclusions
for given sets (e.g., arrays) of transmitters and receivers at the (single) frequency of operation.

Extending our previous works in two-dimensional scalar scattering situations [1, 2] to full
three-dimensional vector electromagnetics, we show how the eigenvalue structure of the multi-
static data response matrix can be employed within the framework of the MUSIC method in
order to retrieve either dielectric inclusions, or magnetic inclusions, or combinations thereof,
with the limiting perfectly electric conductor (PEC) or perfectly magnetic conductor (PMC)
encompassed as well.

In practice one is carrying out two steps: first, the calculation of singular values (and the
corresponding eigenvectors), the number of nonzero ones depending upon the number and the
electromagnetic nature of the inclusions and upon the transmitters and/or receivers’ geometri-
cal arrangement and polarization; second, the orthogonal projection of a properly built vector

1ammari@cmap.polytechnique.fr
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propagator onto the null space of the MSR matrix, coincidence with an inclusion being then
associated to a peak of the inverse norm of the projection, the makeup of the indicator being
itself function of the nature of the inclusions.

In the case of a single triaxial ellipsoidal inclusion with arbitrary semi-axes and location
with respect to the transmitter and receiver arrays, the single vectors and values are exhibited
in closed form. Notice that this also enables us to retrieve as a particular case the results
described earlier by Chambers and Berryman [9] for a lossless dielectric or PEC sphere with
symmetric position with respect to a common transmitter/receiver array.

Let us emphasize here that our MUSIC-type method makes use of asymptotic expansions
of the scattered electric and/or magnetic fields. Starting from application of Green’s theorems
to Maxwell’s equations satisfied by the electromagnetic fields, we formally derive asymptotic
formulations of the scattered electric and/or magnetic fields as series expansions in terms of the
average diameter of the inclusions, here limiting ourselves for simplicity to the leading-order
terms. Such formulations involve the polarization tensors associated to the inclusions. We refer
to the closely related works [4, 6, 7, 8]. As for the use of duality it easily yields the magnetic
counterpart of an electric case and vice-versa.

3.2 The MultiStatic data Response (MSR) matrix

Let µ0 and ε0 denote the magnetic permeability and the electric permittivity of the free space;
we shall assume that µ0, Imm(ε0), and Re e(ε0) are positive constants. Let k = ω

√
ε0µ0 > 0

be the wavenumber, where ω > 0 is a given frequency. Positive real and imaginary parts are
chosen for the square root.

The incident electric field E(n)
0 in a homogeneous medium due to a point-like current density

at the position rn and directed in the êz direction, J (n)
0 (r) = δ(r − rn)êzIln, is given by

E
(n)
0 (r) = iωµ0G(r, rn) · êz Iln, (3.1)

where the constant Iln is the current moment and

G(r, rn) =
[
I +

∇∇
k2

]
eik|r−rn|

4π|r − rn|

is the dyadic Green’s function of the background medium. The magnetic field is given by

H
(n)
0 (r) = ∇×G(r, rn) · êz Iln. (3.2)

The incident field E
(n)
0 interacts with the inclusions and generates a total electric field E

(n)
α

which satisfies the Lippman-Schwinger equation

E(n)
α (rp)− E

(n)
0 (rp) =

m∑
j=1

∫
zj+αBj

dr′
[
− iω (µj − µ0)∇′×G(rp, r′) ·H(n)

α (r′)

+ω2µ0 (εj − ε0)G(rp, r′) · E(n)
α (r′)

]
, (3.3)

where the constants µj and εj denote the permeability and the complex permittivity of the jth
inclusion, zj + αBj , and rp is the location of the pth receiver.
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For ellipsoids much smaller than a wavelength (αk � 1) we can show that

E(n)
α (rp)− E

(n)
0 (rp) = α3

m∑
j=1

[
−iωµ0∇′×G(rp, zj) ·Mµ

j H
(n)
0 (zj)

+k2G(rp, zj) ·M ε
j E

(n)
0 (zj)

]
+O(α4), (3.4)

where M q
j = M q(Bj) is a polarization tensor which, for inclusion Bj , reads in the ellipsoidal

co-ordinate system attached to it as

M q
j =

(
qj
q0
− 1
)mj1 0 0

0 mj2 0
0 0 mj3

 |Bj |,

where the coefficients mjl, l = 1, 2, 3, are equal to q0/(q0 + Ll(qj − q0)), the Ll being the
well-known depolarization factors of the ellipsoid proportional to harmonic elliptic integrals of
degree 1. See [5, 10, 13]. Here {q} denote either the set {µ} or {ε}.

The voltages induced on the pth receiving element can be expressed as

Vp = êz ·
(
E(n)

α (rp)− E
(n)
0 (rp)

)
,

where the perturbation E
(n)
α (rp) − E

(n)
0 (rp) is given by (3.4), in which we have neglected the

asymptotic term of order α4.
In the general case, if all transmitters are simultaneously activated, the raw data measured

at the receivers at the fixed frequency ω are given by

V = AJ,

where V = [V1 . . . VN ]T is a N dimensional linear array of voltages; J = [Il1 . . . IlN ]T is the N
dimensional column vector of applied source excitations and A is the N ×N data matrix called
the multistatic data response (MSR) matrix.

For any point z ∈ R3 \ {r1, . . . , rN}, introduce the matrices gε
z, g

µ
z ∈ CN×3

gε
z = (G(z, r1) · êz . . . G(z, rN ) · êz)T ,

gµ
z = (∇×G(z, r1) · êz . . .∇×G(z, rN ) · êz)T .

We consider separately the following three cases:

case 1: µj = µ0 for all j = 1, . . . ,m; gzj = gε
zj

and Mj = iωµ0 k
2M ε

j .

case 2: εj = ε0 for all j = 1, . . . ,m; gzj = gµ
zj and Mj = iωµ0M

µ
j .

case 3: µj 6= µ0 and εj 6= ε0 at least for one j ∈ {1, . . . ,m}; gzj = [gµ
zj gε

zj
] and

Mj = iωµ0 diag(Mµ
j , k

2M ε
j ).

Then the MSR matrix A decomposes as

A =
m∑

j=1

gzj Mj g
T
zj
.

Now our goal is to estimate the location zj of each inclusion.
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Figure 3.1: Sketch of the configuration under numerical study.

3.3 The MUSIC-type algorithm

Next is a MUSIC characterization of the locations of the electromagnetic inclusions [12, 3].

Proposition 3.1 Let a ∈ Rd \ {0} be such that gz · a 6= 0, for any point z ∈ R3 \ {r1, . . . , rN}.
Then

gz · a ∈ R(AA∗) iff z ∈ {z1, . . . , zm}.

The dimension of the vector a is equal to 3 (cases 1 and 2) and 6 (case 3).

Moreover, it can be shown, that r = rank(gz) = 3 in case 1; r = 2 in case 2 and r = 5 in
case 3.

Let the SVD of the matrix A be defined by A = UΣW ∗. From Proposition 3.1, A has rank
mr. Then the first mr columns of U provide an orthonormal left basis for the image space of
A, denoted by US , and the rest of the matrix U provides the basis for the left null space of
A, denoted by UN . Then the orthogonal projection onto the left null space of A are given by
P = UNU

∗
N . A test point z coincides with one of the positions zj if and only if P (gz · a) = 0.

Thus we can form an image of zj , j = 1, . . . ,m, by plotting, at each point z, the quantity

F (z) =
1

||P (gz · a)||
. (3.5)

The resulting image does not depend on the shape of the inclusions.

3.4 Numerical example of MUSIC reconstructions

The configuration of interest is schematized in Fig. 3.1. One is considering two coincident
transmitter and receiver arrays centered within the plane z = za = 5 and covering a square area
of side 10, both consisting of N = 132 vertical electric dipoles radiating or receiving with unit
amplitudes Il and operated at circular frequency ω = 4 —the corresponding wavelength in the
embedding free space, with as usual unit permittivity and permeability value (ε0 = µ0 = 1), is
λ = π/2. Two identical dielectric prolate spheroidal inclusions z1 + αB1 and z2 + αB2 with size
parameter α = 0.1 and orthogonal orientations (the longest semi-axis of B1 is orientated along
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Figure 3.2: (Dielectric contrasts only): distribution of the singular values of A for 132 singly-
polarized dipolar transmitters and receivers in the case of noisy data with 20dB signal-to-noise
ratio (left); corresponding 3D plots of F (z) (right).

z, the longest one of B2 along x) are to be retrieved within a cubical box Ω = [−1, 1]3 ⊂ R2

assumed situated below the arrays. The points z1 and z2 have the coordinates (.6,−.6,−.1)
and (−.6, .6, .7) respectively. The domains B1 and B2 are characterized by shape equations
x2 + y2 + (z/3)2 = 1 and (x/3)2 + y2 + z2 = 1. Their dielectric permittivities are set to ε1 = 5,
ε2 = 2. (In this purely dielectric cases, the permeabilities are set to 1.)

In terms of the probing wavelength the array step size is about λ/2, i.e., the traditional
half-a-wave-length sampling step. So the sought inclusions lie in the near field of the array,
strongly aspect-limited data (with view angles of 45 degrees or less) being available, whilst one
is facing the severe hypothesis of single polarization electric field data, good amount of noise
being added to them also.

Within the above setting, the retrieval involves the calculation of the SVD of the MSR matrix
A ∈ C169×169. Then, for each discrete location z ∈ Ω (the sampling step is henceforth chosen as
h = 0.06), the identifier of interest is given by (3.5) with a = (1, 1, 1) ∈ R3, which is calculated
within Ω. The plot of z → F (z) illustrates the result achieved. Other accompanying results
displayed consist of the singular values of the MSR matrix A, shown using a standard log scale.
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Sensitivity analysis of spectral
properties of high contrast band-gap
materials

Habib Ammari1 Hyeonbae Kang2 Sofiane Soussi Habib
Zribi

4.1 Problem statement

We investigate the band-gap structure of the frequency spectrum for waves in a high-contrast,
two-component periodic medium. We consider two-dimensional photonic crystals consisting of
a background medium which is perforated by an array of holes periodic along each of the two
orthogonal coordinate axes. We perform a high-order sensitivity analysis with respect to the
index ratio. Our method, which is based on a boundary integral perturbation theory, gives a
new tool for the optimal design problem in photonic crystals.

The photonic crystal we consider consists of a homogeneous background medium of constant
index k which is perforated by an array of arbitrary-shaped holes periodic along each of the two
orthogonal coordinate axes in R2. These holes are assumed to be of index 1, see Figure 4.1.
We assume that the structure has unit periodicity and define the periodic domain Y = R2/Z2,
which can be identified with the unit square [0, 1]2.
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Figure 4.1: Unit cell of the photonic crystal

Suppose α 6= 0. We seek for eigenfunctions u of{
∇ · (1 + (k − 1)χY \D)∇u+ ω2u = 0 in Y,

e−iα·xu is periodic,
(4.1)
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France (ammari@cmapx.polytechnique.fr, soussi@cmapx.polytechnique.fr, zribi@cmapx.polytechnique.fr).

2School of Mathematical Sciences, Seoul National University and RIM, Seoul 151-747, Korea
(hkang@math.snu.ac.kr)
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where χY \D is the indicator function of Y \D. The problem (4.1) can be rewritten as

k∆u+ ω2u = 0 in Y \D,
∆u+ ω2u = 0 in D,

u|+ = u|− on ∂D,

k
∂u

∂ν

∣∣∣
+

=
∂u

∂ν

∣∣∣
−

on ∂D,

e−iα·xu is periodic.

(4.2)

For each quasi-momentum variable α and k, let σα(D, k) be the (discrete) spectrum of (4.1).
Then the spectral band of the photonic crystal is given by⋃

α∈[0,2π]2

σα(D, k).

We shall investigate the behavior of σα(D, k) when k →∞.

4.2 Sensitivity analysis with respect to the index ratio

In this section we give the main result concerning the asymptotic expansion of the eigenvalues
ω2 with respect to the index ratio k.

Using an integral representation formula for the solutions to problem 4.1, we obtain a new
way of looking at the spectrum of 4.1 by examining the characteristic values of a certain operator-
valued function Aα

k . Expanding this operator-valued function in terms of k:

Aα
k (ω) =


Aα

0 (ω) +
+∞∑
l=1

1
kl
Aα

l (ω) if α 6= 0,

k

ω2

(
0 −

∫
∂D ·

0 0

)
+A0

0(ω) +
+∞∑
l=1

1
kl
A0

l (ω) if α = 0,

we calculate asymptotic expressions of its characteristic values with the help of the generalized
Rouché’s theorem [1].

The following theorem holds.

Theorem 4.1 Suppose α 6= 0. Let ω2
0 be a simple eigenvalue of the Dirichlet-Laplacian in D.

Then, there exists a unique eigenvalue (ωα
k )2 of problem (4.1), such that (ωα

k ) converges to ω0

as k → +∞. Moreover, we have the following complete asymptotic expansion for the eigenvalue
perturbations:

ωα
k − ω0 =

1
2iπ

+∞∑
p=1

1
p

+∞∑
n=p

1
kn

tr
∫

∂V
(Aα

0 )−p(ω)Bα
n,p(ω)dω, (4.3)

where V is a small complex neighborhood of ω0 and

Bα
n,p(ω) = (−1)p

∑
n1+...+np=n

ni≥1

Aα
n1

(ω) . . .Aα
np

(ω). (4.4)

For the case α = 0, we have the following theorem.
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Theorem 4.2 Suppose α = 0. Let ω2
0 be a simple eigenvalue of the Dirichlet-Laplacian in D.

Then, there exists a unique eigenvalue (ω0
k)

2 of (4.1), such that ω0
k converges to ω̃0 (defined from

ω0) as k → +∞. Moreover, the following complete asymptotic expansion holds:

ω0
k − ω̃0 =

1
2iπ

+∞∑
p=1

1
p

+∞∑
n=p

1
kn

tr
∫

∂V
(A0

0)
−p(ω)B0

n,p(ω)dω, (4.5)

where V is a small complex neighborhood of ω̃0 and B0
n,p(ω) is given by (4.4) with α = 0.

Here, ω̃0 is given in terms of the eigenvalue ω0 and of its associated eigenvector u0 through
the relation:

ω̃0 − ω0 = −

(∫
∂D

∂u0
∂ν dσx

)2

2ω3
0|Y \D|

∫
D |u

2
0|dx

. (4.6)

Note that the zero-order term ω̃0 has already been given by a completely different argument
by R. Hempel and K. Lienau [3].

The following corollary which gives us explicitly the first-order term of the expansion.

Corollary 4.1 Let ω2
0 be a simple eigenvalue of the Dirichlet-Laplacian in D and let u0 be its

associated eigenvector. Let v0 be the unique α-quasi-periodic solution to the problem:∆v0 = 0 in Y \D,
∂v0
∂ν

∣∣∣
+

=
∂u0

∂ν

∣∣∣
−

on ∂D,

Then, we have:

ωα
k − ω0 = −1

k

∫
Y \D |∇v0|

2dx

2ω0

∫
D |u0|2dx

+O(k−2) as k → +∞.

A similar result holds for the periodic case (α = 0).
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Image restoration and classification
by topological asymptotic expansion
Didier Auroux1 Lamia Jaafar Belaïd2 Mohamed Masmoudi3

Introduction

The aim of this paper is to propose a new method for both the grey-level image restoration and
classification problems. For each of these two problems, we first present the classical variational
approach and then we introduce an application of the topological asymptotic analysis.

5.1 Image restoration using the topological gradient theory

Nonlinear variational approach

Let Ω be an open bounded domain of R2 and v ∈ L2(Ω) the noised image. The idea of the
nonlinear variational approach is to minimize the following cost function

J(u) =
1
2

∫
Ω
|v − u|2 dx+

∫
Ω
c ψ(|∇u|) dx. (5.1)

To find a minimum of J is equivalent to solve the associated Euler-Lagrange equation:{
−div

(
c ψ′(|∇u|) ∇u

|∇u|

)
+ u = v in Ω,
∂nu = 0 in Γ = ∂Ω.

(5.2)

Let us remark that if ψ(|∇u|) =
1
2
|∇u|2, we obtain the linear variational approach:

{
−div(c∇u) + u = v in Ω,

∂nu = 0 in Γ = ∂Ω.
(5.3)

One simply has to solve equation (5.2) and its solution u is the restored image.

Topological gradient approach

For a small ρ ≥ 0, let Ωρ = Ω\σρ the perturbed domain by the insertion of a crack σρ =
x0 + ρσ(n), where x0 ∈ Ω, σ(n) is a straight crack, and n a unit vector normal to the crack.

1auroux@mip.ups-tlse.fr
2lamia.belaid@esstt.rnu.tn
3masmoudi@mip.ups-tlse.fr
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Consider the following partial differential equation{
−div(c∇u) + u = u0 in Ω,

∂nu = 0 on Γ = ∂Ω,
(5.4)

where we have the following partition Ω = Ωρ∪σρ and c = c0 in Ωρ and c = ε in σρ. Theoretically,
c should be equal to 0 in the crack, but numerically, c will then be set to a small value ε.

We consider the following cost function

j(ρ) = J(uρ) =
∫

Ωρ

‖∇uρ‖2 dx, (5.5)

where uρ is the solution of the latest equation.
The cost function J , and the bilinear and linear forms associated to equation (5.4) satisfy

the hypothesis of the topological asymptotic theory (see [4, 1] for more details).
In the present case, we denote by v the adjoint state, solution of the adjoint problem{

−div(c∇v) + v = −∂uJ(u) in Ω,
∂nv = 0 on ∂Ω,

(5.6)

and we obtain the following topological asymptotic expansion [3, 1]

j(ρ)− j(0) = ρ2G(x0, n) + ◦(ρ2), (5.7)

with
G(x0, n) = −π(∇u(x0).n)(∇v(x0).n)− π|∇u(x0).n|2. (5.8)

Then the topological gradient could be written as

G(x, n) = 〈M(x)n, n〉, (5.9)

where M(x) is the symmetric matrix defined by

M(x) = −π∇u(x)∇v(x)
T +∇v(x)∇u(x)T

2
− π∇u(x)∇u(x)T . (5.10)

For a given x, G(x, n) takes its minimal value when n is the eigenvector associated to the lowest
eigenvalue λmin of M . This value will be considered as the topological gradient associated to
the optimal orientation of the crack σρ(n).

The resolution algorithm is the following

• Initialization : c = c0.

• Calculation of u0 and v0 : solutions of the direct (5.2) and adjoint (5.6) problems.

• Computation of the 2 × 2 matrix M and its lowest eigenvalue λmin at each point of the
domain.

• Set

c1 =
{
ε if x ∈ Ω such that λmin < α < 0, ε > 0
c0 elsewhere. (5.11)

• Calculation of u1 solution to problem (5.2) with c = c1.
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Figure 5.1: Original image (a), noised image (b), restored image by nonlinear diffusion (c) and
restored image by topological gradient (d).

One can see [3] for more details. This algorithm finds the contours of the image, and smooths
the image everywhere else. The idea is then to simply apply the closest class algorithm to the
smothered image.

As the first resolution of the direct problem is performed with a constant value of c, it is
possible to greatly speed up the computation by using the DCT (Discrete Cosine Transform)
method. Then, for the second resolution of the direct problem with a non constant c, we use as
preconditioner the DCT in the preconditioned conjugate gradient algorithm. See [3] for more
details.

Figure 5.1 shows the original and noised images, and the restored images by nonlinear diffu-
sion and by topological gradient. The edges reconstruction is very good. Figure 5.2 shows the
computational cost versus the image size, and the DCT method allows a nearly linear complexity.

5.2 Regularized Image classification

Topological gradient applied to the classical approach

Let u0 be the original image defined on an open set Ω of R2. We want to classify the image u0

using n predefined classes Ci, 1 ≤ i ≤ n, and we choose the grey level intensity as a classifier.
The goal of image classification is then to find a partition of Ω in subsets {Ωi}i=1,..,n, such that
u0 is close to Ci in Ωi. The classified image u will then be defined by

u(x) = Ci ∀x ∈ Ωi, (5.12)



26 D. Auroux & L. J. Belaïd & M. Masmoudi

Figure 5.2: Computational cost versus the image size for nonlinear diffusion (ND) and topological
gradient (GT), using a Gauss elimination method (GE) or a preconditioned (by a discrete cosine
transform) conjugate gradient method (PCG).

where {Ωi}i=1,..,n are defined by

Ωi =
{
x ∈ Ω;x belongs to the ith class

}
. (5.13)

In order to obtain a classified image with smoother contours, we consider the following cost
function

J ((Ωi)i=1,..,n) =
n∑

i=1

∫
Ωi

(u0(x)− Ci)2 dx+
∑
i6=j

|Γij |, (5.14)

measuring the root mean square difference between the original image and the classified image.
The second part of J is a regularization term. |Γij | , i 6= j represents the one-dimensional
Hausdorff measure of Γij [2].

We have to solve the equation

u(x) = Ci in ωρi , (5.15)

where ωρi (1 ≤ i ≤ n − 1) is the subset of pixels that should be reassigned to the class Ci and
ωρn = Ω\(

⋃n−1
i=1 ωρi).

The variation of the cost function upon reassigning the pixel x to the class Ci is

δJ̃i(x) =
∫
ωρi

(Cn − Ci)(2u0(x)− Ci − Cn) dx (5.16)

+ α(|∂(Ωi ∪ ωρi)| − |∂Ωi|),

and the pixel x is still reassigned to the class which minimizes mostly the cost function.
The algorithm is then the following

• for each 1 ≤ i ≤ n− 1, compute gi(x) for each pixel x,
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Figure 5.3: Original image (a) and 5-classes classified images: without regularization (b), with
regularization (c), smoothed by topological gradient and then classified (d).

• for each pixel x, find i0 so that gi0(x) ≤ gi(x) ∀i,

• if gi0(x) < 0 (or < −ε), reassign x to the class Ci0 .

Let us remark that (5.16) is not an asymptotic expansion, because the first part of (5.16) is
proportional to ρ2 whereas the second one is proportional to ρ. Hence, if ρ→ 0, only the second
term subsists. In our problem, ρ will be set so that the crack σρ is one pixel, and then (5.16) is
valid for this given value of ρ.

Because of the regularization term, it is important to run again the algorithm with the
classified image as initial guess, because some pixels which had positive topological gradients
may have negative ones at next iteration. If for example all neighbors of x have been reassigned
to class i but not x, which is still assigned to the class Cn, at the next iteration, the regularization
term in δJ̃i(x) may be strongly negative, and then x may be reassigned to the class Ci. So, we
have to iterate the algorithm until all functional variations δJ̃i are everywhere non negative.

A restoration-based preprocessing method using the topological gradient

We still consider the following equation{
−div(c∇u) + u = u0 in Ω,

∂nu = 0 on Γ = ∂Ω,
(5.17)

with c =
1
ε

in Ωρ and c = ε in σρ. σρ still represents the contours of the image. As ε is supposed
to be small, if we are on a contour, c = ε and then u and u0 are almost the same. But otherwise,
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c =
1
ε

and then the P.D.E. is nearly equivalent to ∆u = 0, which will provide a really smooth
image.

In comparison with the previous section, the topological gradient g(x) and the general algo-
rithm remains unchanged. After smoothing, the image is then classified in the same way as in
the previous section.

Figure 5.3 shows the original image and three 5-classes classified images. The first one
corresponds to a classification without regularization, and has then unsmooth contours. The
second one corresponds to a regularized classification and has smoother contours. The last one
has been smoothed by the topological gradient preprocessing method, and then classified. It
has clearly much smoother contours.

Conclusion

The topological asymptotic expansion (with a DCT preconditioned conjugate gradient method)
gives promising results for both the restoration and classification problems.
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An energy approach to solve Cauchy
problems
Thouraya Baranger1 Stéphane Andrieux2 Amel Ben Abda3

Abstract

An energy approach is introduced in the context of the ill-posed problem of boundary data
recovering, which is well known as a Cauchy problem. The problem is converted into an opti-
mization one. Numerical experiments highlight the efficiency of the proposed method as well as
its robustness in the model context of Laplace equation, but also for elasticity problems.

6.1 Introduction

We are interested in the problem of data completion, which consists in recovering the data on
an inaccessible part of the boundary of a solid using overspecified data on the other part of it.
This is an old problem mathematically known as the Cauchy one. This situation may arises in
many industrial, engineering or biomedical applications under various forms: identification of
boundary conditions on unreachable part of the boundary, expansion of measured surface fields
inside a body from partial boundary measurements. But also it can be the first step in general
parameters identification problems and damage detection where only partial boundary data are
under control. Hence, robust and efficient data completion method is an essential and basic tool
in structural identification. In this paper we present a method for data completion based on the
minimization of an energy-like error functional depending on the lacking data.

6.2 Data Completion

Let us consider the above Cauchy problem (6.1). Assuming the data (Φ, T ) are compatible, i.e.
that this pair is indeed the trace and normal trace of a unique harmonic function u, extending
the data means finding (ϕ, t) such that:

∇ · k(x)∇u = 0 in Ω
u = T, k(x)∇u.n = Φ on Γc

u = t, k(x)∇u.n = ϕ on Γi

(6.1)

The question is to recover numerically the pair (ϕ, t). However, in practical problems data are
not expected to be compatible, since data errors may occur from measurement discretization

1Thouraya.Baranger@insa-lyon.fr.fr, LDMS UMR CNRS 5006, ISTIL-UCBL, France.
2LaMSID, UMR CNRS-EDF 2832, Clamart, France.
3LAMSIN-ENIT, Tunisie.
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and modelling errors. The ill-posedness in Hadamard’s sense arises –dramatically– when one
tries to approximate a given data (Φ, T ): it is possible to approach it as closely as desired on Γc

by traces of a single harmonic function, the “surprise” being a hectic behavior of this function
on the remaining part of the boundary, see for instance [5]. The approach in the error functional
method developed here follows two steps. First, we consider, for a given pair (η, τ), the two
following mixed well-posed problems:

∇ · k(x)∇u1 = 0 in Ω
u1 = T on Γc

k(x)∇u1.n = η on Γi

(6.2)


∇ · k(x)∇u2 = 0 in Ω
u2 = τ on Γi

k(x)∇u2.n = Φ on Γc

(6.3)

The next step is to build an error functional on the pair (η, τ) using a seminorm E. Indeed, u1

and u2 are obviously equal only when the pair (η, τ) meets the real data (ϕ, t) on the boundary
Γi. We propose then to solve the data completion problem via the following minimization:

(ϕ, t) = argmin
η,τ

E(η, τ) (6.4)

E(η, τ) =
∫

Ω
(k(x)∇u1 − k(x)∇u2).(∇u1 −∇u2) (6.5)

where η ∈ H−1/2(Γi), τ ∈ H1/2(Γi), u1 and u2 being the solution of (6.2) and (6.3). Using the
properties of the fields u1 and u2, it is straightforward to derive an alternative expression of the
E functional:

E(η, τ) =
∫

Γi

(η − k(x)∇u2.n)(u1 − τ) +
∫

Γc

(k(x)∇u1.n− Φ)(T − u2). (6.6)

This expression shows that the error between the two fields u1 and u2 can be expressed equiv-
alently by an integral involving only the boundary of the domain Ω. E is convex, quadratic and
positive with a minimum equal to zero. It reaches this minimum for u1 = u2 + Cte = u, where
u is the unique solution to our data recovering problem. The last expression of E shows that
the energy error can be expressed only with a boundary error term, which can be used for the
computation of it. Unlike in least squares methods, the error on the flux is weighted by the
error on the temperature. This feature illustrates the more symmetric formulation that can be
obtained by error functional based on the energy of the problem: no choice of an adimensional-
izing parameter is needed, in opposition to mixed least-square objective functionals where it is
essential.

The implementation of this method was carried out using finite element method (FEM).
Hence, the derivative of E was carried out by the adjoint state and is preferably established
on the basis of the FEM-discretized problem. The advantage of this fully-discrete approach
is that the exact gradient of the discrete objective function is obtained; moreover it is easily
implementable see [1]. The computations are run under Matlab Software environment [12] and
also by using Code-Aster [10] for the three dimensional elasticity problems.
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Figure 6.1: Geometric data

6.3 Results

The following example has been treated by Cimetière et al. in [8] using a first order inverse
method. It is a thermostatics problem defined on the domain shown on the figure 6.1. The
overspecied data are available on the circular boundary. These data are obtained from the exact
field u = y

(x−0.5)2+y2 . The figure 6.2 and 6.3 show the reconstructed temperature and heat flux
as well as the exact ones. The results obtained in this example (13 iterations of the optimization
algorithm) illustrate the robustness of the proposed method in so far as the data is singular.

6.4 Conclusion

We proposed in this work a method for data matching based on the minimization of an energy
error functional. Our data recovering process has two main features that make it an efficient
method. The first feature is undoubtedly the versatility of the present method: even though the
results are performed in the 2D-Cauchy-Poisson setting, it can be developed for other operators
as well as in 3D-situations. This method is quite general and has wide applications ranging from
bioelectrical field (EEG, ECG) to mechanical engineering (cracks, corrosion). The second feature
we would like to point out concerns the accuracy of the present method. The peculiar character
of the method lies on the treatment of the reconstructed trace and normal trace simultaneously:
both of them are well recovered. We tested successfully the matching method in the case of
temperature and heat flux recovering, and also elasticity problem. This procedure compares
then very favorably with iterative data matching existing method.
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Figure 6.2: Reconstructed temperature on Γi from overspecified data generated by u =
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(x− 0.5)2 + y2
. This results are performed with finite elements of class Co. The mesh of Ω

is regular and consists of triangular elements with linear interpolation.
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This results are performed with finite elements of class Co. The mesh of Ω is regular and consists
of triangular elements with linear interpolation.
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Controllability of Schrödinger
equations
Karine Beauchard1

7.1 Introduction

A quantum particle, in a 1D space, is represented by its wave function

ψ : R × R → C
(t , q) 7→ ψ(t, q).

The physical meaning of |ψ(t, q)|2dq is the probability of the particle to be in the volume dq
surrounding the point q at time t. Thus, at any time t, we have∫

R
|ψ(t, q)|2dq = 1.

When the particle is in a potential V (q), its wave function solves the Schrödinger equation

i~
∂ψ

∂t
(t, q) = − ~2

2m
∂2ψ

∂q2
ψ(t, q) + V (q)ψ(t, q).

Let us consider a particle in an infinite square potential well

V (q) = 0 when q ∈ I := (−1/2, 1/2), V (q) = +∞ when q /∈ I

which moves in R along time. Up to renormalisation, the dynamic of the wave function in the
moving system of reference is given by

(Σ)

 i
∂ψ

∂t
(t, q) = −1

2
∂2ψ

∂q2
(t, q)− 〈u(t), q〉ψ(t, q), q ∈ (−1/2, 1/2), t ∈ R+,

ψ(t,±1/2) = 0,

where u := −D̈ is the acceleration of the well. The system (Σ) is a control system in which

• the state is the wave function ψ of the particle, which, for every t ∈ R+, belongs to the
L2(I,C)-unitary sphere S,

• the control is the acceleration t 7→ u(t) ∈ R of the well.

1Karine.Beauchard@cmla.ens-cachan.fr
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This control system is nonlinear: it is bilinear with respect to the couple (ψ, u).
Section 7.2 presents a local controllability result, around the ground state, for the system

(Σ), and a sketch of its proof. The main tools are Coron’s return method, moment theory and a
Nash-Moser implicit function theorem. Section 7.3 presents a steady-state controllability result
for (Σ), got thanks to local controllability results. Finally, section 7.4 proposes controllability
results on other PDEs proved with the technique introduced for the study of (Σ).

7.2 Local controllability of (Σ)

7.2.1 Main result of [2]

In [2] one proves the local controllability of the system (Σ) around the ground state for u ≡ 0,
which is the function

ψ1(t, q) := ϕ1(q)e−iλ1t.

Here, λ1 := π2/2 is the smallest eigenvalue of the operator A defined on

D(A) := (H2 ∩H1
0 )(I,C), by Aϕ := −1

2
d2ϕ

dq2

and ϕ1(q) :=
√

2 cos(πq) is the associated eigenvector. This behaviour was conjectured by
Rouchon in [9].

Theorem 7.1 Let φ0, φ1 ∈ R. There exist T > 0 and η > 0 such that, for every ψ0, ψf in
S ∩D(A7/2) satisfying

‖ψ0 − ϕ1e
iφ0‖H7(I,C) < η, ‖ψf − ϕ1e

iφ1‖H7(I,C) < η,

there exists a trajectory (ψ, u) of the control system (Σ) on [0, T ] such that ψ(0) = ψ0, ψ(T ) = ψf

and u ∈ H1
0 ((0, T ),R).

Let us state few remarks about the regularity assumption H7.
Following arguments from Ball, Marsden and Slemrod in [1], Turinici proved in [7, chap.4]

that the control system (Σ) is not controllable in H2 ∩ H1
0 (I,C) with control functions u ∈

Lr
loc(R+,R), r > 1.

Theorem 7.1 emphasises that his negative result is due to a choice of functional spaces which
does not allow controllability. More precisely, the system (Σ) can be controlled

• in H2(I,C), but with a control functions set larger than Lr
loc(R+,R), r > 1, for instance

H−1
loc (R+,R),

• with control functions u ∈ L2
loc(R+,R), but in a smaller space than H2(I,C), for instance

H3(I,C).

The proof given in [2] gives the controllability of (Σ) in H7 with control functions in H1
0 . The

exponent 7 is only technical and related to the application of the Nash-Moser theorem. With
the same strategy and strengthened estimates, it is now possible to prove the same theorem
with every where H7(I,C) replaced by H5+ε, ε > 0. One conjectures that the optimal result is
the local controllability in H5 with control functions u ∈ H1

0 .
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7.2.2 Sketch of the proof of Theorem 7.1

A classical approach to get local controllability around a trajectory consists in proving the
controllability of the linearised system around this trajectory and concluding thanks to an inverse
mapping theorem. This method does not work here: Rouchon proved in [9] that, around any
state of definite energy, the linear tangent approximate system is not controllable.

The proof of Theorem 7.1 relies on Coron’s return method and quasi-static deformations.
The return method was introduced by Coron, in 1992, and has already been used to prove many
controllability results for PDEs.

This method is in two steps. First, one finds a trajectory (ψ̃, ũ) of the control system (Σ)
such that the linearised control system around (ψ̃, ũ) is controllable in time T . Then, using an
implicit function theorem, one gets the local controllability in time T of the nonlinear system
(Σ) around (ψ̃(0), ψ̃(T )): there exist a neighbourhoods V0 of ψ̃(0) and VT of ψ̃(T ) such that the
system (Σ) can be moved in time T from any point ξ ∈ V0 to any point ζ ∈ VT .

In a second step, given two points ψ0, ψf closed enough to ϕ1e
iφ0 , ϕ1e

iφ1 , one proves that
the system (Σ) can be moved

- from ψ0 to a point ξ ∈ V0, using quasi-static transformations,

- from one point ζ ∈ VT to ψf , using again quasi-static transformations,

- from ξ to ζ using the local controllability around (ψ̃(0), ψ̃(T )).

The trajectory (ψ̃, ũ) used in [2] is the ground state for a constant acceleration u ≡ γ, γ ∈ R∗,

ψ1,γ(t, q) := ϕ1,γe
−iλ1,γt.

Here, λ1,γ is the first eigenvalue of the operator Aγ defined on

D(Aγ) := (H2 ∩H1
0 )(I,C), by Aγϕ := −1

2
d2ϕ

dq2
− γqϕ.

and ϕ1,γ is an associated eigenvector. More precisely, thanks to moment theory, one proves
that the linearised system around (ψ1,γ , u ≡ γ) is controllable in D(A3/2

γ ), with control functions
in L2((0, T ),R), for every T > 0, when γ ∈ R∗ is small enough.

Unfortunately, this controllability result for the linearised system around (ψ1,γ , u ≡ γ) is not
sufficient to get the local controllability of the nonlinear system (Σ) around ψ1,γ by applying the
classical implicit function theorem. Indeed, the map Φ which associates to any couple of initial
condition and control (ψ0, v) the couple of initial and final conditions (ψ0, ψT ) for the system
(Σ) with u = γ + v, is well defined and of class C1 between the following spaces,

Φ : [S ∩D(A3/2
γ )] × H1((0, T ),R) → [S ∩D(A3/2

γ )] × [S ∩D(A3/2
γ )]

(ψ0 , v) 7→ (ψ0 , ψT ).

Its differential map dΦ(ϕ1,γ , 0) at the point (ϕ1,γ , 0) maps the space

E := [TS(ϕ1,γ) ∩D(A3/2
γ )]×H1((0, T ),R)

into the space
F := [TS(ψ1,γ(0)) ∩D(A3/2

γ )]× [TS(ψ1,γ(T )) ∩D(A3/2
γ )],
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where TS(ξ) is the tangent space to the L2-sphere S at the point ξ. It admits a right inverse,
dΦ(ϕ1,γ , 0)−1, but it does not map F into E : it only maps F into

[TS(ψ1,γ(0)) ∩D(A3/2
γ )]× L2((0, T ),R).

One deals with this loss of regularity using a Nash-Moser implicit function theorem adapted
from [8] and one gets the following theorem.

Theorem 7.2 Let T := 4/π. There exists γ∗ > 0 such that, for every γ ∈ (0, γ∗), there exists
η > 0 such that, for every (ψ0, ψT ) ∈ S ∩D(A7/2

γ ) satisfying

‖ψ0 − ψ1,γ(0)‖H7(I,C) 6 η, ‖ψT − ψ1,γ(T )‖H7(I,C) 6 η,

there exists a trajectory (ψ, u) of the control system (Σ) such that ψ(0) = ψ0, ψ(T ) = ψT and
(u− γ) ∈ H1

0 ((0, T ),R).

It is at this step of the proof that the regularity assumption H7 appears : in order to prove
the convergence of the Nash iterations, one needs regularity on the initial and final conditions.

In the second step of the return method, one constructs explicitly, for γ > 0 small enough,
trajectories

(ψ, u) : [0, T 1] → H7(I,C)× R

such that
u(0) = 0, u(T 1) = γ, ψ(0) = ϕ1e

iφ0 , ψ(T 1) ∈ D(A7/2
γ ),

‖ψ(T 1)− ϕ1,γ‖H7 < η/2.

Then, for ψ0 ∈ D(A7/2) closed enough to ϕ1e
iφ0 , the same control moves the system from ψ0 to

ξ which satisfies
ξ ∈ D(A7/2

γ ) and ‖ξ − ϕ1,γ‖H7 < η,

thanks to the continuity with respect to initial conditions. The control used in this step moves
slowly from 0 to γ : one makes quasi-static transformations.

7.3 Steady-state controllability of (Σ)

In [3], we study the same physical system, but we want to control not only the wave function ψ
of the particle but also the position D and the speed S of the potential well. Thus, we consider
the control system

(Σ̃)


i
∂ψ

∂t
(t, q) = −1

2
∂2ψ

∂q2
(t, q)− 〈u(t), q〉ψ(t, q), q ∈ (−1/2, 1/2), t ∈ R+,

ψ(t,±1/2) = 0,
Ṡ = u,

Ḋ = S,

in which the state is (ψ, S,D) and the control is the function u. Let us introduce orthonormal
eigenvectors (ϕn)n∈N∗ of the operator A,

ϕn(q) :=
√

2 cos(nπq) when n is odd, ϕn(q) :=
√

2 sin(nπq) when n is even,

and the eigenstates ψn(t, q) := ϕn(q)e−iλnt where λn := −(nπ)2/2. The main result of [3] is the
following one.
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Theorem 7.3 For every n0, nf ∈ N∗, there exists a time T > 0 and a trajectory (ψ, S,D, u) of
(Σ̃) on [0, T ] such that (ψ(0), S(0), D(0)) = (ϕn0 , 0, 0), (ψ(T ), S(T ), D(T )) = (ϕnf

, 0, 0), and
u ∈ H1

0 ((0, T ),R).

Let us explain how we prove this theorem with n0 = 1, nf = 2.
First, we prove the local controllability of (Σ̃) around all the trajectories

(Yθ := (ξθ :=
√

1− θψ1 +
√
θψ2, S ≡ 0, D ≡ 0), u ≡ 0), for θ ∈ [0, 1].

Then, we conclude thanks to the compactness of the segment [Y0, Y1].
The local controllability results are proved in a similar way as in section 7.2. However the

introduction of S and D makes the proof more difficult. For instance, the linearised system
around

(Zγ := (ψ1,γ , S ≡ γt,D ≡ 1
2
γt), u ≡ γ)

is not controllable anymore because the variables ψ and S are not independent. We get the
local controllability of (ψ,D) for (Σ̃) around Zγ(0), thanks to the Nash-Moser theorem, as
in section 7.2. Then, we use the second order term of Φ to control S: we find a control
which fixes the first order term dΦ(Zγ(0), 0), and a control which moves the second order term
d2Φ(Zγ(0), 0) only in the direction S. We conclude the local controllability of (ψ, S,D) for (Σ̃)
around Zγ(0), thanks to the intermediate values theorem.

7.4 The same technique on other PDEs

The technique introduced for the study of (Σ) gave positive controllability results for others
PDEs. Note that these PDEs were known to be not controllable in particular functional spaces,
thanks to the argument of [1]. One proves their controllability in other spaces.

The first PDE is the following 1D beam equation

(P)

{
utt + uxxxx + p(t)uxx = 0, x ∈ (0, 1), t ∈ R+

u(t, .) = ux(t, .) = 0 at x = 0, 1,

in which the state variable is u(t, x) and the control is the function p(t). Thanks to the Nash-
Moser theorem, one proves, in [4], the local controllability of (P) in H5+ε×H3+ε((0, 1),R), ε > 0
around reference trajectories of the form

(uref(t, x) := vk(x) sin(
√
λkt) + vk+1(x) sin(

√
λk+1t), u ≡ 0),

where, for every n ∈ N∗,

d4

dx4
vn = λnvn, vn(0) = vn(1) = v′n(0) = v′n(1) = 0.

The second PDE represents a quantum particle in a 1D infinite square potential well with
variable length. The state variable is the wave function ψ of the particle and the control is the
length l(t) of the potential. After changes of variable and wave functions, one works on the
equivalent control system

(V)

{
iψ̇ = −ψ′′ + (u̇− u2)x2ψ, x ∈ (0, 1), t ∈ R+,

ψ(t, 0) = ψ(t, 1) = 0,
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in which the state is ψ and the control u is subjected to u(0) = u(T ) =
∫ T
0 u(t)dt = 0. Thanks

to the Nash-Moser theorem and expansion to the second order, one proves, in [5], local con-
trollability results in H5+ε((0, 1),C) for (V). Then, a compactness argument provides global
controllability between eigen states.

Conclusion

The technique introduced for the study of (Σ) are general enough to be applied on other equa-
tions. They probably also give a positive controllability theorem for the general bilinear control
systems which are proved to be not controllable (in particular spaces) in [1]. This constitutes
an open problem.

Another interesting question about (Σ) is the existence of a minimal time for the controlla-
bility. An affirmative answer is given in [6], the value of this minimal time is still open.

Bibliography

[1] J.M. Ball, J.E. Marsden and M. Slemrod. Controllability for distributed bilinear systems,
SIAM J. Control and Optim., 20, July 1982.

[2] K. Beauchard. Local Controllability of a 1-D Schrödinger equation, J. Math. Pures et
Appl., 84, July 2005, p. 851-956.

[3] K. Beauchard and J.-M. Coron. Controllability of a quantum particle in a 1D moving
potential well,. J. Funct. Analysis, 232, March 2006, p. 328-389.

[4] K. Beauchard. Local controllability of a 1D beam equation, prépublication du CMLA
N.2005-24 (soumis).

[5] K. Beauchard. Controllability of a quantum particle in a 1D infinite square potential well
with variable length, prepublication du CMLA N. 2005-25 (soumis).

[6] J.-M. Coron. On the small-time local controllability of a quantum particule in a moving
one-dimensional infinite square potential well, C.R.A.S. (to appear).

[7] M. Defranceschi and C. Le Bris. Mathematical Models and Methods for Ab Initio
Quantum Chemistry, Springer-Verlag Berlin Heidelberg New York, 2000.

[8] L. Hörmander. On the Nash-Moser Implicit Function Theorem, Annales Academiae Sci-
entiarum Fennicae, 1985, p. 255-259.

[9] P. Rouchon. Control of a quantum particule in a moving potential well, 2nd IFAC Workshop
on Lagrangian and Hamiltonian Methods for Nonlinear Control, Seville, 2003.



Reconstruction methods for the
three-dimensional inverse acoustic
obstacle scattering problems

Fahmi Ben Hassen1 Klaus Erhard2 Roland Potthast3

8.1 Introduction

Inverse scattering problems are concerned with the reconstruction of objects and parameter
functions from the knowledge of scattered waves. Today, basically three different categories of
methods for the treatment of the full nonlinear scattering problem are known: iterative methods,
decomposition methods and sampling/probe methods.

The point source method (PSM) is a scheme for the reconstruction of a scattered field from its
far field pattern which was introduced by Potthast in [2]. It belongs to the class of decomposition
methods since it solves the inverse shape reconstruction problem by a decomposition of the
nonlinear ill-posed problem into the linear ill-posed problem to reconstruct the scattered field
from the far field pattern and the nonlinear but well-posed problem to find the zeros of the total
field (for a sound-soft obstacle). The PSM can also be regarded as an analytic continuation
method extending the far field of a scattered wave to its near field. This feature is used as
an ingredient for the singular sources method. The reconstructions of fields are also of general
interest for several applications, as for identifying sources of acoustic or electromagnetic waves4.

The singular sources method (SSM), first proposed in [3], is another technique for the recon-
struction of the shape of an obstacle, from the knowledge of the far field pattern of scattered
plane waves. It belongs to the class of sampling and probe methods. The basic idea behind these
methods is to sample the unknown area by constructing an indicator function. The unknown
shapes can be found from the behaviour of this indicator function. Its main advantage compared
to the PSM is that the boundary condition on the scatterer does not need to be known. This
independence of the method on the physical properties of obstacles is of great practical impor-
tance, since in many cases knowledge about these properties of the objects to be reconstructed
is not available. However, this scheme needs the knowledge of the far field patterns of many
incident waves.

In this work, we study numerical applicability of the PSM and the SSM for three-dimensional
reconstructions. Moreover, we give new proofs of convergence, by which our methods can be

1LAMSIN-ENIT, BP 37, 1002 Tunis, Tunisia. fahmi.benhassen@enit.rnu.tn
2NAM, University of Göttingen, Germany. kerhard@math.uni-goettingen.de
3NAM, University of Göttingen, Germany. potthast@math.uni-goettingen.de
4The design of an acoustical camera generating 3d reconstructions of acoustic sources within cars has been

nominated for the German future price “Deutscher Zukunfspreis” 2005.
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shown to work for arbitrary incident fields, limited aperture and arbitrary boundary conditions.

8.2 Acoustic scattering problems

We consider acoustic scattering from a bounded impenetrable scatterer D. The scatterer D
consists of a domain D ⊂ R3 and a boundary condition for the total field on ∂D. We assume
that ∂D is of class C2 and that R3 \D is connected.

Given an incident field ui and a scatterer D, the direct acoustic obstacle scattering problem
is to find a scattered field us ∈ C2(R3 \D) ∩ C(R3 \D), which solves the Helmholtz equation

4us + κ2us = 0 (8.1)

in R3 \D and satisfies the Sommerfeld radiation condition

r
(∂us

∂r
− iκus

)
→ 0, r = |x| → ∞, (8.2)

uniformly in all directions x̂ = x/|x|, such that the total field u = ui + us satisfies Dirichlet,
Neumann or impedance boundary conditions given, respectively, as

u|∂D = 0,
∂u

∂ν
|∂D = 0

∂u

∂ν
|∂D + λu|∂D = 0, (8.3)

with the impedance function λ ∈ C(∂D). Here, the letter ν denotes the outward unit normal
vector to ∂D.

The solution of each of this problems exists and is unique (see [1]). In addition, a solution of
the Helmholtz equation (8.1) in the exterior of some ball B satisfying (8.2) is called radiating. A
radiating solution us has the asymptotic behaviour of an outgoing spherical wave (see Theorem
2.5 in [1]) :

us(x, d) =
eiκ|x|

|x|

{
u∞(x̂, d) +O

(
1
|x|

)}
, (8.4)

as |x| → ∞ uniformly in all directions x̂ := x/|x|. The function u∞ is known as the far field
pattern of us and it is defined on the unit sphere S2 :=

{
x ∈ R3 : |x| = 1

}
.

It is a basic result known as Rellich Lemma that a scattered field us is determined by the
knowledge of the far field pattern u∞ on an open subset of S2.

8.3 The point source method

Here we show how the PSM reconstructs the scattered field us from its limited aperture far
field pattern u∞|Λ given on an open nonempty subset Λ of S2. Then, we might search for the
boundary ∂D of a sound-soft scatterer D by searching for the zeros of the total field u = ui +us.

8.3.1 The main result

Given x ∈ R3 \ D, the idea of the point-source method is to choose an approximation domain
G(x), with x 6∈ G(x) and such that G(x) is large enough to contain the unknown domain D,
and approximate the point source Φ(x, y) for y ∈ G(x) by a superposition of plane waves, also
called a Herglotz wave function,

v[gx](y) :=
∫

Λ
eiκy·dgx(d) ds(d), (8.5)
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with a density gx obtained from an approximate solution of the integral equation∫
Λ
eiκy·dgx(d) ds(d) = Φ(x, y), y ∈ ∂G(x). (8.6)

Under appropriate conditions on G(x), the approximations are always possible up to any ap-
proximation error ε with a Herglotz wave function with density gx,ε ∈ L2(Λ) (see Lemma 3.1.2.
in [4]).

Definition 8.1 Consider a set of sampling domains G(x) parameterized by x ∈ R3, such that
x /∈ G(x). Let D be a bounded domain in R3. We define the illuminated area

E := {x ∈ R3 : D ⊂ G(x)}. (8.7)

The main result of the point source method can be stated as follows :

Theorem 8.1 Consider the scattering of an acoustic wave by an impenetrable obstacle D, with
∂D of class C2. Assume that the incident wave ui satisfies (8.1) in D. Then, the back-projection
operator

(Aεu
∞)(x) := 4π

∫
Λ
u∞(−d)gx,ε(d) ds(d), x ∈ R3 \D, (8.8)

with a density gx,ε, converges uniformly to the scattered field on any compact subset M of the
illuminated area E, i.e.

lim
ε→0

max
x∈M

|us(x) − Aεu
∞(x)| = 0. (8.9)

8.3.2 Realization of the point source method

A basic numerical step of the point source method is the approximation of a point source Φ(x, ·)
on some domain of approximation G(x) by a Herglotz wave function (8.5). In general, Φ(x, ·) is
not in the range of the compact operator H : L2(Λ) → L2(∂G(x)) defined by

(Hg)(y) :=
∫

Λ
eiκy·dg(d) ds(d) , y ∈ ∂G(x), (8.10)

and we need some regularization scheme for the calculation of an approximate solution to the
ill–posed integral equation (8.6). Here, we stabilize the calculation of gx by applying a Tikhonov
regularization scheme, i.e. by solving the regularized equation

(αI +H∗H)g = H∗Φ(x, ·) (8.11)

for g = gx,α ∈ L2(Λ), with a small regularization parameter α = α(ε) > 0, such that ‖Φ(x, ·)−
Hgx,α‖L2(∂G) < ε.

From a computational point of view, we have to solve the regularized integral equation (8.11)
for every x ∈ Ω, when using arbitrary approximation domains G(x). This computational cost
can be reduced by the following strategy:
We solve the regularized integral equation (8.11) only once for x = 0 and a chosen G(0) to
obtain g0,α. Then, we define a family of approximation domains

G := {G(x) = G(0) + x : x ∈ Ω}. (8.12)

This set consists of translations of the original geometric configuration (0, G(0)) to the con-
figuration (x,G(x)). In this case, we can calculate the density gx,α of the approximation of
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Figure 8.1: The modulus of the calculated and the reconstructed total fields for the sound soft
ring with an incident point source in the origin and κ = 2.

Φ(x, ·) on G(x) from g0,α, without solving the regularized integral equation (8.11), by a simple
multiplication with a complex factor :

gx,α(d) = e−iκx·dg0,α(d), for d ∈ S2. (8.13)

Finally, we obtain a complete reconstruction by repeating this procedure with different config-
urations of the approximation domain : G(j)(0) = R(j)(G(0)), for j = 1, ..., n. Then, for each
configuration (0, G(j)(0)), we calculate the densities g(j)

x,α in Ω as explained above by setting
G(j)(x) = x+G(j)(0).

In the post-processing step, we restrict the reconstructed field (8.8), to some illuminated
area E since we expect a valid approximation of the point source only in this special region. We
use the indicator function

Ienl(x) = urec,1(x)− urec,2(x) , x ∈ R3, (8.14)

which is the difference of two reconstructed fields obtained with two different regularization
parameters. We choose some cut-off parameter c and set urec = 0 if |Ienl(x)| > c, i.e. when x
does not belong to Ec = {x : |Ienl(x)| < c}, where Ec is an approximation of the illuminated
area.

8.3.3 Numerical implementation of the point source method

We study shape reconstructions for scattering by a sound-soft obstacle.
To produce the input data, given by the far field pattern, we solve the forward problem by the
Nyström’s method ignoring the singularities of the kernel (by introducing a cut-off scheme).
Figure 8.1 illustrates the reconstruction of the total field due to the scattering of the incident
point source with wave number κ = 2, by the ring of radii ri = 0.3 and ro = 0.6. For the
reconstruction, we used the approximation domains

G(j)(0) := B3 + 1.1nj , j = 1, . . . , 26.

The 26 directions nj are the 6 face normals of the unit cube, its 8 normalized diagonals and
the 12 normalized diagonals of the cube’s faces. The illuminated area is computed with the
regularization parameters α1 = 10−8 and α2 = 2α1.
To reconstruct the scatterer, we extracted the iso-surface of level 0.004. We obtain a good
reconstruction of the sound-soft ring as illustrated in Figure 8.2.
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Figure 8.2: The iso-surface of level 0.004 of the total field due to the scattering of a point source
by the ring for balls and ellipsoidal approximation domains.

8.4 The singular sources method

The main idea of the SSM is to reconstruct the scattered field Φs(·, z) in z, due to an incident
point source, from the far field pattern u∞(·, d), d ∈ S2, associated to a scattering of an incident
plane wave of direction d. The boundary ∂D of an obstacle D can be identified as the set of
points where the scattered field Φs(z, z) becomes singular. The behaviour of Φs(z, z) is explicitly
given by Theorem 2.1.15 in [4]. It proves that the function

I(z) := |Φs(z, z)| , z ∈ Ω \D (8.15)

is bounded in every set Ωτ of the form Ωτ := {z ∈ Ω \ D : d(z,D) > τ > 0}, where d(z,D)
denotes the Hausdorff distance, but unbounded when z tends to the boundary of the obstacle,
i.e.

lim
z→∂D

I(z) = ∞ (8.16)

holds. Thus I may serve as an indicator function for the reconstruction of the obstacle D. How-
ever, we can not calculate the indicator function I(z) = Φs(z, z) directly without the knowledge
of the obstacle D and the boundary condition on ∂D. Therefore we will compute an approxi-
mation of the scattered field Φs(·, z) in the source point z ∈ Ω\D based on ideas from the PSM.
This is given by the following Theorem:

Theorem 8.2 (SSM for inverse acoustic scattering problem) Let M be a compact sub-
set of the illuminated area E and let G be a strategy for the choice of the approximation domain.
Then, the backprojected far field pattern

(Qεu
∞)(x, z) = 4π

∫
S2

∫
S2

u∞(−d, x̂)g̃x,ε̃(d) ds(d) gz,ε(x̂) ds(x̂) (8.17)

converges uniformly towards Φs(x, z) on M ×M . The densities gz,ε and g̃x,ε̃ are obtained by
solving the ill-posed linear integral equation (8.11) with an approximation error ε and ε̃ := ε

‖gz,ε‖ ,
respectively.

In particular, the approximating indicator function Ĩ(z) given by the backprojected far field
pattern Qεu

∞ evaluated in (z, z) ∈ Ω × Ω, approximates the true indicator function I(z) =
Φs(z, z) whenever z ∈ E . Then, we obtain an approximation to the unknown scatterer D as the
set of points where Ĩ(z) becomes larger than a predefined cut-off value c0. This threshold value
c0 can be chosen empirically by investigating some reference obstacle D0 with known boundary
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Figure 8.3: Boundary reconstructions of impenetrable obstacles using SSM

and simulated far field pattern u∞0 . In contrast to the point source method the singular sources
method needs to know the full far field pattern for all incident waves as input data. This means
that we must have more information available than in the single wave setting but we also expect
a better quality of the reconstructions due to the increase in information. On the other hand,
the SSM reconstructs a scatterer without the knowledge of the boundary condition on ∂D while
PSM essentially needs this information in the reconstruction algorithm. Hence SSM is applicable
in a more general setting.

Finally, since the singular sources method is based on the point source approximation, we
can apply the same techniques that have already been developed in sections 8.3.2 and 8.3.3 to
implement the SSM. Figure 8.3 shows boundary reconstructions of a ball with an impedance
boundary condition, a sound hoft T-shaped obstacle and a sound hard ring using SSM for κ = 2.

Acknowledgments. The LAMSIN’s researche’s work is supported by the Ministère de la Recherche
Scientifique, de la Technologie et du Développement des Compétences (MRSTDC, TUNISIA) under the
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On the determination of thin elastic
inclusions from boundary
measurements
Elena Beretta1 Elisa Francini 2

Let Ω ⊂ R2 be a bounded smooth domain representing the region occupied by an elastic
material.

Let σ0 ⊂ Ω be a simple smooth curve and define, for a positive small ε, the set

ωε = {x ∈ Ω : d(x, σ0) < ε} ,

which represents an inclusion of small size made of a different elastic material.
Let C0 and C1 be the elastic tensor fields in Ω \ ωε and ωε respectively.
Given a traction field g on ∂Ω, the displacement field uε, generated by this traction in the

body containing the inclusion ωε, solves the following system of linearized elasticity{
div
(
Cε∇̂uε

)
= 0 in Ω

(Cε∇̂uε) · ν = g on ∂Ω,
(9.1)

where Cε = C0χΩ\ωε
+ C1χωε , ∇̂uε = 1

2

(
∇uε + (∇uε)T

)
is the symmetric deformation tensor

and ν denotes the outward unit normal to ∂Ω.
Let us also introduce the background displacement u0, namely the solution of{

div
(
C0∇̂u0

)
= 0 in Ω

(C0∇̂u0 · ν = g on ∂Ω.
(9.2)

The goal of this talk is to present first the derivation of a rigorous asymptotic expansion
for (uε − u0)|∂Ω

as ε → 0. An analogous expansion has been already derived for the case of
thin conductivity inclusions. These expansions represent a powerful tool to solve the inverse
problem of identifying the inclusions, given boundary measurements for the case of conductivity
inclusions. In the second part of the talk I will show how to use the formula in order to detect
the elastic inclusions presenting some preliminary results concerning the case of inclusions which
are thin neighborhoods of segments.

1Dipartimento di Matematica “G. Castelnuovo” Università di Roma “La Sapienza”, Piazzale Aldo Moro 5,
00185 Roma, Italy (Email: beretta@mat.uniroma1.it).

2Universita’ di Firenze , Italy (Email: elisa@fi.iac.cnr.it).
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Locating an obstacle in a 3D finite
depth ocean using the convex
scattering support

Laurent Bourgeois1 Colin Chambeyron2 Steven Kusiak3

10.1 Introduction

Imaging a scatterer in a shallow ocean is a classical inverse problem which has been considered
by many authors. Furthermore, it is well known that the inverse scattering problem associated
with a 3D waveguide as such is more difficult than in free space. Actually, because of the physical
presence of the top and bottom elements of the waveguide, only a finite number of modes can
propagate at long distance. The remainder of the modes are said to be evanescent, which means
they decay exponentially as a function of distance. This fact increases the so-called ill-posedness
of the inverse problem.

The most interesting inversion techniques are those for which no a priori assumption is made
concerning the physical nature of the scatterer. For example the linear sampling method (see an
overview in [2]) has been adapted to the 2D ocean [8]. The main drawback of such a method is
that many incident waves are required. Recently, in [3, 5], a theory based on the so-called convex
scattering support was developed and implemented. This theory provides the same advantage as
the linear sampling method concerning a priori knowledge of boundary conditions. Additionally,
it allows one to use but one incident wave to deduce information concerning the location, size
and shape of the scatterer.

Here we show how this method can be adapted to approximate the convex hull of the vertical
projection of an obstacle in a 3D ocean by using the far field patterns generated by single fixed-
frequency illumination of the scatterer. Details and proofs are given in [1].

Our waveguide is the open domain W included between the two horizontal boundaries z = 0
(called ‘top’ or Γ0) and z = h (called ‘bottom’ or Γh) in the Cartesian coordinates (x, y, z). The
boundary conditions at z = 0 and z = h are of the Dirichlet and Neumann types respectively,
and the waveguide can therefore be considered as a model of a finite depth ocean in contact
with an acoustically-soft medium (such as air) at the top and with an acoustically-hard medium
(such as rock) at the bottom.

We suppose that O is a sound hard or soft obstacle, which is embedded in W . We define Ω
to be the open domain of W complementary to O. A monochromatic acoustic wave scatters due
to the presence of the obstacle. Let k denote the wavenumber, and let ui, us and u respectively

1bourgeois@ensta.fr
2chambey@ensta.fr
3kusiak@ll.mit.edu
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denote the incident, scattered and total fields (u = ui + us). The governing equations for us in
Ω are 

(∆3 + k2)us = 0 in Ω

us|Γ0 = 0,
∂us

∂z
|Γh

= 0 (referred by (BC) from now on)
∂us

∂ν
|∂O = f or us|∂O = g

(RC).

(10.1)

Here, ∆3 is the three dimensional Laplacian, ν is the outward unit normal on ∂O, f =
−(∂ui/∂ν)|∂O and g = −ui|∂O. Lastly, (RC) is a radiation condition associated with the
behavior of us when r =

√
x2 + y2 → ∞. It consists of assuming that the scattered field is a

superposition of waves that are either propagating away from the obstacle or decaying exponen-
tially with distance from the obstacle.

We define the three dimensional cylindrical domain C(R) = B(R)×(0, h), where B(R) is the
open ball of radius R in R2, and define its two dimensional boundary by Σ(R) = ∂B(R)× (0, h).
We assume R to be large enough such that O is included in C(R), and we define the domains
Ω′ = (B(R)/O)× (0, h) and Ω′′ = (Ω/B(R))× (0, h) (Ω = Ω′ ∪ Ω′′). Finally, let S1 denote the
unit sphere in R2.

It is well known that any field us which satisfies the 3D Helmholtz equation in Ω′′, the
boundary conditions (BC) and the radiation condition (RC), has, in cylindrical coordinates,
the following representation in the domain Ω′′

us(r, θ, z) =
∑
n∈N

∑
m∈Z

amnH
(1)
m (knr)ψm(θ)wn(z). (10.2)

Here, H1
m are the Hankel functions of the first kind, while the functions ψm and wn are defined

by

ψm(θ) =
eimθ

√
2π
, wn(z) =

√
2
h

sin
(
(n+ 1/2)

πz

h

)
. (10.3)

The sequence of complex numbers kn is defined by

kn =

√
k2 −

(
(n+ 1/2)

π

h

)2
, Re(kn) + Im(kn) ≥ 0. (10.4)

From now on, we assume that k is chosen such that kn never vanishes.
We note that, in the domain Ω′′, we may also write the scattered field as

us(r, θ, z) =
∑
n∈N

us
n(r, θ)wn(z), us

n(r, θ) =
∑
m∈Z

amnH
(1)
m (knr)ψm(θ). (10.5)

The modes us
n for n ∈ [0, N − 1] having Im(kn) = 0 correspond to the propagating waves,

while the modes for n ≥ N having Re(kn) = 0 correspond to the evanescent ones.
It should be pointed out that the well-posedness of problem (10.1) is not known in general. To

the authors’ knowledge, the well-posedness has been proved only in the case of the acoustically-
soft obstacle (Dirichlet data f), when ∂O and f are sufficiently smooth (say ∂O of class C2 and
f ∈ H

3
2 (∂O)), and when the scatterer O satisfies the following convexity condition, referred by

(CC) from now on : there exists a point M inside O, such that if the origin of the cartesian
coordinates is chosen such a way that xM = yM = 0, then ν.(x, y, 0) = νxx + νyy ≥ 0 for all
points of ∂O [6, 7].
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In order to compute the simulated far field patterns which form the data of the inverse
problem, an auxiliary problem in the bounded domain Ω′ is considered, and a finite element
method is used (precisely the FE code Melina, c.f. [4]). This auxiliary problem involves an
appropriate Dirichlet-to-Neumann operator on Σ(R).

10.2 The convex scattering support in 2D

In this section, we recall the main definitions and properties which substantiate the theory
developed in [3, 5]. It leads to a summability test which characterizes the convex scattering
support. From that accurate but unpractical criterion we derive a heuristic but practical one,
as well as an identification strategy based on that new criterion.

Definition 10.1 A test domain D (D′ = R2/D) supports the far field pattern u∞ ∈ L2(S1) iff
there exists a field us ∈ H1

loc(D
′) satisfying (∆2 + k2)us = 0 in D′, and for which u∞ is the far

field pattern corresponding to us.

Definition 10.2 The intersection of all convex domains that support u∞ is a convex domain
that supports u∞. It is called the convex scattering support of u∞ and is denoted cSksupp(u∞).

From the two previous definitions, we immediately conclude that if u∞ is the far field pattern
produced by a scatterer O with convex hull ch(O), then cSksupp(u∞) ⊂ ch(O). The convex
scattering support is then a minimal set included in the convex hull of the obstacle.

Definition 10.3 Let S∞D : H−1/2(∂D) → L2(S1) be defined by

(S∞D )ϕ(x̂) =
∫

∂D
ϕ(y) Φ∞(x̂, y) dy, Φ∞(x̂, y) =

ei
π
4

√
8πk

e−ikx̂.y.

The theory of the scattering support is based in part on the following theorem.

Theorem 10.1 Assuming that k is such that the homogeneous Dirichlet problem for the Helmholtz
equation inside D admits only the trivial solution, S∞D is a compact, injective operator with dense
range. Furthermore, D supports u∞ ∈ L2(S1) iff∑

p∈N

|(u∞, gp)|2

σ2
p

< +∞, (10.6)

where {σp, fp, gp} (p ∈ N) is a singular system of S∞D .

The following corollary enables one to establish criterion (10.6) when D is any ball B(C,R)
in R2 of center C and radius R.

Corollary 10.1 When D = B(C,R), with C = (Cx, Cy) ∈ R2, criterion (10.6) is simply:
B(C,R) supports u∞ iff ∑

m∈Z

|cm|2

σ2
m

< +∞, (10.7)

with

cm =
1√
2π

∫ 2π

0
e−imθeik(Cx cos θ+Cy sin θ)u∞(θ) dθ, σm =

√
πR

2k
|Jm(kR)|,

where the Jm are the classical Bessel functions of the first kind.
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A practical and useful implementation of criterion (10.7) is delicate because of the interpre-
tation of +∞. To deal with this issue, we have derived a simplified and heuristic criterion which
relies on the fact that, as a function of the index m and for a fixed argument z, the function
|Jm(z)| of m is a bounded oscillating function for |m| � z, and a rapidly decaying one to zero
when |m| � z, exhibiting a region of rapid transition near m = z. Similarly, for a real bounded
obstacle O ⊂ W and for a given C, we observe that the Fourier coefficients |cm| also possess
a similar behavior. Namely, we witness a rapid accumulation to zero when m � −mC

− and
m � mC

+, the lower and upper bounds −mC
− and mC

+ being directly read on the |cm|-curve.
Criterion (10.7) is then ‘equivalent’ to: B(C,R) supports u∞ ’iff’

kR ≥ max(mC
−,m

C
+). (10.8)

Criterion (10.8) provides, for a given C = (Cx, Cy), the radius of the smallest ball of center C
which supports u∞.

The identification strategy we have chosen consists of the basic following scheme. First, we
assume a priori that the obstacle is fully contained within the ball B(C0, R0). Next, we select
a finite collection of balls B(Ci, Ri) (i ∈ I), the centers Ci of which are equally distributed on
the circle ∂B(C0, R0), the radii Ri of which are obtained by computing Ri = max(mCi

− ,m
Ci
+ )/k.

Finally, we construct the intersection of the collection B(Ci, Ri) for i ∈ I. This provides an
approximation of the convex scattering support cSksupp(u∞), and hence an approximation of
the convex hull of O.

10.3 The 3D waveguide inverse problem

We begin this section by a uniqueness result. Let the incident wave ui be of the form ui(x, y, z) =
wn(z)eiknd̃.x̃, where d̃ = (dx, dy) ∈ S1 and x̃ = (x, y). We choose n ∈ [0, N − 1] such that ui is a
propagating wave which satisfies ∆3u

i + k2ui = 0 in W and the boundary conditions (BC).

Theorem 10.2 Let us denote by O1,2 two soft obstacles whose boundaries are of class C2 and
satisfy the convexity condition (CC). If for an infinite number of incident waves ui

q with prop-
agation direction d̃q, the corresponding total fields u1q and u2q coincide on the cylinder Σ(R),
then O1 = O2.

Now we demonstrate how we may adapt the simplified criterion and strategy of identifica-
tion given in section 10.2 to determine the vertical projection PzO of a 3D acoustically-soft
or acoustically-hard obstacle O embedded in the waveguide W . This is done by using the two
dimensional far field patterns u∞n which correspond to the us

n defined by (10.5), for n ∈ [0, N−1].
We easily prove that the following system holds :

∀n ∈ [0, N − 1],


(∆2 + k2

n)us
n = 0 in R2/PzO

us
n(x̃) = u∞n (x̂)

eiknr

√
r

+O(
1

r
3
2

), r → +∞.
(10.9)

We also we obtain that, the amn being the coefficients in (10.2),

u∞n (θ) =
∑
m∈Z

cmnψm(θ), cmn = amn

√
2
πkn

e−i(2m+1)π
4 . (10.10)
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Using definition 1, system (10.9) means precisely that PzO supports u∞n , for all n ∈ [0, N−1].
Hence,

N−1⋃
n=0

cSknsupp(u
∞
n ) ⊂ ch(PzO). (10.11)

We finally conclude that the N convex scattering supports of the far field patterns which are
associated with the propagating waves (with wavenumber kn) enable one to find an approxima-
tion of PzO. In practice, for each n ∈ [0, N − 1], the simplified criterion and the identification
strategy described at the end of the previous section are performed in order to approximate the
corresponding convex scattering support cSknsupp(u

∞
n ).

It will turn out in the next section that the numerical results are satisfactory even if one
single convex scattering support cSknsupp(u

∞
n ), i.e. for a given n ∈ [0, N − 1], is used.

10.4 Some numerical experiments

In the following experiments, we chose h = 4 as the height of the waveguide, and we reconstructed
the convex hull of the vertical projection of an acoustically-hard obstacle O for the following
four cases:

Case 1 : a sphere of center (0, 0, 2) and radius 1,
Case 2 : a sphere of center (0, 0, 2) and radius 0.5,
Case 3 : an ellipsoid of center (0, 0, 2) and semi-axes 2, 2, and 1,
Case 4 : two spheres of centers (0, 1, 2) and (0,−1, 2), both of radius 0.5.

The incident field is ui(x, y, z) = sin[(n + 1/2)πz
h ]eiknx for k = 4 and n = 0, k0 being given

by (10.4). Hence, the number of propagating modes is N = 5.
Using the computed data u∞n , for each n ∈ [0, N − 1] we employ the strategy described

in section 10.2. The set Pz(O) is approximated by the intersection of 8 balls B(Ci, Ri) (i ∈
{1, 2, · · · , 8}) such that their centers Ci are equally distributed on the circle ∂B(C0, R0) with
C0 = (7, 4) and R0 = 12. It amounts to guessing that Pz(O) lies within that circle.

Figures 10.1 and 10.2 show the xy-projection of the true obstacle within the waveguide and
the result of the reconstruction, both inside the circle ∂B(C0, R0), for case 1 with either u∞0 or
u∞1 . The other cases are described in [1].

These experiments reveal that only one 2D far field u∞n associated to only one incident field
ui enables one to locate the vertical projection of the obstacle and to approximately find its size.
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Shape analysis of the crack inverse
problem
Dorin Bucur1

The talk deals with the uniqueness and stability of the crack identification problem without
a priori imposing any regularity of the unknown cracks (or cavities). Roughly speaking the
problem can be formulated as follows: given a smooth bounded domain Ω ⊂ R2, find a compact
set K ⊂ Ω knowing the traces on the boundary wi|∂Ω of the solutions of

−∆wi = 0 in Ω \K
∂wi

∂n
= 0 on ∂K

∂wi

∂n
= ψi on ∂Ω

(11.1)

for several inputs ψi. It is known that one measure can not uniquely determine even a smooth
curve K, and, following [1], two suitably chosen inputs can uniquely determine compact sets K
which can be decomposed in a finite union of disjoint continua (see [1, 8]).

As a first purpose of the talk, we discuss the uniqueness of the detection by two boundary
measurements for arbitrary compact sets. We prove that unique determination holds in the
family of sets satisfying quasi-everywhere a regularity property, called conductivity. This prop-
erty appears naturally in the study of the boundary behaviour of the conjugates of the solutions
of (11.1). Roughly speaking, a set is conductive at a boundary point, if it is “rich” enough
in a neighbourhood of that point. This regularity notion does not imply smoothness, and has
rather to be compared to the Wiener criterion than to the usual regularity of the boundary.
For example, the complement of a compact set composed by an infinite number of cracks (or
cavities) of non-zero diameter is conductive at every boundary point. From a practical point
of view, this could be interpreted in the following way: in order to be seen, a default should
be “enough” thick in the sense of capacity, and this is particularly the case when defects are
locally continua. Nevertheless, we give an example of a totally disconnected Cantor set, which is
uniquely identifiable. For the proof of the unique identifiability by two boundary measurements
we follow the idea of Alessandrini and Diaz Valenzuela based on non-existence of critical points
of special holomorphic functions. Compared to the case of a finite number of cracks, two new
difficulties appear. First, one has to give a variational sense to the harmonic conjugate of the
solution of (11.1) and study its properties on the (non-smooth) boundary of K. Second, this
function is not anymore continuous up to the defect K, hence information can not be propagated
“across” the defect. For example, suppose that K1 and K2 are two compact sets giving the same
measures. Contrary to the case of a finite number of cracks, the information given by the unique
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continuation property is not exploitable in any connected region of Ω \ (K1 ∪ K2) which does
not “touch” ∂Ω.

The second purpose of the talk is to discuss the sequential stability of the detection: close
measures do give close cracks? We underline the role of this stability result for understanding
how geometric approximations of the cracks by finite elements converge (or not) to the real
crack.

We refer to [2, 7], where the strong stability is obtained provided that the uniform Lipschitz
character of all the cracks (or cavities) is a priori known. Moreover, in [2] the authors prove
that their result is, in certain sense, optimal, as soon as the purpose is to give an estimation
of the modulus of continuity of the mapping: measures 7→ cracks. Without uniform regularity
assumptions on the cracks, there is no any estimate for the modulus of continuity of the direct
problem.

The general scheme to discuss sequential stability relies on the Tikhonov principle: a con-
tinuous one to one functional from a compact set onto a metric space is a homeomorphism. The
main difficulty is hidden into the continuity of this functional, which means the continuity of
the direct problem: geometrically close defects do give close measures? For non-smooth defects
with homogeneous Neumann boundary conditions (like in (11.1)) this is, in general, an open
question. Only in two dimensions of the space the stability was recently proved for a similar
problem in [4], provided that the number of the connected components of the varying defects is
uniformly bounded.

Relying on this result, we prove that if the number of cracks or cavities is uniformly bounded,
then sequential stability occurs without any further regularity assumption. This result can also
explain how a “dense” curve can give measurements which are close to those given by a cavity
(of strictly positive measure) or why two geometries which are apparently very different may
give close measurements. Within this approach, even though we are not able to estimate the
modulus of continuity of the inverse mapping, we can give a formal justification that finite
element discretizations provide discretized solutions which are geometrically close to the real
defects, regardless their regularity. This result is in a sense similar to the one obtained in [6] for
shape optimization problems associated to the Dirichlet-Laplacian.

For more information about the crack identification problem, we refer to a recent survey by
Bryan and Vogelius [3], where the reader can find a detailed description of the subject.

The results of presented in this talk were jointly obtained with Z. Belhachmi and N. Varchon.

Bibliography

[1] G. Alessandrini, A. Diaz Valenzuela. Unique determination of multiple cracks by two
measurements. SIAM J. Control Optim. 34 (1996), no. 3, 913–921.

[2] G. Alessandrini, L. Rondi. Optimal stability for the inverse problem of multiple cavities,
J. Differential Equations, 176, (2001), 2, 356–386.

[3] K. Bryan, M. Vogelius. A review of selected works on crack identification problem, IMA
workshop on Geometric Methods in Inverse Problems and PDE Control 2001.

[4] D. Bucur, N. Varchon. A duality approach for the boundary variation of Neumann prob-
lems. SIAM J. Math. Anal. 34 (2002), no. 2, 460–477.

[5] D. Bucur, J.-P. Zolésio. N -Dimensional Shape Optimization under Capacitary Con-
straints. J. Differential Equations, 123 (2) (1995), 504–522.



Shape analysis of the crack inverse problem 57

[6] D. Chenais, E. Zuazua. Approximation par éléments finis de problèmes elliptiques
d’optimisation de forme. C. R. Math. Acad. Sci. Paris 338 (2004), no. 9, 729–734.

[7] F. Friedman, M. Vogelius. Determining cracks by boundary measurements. Indiana Univ.
Math. J. 38 (1989), no. 3, 527–556.

[8] H. Kim, J.K. Seo. Unique determination of a collection of a finite number of cracks from
two boundary measurements. SIAM J. Math. Anal. 27 (1996), no. 5, 1336–1340.



58 Dorin Bucur



Carleman estimates and null
controllability properties for
degenerate parabolic equations

P. Cannarsa1 P. Martinez2 J.-P. Raymond3

J. Vancostenoble4

Introduction

Motivated by a boundary layer model and the so-called Crocco equation, we study the con-
trollability properties of some classes of degenerate parabolic equations. Since there are several
degeneracies occurring in the Crocco equation, we consider some simplified problems, in order
to separate the difficulties.

Because of the degeneracy of the problems, there are some particular behavior with respect
to controllability properties that lead us to introduce non standard notions like regional null
controllability in some cases or to derive new (global) Carleman estimates in some other cases.

12.1 A boundary layer model

The velocity field of a laminar flow on a flat plate can be described by the Prandtl equations [23].
For a two dimensional flow, these equations are stated in an unbounded domain (0, L)× (0,∞),
where (0, L) represents the part of the plate where the flow is laminar, and (0,∞) represents the
“thickness” of the boundary layer. The matching conditions with the external flow are stated
at +∞.

By using the so-called Crocco transformation, these equations are transformed into a nonlin-
ear degenerate parabolic equation (the Crocco equation; see [23]) which is stated in a bounded
domain Ω = (0, L)×(0, 1). The linearization of the Crocco equation around a stationary solution

1cannarsa@mat.uniroma2.it
2martinez@mip.ups-tlse.fr
3raymond@mip.ups-tlse.fr
4vancoste@mip.ups-tlse.fr

59



60 P. Cannarsa & P. Martinez & J. ssP. Raymond & J. Vancostenoble

is an equation of the form

ut + bux − auyy + cu = g, (x, y, t) ∈ Ω× (0, T ),
u(x, 0, t) = 0, (x, t) ∈ (0, L)× (0, T ),
uy(x, 1, t) = χ(x0,x1)(x)f(x, t), (x, t) ∈ (0, L)× (0, T ),
u(0, y, t) = u1(y, t), (y, t) ∈ (0, 1)× (0, T ),
u(x, y, 0) = u0(x, y), (x, y) ∈ Ω,

(12.1)

where g and u1 depend on the incident velocity of the flow, and where the function f is the
control used to stabilize the velocity in the boundary layer. The coefficients a, b, and c are
regular, but degenerate at the boundary of the domain [6, 5]. The perturbations of the velocity
field in the boundary layer are controlled by a suction velocity f through the plate, localized on
a slot (x0, x1).

Wellposeness of this model was studied in [5]. Moreover this linearized model has been used
to study stabilization problems of boundary layers in [6, 4] where numerical experiments are
presented.

12.2 Non degenerate parabolic equations

Before explaining our results, let us recall the main results for nondegenerate parabolic equations.
Consider for example the following parabolic equation in Ω := (0, 1):

ut − (a(x)ux)x = f(t, x)χ(α,β)(x), (t, x) ∈ (0, T )× (0, 1),
u(t, 0) = u(t, 1) = 0, t ∈ (0, T ),
u(0, x) = u0(x), x ∈ (0, 1),

(12.2)

where u0 ∈ L2(0, 1) and f ∈ L2((0, T )× (0, 1)).
After the pioneering works as [13, 14], there has been substantial progress in understanding

the controllability properties of nondegenerate parabolic equations in recent years. A powerful
new approach, based on suitable weighted estimates of Carleman type has been developed, see
[16, 26]; see also [17] for an other approach of this problem. The theory has also been extended
to semilinear problems, see for example [2, 3, 12, 15].

In the non degenerate case (i.e. a > 0 on [0, 1]), (classical) null controllability is by now
well-known : for all nonempty (α, β) ⊂ (0, 1) and for all T > 0, there exists f ∈ L2((0, T )×(0, 1))
such that the solution of (12.2) satisfies

u(T ) ≡ 0 in the whole domain (0, 1). (12.3)

Notice that there is a large literature on this problem when it is not degenerate and when Ω
is a bounded set. On the other hand, to our knowledge, it seems that no result at all was known
concerning a degenerate case.

12.3 A Crocco-type equation (with constant coefficients)

In [18], we first simplify the boundary layer problem by considering only a linearized Crocco-
type equation with constant coefficients. The problem is described by a degenerate parabolic
equation where phenomena of diffusion and transport are coupled :

ut + ux − uyy = fχω, (x, y, t) ∈ Ω× (0, T ), (12.4)
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where Ω = (0, L)× (0, T ).
Due to transport phenomenon, the influence domain of the control χωf is not the whole

domain Ω at time T > 0. Thus, we first show that (classical) null controllability does not occur.
For this reason, we introduce the notion of regional null controllability. More precisely,

we study the following question: for u0 ∈ L2(Ω), u1 ∈ L2((0, 1) × (0, T )), does there exist
f ∈ L2(ω× (0, T )) such that the solution u of (12.4) satisfies u(x, y, T ) = 0 for (x, y) ∈ ΩC(T ),
where ΩC(T ) denotes a part of Ω?

As a first step, we give a geometric characterization of the influence domain of the control
χωf in order to determine the region ΩC(T ) of Ω on which it will be possible to control u(·, T ).
Then we prove regional null controllability on the domain ΩC(T ).

12.4 A class of degenerate heat equation

Next we turn to a class of degenerate heat equations :

ut − (a(x)ux)x = 0, (t, x) ∈ (0, T )× (0, 1), (12.5)

Here the degeneracy comes from the fact that the coefficient a vanishes at a point of the bound-
ary, since we assume

a > 0 on (0, 1] and a(0) = 0.

We will see that the degree of degeneracy of the coefficient a(x) plays a crucial role in
the controllability properties : even if (classical) null controllability is in general false for the
previous class of degenerate heat equations, it may be true in some cases depending on the
degree of degeneracy of the coefficient.

Lack of (classical) null controllability for strong degeneracies

First we remark that the problem of null controllability for the degenerate heat equation (in
bounded domain) is closely related to the same problem for the (non degenerate) heat equation
in unbounded domain.

Consider the typical case a(x) = xα with α > 0, α 6= 2. Then a standard change of variable
transforms the degenerate parabolic equation

ut − (aux)x = fχω, x ∈ (0, 1), (12.6)

set in the bounded space domain (0, 1) into a (non degenerate) heat equation with a potential
term:

Ut − UXX + b(X)U = Fχω̃, x ∈ D, (12.7)

set in the space domain D := (0, 1/(1 − α/2)) if α < 2 or D := (0,+∞) if α > 2. The term
b(X) is singular if α < 2 and bounded if α > 2.

In particular, the degenerate heat equation (in bounded domain) is equivalent to a (non
degenerate) heat equation in unbounded domain with a (regular) potential term in the case
α > 2.

Using a result of Escauriaza, Seregin and Šverák [10, 11], that generalizes a result of Micu
and Zuazua [20, 21], we deduce from the previous remark that (classical) null controllability
fails in general, at least for a(x) = xα with α > 2. (In this case however, one still can provide
some results of regional null controllability [8]).
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Classical controllability for “weakly” degenerate problems

Finally, we study the classical null controllability of the degenerate heat equation (12.5) when
the degeneracy is not “too strong”.

In the case a(x) = xα with α < 2, we prove that the degenerate parabolic equation that we
consider is null controllable [9].

This result extends to general coefficients [19], under some weak assumption on the behavior
of the function a near the point where it vanishes:

xa′(x)
a(x)

→ α ∈ [0, 2) as x→ 0+.

The proof follows from new Carleman estimates that take into account the fact that the
operator −(aux)x that we consider is not uniformly elliptic in the space domain (0, 1). We
derive these Carleman estimates using in particular Hardy type inequalities.
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Inverse problems in
electroencephalography
Maureen Clerc1 Théo Papadopoulo2 Juliette Leblond3

Introduction

Electroencephalography (EEG) allows the measurement of an electric potential due to brain
activity, by means of electrodes placed on the scalp. The variations of potential are measured
with a time resolution of the order of one millisecond. The ultimate goal of EEG analysis is to
recover the spatiotemporal evolution of the brain activity. This activity can be modelled as a
distribution of current dipoles Jp, located in the cortex, a thin layer of gray matter at the surface
of the brain, and oriented perpendicularly to the cortical sheet. The relationship between the
measured potential V and the cortical activity is given by the Poisson equation

∇ · (σ∇V ) = ∇ · Jp . (13.1)

inside the head, with a vanishing Neumann boundary condition on the scalp, because the air
around the head is non-conducting.

After presenting the solution of the forward EEG problem in Section 13.1, we describe three
inverse problems arising in EEG analysis. Section 13.2 presents a conductivity estimation
problem, which for the piecewise constant conductivity model can be regarded as a parameter
calibration problem. Section 13.3 presents a Cauchy continuation problem, called cortical
mapping in the context of brain imaging, which is an important first step for several methods
of source localization. Section 13.4 presents a source estimation problem, for the particular
case when the source is distributed on a surface. We conclude with a comment concerning the
validation of the source localization problem.

13.1 The forward EEG problem

When the conductivity σ and the sources Jp are known, the potential V solution of (13.1) is
computed by solving a forward EEG problem, a well-posed problem, whose numerical solution
relies on one of three types of methods: analytical, surface-based or volume-based.

• Analytical methods can be used for simple geometries, such as planes, spheres. Because of
its simplicity, a head model which is often used in practice is a three-sphere head model,
the inner (resp. middle, outer) sphere representing the brain (resp. skull, scalp).
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Ω3

S3

S2S1

Ω1

Figure 13.1: Left: a slice through a three-layer model: the brain compartment is Ω1, the skull
is between surfaces S1 and S2, and the scalp between surfaces S2 and S3. Right: different
geometries for discretizing the EEG problem (a) nested spheres (b) surface meshes (c) volume
meshes.

• Boundary Element Methods (BEM) are surface-based methods. Assuming a piecewise-
constant conductivity, the unknowns are discretized on interfaces between volumes of con-
stant conductivity [7, 8].

• Volume-based methods comprise the Finite Element and the Finite Difference methods
(FEM, FDM). They are the most versatile of the three types of methods, since they do
not impose a specific model for conductivity. The conductivity value can be defined element
per element, and can even be tensor-valued in tissues with anisotropic conductivity. The
white matter of the brain is an example of a tissue with anisotropic conductivity, due to
many elongated fibers [9].

The major difficulty associated with the forward EEG problem is of a geometrical nature.
Realistic head models are constructed by segmenting a Magnetic Resonance Image (MRI) of the
subject. The meshing process involved is far from trivial, because it must accommodate for very
intricate surfaces, and nevertheless have a high quality in terms of aspect ratio of its elements,
and of topology, in order to be comply with numerical computations.

13.2 Conductivity estimation

Due to the gradually increasing precision of the EEG forward problem, and with the widespread
use of realistic head models instead of the nested spheres, there is growing interest for a cali-
bration of the head tissue conductivities. The relationship (13.1) suggests that the conductivity
may be estimated by imposing a known source term Jp and measuring the corresponding po-
tential. If the source is localized inside the brain, its spatial characteristics must be estimated
independently. Magnetoencephalography (MEG) offers the possibility of localizing the source
independently from the EEG, and with less dependence on the conductivity parameters [6].
Rather than imposing a source inside the brain, it is simpler to impose a current on the scalp,
a technique known as Electrical Impedance Tomography. In the particular case of head conduc-
tivity estimation, the boundaries between constant conductivity tissues can be extracted from
the segmentation of an MRI. Suppose a scalar conductivity in each tissue, we have developed an
iterative estimation procedure based on a Boundary Element discretization of the forward EIT
problem:

∇ · (σ∇V ) = 0 (13.2)

and σ ∂V
∂n = j on the scalp, where j is the impressed current. Using a gradient descent approach,

the scalp-to-skull conductivity ratio can be estimated [5].
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13.3 The Cauchy problem in EEG

Several source reconstruction methods for EEG [2, 3] assume the knowledge of Cauchy data
on the boundary of the innermost volume containing the sources - the surface denoted S1 in
Figure 13.1 (left). This implies the propagation to S1 of Cauchy data which is only partially
known on the scalp SN : indeed, ∂nV = 0 on all of SN , but V is only known at the discrete
positions of the scalp electrodes. We have recently proposed two different methods to tackle
the EEG Cauchy continuation problem from the scalp to the cortical surface: one using the
Boundary Element Method, and the second one using a Bounded Extremal Problem [4].

13.4 Source estimation

The sources of electrical activity in the brain can be modeled either as a linear combination
of dipolar sources, or as a volume or surface distributions. We restrict our analysis to sources
distributed on a prescribed surface, and oriented perpendicularly to it. For exact measurement
of V over a dense region on the scalp, this inverse problem has a unique solution, up to a constant
normal distribution.

We have developed a source estimation procedure which works directly with measurements
on the scalp, and does not require an initial Cauchy data propagation step as in Section 13.3.
A natural approach to find the source distribution is to minimize a cost function C(Jp) =
‖Vmeas − V (Jp)‖, where Vmeas represents the measured potential, and V (Jp) represents the
solution of (13.1) with a vanishing Neumann boundary condition on the scalp. The instability
of the inverse problem however imposes a regularization in the source reconstruction, either
by requiring the source Jp to belong to a subspace, or by adding a regularizing term to the
cost. A disadvantage of many regularization methods, such as Tikhonov or Minimum Norm
solutions, is that they tend to produce very blurred solutions, and are unable to cope with sharp
discontinuities. In image processing, a remedy is to penalize the cost with a Lp norm of the
image gradient. Incorporating such a regularization in the EEG inverse problem, by controlling a
L1 norm of the source distribution gradient indeed provides a solution with an enhanced spatial
resolution [1].

13.5 Validation

The validation of the source localization problem is a difficult task, because very little is known on
the actual spatio-temporal behavior of the electrical sources of the brain. Phantom models can
help validate algorithms, but their electrical properties are rather far from reality. Simultaneous
intracranial and extracranial recordings are sometimes performed in pathological cases. Such
recordings are very useful to validate localization methods, with a limit however due to the
scarceness of the spatial sampling. Perhaps the most promising strategy for validation is a
multimodal approach, combining different brain imaging modalities – EEG, MEG, PET, MRI,
with neurophysiologists and neuropsychologists’ expertise.
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A soliton-based analysis of the
arterial blood pressure
E. Crépeau1 T.M. Laleg2 M. Sorine3

Abstract

A model-based signal analysis of the arterial blood pressure (ABP) is proposed. The objective is
to estimate some characteristics of the ABP pulse waveform from non-invasive measurements for
clinical interpretations. The blood is considered as an incompressible fluid in an elastic vessel
modelled by some one-dimensional Navier-Stokes equations. Analysis of the pressure pulse
waveform consists in identifying the parameters of a reduced model of the ABP based on an
integrable approximation of these Navier-Stokes Equations. This ABP model is a superposition
of a forward N-soliton of a Korteweg de Vries equation with a windkessel flow. The soliton takes
into account fast phenomena which predominate during the systolic phase and the windkessel
model represents slow phenomena during the diastolic phase. Some promising results obtained
with this model-based signal processing method are presented.

14.1 Introduction

The cardiovascular system is composed of the heart and of a complex vascular network, organised
into vascular compartments. It supplies tissues with oxygen, nutrients and to remove carbon
dioxide and other catabolits. Pressure and flow waves are created by the beating heart and
propagate through the aorta and the major arteries to the periphery. The pulse pressure (PP)
plays an important role in the circulatory system. It undergoes an increase in its amplitude and
a decrease in its width when it propagates along the arterial tree as it is shown in Figure 14.1.
These observed phenomena which are called respectively “Peaking” and“Steepening”, are often
explained by the existence of reflected waves so that the PP is usually decomposed into forward
and backward waves associated to some linearized model [8]. Here, they will be associated
to some nonlinear waves. Models proposed to describe the blood pressure in cardiovascular
compartments are of two types:
– Lumped models (0D models) [7] are built by analogy with electrical circuits. They are simple
and explain the global behavior of the vascular compartment with a small number of parameters
having a physiological meaning. They do not explain the propagation phenomena nor the
peaking and the steepening.
– Distributed models (1D, 2D and 3D models) [3] use the principles of computational fluid

1UVSQ, emmanuelle.crepeau@math.uvsq.fr
2INRIA Rocquencourt, Taous-Meriem.Laleg@inria.fr
3INRIA Rocquencourt, Michel.Sorine@inria.fr
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Figure 14.1: Propagation of a pressure pulse along the arterial tree.

dynamic. They can explain the observed phenomena but are too complex, especially in 3D, for
signal processing applications.

14.2 Governing equations

The blood is considered as an incompressible fluid in a long, straight, circular homogeneous,
thin walled elastic tube. The flow is modelled by the following one-dimensional Navier-Stokes
equations, T and Z being respectively the time and space variables:

AT +QZ = 0, (14.1)

QT +
(
Q2

A

)
Z

+
A

ρ
PZ + ν

Q

A
= 0. (14.2)

where, A(T,Z) is the cross-sectional area of the vessel, Q(T,Z) is the blood flow and P (T,Z)
is the blood pressure. Moreover ρ is the blood density and ν a coefficient of viscosity of blood.
Furthermore, the motion of the wall satisfies, (see for example [10])

ρwh0R0

A0
ATT = P − P0 −

h0

R0
σ (14.3)

where, ρw is the wall density, P0 is the pressure outside the tube, taken in the following as a
reference value. h0 and R0 denote respectively the mean mean thickness of the wall and the mean
inner radius of the tube, and A0 = πR2

0. Moreover, σ is the extending stress in the tangential
direction. Remark that usually the term ρwh0R0

A0
ATT , leading to the classical “Laplace law”.

This system is completed by a model of the local compliance of the vessels, a state equation,
where ∆A = A−A0, E being the coefficient of elasticity.

σ = E
∆A
2A0

. (14.4)

14.3 A reduced model of the ABP

We first rewrite system (14.1)-(14.4) in non-dimensional variables in order to use some singular
perturbation technique to separate slow and fast modes in the pressure. Let

Z = Lz, T =
L

c0
t

where L is the typical wave length of the waves propagating in the tube and c0 =
√

Eh0
2ρR0

is the
typical Moens-Korteweg velocity of a wave propagating in an elastic tube, when all nonlinear
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terms are neglected. We suppose that ε =
(

R0
L

)2/5
<< 1. Let us rescale pressure, blood flow

and cross-sectional area:

P − P0 = ρc20p, Q = A0c0q, A = A0(1 + a),

We get the following system, where, by hypothesis, ρwh0R0

ρL2 = O(ε5) = λε5:

at + qz = 0, (14.5)

qt +
(

q2

1 + a

)
z

+ (1 + a)pz = −η q

1 + a
, (14.6)

λε5att + a = p. (14.7)

Fast time behaviour. In fast time, corresponding to the Pulse Transit Time (PTT), we look
for a solution with the following asymptotic expansion in terms of ε [2],

a(t, z) =
∑
k≥1

εk[ak(
t− z

ε2
,
z

ε
, t, z)],

p(t, z) =
∑
k≥1

εk[pk(
t− z

ε2
,
z

ε
, t, z)],

q(t, z) =
∑
k≥1

εk[qk(
t− z

ε2
,
z

ε
, t, z)].

The following new variables are used in the PTT boundary layer

τ1 =
t− z

ε2
, ξ1 =

z

ε
.

Remark that this choice of variables implies that we consider only waves moving from the left
to the right. If we keep both directions, we get a Boussinesq type model as for example in [6].
Remark also that we have chosen ε =

(
R0
L

)2/5 instead of ε = R0
L as commonly done [1] so that

the acceleration term in (14.7) does not disappear in the sequel. Thus equations (14.5)-(14.7)
become (at the second order of ε),

q1 = p1 = a1, 2q1ξ1 − 3q1q1τ1 − λq1τ1τ1τ1 = 0. (14.8)

In fast times, and in a boundary layer, p1 is solution of a Korteweg-de Vries equation. In initial
variables, we have the following KdV equation, with Z in the real line, for the fast blood pressure
PS(T,Z) = ρc20p

1( c0T−Z
Lε2

, Z
Lε),

PS
Z + d0P

S
T + d1P

SPS
T + d2P

S
TTT = 0, (14.9)

with

d0 =
1
c0
, d1 = −3

2
1

A0c20
, d2 = −ρwh0R0

2ρc30
.

Here the superscript S denotes that we are interested in soliton solutions of (14.9). The blood
flow, Q1, and the cross sectional area ∆A1 are also solutions of Korteweg-de Vries equations in
the same boundary layer.
Usually, with the available measurements (e.g. given by a FINAPRES sensor), we get the
pressure at a localized point, for example the finger, and as a function of time. Thus, it is useful
to get, not a time-evolution equation as usual, but a space-evolution equation as obtained in
(14.9).
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Slow time behaviour. Equation (14.9) describes rather fast traveling waves (3-10 m/s).
After the PTT, these waves have gone across the compartment and there is still a slowly varying
flow that appears as some kind of parabolic flow obtained by neglecting, for large time, the
acceleration terms in (14.2). As this component will later well approximated by a classical
windkessel model, we use the superscript wk for it, leading to the decomposition:

P (Z, T ) = PS(Z, T ) + Pwk(Z, T ) (14.10)

Awk
T +Qwk

Z = 0, (14.11)

A0

ρ
Pwk

Z + ν
Qwk

Awk
= 0, (14.12)

∆Pwk − h0E

2A0ρ0
∆Awk = 0 (14.13)

The boundary conditions in (14.1), (14.2) are now necessary: they describe the pressure-flow
relationships using the vascular proximal and distal impedances RH and Rp in Z = 0 and Z = l.
We get the following parabolic equation in Pwk,

Pwk
T − A0h0E

2ρνR0
Pwk

ZZ = 0, (14.14)

−RH(PS(0, T ) + Pwk(0, T ))Z + PS(0, T ) + Pwk(0, T ) = 0, (14.15)

Rp(PS(l, T ) + Pwk(l, T ))Z + PS(l, T ) + Pwk(l, T ) = 0 (14.16)

14.4 N-soliton+windkessel approximation of the ABP

N-soliton approximation of PS. Let ξ = t− d0z, τ = d2z and y = d1
6d2
PS , so that equation

(14.9) becomes a normalized KdVE:

yτ + 6yyξ + yξξξ = 0, y(ξ, 0) = y0(ξ). (14.17)

The N-soliton solutions of the KdVE (14.17) will be used here. Their analytical expression is
given by the Inverse Scattering Technique (see e.g. [9]):

y(ξ, τ) = 2
∂2(ln det(M))

∂ξ2
, (14.18)

where M is a N ×N matrix with coefficients given by:

Mmk = δmk +
2am

am + ak
fm, m, k = 1...N (14.19)

where δmk is the Kronecker symbol and

fm(ξ, τ) = exp[−am(ξ − sm − a2
mτ)], (am, sm) ∈ R+ × R

We note PNS(Z, T ) the corresponding soliton in the original variables.
The solitons have some interesting characteristics for the present application: the velocity

of a soliton is proportional to its amplitude; after collision between solitons, their individual
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Figure 14.2: Propagation of a 2-soliton.

shape and velocity are preserved; a N-soliton has N components of different heights traveling
with different velocities while interacting. This is illustrated Figure 14.2.

From real data, it can be noticed that the ABP can be approximated by 2 or 3-solitons.
The introduction of solitons can explain the observed phenomena. The “Peaking” can be

explained by the increase in the soliton velocity which leads to an increase in its amplitude.
The increase in the velocity results from the changes in the vessel characteristics (the increase
in stiffness and the decrease in section). The “Steepening” can be explained by the conservation
laws: the increase in the amplitude leads to a decrease in the width.

0D approximation of Pwk. A low frequency approximation of (14.14, 14.16) gives a 2 or 3
-element windkessel system for each measurement position, Z = Zm, see for example [4, 5]:

dPwk(t)
dt

+
Pwk(t)
RpC

=
P∞
RpC

+
PNS(Zm, t)

RHC
(14.20)

where C and P∞ are respectively the arterial compliance and the asymptotic pressure (teledi-
astolic value).

Therefore, we propose to estimate the measured ABP as the sum of a N-soliton describing
fast phenomena and a windkessel model (Pwk(t)) representing slow phenomena.

P̂ (Zm, t) = PNS(Zm, t) + Pwk(t) (14.21)

14.5 Numerical results

The identification is done for a 2 or 3-solitons and a 2-element windkessel. Identifiability of 2
and 3 solitons has been studied in [2]. The Figure 3 illustrates the rather good results obtained
from real ABP data measured at the finger level with a FINAPRES.

Conclusion

We have proposed a reduced model of ABP based on an integrable approximation of Navier-
Stokes equations. The ABP is estimated as the sum of a 2 or 3-soliton and a 2-element windkessel
model. Unlike the linear approach which necessitates simultaneous blood pressure and flow
measurements, the proposed model requires only pressure measurements. Its depends on few
number of parameters and it seems that these results on ABP waveform analysis can lead to
some interesting clinical applications, in particular in the systolic phase, where a new description
of the pressure pulse contour has been given.
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Figure 14.3: Pressure at the finger: real and estimated data.
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On the Mathematical Analysis and
Numerical Simulations of Some
Direct and Inverse Problems in the
Seawater Intrusion
Mohamed El Alaoui Talibi1 M.H. Tber2

15.1 Introduction

Coastal aquifers serve as major sources for fresh water supply in many countries around the
world, especially in arid and semiarid zones. In these areas, groundwater usually flows into
the sea. As the specific gravity of sea water is larger than that of fresh one, the sea water
rests under the fresh water like a wedge (see figure 15.1). When the fresh water in confined or
unconfined aquifer is overpumped, its hydraulic head may be dropped drastically. Then a series
of problems will be generated, the sea water may intrude the land, the fresh water in the wells
may be salted, and the aquifers and cultivated horizons may be destroyed. Thus the development
and utilization of groundwater in coastal areas must be managed in rational way in order to
prevent sea water intrusion. If this intrusion happened, measures should be taken to remedy
it, such as the control of water supply, artificial recharge and the building of hydraulic barriers.
For this purpose, it is necessary to use mathematical models to simulate the phenomena and
make quantitative estimations of the effects of various management decisions and engineering
installations.

The main approaches that have been used to analyze salt water intrusion in coastal aquifers
are the dispersive model and the sharp interface. While the disperse-interface model accounts
for presence of a transition zone of mixed salt and fresh water, the sharp interface idealization
simplifies the analysis by assuming that the transition zone is thin relative to the dimension of
the aquifer which reproduces the general position, shape, and behavior of the interface.

The sharp-interface model based on the two-fluid approach is widely used in practice, but
there is not, in our knowledge, any rigorous mathematical analysis of problems related to this
model, especially inverse problems. In fact, although the groundwater parameters estimation
has received substantial attention in the water resources literature (see e.g, [4]), a few works
have been interested to the intrusion problem where parameters, particularly with discontinuous
coefficients, depend on hydraulic head of two fluids (see [3]).

In this talk we present a mathematical and numerical results for some direct and inverse
problems issued from the problem of seawater intrusion in a coastal aquifers. Our principal
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Figure 15.1: Saltwater intrusion phenomena

aim is to identify some parameters like hydraulic conductivities and storativity. We consider the
sharp interface model and formulate the problem as an optimal control one. The state equations
are nonlinear and of degenerate type. We then first give an existence and uniqueness result in the
steady state case and an existence result for the unsteady problem. The identification problem
is considered and studied in the too cases. Many numerical results, using the gradient method,
are presented.

15.2 Steady State Problem

Let us consider the flow of fresh and salt groundwater, separated by sharp interface, in a confined
aquifer, bounded by two, approximately horizontal, impermeable layers. Substitution of Darcy’s
law let us consider the flow of fresh and salt groundwater, separated into the equations of
continuity of the two fluids (fresh and salt) leads to the following system of coupled partial
differential equations [1]: {

−div(kf (x)Bf (x, hf , hs)∇hf ) = Qf on Ω
−div(ks(x)Bs(x, hf , hs)∇hs) = Qs on Ω

(15.1)

where Ω is an open bounded domain of R2 with piecewise smooth boundary Γ; hf is the fresh-
water head; hs is the salt water head; Qf and Qs are supply functions representing a distributed
surface supply of salt and fresh water into the aquifer; kf and ks are two positive functions repre-
senting the hydraulic conductivities or transmissivities; Bf (x, hf , hs) and Bs(x, hf , hs) represent
the thicknesses of fresh-water and salt-water respectively, such that:

Bf (x, hf , hs) = ξ2(x)− ξ1(x), (15.2)

Bf (x, hf , hs) = ξ1(x)− ξ0(x), (15.3)

where ξ0 and ξ2 are the depths of the lower and the upper surfaces of the aquifer, respectively;
ξ1 is the interface depth given by the following relation:

ξ1(x) = (1 + δ)hs − δhf , (15.4)

where δ =
ρf

ρs − ρf
is the relative density with ρf and ρs are the fresh and salt water densities.
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Two approximations that are commonly used in groundwater and salt water intrusion stud-
ies have been made here. Firstly, the Dupuit hydraulic assumption is employed to vertically
integrate the flow equation, reducing it from three-dimensional geometry to two-dimensional.
Secondly the aquifer storativity is ignored such that the governing equations becomes time
independent [3].

To resolve the system we consider the nonhomogeneous Dirichlet boundary conditions as
follows: {

hf = gf on Γ
hs = gs on Γ

We suppose that Q = (Qf , Qs) ∈ L4(Ω)2, (ξ0, ξ2) ∈ L2(Ω)2 and g = (gf , gs) ∈ H1(Ω)2. We also
set Vg = V f

g × V s
g , where V t

g = H1
0 (Ω) + gt (t = f, s).

The variational formulation of the problem can then be written as follows:
Find h = (hf , hs) ∈ Vg such that∫

Ω
kf (x)Bf (x, hf , hs)∇hf∇ϕf =

∫
Ω
Qfϕf ∀ϕf ∈ H1

0 (Ω)∫
Ω
ks(x)Bs(x, hf , hs)∇hs∇ϕs =

∫
Ω
Qfϕs ∀ϕs ∈ H1

0 (Ω)

(15.5)

Thus to identify the transmissivities kf and ks from the water-head observations, we intro-
duce the following optimization problem:

(O)

 Find (k∗f , k
∗
s) ∈ Uad such that

J(k∗f , k
∗
s) = inf

(kf ,ks)∈Uad

J(kf , ks)

where

J(kf , ks) =
1
2
‖hf (kf , ks)− hf‖2

L2(Ω) +
Index

2
‖hs(kf , ks)− hs‖2

L2(Ω)

with (hf , hs) is the solution of the problem (15.5), (hf , hs) is the observed data, and Index ∈
{0, 1}. We set Index equal zero when we have no salt-water informations. In fact, it is practically
expensive to obtain salt water head observations since it requires extra wells that penetrate
deeper into the salt water region.

Uad is closed bounded set of the space of the functions of bounded variation in Ω defined by

Uad =
{
(kf , ks) ∈ (BV (Ω) ∩ L∞(Ω))2, α ≤ kt ≤ β and TV (kt) ≤ c (t = f, s)

}
with α, β and c are positive constants, (BV (Ω), ‖.‖BV (Ω)) is the Banach space of bounded
variation functions and TV (kt) is the total variation of kt.

Using a fixed point argument, we prove an existence result of a weak solution. The L∞

estimates were obtained via a maximum principle established by Stampacchia’s technique. The
uniqueness of the solution is shown by the transposition method. Thanks to the properties of
the space of functions with bounded variation, we show the existence of an optimal control. The
optimality conditions are derived by the classical Lagrangian method. From a numerical point of
view, the ill posedness of the problem and the multiple minima difficulties are addressed through
a combination of Thikhonov or total variation regularization with an hierarchical parametriza-
tion procedure.



80 Mohamed El Alaoui Talibi & M.H. Tber

���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������

���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������

���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������

���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������

Fresh 

Salt

H1

h

H2

z=0

Figure 15.2: Saltwater intrusion phenomena

15.3 Unsteady problem

We consider the flow of fresh and salt groundwater, separated by a sharp interface, in a confined
aquifer. The aquifer is bounded by two approximately horizontal and impermeable layers (Figure
15.2). The lower and upper surfaces of the aquifer are described by z = −H2 and z = −H1,
respectively.

For this problem we introduce the practical change of functions and notations of [2] lead to
the following system of coupled partial differential equations :

S(x)∂th− div(αk(x)Ts(h)∇h) + div(k(x)Ts(h)∇ϕ) = −Qs

−div(k(x)Ta∇ϕ) + div(αk(x)Ts(h)∇h) = Qf +Qs
(15.6)

for (x, t) ∈ ΩT := Ω × J with J = ]0, T [ and Ω is an open bounded domain of R2, describing
the projection of the porous medium on the horizontal plane z = 0, with a smooth boundary
Γ = ΓD ∪ΓN . Here Ta = H2−H1 is the thickness of the aquifer, Ts = H2−h is the thickness of
saltwater zone, k is the hydraulic conductivity, S is the storativity of the aquifer, α is a positive
constant representing the relative density difference, ϕ is the freshwater hydraulic head, h is the
depth of the interface and where If and Is are supply functions, representing distributed surface
supply of fresh and saline water into the aquifer.

Introducing the new variables f =
ϕ

α
and K = αk leads to the following system:

S(x)∂th− div(K(x)Ts(h)∇h) + div(K(x)Ts(h)∇f) = −Qs

−div(K(x)Ta∇f) + div(K(x)Ts(h)∇h) = Qf +Qs
(15.7)

The boundary conditions are

h = hD, f = fD on ΓD

(K(x)Ts(h)∇h−K(x)Ts(h)∇f) · −→n = 0 on ΓN

(K(x)Ta∇f −K(x)Ts(h)∇h) · −→n = 0 on ΓN

(15.8)

where fD and hD are given functions, and −→n is the outward unit normal to Γ. The initial
condition is

h(x, 0) = h0(x), x ∈ Ω. (15.9)

Under physical assumptions, we prove an existence result of a weak solution for the parabolic-
elliptic system (15.7). The difficulty of the degeneracy, due to the possibility to have no salt
water in some zone of the aquifer, is handled using a regularization technique. The adoption of
the freshwater head and the interface depth as unknown variables enabled us to find a relation
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between the diffusion coefficients and consequently to draw up the necessary estimates in spite
of the strong coupling between the two system equations. A numerical code based on this
analytical study is developed. In addition, we made a numerical simulation of the simultaneous
identification of the hydraulic conductivity and the effective porosity.
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Stabilization of parabolic equation
and Navier-Stokes system in a
bounded domain Ω by feed-back
control defined on ∂Ω

Andrei V. Fursikov1

16.1 Setting of the problem

We consider the evolutionary Navier-Stokes equations (NSE)

∂tv(t, x)−∆v(t, x) + (v,∇)v +∇p(t, x) = f(x), div v = 0 (16.1)

defined for t > 0 in a bounded domain Ω ∈ R3 with smooth boundary ∂Ω. Suppose that a
steady-state solution of (16.1) with velocity component v̂(x) = (v1, v2, v3), x ∈ Ω is given and it
is not stable. We have an initial condition v0(x) for NSE:

v(t, x)|t=0 = v0(x), x ∈ Ω (16.2)

where v0 6= v̂ and v0 is a small perturbation of v̂. Besides

v(t, ·)|∂Ω = u, (16.3)

where u(t, x′), x′ ∈ ∂Ω is a control.
Stabilization problem is formulated as follows: Given a positive number σ, find a control

u(t, x′), x′ ∈ ∂Ω such that the solution v(t, x) of boundary value problem (BVP) (16.1), (16.2),
(16.3) for NSE tends to v̂ with prescribed rate σ:

‖v(t, ·)− v̂‖V 1(Ω) ≤ ce−σt as t > 0 (16.4)

where V 1(Ω) = {v ∈ (H1(Ω))3 : div v = 0)}, H1(Ω) is Sobolev space. Moreover, this stabi-
lization should be realized by feedback control which can react on unpredictable fluctuations of
velocity v(t, x) damping them.

1Department of Mechanics and Mathematics, Moscow State University, 119992 Moscow, Russia. fursikov@mtu-
net.ru
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16.2 Construction of stabilization

To solve stabilization problem we use the following construction. Let a domain G be such that
Ω ⊂ G. We extend v̂(x) in an arbitrary solenoidal vector field a(x), x ∈ G satisfying a|∂G = 0.
We substitute a(x) and extended pressure into the left part of the steady-state NSE and obtain
after proper calculations the extension g(x), x ∈ G of the right-hand side f(x) for NSE (16.1).

To extend (16.1) from Ω to G we forget for a while about boundary condition (16.3), take
g(x) as the right-hand side for extended evolutionary NSE, denote extended velocity vector field
as w(t, x). As a result we get:

∂tw(t, x)−∆w(t, x) + (w,∇)w +∇p1(t, x) = g(x), divw = 0 (16.5)

We impose the following conditions on w:

w|∂G = 0, w(t, x)|t=0 = w0(x) ≡ Ev0(x) (16.6)

Here E is a special nonlinear extension operator from Ω in G. Construction of E is the main
part of the proposed stabilization method.

Let V 1
0 (G) = {w(x) ∈ V 1(G) : w|∂Ω = 0}. For a given σ > 0 we define a stable invariant

manifold Mσ(a) as a smooth manifold in V 1
0 (G) of finite codimension determined in a neigh-

bourhood of a such that for each initial condition w0 ∈Mσ(a) the solution w(t, ·) of BVP (16.5),
(16.6) for every t > 0 belongs to Mσ(a) and

‖w(t, ·)− a‖V 1
0 (G) ≤ c‖w0 − a‖V 1

0 (G)e
−σt as t ≥ 0 (16.7)

Lemma 16.1 For each σ > 0 except, maybe, a finite set θ there exists a unique stable invariant
manifold Mσ(a) of minimal possible codimension.

Theorem 16.1 Let σ ∈ R+ \ θ. For sufficiently small ε there exists an operator E of extension
of vector fields from Ω in G such that E : Oε(v̂) → Mσ(a) where Oε(v̂) = {v ∈ V 1(Ω) :
‖v − v̂‖V 1(Ω) < ε}.

Define now a solution (v, u) of initial stabilization problem (16.2), (16.3), (16.4):

(v(t, ·), u(t, ·)) = (γΩw(t, ·), γ∂Ωw(t, ·)) (16.8)

where γΩ, γ∂Ω are restriction operators to Ω, ∂Ω respectively, w(t, x) is the solution of BVP
(16.5), (16.6) with w0 = Ev0 where v0 is initial condition from (16.2). Note that estimate (16.4)
follows from (16.7).

Complete description of the stabilization construction including the proof of Theorem 16.1
one can find in [2], [3]. Note, that analogous results can be obtained also for quasilinear parabolic
equations (see [1])

16.3 Real process

Invariant manifold Mσ(a) introduced in Lemma 16.1 is repelling set: if at instant t0 a solution
w(t0, ·) ∈ Mσ(a) leaves Mσ(a) being subjected by certain perturbation, it will recede from
Mσ(a) as t→∞. To construct a stabilization theory for NSE that can be used for justification
of numerical simulation we introduce the notion of real process ṽ(t, x). By definition, ṽ(t, x) =
v(t, x) + ϕ(t, x), t > 0, x ∈ Ω where v(t, x) is the exact solution of the stabilization problem



Stabilization of parabolic equation and Navier-Stokes system 85

and discrepancy ϕ(t, x) is called fluctuation. To describe evolution of ṽ(t, x) we have worked
out an axiomatics for real processes simulating situation in numerical calculations. To stabilize
ṽ we consider real process w̃(t, x), x ∈ G corresponding to a solution w of BVP (16.5),(16.6)
for NSE. Suppose that corresponding fluctuation ψ arise at discrete moments of time {tj = jτ}
where τ > 0 is a fixed small number and j ∈ N. Just at these moments we stabilize w̃ applying
to it operator P of projection on Mσ(a) (Pw̃(jτ, ·) ∈ Mσ(a)), such that Pw̃(t, ·)|Ω = w̃(t, ·)|Ω.
After that real process evolves in accordance with NSE till the next time moment (j+1)τ when
we repeat our algorithm. It is easy to show that stabilized real process w̃(jτ, ·) defined above
satisfies the equation

wj = Swj−1 + Pψj with wj = w̃(jτ, ·), ψj = ψ(jτ, ·), (16.9)

where S = S(τ) and S(t) is resolving operator for BVP (16.5),(16.6): S(t)w0 = w(t, ·). We
obtain the stabilized real process ṽ for initial stabilization problem and corresponding feedback
control ũ by the formula: (ṽ(t, ·), ũ(t, ·)) = (γΩw̃(t, ·), γ∂Ωw̃(t, ·))

Theorem 16.2 (See [3],[4]) Let 0 < τ <∞, and fluctuations ψ(jτ, x) satisfy inequality
‖ψ(jτ, ·)‖V 1

0 (G) < ε0 where ε0 is sufficiently small. Then stabilized real process ṽ, satisfies
the estimate

‖ṽ(t, ·)− v̂‖V 1(Ω) ≤ c1(e−σt‖v0‖V 1(Ω) + c2ε0) (16.10)

where constant c1 is defined by operators E,P , and c2 is an absolute constant.

16.4 Retaining stabilized flow near unstable steady-state
solution

The estimate (16.10) for real process differs from bound (16.4) with term c2ε0 that arised because
of unpredictable fluctuations ψj = ψ(jτ, x). Therefore, estimate (16.10) is effective only when
real process is far enough from stabilized steady-state solution v̂. It is clear that to improve
estimate (16.10) by eliminating term c2ε0 is impossible if only conditions of Theorem 16.2
are imposed. Nevertheless, to investigate behaviour of ṽ near v̂ became possible if we impose
additional conditions on unpredictable fluctuations ψj . In fact these investigations solve the
problem of retaining the controlled flow near unstable steady-state solution. This problem has
been solved for linearized Navier-Stokes equations

∂tz(t, x)−∆z(t, x) + (v̂,∇)z + (z,∇)v̂ +∇q(t, x) = 0, divz = 0 (16.11)

This equation we get making change of variable v = z + v̂ in (16.1), subtracting from it steady-
state equation (16.1) with solution v̂ and throwing off nonlinear term in obtained equation. It
is clear that after this operation we have to stabilize (16.11) near steady-state solution 0.

We apply to BVP (16.11), (16.2), (16.3) (with v changed on z in last two equations) the stabi-
lization construction from section 16.2 and after that we construct the corresponding controlled
real process w̃(jτ, ·) = wj . Then wj satisfies equation (16.9) with operator S, P corresponding
to equation (16.11).

We assume now that unpredictable fluctuations ψj = ψ(jτ, ·) are random variables defined
on probability space {Ω̂,A,P} and taking values in V 1

0 (G). Moreover, we suppose that random
variables ψj are independent identically distributed random variables with distribution µ. Here
µ is probability measure that is defined on the Borel σ-algebra B(V 1

0 (G)) of the space V 1
0 (G)

and is supported in an neighborhood of origin:

supp µ ⊂ {v ∈ V 1
0 (G) : ‖w‖V 1

0 (G) ≤ ε0}
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Then (16.9) defines a family of Markov chains (FMC) in Mσ(0) with transition function

P (j, w0,Γ) = P{wj(w0) ∈ Γ}, Γ ∈ B(Mσ(0)) (16.12)

where wj(w0) is the solution of (16.9) with initial condition w0, and P is probability measure on
probability space Ω̂.

Theorem 16.3 (See [6]) The family of Markov chains (16.9) is ergodic, i.e. it possess unique
steady-state statistical solution µ̂. Moreover, there exists a constant γ ∈ (0, 1) such that∣∣∣∣∫ f(z)P (j, w0, dz)−

∫
f(z)µ̂(dz)

∣∣∣∣ ≤ cγj , j = 1, 2, 3, . . . , (16.13)

for every Lipschitz function f on Mσ(0) such that ‖f‖Cb(Mσ)(0) ≤ 1 and Lipf ≤ 1.

Note that uniqueness of stationary measure µ̂ means that FMC (16.9) is ergodic. The
exponential convergence (16.13) means that FMC (16.9) possesses the property of exponential
mixing.

Theorem 16.3 provides us the possibility of calculating the probability characteristics of
FMC (16.9), i.e of real process connected with (16.11). For instance, in numerical simulation
we actually obtain certain realization wj = wj(ω), ω ∈ Ω̂ of FMC (16.9), and by the strong law
of large numbers we get

lim
N→∞

1
N

N∑
k=0

wk(ω) →
∫
wµ(dw), as N →∞, (16.14)

Thus, by formula (16.14) we can calculate mathematical expectation of µ̂.

16.5 Analyticity of stable invariant manifold

One of the main goal we want to achieve by creation the theory of stabilization is to develop a
skilled numerical methods for calculation of stabilization problems. One of the main problem
on this way is how to calculate stable invariant manifold Mσ(a). In the case of linear equation
(16.11) this invariant manifold is a linear subspace of V 0

0 (G) which we denote as Xσ. To describe
it we introduce the spatial part of operator from the left side of (16.11):

A : V 0
0 (G) → V 0

0 (G) : Az = π(−∆z(x) + (v̂(x),∇)z + (z,∇)v̂) (16.15)

where V 0
0 (G) = {v ∈ (L2(G))3 : divv = 0)}, π : (L2(G))3 → V 0

0 (G) is orthoprojection. Denote
by X+

σ (A∗) the subspace of V 0
0 (G) generated by all eigen and associated functions of operator

A∗ conjugate to operator (16.15) corresponding to eigen-values λk with Re λk > σ. Let X−
σ (A)

be orthogonal complement of X+
σ (A∗) in V 0

0 (G). Then it is easy to show (see [1], [2]) that

Xσ = V 1
0 (G) ∩X−

σ (A) (16.16)

It follows from definition (16.16) that projection operator on Xσ can be calculated by solving
a system of linear algebraic equations ([1],[2],[3]).

Let define the stable invariant manifold Mσ(a) in neighborhood of steady-state solution a
for nonlinear system (16.5), (16.6). Denote by X+

σ = X+
σ (A) the subspace of V 1

0 (G) generated
by all eigen and associated functions of operator (16.15) corresponding to eigen-values λk with
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Re λk > σ. Let P+ : V 1
0 (G) → X+

σ , P− : V 1
0 (G) → Xσ be projectors. Then V 1

0 (G) = X+
σ +Xσ

and therefore V 1
0 (G) 3 z = z+ + z− where z+ = P+z, z− = P−z. Manifold Mσ(a) is defined

usually as follows:
Mσ(a) = a+ {z = z− + F (z−), z− ∈ O(X−

σ ) (16.17)

where O(Xσ) is a neighborhood of origin in Xσ and F : O(Xσ) → X+
σ is a map. Existence

of corresponding map F is well-known. The problem is how to make skilled calculation of F ,
defined on infinite-dimensional space. We propose to look for F in class of analytic maps, i.e.
of maps that admit the decomposition

F (z−) =
∞∑

k=2

Fk(z−), where Fk(z−) = Gk(z1, . . . , zk)|z1=···=zk=z− (16.18)

and Gk(z1, . . . , zk) are k-linear operators. The way to find F in the form (16.18) is as follows.
First we derive a differential equation in variational derivatives for maps F that define invariants
manifolds in form (16.17). After substitution decomposition (16.18) into this equation and
equating terms of identical order of homogeneity with respect to z− we get recurrent formulae
for Gk. Using them we can prove convergence of serie (16.18). Besides, we can calculate
numerically sufficiently precise approximations of stable invariant manifolds Mσ(a) and use
them for calculation of stabilization problem. Up to now theoretical aspects of analyticity of
Mσ(a) are developed in [7] only in the case of one-dimensional semilinear parabolic equation.

16.6 Calculations of stabilization problem

At last, we do very short review of results on numerical calculations of stabilization problem
for semilinear parabolic equation and for 2-D Navier-Stokes system made in Moscow State
University.

First calculations of stabilization problem founded on theoretical investigations from [1]–[5]
has been made by E.V.Chizhonkov [8] in the case of (linear) one-dimensional heat equation and
(semilinear) one-dimensional Chafee-Infante equation.

Calculations of stabilization for 2D Stokes and Navier-Stokes equations with periodic bound-
ary condition in one dimension and boundary Dirichlet control in other dimension were per-
formed by E.V.Chizhonkov and A.A.Ivanchikov in [9].

At last, numerical stabilization of 2D Couette flow from the boundary in the case when
Couette flow lost stability and Taylor vortexes became stable has been made by A.A.Ivanchikov
in [10].

All of these three papers are full of content and they are very interesting. But in them
only first steps in creating numerical methods of stabilization has been made. In particular, for
numerical stabilization of nonlinear equations authors of [8]–[10] used only linear approximation
Xσ of nonlinear stable invariant manifold Mσ(a). Just this circumstance induced myself to study
in [7] analyticity property of Mσ(a). Formulae from [7] for approximation of Mσ(a) were applied
by A.B.Kalinina in [11] for numerical calculations of Mσ(a). Approximation of Mσ(a) obtained
in [11] became essentially more precise than linear approximation.

Bibliography

[1] A.V. Fursikov. Stabilizability of quasi linear parabolic equation by feedback boundary control,
Sbornik: Mathematics, v.192:4 (2001),p.593-639.



88 Andrei V. Fursikov

[2] A.V. Fursikov. Stabilizability of two-dimensional Navier-Stokes equations with help of
boundary feedback control, J. of Math. Fluid Mech., v.3 (2001), p.259-301.

[3] A.V. Fursikov. Stabilization for the 3D Navier-Stokes system by feedback boundary control,
Discrete and Cont. Dyn. Syst., v.10, no 1&2, (2004), p.289-314.

[4] A.V. Fursikov. Real Process Corresponding to 3D Navier-Stokes System and Its Feedback
Stabilization from Boundary, AMS Translations Series 2, v.206. Advances in Math. Sciences-
51. PDE M.Vishik seminar. AMS Providence Rhode Island (2002), p.95-123.

[5] A.V. Fursikov. Real Processes and Realizability of a Stabilization Method for Navier-Stokes
Equations by Boundary Feedback Control, Nonlinear Problems in Mathematical Physics and
Related Topics II, In Honor of Professor O.A.Ladyzhenskaya, Kluwer/Plenum Publishers,
New-York, Boston, Dordrecht, London, Moscow, 2002, p.137-177.

[6] J. Duan and A.V. Fursikov. Feedback stabilization for Oseen fluid equations: a stochastic
approach, J.Math.Fluid Mech. v.7 (2005), p.574-610.

[7] A.V. Fursikov. Analyticity of stable invariant manifolds of 1D-semilinear parabolic equa-
tions, Proceedings of Summer Research Conference "Control methods of PDE-dynamical
systems", AMS Contemporary Mathematics series. Providence, 2006. (to appear)

[8] E.V. Chizhonkov. Numerical aspects of one stabilization method, Russ.J.Numer. Anal.
Math. Modelling, V.18:5, (2003), p.363-376.

[9] E.V. Chizhonkov and A.A. Ivanchikov. On numerical stabilization of solutions of Stokes
and Navier-Stokes equations by boundary conditions, Russ.J.Numer. Anal. Math. Modelling,
V.19:6, (2004), p.477-494.

[10] A.A. Ivanchikov. On numerical stabilization of unstable Couette flow by boundary condi-
tions, Russ.J.Numer.Anal.Math.Modelling (2006) (to appear)

[11] A.B. Kalinina. Numerical realization of the method of functional-analytic series for projec-
tion on a stable manifold, Numerical methods and programming. (in Russian), (to appear).



Removing holes in topological shape
optimization
Philippe Guillaume1 Maatoug Hassine2

17.1 Introduction

Topological optimization is concerned with the variation of a cost function with respect to a
topology modification of a domain. The most simple way of modifying the topology consists in
creating a small hole in the domain. Usually, the cost function involves the solution of a p.d.e.
defined on this domain. In the case of structural shape optimization, creating a hole means
simply removing some material. In the case of fluid dynamics where the domain represents the
fluid, creating a hole means inserting a small obstacle. The situation is similar in electromag-
netism. The topological sensitivity tools which have been developed by several authors [8, 3]
allow to find the place where creating a small hole will bring the best improvement of the cost
function. These tools are based on a gradient like expression of the form

j(Ωε) = j(Ω) + f(ε)δj(x) + o(f(ε)), (17.1)
f(ε) > 0 ∀ε > 0, lim

ε→0
f(ε) = 0.

Here Ω is an open and bounded subset of Rd, d = 2, 3, and, for ε > 0 and x ∈ Ω, Ωε = Ω\(x+ εω)
is the subset obtained by removing the subset x+ εω from Ω, where ω ⊂ Rd is a fixed open and
bounded subset containing the origin. Obviously, if we want to minimize j, the “best” place (in
the sense of the steepest descent) where to create an infinitesimal hole is there where δj(x) is the
most negative. Starting with this observation, topological optimization algorithms can then be
constructed [3, 5, 6]. The main problem encountered at this stage is that topological sensitivity
only provides information on where to add holes, but not where to remove already existing
holes: once a hole has been introduced in the domain, it will remain there during all forthcoming
iterations. However, it may happen that after creation of other holes, removing this particular
hole would improve the cost function. Hence, there is a need for tools giving an estimate of j(Ω)
when j(Ωε) is known. An analogy with ordinary differential calculus for a function u is that
instead of estimating u(ε) ' u(0) + εu′(0), we want to estimate u(0) ' u(ε)− εu′(ε). Thus, the
goal of this paper is to provide and estimate of the form

j(Ω) = j(Ωε)− g(x, ε) + o(f(ε))

where g(x, ε) is computed by solving a p.d.e. on the current domain Ωε, whereas δj(x) in
(17.1) was computed by solving a p.d.e. on the current domain Ω. Of course, we have g(x, ε) =

1philippe.guillaume@insa-toulouse.fr
2maatoug.hassine@enit.rnu.tn
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Γ

Ωε

∂ωε
ωε

Figure 17.1: The domain Ωε.

f(ε)δj(x)+ o(f(ε)), the only difference being the way of computing this quantity from available
data, associated to the current domain during the optimization process. Concerning the hole
shape, the theoretical results presented in this paper are valid for any bounded domain ω ⊂ Rd

containing the origin and having a connected boundary ∂ω piecewise of class C1. However, in
order to get an explicit expression of the boundary integral equation, we will choose a simple
geometry: the unit ball.

17.2 Formulation of the problem

Let Ωε be a bounded domain of Rd, d = 2, 3, with smooth boundary Γε, obtained from creating
a small hole ωε in a fixed and connected domain Ω. The hole is of the form ωε = x0 + εω,
where x0 ∈ Ω, ε > 0 and ω is a given fixed open and bounded domain of Rd, containing the
origin, whose boundary ∂ω is connected and piecewise of class C1. It is supposed that ε ≤ ε0
with ε0 sufficiently small so that ωε ⊂ Ω for all ε ≤ ε0. The boundary of Ω is denoted Γ, with
Γε = Γ ∪ ∂ωε and Γ ∩ ∂ωε = ∅ (see Figure 17.1.)

We consider the Stokes equations describing an incompressible fluid flow in Ωε. We denote
by (uε

D, p
ε
D) the solution to the problem with a Dirichlet boundary condition on ∂ωε:

−ν∆uε
D +∇pε

D = 0 in Ωε

div uε
D = 0 in Ωε

uε
D = ud on Γ1

ν∂nu
ε
D − pε

D n = g on Γ2

uε
D = 0 on ∂ωε,

(17.2)

where uε
D is the velocity, pε

D is the pressure, ν is the kinematic viscosity of the fluid, Γ1 and
Γ2 are portions of Γ having both a nonnegative Lebesgue measure and satisfy Γ1 ∪ Γ2 = Γ and
Γ1 ∩Γ2 = ∅, ud is a given velocity on Γ1, I is the d× d identity matrix, g is a given stress vector
on Γ2, and n is the unit normal vector along the boundary Γ. For simplicity, no volume forces
are considered.

Topological optimization problem

Consider now a cost function j(ε) of the form

j(ε) = Jε(uε
D), (17.3)

where Jε is defined on H1(Ωε)d and satisfies the following hypothesis.
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Hypothesis 17.1 There exist a linear and continuous form Lε defined on Vε and a real number
δJ (independent of ε) such that

Jε(uε
N )− Jε(uε

D) = Lε(uε
N − uε

D) + f(ε)δJ + o(f(ε)), (17.4)

where uε
N ∈ Vε is the solution to the Stokes equations (17.2) with a Neumann boundary condition:

ν∂nu
ε
N − pε

N n = 0 on ∂ωε, and the scalar function f is defined in R+ by

f(ε) =

{
ε if d = 3,
−1/ log(ε) if d = 2.

Our aim is to derive an estimate of the cost function j when ε tends to zero.

17.3 Variation of the cost function with respect to a
topological perturbation

As mentioned earlier, the aim of this work is to build a new topological optimization algorithm
providing the possibility of creating or suppressing holes during the optimization process.

Creating a small hole

We recall here the topological sensitivity results for the Stokes equations when creating a small
hole inside the domain with a Dirichlet boundary condition. Cases d = 2 and d = 3 need to be
distinguished. This is due to the fact that the fundamental solutions to the Stokes equations in
R2 and R3 have an essentially different asymptotic behavior at infinity.

Theorem 17.1 (3D case) If ω is the unit ball and if Hypothesis 17.1 holds, then function j
has the following asymptotic expansion

j(ε) = j(0) + ε
[
6πν u0

D(x0).v0
D(x0) + δJ

]
+ o(ε), (17.5)

where v0
D is the solution to the associated adjoint problem in Ω (when ε = 0).

Theorem 17.2 (2D case) Under the same hypotheses of theorem 17.1, the function j has the
following asymptotic expansion

j(ε) = j(0) +−1/ log(ε)
[
4πν u0

D(x0).v0
D(x0) + δJ

]
+ o(−1/ log(ε)). (17.6)

Removing a small hole

In this section we compute the variation of the cost function when removing a small hole ωε.

Theorem 17.3 If Hypothesis 17.1 holds, then we have the following estimate:

j(0) = j(ε) +
∫

∂ωε

(ν∂nv
ε
D − qε

D n).uε
N ds+ f(ε)δJ + o(f(ε)). (17.7)
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Figure 17.2: The geometry of the lake.

17.4 Numerical results

Let Ω be a two dimensional flow domain representing the eutrophized water basin. The boundary
Γ of Ω consists in two parts (see Figure 17.2): Γ = Γw ∪ Γs.

We suppose that a “good” lake oxygenation can be described by a target velocity Ug. Then,
the cost function J which is here considered reads

J(u) =
∫

Ωm

|u− Ug|2 dx,

where Ωm ⊂ Ω is the measurement domain (the top layer, see Figure 17.2). We aim to determine
the optimal location in Ωb (the bottom of the lake, see Figure 17.2) of some injector holes ωk

in order to minimize function J . A numerical algorithm is proposed, giving the possibility to
create or to suppress holes during the optimization process. It proceeds by iterations. At the
k−th iteration, δjk denotes the topological gradient and Ωk denotes the current domain. We
denote by xk

p, p = 1, 2, . . . , the local minimum of δjk. The set of holes which are candidates to
be inserted in Ωk is given by hk = {ωε(x) = x+εω, x ∈ Ck}, where Ck = {xk

p ∈ Ωk, 1 ≤ p ≤ nk}
is the set of the negative local minimum of δjk in Ωk and nk is their number. The holes are
ordered in such a way that δjk(xk

p) ≤ δjk(xk
p′) for all 1 ≤ p < p′ ≤ nk. Let Hk be the set of Nk

holes inserted during all previous iterations: Hk = {ωε(yk
l ) = yk

l + εω, 1 ≤ l ≤ Nk}.
The variation of the cost function with respect to suppression of hole yk

l + εω is denoted by
gk
l = gk(yk

l ) and the set {yk
l , 1 ≤ l ≤ Nk} is supposed to be arranged in such a way that gk

l ≤ gk
l′

if l < l
′ .

Algorithm :

• Initialization: choose Ω0 = Ωb, and set k = 0.

• Repeat until δjk ≥ 0 in Ωk:

– Step 1: preparation phase

∗ solve direct and adjoint problem in Ωk,
∗ compute the topological sensitivity δjk,
∗ determine the set hk = {ωε(xk

p) = xk
p + εω, 1 ≤ p ≤ nk}.

– Step 2: exchange phase

∗ compute the variations {gk
l = gk(yk

l ), 1 ≤ l ≤ Nk},
∗ set q = 1,
∗ while the variation δjk(xk

q ) + gk(yk
q ) < 0:
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· remove the hole ωε(yk
q ) = yk

q + εω and add the hole ωε(xk
q ) = xk

q + εω,
· increment q,

– Step 3: insertion phase

∗ creation of the holes {xk
q+i + εω, 1 ≤ i ≤ mk}, where q is the number of the holes

changed during the second step,

∗ set Ωk+1 = Ωk ∪
(
∪q

i=1 ωε(yk
i )
)
\
(
∪q+mk

l=1 ωε(xk
l )
)

where {ωε(yk
i ), 1 ≤ i ≤ q} are

the holes removed during the second step,

– increment k.
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Figure 17.3: Variation of the cost function; without removing injectors (top), with removing
(bottom).

In order to test the advantage of this approach, we have compared the results issued from
this technique to those obtained by using a classical version as described in [3, 5, 6], that is,
without the second step. The obtained results are presented in figures (17.3)-(17.4). Figure
17.3-(a) describes the variation of the cost function when adding one injector at each iteration.
The curve obtained is compared with the one obtained without removing injectors. Figure 17.3-
(b) illustrates the variation of the same function when adding five injectors at each iteration.
Figure 17.4 presents the wanted velocity Ug and the obtained velocities in the measurement Ωm

when the optimization process is achieved.
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Negative results on the
controllability of the Burgers
equation

Sergio Guerrero1

18.1 Introduction

This talk will be structured into two parts. In both of them, we will give several results con-
cerning the controllability of the Burgers equation. Most of these results will be of negative
nature.

In the first part, we deal with the Burgers equation where the control acts on the system
by its right hand side or one endpoint of the spatial boundary. We will prove that the minimal
time one needs for driving the solution of the Burgers equation to zero is positive. We will also
give the expression of this time in terms of the L2-norm of the initial condition. In particular,
the previous result implies that the (global) null controllability of the Burgers equation does not
hold.

In the second part of the talk, we will control the Burgers equation at both endpoints of
the spatial boundary. In this part we will prove two main results. The first one states that
the null controllability for small time does not hold, while the second one states that the exact
controllability does not hold for large time.

18.2 Controllability of the Burgers equation with one control
force

Let T > 0 be an arbitrary positive time and let us assume that ω ⊂ (0, 1) is a nonempty open
set, with 0 6∈ ω. In this first part of the talk, we will be concerned with the null controllability
of the following system for the Burgers equation:

yt − yxx + yyx = v1ω, (x, t) ∈ (0, 1)× (0, T ),

y(0, t) = y(1, t) = 0, t ∈ (0, T ),

y(x, 0) = y0(x), x ∈ (0, 1).

(18.1)

Here, v = v(x, t) denotes the control and y = y(x, t) denotes the state.

1guerrero@ann.jussieu.fr
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It will be said that (18.1) is null controllable at time T if, for every y0 ∈ L2(0, 1), there exists
v ∈ L2((0, 1)× (0, T )) such that

y(x, T ) = 0 in (0, 1). (18.2)

Some controllability properties of (18.1) have been studied in [3]. In that reference, it is
shown that one cannot reach (even approximately) stationary solutions of (18.1) with large L2-
norm at any time T . In other words, with the help of controls of this kind, the solutions of the
Burgers equation cannot go anywhere at any time.

For each y0 ∈ L2(0, 1), let us introduce

T (y0) = inf{T > 0 : (18.1) is null controllable at time T }.

Then, for each r > 0, let us set

T (r) = sup{T (y0) : ‖y0‖L2(0,1) ≤ r }.

Our main purpose in this first part is to prove that T (r) > 0, with an explicit sharp estimate
in terms of r as r → 0. In particular, this will imply that (global) null controllability at any
positive time does not hold for (18.1).

More precisely, let us set

φ(r) =
1

log 1
r

.

Then we have the following:

Theorem 18.1 There exist positive constants C0 and C1 independent of r such that

C0φ(r) ≤ T (r) ≤ C1φ(r) as r → 0. (18.3)

Remark 18.1 The same estimates hold when the control v acts on system (18.1) through the
boundary only at x = 1 (or only at x = 0). Indeed, it is very easy to transform the boundary
controlled system 

yt − yxx + yyx = 0, (x, t) ∈ (0, 1)× (0, T ),
y(0, t) = 0, y(1, t) = w(t), t ∈ (0, T ),
y(x, 0) = y0(x), x ∈ (0, 1).

into a system of the kind (18.1).

Remark 18.2 Now, let us assume that y0 is an arbitrary (possibly large) state in L2(0, 1), let
us set R = ‖y0‖L2(0,1) and let us assume that T ≥ T∗(R), where

T∗(R) =
1
π

logR+
2
√
C1

π
,

where C1 is the constant arising in (18.3). Then there exist controls v ∈ L∞(ω × (0, T )) and
associated solutions of (18.1) such that (18.2) is satisfied.

Indeed, let us first set

r = e−
√

C1π, T0(R) =
1
π2

log
R

r
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and v(x, t) ≡ 0 for 0 ≤ t ≤ T0(R). From the usual energy estimates, we know that the associated
state satisfies

‖y(·, t)‖L2(0,1) ≤ Re−π2t ∀t ∈ [0, T0(R)]

and thus
‖y(·, T0(R))‖L2(0,1) ≤ r.

Let us now apply Theorem 1 in the time interval [T0(R), T0(R) + C1φ(r)], with initial data
y(·, T0(R)). We deduce that there exists a control such that

y(x, T0(R) + C1φ(r)) = 0 in (0, 1).

Since T0(R) + C1φ(r) = T∗(R), our assertion follows.

This first part of the talk is inspired in the work [2].

18.3 Controllability of the Burgers equation with two control
forces

We consider the following control system associated to the Burgers equation:
yt − yxx + yyx = 0 (t, x) ∈ Q := (0, T )× (0, 1),
y(t, 0) = v1(t), y(t, 1) = v2(t) t ∈ (0, T ),
y(0, x) = y0(x) x ∈ (0, 1).

(18.4)

Here, T > 0 is a given final time and v1(t) and v2(t) are control functions which are acting over
our system at both endpoints of the segment (0, 1). Furthermore, y0 is the initial condition which
is supposed to be in H1(0, 1). In the sequel, we will suppose that our control functions v1 and v2
belong to the space H1/2(0, T ). Under these assumptions, it is classical to see that there exists a
solution y of system (18.4) which belongs to the space X := L2(0, T ;H2(0, 1))∩H1(0, T ;L2(0, 1))
and a continuous function K0 > 0 such that

‖y‖X ≤ K0(‖y0‖H1(0,1) + ‖v1‖H1/2(0,T ) + ‖v2‖H1/2(0,T )) (18.5)

(see, for instance, [5]).
For this system, an exact controllability property reads as follows: given y0 ∈ H1(0, 1)

and y1 ∈ H1(0, 1), do there exist controls v1 ∈ H1/2(0, T ) and v2 ∈ H1/2(0, T ) such that the
corresponding solution of (18.4) satisfies y(T, x) = y1(x) in (0, 1)? When y1 ≡ 0, we will refer
to this problem as the exact null controllability.

For system (18.4), it was shown in [3] that any steady state solution is reachable for a
sufficiently large time.

Additionally, in the recent paper [1], the author proved that with the help of two control
forces, we can drive the solution of the Burgers equation with null initial condition to large
constant states. More precisely, for any time T > 0, it is shown the existence of a constant
C0 > 0 such that for any C ∈ R satisfying |C| ≥ C0, there exist two controls v1(t) and v2(t)
such that the associated solution to (18.4) with y0 ≡ 0 satisfies y(T, ·) = C in (0, 1). The idea of
the proof of this result is based on the Hopf-Cole transformation, which leads to a controllability
problem for the heat equation.
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In this part of the talk, we have two main objectives. One concerning the exact null control-
lability for small time and the other one concerning the exact controllability for any time T > 0.
Both results are of negative nature.

As long as the first one is concerned, we prove that there exists a final time T and an initial
condition y0 such that the solution of (18.4) is far away from zero. That is to say, the global
null controllability for the Burgers equation with two control forces does not hold. The precise
result says:

Theorem 18.2 There exists T > 0 and y0 ∈ H1(0, 1) such that, for any control functions
v1 ∈ H1/2(0, T ) and v2 ∈ H1/2(0, T ), the associated solution y ∈ X to (18.4) satisfies

‖y(T, ·)‖H1(0,1) ≥ C1 > 0, (18.6)

for some positive constant C1(T, y0).

The second main result is a negative exact controllability result:

Theorem 18.3 For any T > 0, there exists an initial condition y0 ∈ H1(0, 1) and a target
function y1 ∈ H1(0, 1) such that, for any v1 ∈ H1/2(0, T ) and v2 ∈ H1/2(0, T ), the associated
solution y ∈ X to (18.4) satisfies

‖y(T, ·)− y1(·)‖H1(0,1) ≥ C2 > 0, (18.7)

for some positive constant C2(T, y0, y1).

In order to prove these results, we first show the equivalence of the controllability problem
for the Burgers equation (18.4) and some controllability problem for a one-dimensional linear
heat equation with positive boundary controls. This is carried out in several steps, by applying
Hopf-Cole type transformations.

Then, our controllability results for the Burgers equation (stated in Theorems 2 and 3 above)
will be deduced from both results for the corresponding heat equation.

As a consequence of these two theorems, one can easily deduce the following corollaries:

Corollary 18.1 Let us consider the following control system associated to a semilinear parabolic
equation: 

wt − wxx + 1
2 |wx|2 = v̂1(t) in Q,

w(t, 0) = 0, w(t, 1) = v̂2(t) in (0, T ),
w(0, x) = w0(x) in (0, 1),

(18.8)

with v̂1 ∈ L2(0, T ) and v̂2 ∈ H1(0, T ). Then, the exact controllability of system (18.8) with H2-
data does not hold. That is to say, for any T > 0, there exist w0 ∈ H2(0, 1) and w1 ∈ H2(0, 1)
satisfying w0(0) = w1(0) = 0 such that

‖w(T, ·)− w1(·)‖H2(0,1) ≥ C3,

for some C3(T,w0, w1) > 0. Furthermore, the exact null controllability does not hold either.
That is to say, there exists a time T > 0 and an initial condition w0 ∈ H2(0, 1) satisfying
w0(0) = 0 such that

‖w(T, ·)‖H2(0,1) ≥ C4.

for some C4(T,w0) > 0.
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Corollary 18.2 Let us consider the following bilinear-control system associated to a heat equa-
tion: 

zt − zxx =
v̂3(t)− 1

2
z in Q,

z(t, 0) = 0, z(t, 1) = v̂4(t) in (0, T ),
z(0, x) = z0(x) in (0, 1),

(18.9)

with v̂3 ∈ L2(0, T ) and v̂4 ∈ H1(0, T ). Then, equivalently as in the previous corollary, the exact
controllability (for large time) and the exact null controllability (for small time) of system 18.9)
with H2-data do not hold.

This second part of the talk is inspired in the recent work [4].
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An application of conformal mapping
to image non perfectly conducting
inclusions
Houssem Haddar1 Rainer Kress2

19.1 Introduction

In a series of papers Akduman, Haddar and Kress [1, 11, 13] have developed a new simple
and fast numerical scheme for solving two-dimensional inverse boundary value problems for the
Laplace equation that model non-destructive testing and evaluation via electrostatic imaging.
In the fashion of a decomposition method, the reconstruction of the boundary shape Γ0 of a
perfectly conducting or a nonconducting inclusion within a doubly connected conducting medium
D ⊂ R2 from over-determined Cauchy data on the accessible exterior boundary Γ1 is separated
into a nonlinear well-posed problem and a linear ill-posed problem. The approach is based on a
conformal map Ψ : B → D that takes an annulus B bounded by two concentric circles onto D.
In the first step, in terms of the given Cauchy data on Γ1, by successive approximations one has
to solve a nonlocal and nonlinear ordinary differential equation for the boundary values Ψ|C1 of
this mapping on the exterior boundary circle of B. Then in the second step a Cauchy problem
for the holomorphic function Ψ in B has to be solved via a regularized Laurent expansion
to obtain the unknown boundary Γ0 = Ψ(C0) as the image of the interior boundary circle
C0. In [1, 11, 13] this method is described both for the homogeneous Dirichlet and Neumann
condition on the unknown interior boundary Γ0 and two different convergence results on the
successive approximations are presented. The numerical examples in [1, 11, 13] exhibit the
feasibility of the scheme.

The more general case to reconstruct a conducting inclusion with a conductivity that is
different from the background conductivity of D leads to an inverse transmission problem. For
this case, when applying the conformal mapping idea two conformal maps are required. In
addition to the mapping Ψ : B → D also a map taking the interior of C0 onto the interior of
Γ0 is needed. Furthermore, the simple homogeneous transmission condition on Γ0 transforms
into a more complicated transmission condition on C0 whereas the homogeneous Dirichlet or
Neumann condition on Γ0 transforms into a homogeneous Dirichlet or Neumann condition on
C0, respectively. Nevertheless, by restriction to the case where the two conformal maps are
extensions of each other, and consequently have to coincide with a Moebius transform, in a first
attempt Dambrine and Kettab [6] were able to extent parts of the above approach to the inverse
transmission problem.

1houssem.haddar@inria.fr
2kress@math.uni-goettingen.de
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In the present work, we follow a different route and develop an analysis of the conformal
mapping method for inverse boundary value problems to the case of a homogeneous impedance
condition on Γ0 as an approximation for the transmission problem. In this case, we still need
only one conformal map Ψ : B → D. However, unfortunately, the homogeneous impedance
condition on Γ0 transforms into an impedance condition on C0 that contains the trace of the
derivative of the conformal map Ψ on C0. Therefore, the algorithm does not completely de-
compose the inverse problem into a well-posed nonlinear ordinary differential equation and an
ill-posed Cauchy problem. Consequently its analysis and implementation is more involved and
more than a straightforward extension of the algorithm for the Dirichlet or Neumann case.

For applications of nondestructive testing that can be modeled in two dimensions we refer
to [4, 5] for the detection of faults in metal plates via applying electric currents and to [9, 10] for
monitoring of lung patients and to [7, 14] for the evaluation of wood quality both via electrical
impedance tomography in long cylindrical objects. For other work using conformal mapping
ideas in the study of inverse problems for the Laplace equation we refer to [2, 3, 4, 8].

19.2 The inverse impedance problem

In order to describe the inverse problem more concisely, assume that D is a doubly connected
bounded domain in R2 with a smooth boundary ∂D that consists of two disjoint closed Jordan
curves Γ0 and Γ1, that is, ∂D = Γ0 ∪ Γ1 with Γ0 ∩ Γ1 = ∅ such that Γ0 is contained in the
interior of Γ1. By ν we denote the outward unit normal to Γ0 and to Γ1. For a given function
f ∈ H1/2(Γ1) and a positive constant λ we consider the impedance problem for the Laplace
equation

∆u = 0 in D (19.1)

with boundary conditions
∂u

∂ν
− λu = 0 on Γ0 (19.2)

and
u = f on Γ1. (19.3)

Note that the positivity of λ ensures existence and uniqueness of a solution u ∈ H1(D).
The topic of our paper is the inverse problem to determine the shape of the interior boundary

curve Γ0 from a pair of Cauchy data

(f, g) =
(
u,
∂u

∂ν

)∣∣∣∣
Γ0

where u ∈ H1(D) is harmonic in D and satisfies the impedance condition (19.2) and from the
knowledge of the impedance λ.

Let us notice that, as opposed to the inverse Dirichlet or inverse Neumann problem there is
no uniqueness for the inverse impedance problem stated above, with one pair of Cauchy data.
We refer to [12] where counter examples are constructed in the case of concentric circles. It is also
shown that local uniqueness (geometries close to concentric circles) holds when f is constant.
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19.3 The conformal mapping method

In the sequel we will identify R2 and C in the usual manner. To describe the conformal mapping
method we recall the annulus B := {z ∈ C : ρ < |z| < 1} bounded by the circles C0 := {z ∈ C :
|z| = ρ} and C1 := {z ∈ C : |z| = 1}. By the conformal mapping theorem there exists a uniquely
determined radius ρ of the annulus and a holomorphic function Ψ that maps B bĳectively onto
D such that the boundaries C0 and C1 are mapped onto Γ0 and Γ1, respectively. Denoting by
L1 the length of Γ1, let

γ : [0, L1] → Γ1

be a parameterization of Γ1 in terms of arc length. Now, we can uniquely characterize the
mapping Ψ by prescribing Ψ(1) = γ(0).

We define functions χ : [0, 2π] → C and ϕ : [0, 2π] → [0, L1] by setting

χ(t) := Ψ(ρeit) and ϕ(t) := γ−1(Ψ(eit)). (19.4)

The function χ is injective and parameterizes the interior boundary curve Γ0. The function ϕ is
strictly monotonically increasing and bĳective and, roughly speaking, it describes how Ψ maps
arc length on C1 onto arc length on Γ1. Obviously, determining the map χ solves the inverse
boundary value problem.

We associate the impedance problem (19.1)–(19.3) in D with an impedance problem posed
in the annulus B: For a given function F ∈ H1/2(C1) and a positive continuous function µ on
C0 find a harmonic function

∆v = 0 in B (19.5)

with boundary conditions
∂v

∂r
− µv = 0 on C0 (19.6)

and
v = F on C1. (19.7)

To this end, let u and ũ be conjugate harmonic functions in D and introduce the conjugate
harmonic functions v := u ◦Ψ and ṽ := ũ ◦Ψ in B. Using polar coordinates (r, t) in the annulus
B, from the Cauchy–Riemann equation for v and ṽ we have that

1
ρ

∂ṽ

∂t
=
∂u

∂r
on C0. (19.8)

The chain rule together with the Cauchy–Riemann equation for u and ũ implies

∂

∂t
ũ(χ(t)) = |χ′(t)| ∂ũ

∂s
(χ(t)) = |χ′(t)| ∂u

∂ν
(χ(t)). (19.9)

Therefore, if u satisfies the impedance boundary condition (19.2), combining (19.8) and (19.9)
we deduce that

∂v

∂r
(ρeit)− λ

ρ
|χ′(t)| v(ρeit) = 0, 0 ≤ t ≤ 2π.

Therefore, if u solves the impedance problem (19.1)–(19.3) then v = u ◦Ψ solves the impedance
problem (19.5)–(19.7) with F = f ◦Ψ and µ = µρ,Ψ where

µρ,Ψ(ρeit) :=
λ

ρ

∣∣∣∣ ddt Ψ(ρeit)
∣∣∣∣ , 0 ≤ t ≤ 2π. (19.10)
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The nonlocal differential equation

Denote by Aρ,µ : H1/2(C1) → H−1/2(C1) the Dirichlet-to-Neumann operator for the impedance
problem (19.5)–(19.7). It maps functions F ∈ H1/2(C1) onto the normal derivative ∂v/∂ν on
C1 of the solution to (19.5)–(19.7). Note that as opposed to the corresponding operator for the
homogeneous Dirichlet or Neumann boundary condition on C0 in addition to depending on the
radius ρ the operator Aρ,µ also depends on the holomorphic map Ψ via (19.10). As in [1, 11],
from the Cauchy–Riemann equations we have the nonlocal differential equation

dϕ

dt
=
A(f ◦ γ ◦ ϕ)
g ◦ γ ◦ ϕ

(19.11)

for the boundary map ϕ which has to be complemented by the boundary conditions

ϕ(0) = 0 and ϕ(2π) = L1. (19.12)

In order to rewrite (19.11)–(19.12) as a fixed point equation we introduce an operator V by
setting

(V ψ)(t) =
L1

2π
t+ ψ(t), t ∈ [0, 2π].

Then, for any pair of Cauchy data (f, g), after setting

Uρ,µψ :=
Aρ,µ(f ◦ γ ◦ V ψ)

g ◦ γ ◦ V ψ
,

we define an operator Tρ,µ : H1
0 [0, 2π] → H1

0 [0, 2π] by

(Tρ,µψ)(t) :=
∫ t

0

[
(Uρ,µψ)(τ)− 1

2π

∫ 2π

0
(Uρ,µψ)(θ)dθ

]
dτ, t ∈ [0, 2π]. (19.13)

Now, as easily seen, if ϕ ∈ H1[0, 2π] is a solution of (19.11)–(19.12) then ψ = V −1ϕ ∈ H1
0 [0, 2π]

is a fixed point of Tρ,µ, that is,
ψ = Tρ,µψ (19.14)

is satisfied. Note that if Tρ,µ is a contraction, then (19.11)–(19.12) and (19.14) are equivalent.

An equation for the radius

To derive an expression for the radius ρ, in terms of the conformal map Ψ we denote by w the
solution to the impedance problem (19.5)–(19.7) in B with F = 1 and µ = µρ,Ψ as defined in
(19.10). Then we introduce the function HΨ : (0, 1) → R by

HΨ(ρ) :=
∫

C1

f ◦Ψ
∂w

∂ν
ds. (19.15)

Applying Green’s theorem to v and w in the annulus B, from the boundary conditions for v and
w we obtain that ∫

C1

f ◦Ψ
∂w

∂ν
ds =

∫
C1

∂v

∂ν
ds =

∫
Γ1

g ds

and therefore we have
HΨ(ρ) =

∫
Γ1

g ds (19.16)

as a necessary condition for the radius ρ in terms of the data f and g and the holomorphic map
Ψ.

We summarize the above results into the following theorem.
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Theorem 19.1 Let (f, g) be a pair of Cauchy data for the impedance boundary condition (19.2).
Then, in terms of the holomorphic map Ψ : B → D and its boundary values ϕ the function
ψ = V −1ϕ is a fixed point of Tρ,µ where the impedance µ is given via (19.10) in terms of Ψ and
the radius ρ satisfies equation (19.16).

For an approximate solution of (19.16) via Newton iterations we need the derivative of HΨ.
This in turn requires the derivative w′ of the solution w of (19.5)–(19.7) for F = 1 with respect
to the radius ρ.

It is shown in [12] that

H ′
Ψ(ρ) =

∫
C1

f ◦Ψ
∂w′

∂ν
ds (19.17)

where w′ is a harmonic function in B satisfying the boundary conditions

∂w′

∂ν
− µw′ =

1
ρ2

∂2w

∂t2
+
(
µ2 +

µ

ρ
+ µ′

)
w on C0 (19.18)

and
w′ = 0 on C1. (19.19)

For the numerical evaluation of the derivative ∂2w/∂t2, for example, trigonometric differen-
tiation can be used.

Regularization of the Cauchy problem

Once we determined the boundary function ψ and the radius ρ, finally, we need to solve the
Cauchy problem for Ψ in B. To this end we expand γ ◦ V ψ in a Fourier series

γ(V ψ(t)) =
∞∑

k=−∞
ake

ikt, t ∈ [0, 2π],

and, in principle, obtain Ψ by the Laurent series

Ψ(z) =
∞∑

k=−∞
akz

k. (19.20)

The series (19.20) exhibits the ill-posedness of the Cauchy problem, since small errors in the
Fourier coefficients ak for k < 0 will be amplified by the exponentially increasing factors zk for
|z| < 1. Therefore we incorporate a regularization of Tikhonov type and replace (19.20) by

Ψα(z) =
∞∑

k=0

akz
k +

∞∑
k=1

a−k
|z|2k

α+ |z|2k
z−k, ρ < |z| < 1, (19.21)

where α > 0 serves as a regularization parameter. For its choice via a discrepancy principle we
refer to [11]. Note that the series (19.21) converges for |z| < 1 provided γ ◦ V ψ is in L2[0, 2π].

19.4 Numerical examples

The system of equations (19.14)-(19.16)-(19.20) is solved using an iterative scheme based on suc-
cessive approximations. As explained before, the update for the radius is done via a linearization
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of (19.16), using (19.17). The following numerical examples illustrate the convergence for dif-
ferent values of the impedance λ, when the exterior boundary is the unit circle and the interior
boundary has the parametrization

x1(t) = −0.2 + 0.4 cos t, x2(t) = 0.4 sin t+ 0.2 sin t, t ∈ [0, 2π].

The pair of Cauchy data corresponds to f = 1. One observes for instance how the reconstruction
quality deteriorates as λ decreases, which is in concordance with the instability of the algorithm
for the Neumann problem (see [11]).

Figure 19.1: Exact (red-dashed) and reconstructed (green-solid) geometries for λ = 100 (left),
λ = 10 (middle), λ = 1 (right). Cauchy data corrupted with 1% added random noise.
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Inverse modelling in neuro-sciences:
what does nature want ?
Antoine Henrot1 Yannick Privat2

20.1 Introduction

The observation of the nature and of the “perfection” of most of its mechanisms of living
beings drives us to search a principle of optimality which governs those mechanisms. If
a mathematical model exists for describing a biological phenomenon or component of a living
being, there is a temptation to quantify the optimality by finding a functional which leads to
the optimality principle. The confrontation between the computed optimum and the real one
leads us to validate or invalidate the model and/or the choice of the functional. This inverse
modelling method consists in finding the mathematical model starting from observations and
theirs consequences. If the optimal shape which is issued from the mathematical model is close
to the real shape, we have reasons to believe that the full model (equation and functional) is
good. If not, one has to reject it and find another one, or improve it.

To be more precise, we will consider here the example of an axon. What is an axon (see
Figure 20.1)?

The part of the nerve cell that contains the nucleus is called soma. An axon is an extension
from the neuron cell body that takes information away from the cell body. The role of an axons is
to carry nerve impulses away from the soma to the presynaptic terminals where the impulses are
transmitted to other neurons or to muscles in the case of motor neurons. The action potential is
an explosive release of charge between a nerve cell (neuron) and its surroundings. It moves along
a neuron from a dendrite, through the soma and then the axon. It is part of the mechanism
that moves nervous messages (nerve transmissions or impulses) along neurons.

The propagation of an electric impulsion in an axon fiber follows an equation established by
W. Rall in the sixties, cf [1], [2], [3]:

1
2R2

a

∂

∂x

(
a2 ∂v

∂x

)
= a

√
1 + a′2

(
Cm

∂v

∂t
+Gmv

)
πa2(0)
Ra

∂v

∂x
(0, t) = As

(
Cm

∂v

∂t
(0, t) +Gsv(0, t)

)
− i0(t)

∂v

∂x
(`, t) = 0.

(20.1)

where
1École des Mines de Nancy et Institut Élie Cartan, Universités de Nancy, CNRS, INRIA,

Antoine.Henrot@iecn.u-nancy.fr
2Institut Élie Cartan, Universités de Nancy, CNRS, INRIA, Yannick.Privat@iecn.u-nancy.fr
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Figure 20.1: Axon

• we consider a fiber with a cylindrical symmetry of length ` and radius a(x) ;

• i(x, t) denotes the axial current at point x and time t;

• v(x, t) denotes the difference from rest of the membrane potential;

• Ra denotes the axial resistance (kΩcm);

• Cm denotes the membrane capacitance (µF/cm2);

• Gm denotes the membrane conductance (mS/cm2);

• As is the surface area of the soma.

By assumption a is a radial function. It is our main unknown. We assume : a ∈W 1,∞([0, `]) and
min

x∈[0,`]
a(x) ≥ a0, where a0 depends on the constants As, γ and `. We suppose that at t = 0, the

fiber receives an impulsion. We choose i0(t) = δ{t=0} (Dirac operator). Expanding the solution
of (20.1) in the spectral basis leads us to consider the eigenvalue problem:

−(a2ϕ′n)′ = λn(a) a
√

1 + a′2 ϕn x ∈ [0, `]
2π
As

a2(0)ϕ′n(0) + (λn + γ)ϕn(0) = 0

ϕ′n(`) = 0

(20.2)

with γ := 2Ra(Gm −Gs).

20.2 The optimization problem

We look for the shape of an axon which minimizes the attenuation in time of the signal. A
good criterion should be the first eigenvalue of (20.2). We must assume some bounds on the
possible radius a(x) of the axon and also a total surface constraint. The surface area is clearly
given by S := 2π

∫ `
0 a(x)

√
1 + a′2(x)dx. So our problem is:
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Optimization problem:
Let S0, ρ0, ρ1 be three positive numbers such that ρ0 < ρ1 and let us define the class:

Aρ0,ρ1,S0 := {a ∈W 1,∞(0, `) : ρ0 ≤ a3
√

1 + a′2 ≤ ρ1,

∫ `

0
a(x)

√
1 + a′2(x)dx = S0}.

We want to find a∗ ∈ Aρ0,ρ1,S0 which minimizes λ1(a) (the first eigenvalue of (20.2)).

We introduce the change of variable y =
∫ x

0

dt

a2(t)
, and the following notations :

• b(y) := a(x) and v(y) := u(x) ;

• ρ(y) = b3(y)

√
1 +

b′2(y)
b4(y)

= a3(x)
√

1 + a′2(x).

• `1 :=
∫ `

0

dt

a2(t)
.

The eigenvalue problem (20.2) becomes:
−v′′ = λ(ρ) ρv y ∈ [0, `1]
v′(0) +A(λ+ γ)v(0) = 0
v′(`1) = 0.

(20.3)

Moreover, we have that :

(i) ρ0 ≤ ρ(y) ≤ ρ1

(ii)
∫ `1
0 ρ(y)dy = S0.

Now, the problem of looking for a function ρ∗ satisfying (i) and (ii) which minimizes the first
eigenvalue λ1(ρ) of (20.3) is very similar to classical problems in optimization of eigenvalues, see
e.g. [4] or [5]. In particular, it is easy to check that the solution is a bang-bang function: there
exists ξ1 ∈ [0, `1] such that

ρ∗(y) :=

{
ρ1 if y ∈ [0, ξ1[;
ρ0 if y ∈ ]ξ1, l1].

We deduce from the previous analysis that a∗ should be the solution of the following ODE :
a′ = ε

√
ρ2
1 − a6

a3
if x ∈ [0, γ1[;

a′ = ε̃

√
ρ2
0 − a6

a3
if x ∈ ]γ1, l1].

with the conventions ξ1 =
∫ γ1

0

dt

a2(t)
and (ε, ε̃) ∈ {−1,+1}2.

We will conclude the talk with examples and a discussion to know whether the solution we
got is a good one or not. More precisely: have we chosen a good criterion or not?



114 Antoine Henrot & Yannick Privat

Bibliography

[1] W. Rall. Theory of physiological properties of dendrites, Ann, NY Acad Sciences 96 (1962)
1071.

[2] W. Rall, H. Agmon-Snir. Cable theory for dendritic neurons, C. Koch, I. Segev (Eds)
Methods in Neuronal Modeling second edition, MIT, Cambridge, MA, 1998.

[3] S.J. Cox, J.H. Raol. Recovering the passive properties of tapered dendrites from single and
dual potential recordings, Math. Biosci. 190 (2004), no. 1, 9–37.

[4] M.G. Krein. On certain problems on the maximum and minimum of characteristic values
and on the Lyapunov zones of stability, Amer. Math. Soc. Transl. (2) 1 (1955), 163–187.

[5] A. Henrot. Extremum problems for eigenvalues of elliptic operators, Frontiers in Mathe-
matics, Birkhäuser, Basel to appear.



Prediction and Errors for
Geophysical Fluids
François-Xavier Le Dimet1

21.1 Introduction

Geophysical fluids (atmosphere, ocean, continental water) have some particularities, which are
important to take into account when they are modelized in view of their prediction.

• Each situation is unique and therefore the model is not seeking for some asymptotic be-
havior, steady state or periodic solution.

• Geophysical fluids are non closed, they is always an interface with another fluid e.g. the
fluxes of heat and humidity between the ocean and the atmosphere are fundamental to
understand the evolution of climate. Therefore if the fluxes at the interfaces can’t be
explicitly set in the model they have to be parametrized.

• Geophysical fluids are non linear and consequently there are interaction between all the
scales both in time and space. The discretization introduced in numerical model will be
a truncature in the scales, nevertheless the subgrid fluxes of energy and matter must be
taken into account by some empirical parametrization.

A consequence of these particularities is that the equation are not sufficient for predicting
the evolution of the fluid the initial condition and some parameters must be taken into account
and they will be obtained from direct or remote observations of the fluid.

Mixing models and data is a fundamental problem for environmental fluids. This problem
with the associated algorithms is named : Data Assimilation.

21.2 Errors

In the process of forecasting the evolution of a fluid there are several kind of errors which are
introduced:

• Errors in the model itself , some processes are modelized by empirical parametrization
with errors. The boundary conditions have errors due to an approximate knowledge of the
topography.

• Errors in the data due to physical measurements or sampling.
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• Errors in the numerical methods issued from the discretization or by stopping criterion in
the iterative methods that should be used with non linear models.

At first sight these errors sound independent but this is not the case: the same observation
e.g. of the wind can be used in a very local model with a scale of some decimeters or in a
synoptic model. The confidence in the observation will vary according to the context (i.e. the
model) in which it is used.

21.3 Variational Data Assimilation

A way to link together data and model is to link them through a variational principle. The
model is defined by : 

dX

dt
= F (X) +B.V

X(0) = U
(21.1)

• X is the state variable and describes the evolution of the fluid.

• V is a control term, error and/or boundary condition.

• U is the initial condition, it’s a control variable.

The discrepancy between the solution of the model associated to U and V and the observation
Xobs is given by the cost-function

J(U, V ) =
∫ T

0
‖CX −Xobs‖2dt+ ‖U − U0‖2 (21.2)

U0 is an a priori estimation of the initial condition. Therefore the problem is to determine
(U∗, V ∗) minimizing J .

The Euler-Lagrange equation, the optimality system (O.S) is deduced :

dX

dt
= F (X) +B.V

X(0) = U

dP

dt
+
[
∂F

∂X

]t

P = Ct(CX −Xobs)

P (T ) =
∇UJ == P (0) + (U − U + 0) = 0
∇V J = −Bt.P = 0

(21.3)

P is the adjoint variable, in the dual space of the state variable X Another source of in-
formation is provided by the statistics on the fields, it can be plugged in the analysis via the
norms which are used in the space of observations and in the space of the initial condition taking
into account the matrix of correlations of these fields. For sake of simplicity we won’t use this
information here. The optimal solution is obtained by carrying out a method of unconstrained
optimization (BFGS, Quasi or Truncated Newton), the direction of descent, depending in the
gradient of the cost function which is obtained by solving the adjoint model.

This method is presently used by the main meteorological services in the world.
It worth to point out that all the available information is contained in the optimality system.

Thanks to the variational principle it has been possible to make a link between heterogeneous
sources of information : mathematical information (the model), physical information (data) and
statistical information.
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21.4 Errors and prediction

We would like to illustrate the propagation of errors on a simple one dimension model: the
Burger’s equation. The state variable is the velocity w(x, t), the right hand side of the equation
f is chosen such the exact of the continuous problem is known. The problem is discretized
by a standard finite difference method. Therefore the only error introduced is the error of
discretization. The observations are the values of the exact solution at fifty grid points.

∂w

∂t
+ w

∂w

∂x
− v

∂2w

∂x2
= f (21.4)

w(0, t) = w(1, t) = 0 (21.5)
w(x, 0) = u(x) (21.6)

J(u) =
1
2

∫ 1

0

∫ T

0
(Cu− uobs)dtdx (21.7)

In this case the only control is the initial condition. The assimilation has been done with
several discretization ranging from h = 1/10 to h = 1/250 on the time interval between 0 and
1, therefore the initial condition was retrieved, then the prediction was carried out at tile T = 2

This simple example demonstrates that if the model is improver, in this case by decreasing
the discretization error then the prediction can be downgraded, and therefore the important
item to be studied is where all the available information is gathered: the optimality system.
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21.5 Sensitivity and estimation of errors

Sensitivity is an important notion in modeling it permit to estimate the impact of perturbations.
It can be stated as follow.

Φ(α, β) = 0

is the model with a unique solution α(β) for β given. α is the state variable, β a parameter,
Ψ(α, β) is a scalar “response” function. How to estimate the sensitivity of Ψ with respect to β.
Usually done by finite difference, small perturbations on β. If the dimension of β is large, it’s
impossible to explore the domain of β.

γ is the adjoint variable of α. If it is a solution of[
∂Φ
∂α

]t

γ =
∂Ψ
∂α

the the sensitivity is given by

S =
[
∂Φ
∂β

]t

γ +
∂Ψ
∂β

and therefore the sensitivity is obtained by just one run of the adjoint model.
In the situation of data assimilation, if we look for the impact of an error of observation,

this sensitivity analysis must be carried out not on the model itself –it doesn’t contain the
observations– but on the optimality system. Therefore we need to take into account the second
order properties. We will see how this procedure permits to estimate the covariance of the error
on the initial condition from the covariance of the error on the observations or from some error
on the model.

21.6 Conclusion

Most of the time the adjoint model is considered as a tool to compute a gradient in view of
carrying out a algorithm of optimization. In fact the Optimality System must be considered as
a generalized models and all the perturbations studies must be done on this Optimality System.
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A Riemannian framework for the
averaging, smoothing and
interpolation of constrained data
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Abstract

The availability of new technologies in many fields of science has made it possible to acquire
and store quite easily a huge amount of data. However, these data are generally corrupted
with noise of different sources. It is therefore necessary to remove or reduce the noise before
meaningful information could be extracted from them. In many situations, these data are
subjected to nonlinear constraints. Symmetric positive-definite diffusion tensors from Diffusion
Tensor Magnetic Resonance Imaging (DT-MRI) data, special Euclidean matrices from motion
data, rotation matrices from orientation data, and unit vectors from directional data, are but
few examples of constrained data. We use a Riemannian framework for the introduction of
properly invariant means of element in some Riemannian symmetric spaces. We describe the
use of these means for the smoothing of noisy data, and for the interpolation and averaging of
discrete data on some smoothly constrained data. Some applications of these procedures for
problems in engineering and biology are discussed.

22.1 Introduction

The availability of new technologies in many fields of science has made it possible to acquire
and store quite easily a huge amount of data. These data are generally corrupted with noise
whose origin can be related to the data acquisition devices, to the operator, to the environ-
ment, etc. It is therefore necessary to remove or reduce the noise before meaningful information
could be extracted from them. As a consequence, there has been a growing demand for reliable,
robust and efficient methods of data processing and analysis such as estimation, registration,
averaging, smoothing, and interpolation. In many situations, these data are subject to nonlin-
ear constraints. Symmetric positive-definite diffusion tensors from Diffusion Tensor Magnetic
Resonance Imaging (DT-MRI) data [3, 19], special Euclidean matrices from motion data [1, 17],
rotation matrices from orientation data [20], and unit vectors from directional data [7, 8, 11],
are but few examples of constrained data.

Many of the data processing tasks mentioned above can be formulated as minimization
problems of some cost functions over a smoothly constrained space. The classical approach to

1 National Engineering School at Tunis, Tunis El-Manar University; ENIT-LAMSIN, B.P. 37, 1002 Tunis-
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these problems is to use tools of optimization on Euclidean spaces together with a set of Lagrange
multipliers that account for the constraints. However, if the cost function is directly related to
the Riemannian structure of the constrained space, then it may be more appropriate to treat the
minimization problem as an unconstrained one but on the constrained space. Over the past few
years, there has been an increasing interest in the use of differential-geometric methods for the
analysis and computation of optimization problems on manifolds. Some examples of such studies
are quoted here. Edelman et al. [6] have used differential-geometric tools to intrinsically account
for the constraints and to design efficient methods for minimization problems on the Stiefel
manifold. Smith [21] analyzed optimization algorithms, like Newton’s methods, on Riemannian
manifolds. Mahony and Manton [9] studied the geometry of Newton’s method on non-compact
Lie groups. Marthinsen [12] presented a method of interpolation on Lie groups.

In the unconstrained case, the are basically two different classes to the smoothing and regu-
larization of noisy data. The first one is based on the smoothing effects of diffusion. In this class
we find PDE and variational methods that are based on isotropic linear diffusion, anisotropic
linear diffusion, or nonlinear diffusion [2, 18, 23]. The second class consists of smoothing meth-
ods based on filtering techniques. For example, mean, median, Gaussian, Fourier and Kalman
filters are used to smooth data.

The use of the first approach for the smoothing and regularization of constrained data are
being pursued, see e.g., [5, 22]. In this work, we shall adapt the second approach to smooth
and interpolate constrained data. A fundamental tool to this approach is the introduction of
the notion of a geometric mean on constrained spaces. The use of this mean for the smoothing
of noisy data and for the interpolation of discrete data on some Riemannian matrix spaces are
discussed. Some applications of the means and interpolation procedures for some problems in
imaging and biology are described.

22.2 Geometric mean of matrices

Geometric mean of symmetric positive-definite matrices

Recall that the set of all positive-definite matrices, denoted by P(n), is a Riemannian symmetric
space of dimension n(n + 1)/2. The Riemannian distance between two matrices A and B in
P(n) is given by

dP(n)(P1,P2) = ‖Log(P−1/2
1 P2P

−1/2
1 )‖F =

√√√√ n∑
i=1

ln2 λi, (22.1)

where λi, i = 1, . . . , n are the (positive) eigenvalues of P−1
1 P2 and ‖ · ‖F denotes the Frobenius

norm.
The geometric mean of m given symmetric positive-definite matrices P1, . . . ,Pm is defined

as [14]

G(P1, . . . ,Pm) := arg min
P∈P(n)

m∑
k=1

d2
P(n)(P,Pk). (22.2)

Using differential-geometric tools, we show that the Riemannian mean of P1, . . . ,Pm is given
by the unique solution to the nonlinear matrix equation [14]

m∑
k=1

Log(P−1
k P) = 0. (22.3)
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Due to the non-commutative nature of matrix multiplication in P(n), equation (22.3) cannot
be solved in closed form except for special cases. For instance, the Riemannian mean of two
symmetric positive-definite matrices P1 and P2 is given explicitly by the equivalent expressions

G(P1,P2) = P1(P−1
1 P2)1/2 = (P2P−1

1 )1/2P1

= P1/2
1 (P−1/2

1 P2P
−1/2
1 )1/2P1/2

1 .
(22.4)

Despite their appearance, the first two expressions given in (22.4) are indeed symmetric positive-
definite matrices. We note also that three other equivalent expressions are obtained by the
exchange of P1 and P2 in (22.4).

For more than two matrices, in general, it is not possible to obtain an explicit solution for the
geometric mean equation (22.3). It can be solved numerically using the fixed-point algorithm
introduced in [16].

Geometric mean of special orthogonal matrices

Let SO(n) denotes the Lie group of special orthogonal matrices. It is well known that SO(n) is
a Riemannian manifold of dimension n(n− 1)/2. The Riemannian distance between two special
orthogonal matrices is given by

dSO(n)(R1,R2) =
1√
2
‖Log(RT

1 R2)‖F . (22.5)

The geometric mean rotation of m given rotation matrices R1, . . . ,Rm is defined as [13]

G(R1, . . . ,Rm) := arg min
R∈SO(n)

m∑
k=1

d2
SO(n)(P,Pk). (22.6)

The minimum here is understood to be the global minimum. We remark that the objective
function in (22.6) is not geodesically convex, and therefore the mean may not be unique.

Local minima of the objective function in (22.6) are characterized by [13]

m∑
k=1

Log(RT
k R) = 0. (22.7)

In general, closed-form solutions to (22.7) cannot be found. However, the geometric mean of
two non-antipodal rotation matrices R1 and R2 is given explicitly by [13]

G(R1,R2) = R1(R−1
1 R2)1/2 = (R2R−1

1 )1/2R1

= R1/2
1 (R−1/2

1 R2R
−1/2
1 )1/2R1/2

1 .
(22.8)

Three other equivalent expressions are obtained by the exchange of R1 and R2 in (22.8).

22.3 Applications to averaging, smoothing and interpolation

Applications to diffusion-tensor magnetic resonance imaging

Diffusion tensor magnetic resonance imaging (DT-MRI) is a new modality that provides a non-
invasive probe into the microstructure of materials by measuring the probability density function,
p, for the displacements of particles that undergo Brownian motion due to thermal fluctuations.
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In the biomedical context, as water is a major constituent of biological tissues, the particles
of interest are generally water molecules. Diffusion tensor magnetic resonance imaging of in
vivo biological tissues produces a three-dimensional second-order tensor field, D, based on the
assumption that the probability density function, p, for the displacements of water molecules is
a zero-mean trivariate Gaussian distribution

p(x,x0; τ) =
1√

(4πτ)3 detD
exp

(
−(x− x0)TD−1(x− x0)

4τ

)
,

where τ is the diffusion time. The diffusion tensor D is evaluated by measuring the diffusion
of water in many directions. From the theoretical point of view, six independent directions
suffices to fully determine the diffusion tensor. In practice, however, due to noise more than six
directions are usually needed.

Currently, brain imaging is the most common application of DT-MRI. The anatomical struc-
ture of the brain is composed of grey-matter regions connected by white-matter fibers. Grey
matter is a dense tissue containing many barriers to water mobility such as cell walls and mem-
branes. These barriers are randomly oriented and thus they hinder the displacement of water
molecules equally in all directions. The white matter is composed of bundles of parallel fibers
and the cell walls and membranes are aligned with the fibers. Therefore, the mobility of water
molecules in the direction parallel to the fibers is greater than that in perpendicular directions.

The anisotropy of the diffusion tensor is evident in the MR measurements, which can be
used noninvasively to explore the white matter structures in vivo. In the last decade, the
quantitative description of this anisotropy with DT-MRI has become well established in research
environments and its first applications in the clinic are now being reported. Several measures of
anisotropy are used within the DT-MRI community and the most common one is the fractional
anisotropy given by [3]

FA(D) =

√
3
2

√
(λ1 − λ̄)2 + (λ2 − λ̄)2 + (λ3 − λ̄)2

λ2
1 + λ2

2 + λ2
3

,

where λ1, λ2 and λ3 are the eigenvalues of D, and λ̄ = (λ1 + λ2 + λ3)/3. In the general context
of symmetric positive-definite tensors in Rn, the fractional anisotropy writes

FA(D) =
√

n

n− 1
‖D− 1

n Tr(D)I‖F

‖D‖F
.

It turns out, as we showed in [15], that 1
n Tr(D)I is the closest (in the Frobenius distance)

isotropic tensor to D. Therefore, modulo a normalizing factor, the fractional anisotropy is a
measure of the nearness of the tensor D to the axis of isotropic tensors. We used this character-
ization together with the Riemannian distance on P(n) to define another measure of anisotropy
[15, 4]

GA(D) = ‖Log D− 1
n Tr(Log D)I‖F ,

which we called the geodesic anisotropy. The range of this anisotropy index over P(n) is [0,∞).
Normalized forms, i.e., such as their range is [0, 1), can be obtained by any increasing map from
[0,∞) to [0, 1). The main features of this anisotropy index is that it is defined on P(n), becomes
infinite (or 1 in its normalized form) as D approaches the boundary of P(n), it is rotationally
invariant, and is invariant under inversion.

Among the other DT-MRI data processing tasks are the regularization and smoothing of
noisy diffusion tensor data, and the interpolating of diffusion tensor fields. The smoothing of
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a) b)
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Figure 22.1: Synthesized diffusion tensor image, a) original, b) perturbed, c) denoised.

noisy diffusion tensor data can be performed by a smoothing filter that consists of a moving
weighted average. This smoothing procedure can be seen to be similar to the commonly used
PDE smoothing methods based on the heat equations, e.g. see [2, 23]. In fact, the spatial and
temporal discretization of the heat equation by finite differences leads to a weighted average.

In Fig. 22.1a we show a synthesized diffusion tensor image comprised of four homogeneous
regions. The diffusion tensors are represented by ellipsoids that have semi-axis equal to the
diffusivities, i.e., the eigenvalues of the tensors, and orientations given by the corresponding
eigenvectors. Then we show the perturbed image (with added noise) and the image regularized
by a weighted geometric mean filter.

In [15] we introduced a new paradigm for the multivariate interpolation of diffusion tensor
fields over simplical domains which is based on the geometric mean of symmetric positive-definite
tensors. For example, if we know the values of the diffusion tensor D1, D2 and D3 at the three
vertices of a non degenerate triangle, then the value of the tensor at any point inside this triangle
with barycentric coordinates µ1, µ2 and µ3 is given by the geometric mean of D1, D2 and D3

weighted by µ1, µ2 and µ3. The latter is given by the unique solution of the nonlinear matrix
equation

µ1 Log(D−1D1) + µ2 Log(D−1D2) + µ3 Log(D−1D3) = 0,

which can be efficiently solved by the fixed-point algorithm introduced in [16].

Applications to smoothing the DNA intrinsic shape

The continuum elastic theory of rods has been used with success to determine the equilibrium
structures of supercoiled DNA. However, most of the published works assume uniform physical
properties (bending and torsional stiffnesses) and intrinsic shape (minimum energy shape). Some
numerical works did account for sequence dependent physical properties and intrinsic shape.
However, the methods employed to construct continuum physical properties and intrinsic shape
from the discrete experimental data (X-ray crystal structures) are ad-hoc. With the availability
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of efficient computational tools for elastic rods the need for a rational method to construct
continuum properties from the discrete base-pair structure is now increasing.

In the continuum approach, the DNA double helix is described by a centerline r(s) giving the
location of the axis of the double helix at arclength s and a triad (d1(s),d2(s),d3(s)) that gives
the orientation of the DNA axis at arclength s with respect to a fixed orthogonal coordinates
system. At the discrete level, each base pair of the DNA double helix is described by the location
ri of its center and a triad (di

1(s),d
i
2(s),d

i
3(s)) that gives the orientation of the base pair with

respect to a fixed orthogonal coordinates system.
The sequence-dependent discrete stiffnesses and intrinsic shape are obtained from the exper-

imental or computational data by the so-called wedge model which is a nearest neighbor model.
The underlying assumptions of this model are that the origin of the triad (di

1(s),d
i
2(s),d

i
3(s))

is at the center of the base-pair i, the di
3 vector points to the next base-pair center, and the di

1

axis tracks the rotation of the DNA sugar-phosphate double helix.
The transformation that gives the relation between the triads of two successive base pairs

is obtained by the wedge angle set that gives the tilt, roll and twist for the 16 combinations of
dimers (AA, AC, AG, AT, CA, CC, CG, CT, GA, GC, GG, GT, TA, TC, TG and TT). Several
wedge angle sets have been proposed by researchers in the field of molecular biology.

The DNA intrinsic shape obtained from the wedge angle model contains a substantial amount
of noise and thus is not suitable to be used in the sequence-dependent continuum modeling of
DNA [10]. Therefore, smoothing the discrete intrinsic shape given by the wedge model is required
to effectively eliminate or attenuate the noise.

We note that each base pair can be thought of as an element T[i] = (R[i],x[i]) of the special
Euclidean group SE(3) ≡ SO(3) n R3, the group of orientation-preserving isometries in R3,
where R[i] is in SO(3) and x[i] is in R3. Now, for two elements T1 = (R1,u1) and T2 = (R2,x2)
in SE(3) we can use the Euclidean distance given by DE(T1,T2)2 = dE(R1,R2)2 + ‖u1−u2‖2,
or use the Riemannian distance given by DR(T1,T2)2 = dR(R1,R2)2 + ‖u1 − u2‖2. We define
the means of elements in SE(3) associated with Euclidean and Riemannian distances in a similar
fashion as we did for elements of SO(3). It turns out that the minimizing problem in SE(3) for
the mean associated with either distance is equivalent two independent minimizing problems,
one in SO(3) and the other in R3. Therefore, the mean of Tn = (Rn,un), n = 1, . . . , N
associated with the Euclidean or the Riemannian distance, is given by T = (R,u) where R is the
corresponding mean in SO(3) of Rn, n = 1, . . . , N and u is the mean in R3 of un, n = 1, . . . , N .

The smoothing process is thus reduced to a smoothing process of the centerline, i.e., smooth-
ing in R3, which is standard, and a smoothing process for the directors, i.e., smoothing in SO(3).
We use a running window filter of length N = 2k+1 in which the output of the filtering operation
at base pair i is given by a weighted mean of R[i−k], . . . ,R[i], . . . ,R[i+k].

Conclusions

In this work we presented a unified approach to several aspects of data processing, such as aver-
aging, smoothing and interpolation, on some Riemannian symmetric spaces. The methods and
ideas described are general enough to be applied to data processing on other manifolds. There
are many things to be explored in both the theoretical and numerical aspects, and the appli-
cations. For instance, the numerical analysis of the algorithms of averaging and interpolation
could be pursued. The Finsler geometry of divergences could be another direction to be studied
further.
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The Control Variational Method
P. Neittaanmäki1 Dan Tiba2

The variational method is a very powerful tool in the theory of partial differential equations.
A thorough presentation of this approach may be found in the books of J.-L. Lions and E.
Magenes [2] or R. Dautray and J.-L. Lions [1]. An essential feature of the classical approach is
the coercivity of the differential operator and the application of the Lax-Milgram lemma.

The control variational method uses modern control theory instead of the classical calculus
of variations and offers more flexibility in the analysis of boundary value problems associated
to various differential operators. It has been introduced in a sequence of papers by D.Tiba and
his coauthors and we quote the recent monograph by P. Neittaanmäki, J. Sprekels and D. Tiba
[3] for a description of such ideas. The presentation will concentrate on applications to the
linear elasticity system, the Kirchhoff plate and a generalized Nagdhi model for curved rods.
We underline that this new approach does not replace, in general, the usual variational method,
but offers more insight and new advantageous ways of treating well-known problems.
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24.1 Introduction

The technique of constrained approximation as method of recovering analytic functions in a
domain Ω ⊂ C from corrupted measurements on part of the boundary ∂Ω has been applied to
control theory for over ten years (see, for example, the survey articles [10, 5]). A more recent
idea, which can be traced back to [8], for example, is to perform a similar reconstruction for
harmonic functions, by regarding them as the real parts of analytic functions.

Consider, for example, the following Cauchy-type problem for a domain Ω ⊂ Rm (we shall
later restrict ourselves to the cases m = 2 and 3) and a suitable subset S of the boundary ∂Ω:

∆u = 0 in Ω,
u = u0 on S,

∂nu = φ on S, (24.1)

where u0 and φ are prescribed functions on S and ∂n denotes the normal derivative; in the
simplest case u0 ∈ W 1,2(S) (the Sobolev space) and φ ∈ L2(S), but smoother versions of the
problem can also be considered. Typically, u0 represents a measured temperature and φ a heat
flux; alternatively, the same equations can arise through electrical measurements.

A further question that may be considered is the recovery of a Robin exchange coefficient,
which has applications to corrosion detection. Assuming further that ∂nu + qu = 0 on ∂Ω, we
may also wish to recover the unknown Robin coefficient q, at least assuming suitable smoothness
and non-vanishing conditions on u. Some related problems have been considered in [1, 9, 15]

An important issue here is how to achieve stability (robustness) of the solution with respect
to the data.

1j.r.partington@leeds.ac.uk
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24.2 Constrained approximation

Suppose that u is harmonic in Ω, and that it can be written as the real part of an analytic function
h (in the disc this is always the case, by solving the Cauchy–Riemann equations; with suitable
modifications, this approach can also be made to work in the annulus or ball). The problem is
now to identify the unknown analytic function h from partial and corrupted measurements on
the boundary of its domain.

Let H2(D) denote the Hardy space of functions in the unit disc D, of form

g(z) =
∞∑

k=0

gkz
k, with ‖g‖2 =

∞∑
k=0

|gk|2 <∞.

Such functions have traces on T, which are in L2(T). Also, let S be an appropriate subset of the
boundary T (e.g. an arc). A much-studied problem is the following Bounded Extremal problem
(BEP).

Problem 24.1 Given f1 ∈ L2(S), f2 ∈ L2(T \ S) and M > 0, let

B = {h ∈ H2(D) : ‖h|T\S − f2‖L2(T\S) ≤M}.

Find h ∈ B to minimize ‖h|S − f1‖L2(S).

Typically, we think of f1 as a corrupted measurement of h, and M and f2 reference data,
required to make the approximation problem well-posed. Often f2 = 0. See [7] for more details.

In [12], a more general problem (GBEP) was considered (an Lp version for 1 < p < ∞ was
given in [13]).

Problem 24.2 Let H,K1,K2 be Hilbert spaces, and let A : H → K1 and B : H → K2 be linear
operators, satisfying the well-posedness condition that for some η > 0 one has ‖Ag‖2 + ‖Bg‖2 ≥
η‖g‖2 for each g ∈ H. Fix f1 ∈ K1, f2 ∈ K2 and M > 0. Let

B = {h ∈ H : ‖Bh− f2‖K2 ≤M}.

Find h ∈ B to minimize ‖Ah− f1‖K1.

The case H = H2, K1 = L2(S) and K2 = L2(T \ S), with A and B restriction mappings,
gives the problem (BEP). The extension to Hardy–Sobolev spaces is similar.

In general the solution is given by

(A∗A+ λB∗B)h = A∗f1 + λB∗f2,

where λ > 0 is the unique parameter such that ‖Bh − f2‖ = M . Here ∗ denotes the adjoint of
an operator. When we are working with analytic functions as in (BEP), the solution involves
Toeplitz operators.

The following crucial stability result was proved in [17]: for each fixed f2 ∈ K2, the solution
to (GBEP) (and hence to (BEP)) depends continuously in norm on f1 and M . However, there
is a trade-off here, in that a small value of ‖Ah− f1‖ can be obtained only at the expense of a
large error M = ‖Bh− f2‖. In the (BEP) version this means that, when the data is perturbed,
we can approximate well on S but only at the expense of a large error on T \ S.
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24.3 Three applications of the method

24.3.1 The disc

By means of conformal mapping, the problem for a sufficiently regular simply-connected plane
domain can be reduced to the case of the disc. The procedure in Section 24.2 has been considered
in [6, 9, 17], for example. In [17] the constrained approximation approach was used to study
inverse diffusion problems: for instance, to find a crack σ ⊂ D given by a simple curve, such
that one has

∆u = 0 in D \ σ,
∂nu = φ on T,
∂nu = 0 on σ,

u = u0 on S.

Similar approximation problems have been used in the detection of point sources.

24.3.2 The annulus

For a fixed s with 0 < s < 1, let A denote the annulus {z ∈ C : s < |z| < 1}. The Hardy space
H2(A) consists of all analytic functions with L2 boundary values, that is, Laurent series of the
form

g(z) =
∞∑

k=−∞
gkz

k, with ‖g‖2 =
∞∑

k=−∞
(1 + s2k)|gk|2 <∞.

Constrained approximation problems in these spaces have been considered in [11, 18]. A typical
issue here is the recovery of a function in H2(A) given values on L2(S), where S is a subset of ∂A,
for example the exterior circle. Applications of this to inverse problems for Robin coefficients
have been given in [16, 14]. Note that there is an additional subtlety here, in that A is not
simply connected, and so a harmonic function on A cannot be written directly as the real part
of an analytic function (a term of the form c log |z| has to be allowed for).

24.3.3 The sphere

Let B denote the open unit ball in R3 and S its boundary, the unit sphere. In the Stein
theory of harmonic analysis in 3 dimensions, a function h : B → R3 is said to be analytic if
h = ∇U for some harmonic function U on B [4, 19]. The Hardy space H2(B) consists of all
such h = (h1, h2, h3) such that the L2(ρS) norms of the components hj , restricted to ρS, are
uniformly bounded over 0 < ρ < 1.

For a subset S ⊂ S (typically, a hemisphere), we also require the space

L2
∇(S) ⊂ L2(S,R3),

of functions of the form f1n+∇Sf2 for f1 ∈ L2(S) and f2 ∈W 1,2(S), the Sobolev space. Here n
is a unit vector normal to the sphere, and ∇Sf2 is the tangential component of ∇f2. The spaces
L2
∇(S) and L2

∇(S \S) now play roles equivalent to those of L2(S) and L2(T \S) in the standard
(BEP).

In this situation there are applications to inverse EEG problems, as well as the possibility
of working with a domain consisting of the area between two concentric spheres (which models
the skull) [3, 2].
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About Regularity of Optimal shapes

Michel Pierre 1

Introduction

The goal of this talk is to describe some ideas and techniques, and some recent results as well,
concerning the study of the regularity of optimal shapes.

For most of the shape functionals we are considering, existence of optimal shapes is derived
via the use of topological and functional analytic tools which generally provide optimal shapes
with very poor regularity: they may be only open sets, sometimes even only measurable sets,
while we expect them to be regular or even very regular like having an analytic boundary.

There are quite a lot of analysis tools to prove that optimal shapes are regular once they are
known to have a little bit of regularity. For instance, if one knows that the boundary may locally
be represented as the graph of some function, then it has become classical in many situations
to prove that this function is actually regular: this is often done by using —deep, but now
classical— results of the regularity theory for partial differential equations.

We will mainly be interested in the very first step consisting in starting from “scratch” and
reaching some information on the regularity of the optimal shape: for instance, a given optimal
shape is obtained as a measurable set and we want to prove that it is at least an open set and,
next, that its boundary is at least Lipschitz or C1.

The shape functionals

We may consider optimal shape functionals of the form

Ω ⊂ D → E(Ω) = τP (Ω) + J(Ω),

where D is a given open subset of Rd, τ ∈ [0,+∞[ is given, the Ω’s are variable measurable
subsets of D and
– P (Ω) denotes the perimeter of Ω,
– J(Ω) = inf{

∫
Ω

1
2 |∇v|

2 − f v; v ∈ H1
0 (Ω)} is the Dirichlet energy of Ω for a given f ∈ L2(D).

Given m ∈ (0, |D|) (where we denote by | · | the Lebesgue measure), we are interested in the
regularity of the optimal shapes Ω̂ of

Ω̂ ⊂ D, |Ω̂| = m, E(Ω̂) = min{ E(Ω); Ω ⊂ D measurable, |Ω| = m }. (25.1)

Let us recall what happens in the two limit cases “τ = +∞” and τ = 0.

1michel.pierre@bretagne.ens-cachan.fr, Ecole Normale Supérieure de Cachan, Antenne de Bretagne & Institut
de Recherche Mathématique de Rennes, France
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The case τ = +∞

This is the classical isoperimetric problem:

Ω̂ ⊂ D, |Ω̂| = m, P (Ω̂) = min{ P (Ω); Ω ⊂ D measurable, |Ω| = m }. (25.2)

It is classical that, if D = Rd, or if D is large enough to contain a ball of measure m, then
the solution of (25.2) is precisely this ball. This is a consequence of the classical isoperimetric
inequality which states that

∀Ω ⊂ Rd measurable, P (Ω) ≥ cd|Ω|(d−1)/d, where cd = d |B(0, 1)|1/d, (25.3)

and the equality holds if and only if Ω is a ball (see a.e. [20],[32] for proofs and references). If
D does not contain a ball of measure m but is bounded, it is easy to prove the existence of a
measurable optimal shape Ω̂ (see e.g. [28]).

With respect to the regularity of this optimal set Ω̂, the following holds:

Theorem 25.1 Let Ω̂ be a solution of (25.2). Then,
– if d ≤ 7, ∂Ω̂ ∩D is an analytic hypersurface,
– if d ≥ 8, then there exists a “small” set Σ ⊂ ∂Ω̂, which is of s−Hausdorff measure zero for all
s > d− 8, and such that ∂Ω̂ \ Σ is an analytic hypersurface.

We find the above result in [23] or also in [22], [33]. It follows and uses a series of previous
results by E. De Giorgi [15], M. Miranda [31], H. Federer [19], E. Bombieri, E. De Giorgi & E.
Giusti [5] (see also more references in these articles).

The case τ = 0

Here, the question is the regularity of the optimal set Ω̂ of

Ω̂ ⊂ D, |Ω̂| = m, J(Ω̂) = min{ J(Ω); Ω ⊂ D, |Ω| = m}. (25.4)

Note that for each Ω, J(Ω) =
∫
Ω

1
2 |∇uΩ|2−fuΩ where uΩ is the solution to the Dirichlet problem

uΩ ∈ H
1
0 (Ω), ∀ v ∈ H1

0 (Ω),
∫

D
∇uΩ∇v =

∫
D
f v. (25.5)

This problem appears in many applications (see for instance [27], the books [16], [28] and
the references in them). It is not hard to show that the problem (25.4) has a solution (see e.g.
[13], or [25], or [9]). However, the general existence theory does not provide an open set, but
only a quasi-open set. Thus, it is already a regularity result to prove that we may obtain an
open set as an optimal set (this is not true if for instance f is only in H−1). Actually, a first
result is the following, assuming f ∈ L∞(D).

Theorem 25.2 Let Ω̂ be a solution of (25.4). Then, uΩ̂ is Lipschitz continuous on Dδ = {ξ ∈
D; d(ξ, ∂D) ≥ δ} for all δ > 0.

This is the first step in studying the regularity of Ω̂ itself. The case where f ≥ 0 (or more
generally when uΩ̂ ≥ 0) is a little easier. It may be found in [25] and [6], or in [24] for a
penalized version, and the proof relies on tools from [2]. See also [1] for a similar problem. The
case where u changes sign is more involved (see [7]) and requires the monotonicity lemma of [3]
in its nonhomogeneous form given in [10].

Now, we come to the regularity of ∂Ω̂ itself. We cannot expect full regularity in all cases:
for instance, it is easy to prove that, if the solution uΩ̂ changes sign near the boundary of Ω̂,
then necessarily the boundary has a singularity (like a cusp), this even in dimension 2. On the
other hand, we do expect regularity in the positive case. One can indeed prove the following:
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Theorem 25.3 Let Ω̂ be a solution of (25.4) and assume f ≥ 0, f ∈ L∞(D). Then, there exists
a set Σ ⊂ ∂Ω̂ such that
– the (d− 1)−Hausdorff measure of Σ is zero,
– ∂Ω̂ \ Σ is regular.
If moreover d = 2, then the full boundary ∂Ω̂ is regular.

Here, by regular, we mean that the boundary is at least C1,α. If f is more regular, like C∞,
then so is the boundary.

We refer to [6] for a proof (based on tools from [2]) and for more general assumptions. See
also [24], [1], [34] for results of this kind and to [11], [17] indicating for similar problems that
the situation may change whether d ≤ 6 or d > 6 (however, our problem is different since
singularities occur even for d = 2 when positivity does not hold).

The full problem (25.1)

The state function uΩ is shown to be 1/2-Hölder continuous in all cases and regularity is obtained
when f ≥ 0 (see N. Landais [30]).

More examples

We may also consider the regularity question of the optimal shapes for the eigenvalues of the
Laplacian operator with Dirichlet boundary conditions, for instance

Ω̂ ⊂ D, |Ω̂| = m, λ1(Ω̂) = min{λ1(Ω); Ω ⊂ D, |Ω| = m},

where λ1(Ω) is the first eigenvalue defined by

λ1(Ω) = inf{
∫

Ω
|∇v|2; v ∈ H1

0 (Ω),
∫

Ω
v2 = 1}.

Here again, if D contains a ball of measure m, then the ball is the minimum (see [18, 29]).
If not, there exists at least a quasi-open minimal set (see [9]). Next, regularity results similar to
Theorems 25.2 and Theorem 25.3 may be proved (see [26], [8]).

Let us mention that regularity questions turn out to be an important issue in many mathe-
matical models. We may refer to [4] for a design problem, to [12] for a compliance problem and
to the book [14] for the famous conjecture on the Mumford-Shah problem.
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Unique continuation from Cauchy
data for harmonic functions in a
domain with unknown and
nonsmooth parts of the boundary
Luca Rondi1

An electrically conducting body occupies a region Ω, which we assume to be a bounded
domain in RN , N ≥ 2, with a reasonably smooth boundary. We suppose that the conductor
is homogeneous and isotropic. Let us assume that such a conductor presents some perfectly
insulating defects, such as cracks (either interior or surface breaking), cavities or material losses
at the boundary, which might be caused by different phenomena, like for instance fractures or
corrosion. The boundaries of these defects are collected into a closed set which we call K. If we
prescribe a current density f ∈ L2(∂Ω), with

∫
∂Ω f = 0 and such that its support is contained

in γ̃, a part of the boundary of Ω which is accessible, known and disjoint from K, then the
electrostatic potential u = u(f,K) inside the conductor solves the following Neumann type
boundary value problem 

∆u = 0 in Ω\K,
∂u

∂ν
= f on γ̃,

∂u

∂ν
= 0 on ∂(Ω\K)\γ̃.

(26.1)

Let us consider the following kind of inverse problem. Assuming that the defect K is un-
known, we might wish to determine it by performing boundary measurements of voltage and
current type. That is, we prescribe one or more currents f and we measure on γ, an accessible
and known part of ∂Ω, the value of the corresponding potentials u. Through these measurements
we obtain additional information with which we would like to recover the unknown defect K.
For what concerns the determination of cracks we refer to the recent review paper [3], where
uniqueness, stability and reconstruction procedures, in two and three dimensions, are discussed.
For the determination of other defects, such as cavities or material losses at the boundary, we
refer to the following papers and to the references therein. The uniqueness and stability issues
are treated in [7], for the two dimensional case, and in [1], for the higher dimensional case.

A two step procedure is usually employed to deal with these kinds of inverse problems. In
the first step, the potential is recovered from the boundary measurements of voltage and current
type. Subsequently, in the second step, features of the potential such as singularities, level sets
or critical points are used to determine the unknown defect K. For instance, in our case, that

1Università degli Studi di Trieste, Italy. E-mail: rondi@dmi.units.it
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is when the defects are perfectly insulating, the jump set of u, S(u), is contained in K. Thus
S(u) would identify at least a part of our defect. Repeating the procedure for different and
suitable choices of f , the union of the jump sets of the corresponding potentials would cover
the whole K. The uniqueness results which are available in the literature give us information
on how many and which kind of measurements we need to take in order to identify uniquely,
at least in a suitable class of admissible defects, the unknown K. Here we limit ourselves to
notice that in many interesting cases a finite number (usually one or two) of suitably chosen
measurements is enough. However, in dimension higher than 2, for what concerns insulating
cracks, still a general uniqueness result with a finite number of measurements is missing, the
only available result, [2], deals with planar cracks only.

We investigate the first step of the previous scheme. Let us suppose that K is the unknown
defect. Fixed a current density f , we measure g = u(f,K)|γ , where u(f,K) solves (26.1). Given
f and g, we ask whether the potential inside the conductor is uniquely identified by the Cauchy
data (g, f). In other words, we ask when the following result holds: whenever another defect
K1 gives rise to the same boundary measurement g, that is we have u(f,K)|γ = u(f,K1)|γ ,
then u(f,K) = u(f,K1) in Ω. Such a unique continuation result is relatively easy to prove if
we assume K and K1 smooth. However, when the unknown defect K is very irregular, various
technical difficulties arise. We show that uniqueness holds for a very large class of admissible
defects.

The main result is the following. When K is formed, up to a set of zero capacity, by Lips-
chitz hypersurfaces and K1 has finite (N − 1)-dimensional Hausdorff measure, then u(f,K)|γ =
u(f,K1)|γ implies u(f,K) = u(f,K1) in Ω. The proof is strongly based on harmonic analysis
techniques on Lipschitz domains, in particular for what concerns the Neumann problem. In fact,
see [5], a Lipschitz condition on the boundary allows us to pass from a weak formulation of the
Neumann datum to a pointwise formulation, through the nontangential maximal function and
the nontangential limit. This procedure allows us to deal with the weak smoothness of K. In
order to deal with the roughness of K1, we use another key ingredient, namely the Gauss-Green
formula for sets of finite perimeter. Furthermore, in two dimensions, we may take advantage of
the duality provided by the use of harmonic conjugates, thus other kinds of unique continuation
results may be proved.

As a first application of our unique continuation results to inverse problems, we deduce
uniqueness with a single measurement for the inverse problem of determining cavities or material
losses at the boundary. On the other hand it is well known that a single measurement is not
enough, in general, to determine cracks.

In order to implement the reconstruction procedure of (a part of) K from the Cauchy data
(g, f), through the determination of the potential u = u(f,K) and of its jump set S(u), we
might set the problem into the following least square formulation. We look for

min
K̃

‖u(f, K̃)|γ − g‖L2(γ), (26.2)

where K̃ varies in a suitable class of admissible defects. The minimum is zero and is obviously
reached for K̃ = K. Although other K̃ may be minimizers, the previous uniqueness results
imply that for any minimizer K̃ we have u(f, K̃) = u(f,K). However, one usually has to deal
with noisy measurements, that is f , the prescribed current density, and in particular g, the
measured potential at the boundary, are known up to some noise which is due to the errors
the measurements are subject to. Hence, we need to investigate the stability of the unique
continuation results described before. We require at least a qualitative type of stability, that
is convergence in a suitable sense to the looked for potential when the noise goes to zero. We
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prove two kinds of, strictly related, stability results, under minimal assumptions of regularity
on the admissible defects, whose main features are that we treat the three dimensional case and
that the admissible defects may include cracks.

First, we show stability of the direct problem (26.1) under the variation of K, with respect to
the Hausdorff distance, which corresponds to the stability of Neumann problem under domain
variations. We refer to [4] and its references for a detailed account on this problem. Up to
our knowledge, in dimension higher than two, previously known results require quite strong
assumptions on K, which usually do not include cracks, for instance. On the other hand, in
dimension 2, again by making use of duality arguments, stronger results have been proved even
for nonlinear problems, see again [4] and its references.

Then, we prove stability of the unique continuation in Ω of u from the Cauchy data. As
an application to inverse problems of these two stability results, we show that, in the class of
admissible defects for which stability holds, the least square problem (26.2) is stable with respect
to noise on the Cauchy data.

We observe that the difficulty of proving such stability results is due to the ill-posedness
of these unique continuations from the Cauchy data. We remark that the ill-posedness of the
inverse boundary value problems we are considering is strictly linked to the one of the unique
continuation problem. We recall that, however, under stronger assumptions on the admissible
defects, quantitative stability results for the inverse problems have been obtained, see for instance
[7] and, for what concerns cracks, [8] for the two dimensional case, and [1] for cavities and
material losses in higher dimensions. Although such quantitative estimates of stability are
very weak, indeed of logarithmic type, they are essentially optimal, since these kinds of inverse
problems are severely ill-posed.

An interesting prosecution of this work would be to develop a numerical procedure for the
determination of the potential, and in particular of its jump set, from the Cauchy data, by
variational methods, for instance in SBV (Ω), the space of special functions of bounded variation
to which the potential u belongs. Such a numerical method should take into account the noise
of the data, the conditions under which stability occurs and the fact that the jump sets of SBV
functions are quite difficult to handle from a numerical point of view. For example, a quite
natural attempt would be to use a modification of the so-called Mumford-Shah functional which
has been introduced in [6] as an image segmentation method. However such an issue requires
further investigation and it will be the subject of future research.
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Experimental inversion algorithms
for quantum control
Gabriel Turinici1

Abstract

The purpose of this paper is to introduce the framework of quantum experimental inversion.
We first set the stage with the presentation of quantum control and then describe some recent
works that pertain to the potential and / or dipole inversion. Both theoretical and experimental
aspects will be considered.

27.1 Introduction

The prospect of influencing the outcome of chemical reactions, or on a more general level the
outcome of quantum phenomena, through tailored laser pulses has been investigated ever since
the introduction of the laser technology half of century ago. However, the successful imple-
mentation of experimental protocols [1, 13, 21, 3, 2, 8, 11] only came after the problem was
reformulated as a control situation and proper engineering control theory tools were applied,
among which the optimal control.

In such a context the time scales range from femtosecond (10−15) to the picosecond (10−12)
and the space scales range from several atoms to large polyatomic or metallic structures. His-
torically, first applications involved isotopic separation and chemical reactions, but now the field
extended to encompass High Harmonic Generation (generation of output laser pulses having
larger frequency than the input pulse), manipulation of atoms and molecules toward construct-
ing logical gates for quantum computers [4, 17], study of excited states of proteins [9], etc.

This control situation requires a modelisation; we will explore here a formulation where the
system can be characterized by its wave-function evolving from an initial state Ψ(x, t = 0) =
Ψ0(x). Here x denote the relevant spacial variables. In absence of any external interaction, the
evolution of the (nuclear) wave-function is given by the Time Dependent Schrödinger Equation
which involves an internal Hamiltonian H. H = H0 + V is made up of two terms :

- a kinetic energy part H0 which can be the Laplacian operator − 1
2m

∑
i

∂2

∂x2
i

in the x coor-
dinates

- and a potential V (x) part which characterizes the electronic interactions. This potential
can be given through a previous “ab initio” computation or has to be find through inversion (we

1CEREMADE, Université Paris Dauphine
Place Du Maréchal de Lattre de Tassigny, 75775 Paris Cedex 16
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will come to this latter).
By hypothesis this Hamiltonian does not produces the desired target state or the desired

inversion quality so an external interaction is introduced to control the system; here the control is
a dipole modeled by a self-adjoint operator C(x, t) = −µ(x)ε(t) where µ(x) is the coupling term
and ε(t) is the intensity of the electric field (other higher order models can also be considered,
see for instance [5]). The evolution equation can be written as (we used atomic units i.e., ~ = 1):{

i ∂
∂tΨ(x, t) = (H0 + V − ε(t)µ)Ψ(x, t)

Ψ(x, t = 0) = Ψ0(x).
(27.1)

The dipole operator µ(x) may be or may not be known in practice. The control is realized
through the selection of the intensity ε(t) which is at our disposal.

The target to be reached can either be given in a strong form as a target wave-function ΨT

or in a weak form through the introduction of an self-adjoint observable operator O with the
requirement that 〈Ψ, OΨ〉 be maximized. In the latter case the optimal control theory is invoked
and a cost functional is constructed J(ε), e.g. J(ε) = α

∫ T
0 ε2(t)dt− 〈Ψ, OΨ〉 that is minimized

(α > 0 is a penalization factor).
A large body of literature concerns the control aspect of these equations. We refer the in-

terested reader to [10, 16, 14, 22]. Suffices to say here that algorithms to find the controls are
available in theoretical framework, but more importantly, very specific procedures also exist
that apply in practice. In fact, the experimental realization of quantum control is based on
the so called “closed loop” [10] methodology which exploits the crucial observation that many
experiments can be performed in very short time (repetition rate of a quantum control experi-
ment is as high as 105 a second!). The “closed loop” operates by combining a zero-order search
algorithm (i.e., no gradient required) (see [18] for recent works on these algorithms) to the ex-
perimental machinery: the search algorithm explores the cost functional surface J(ε) and each
time it requires the evaluation of J(εk) for a solution candidate εk an experiment is performed
to measure J(εk).

27.2 Theoretical studies

Although the control of quantum phenomena is a goal in itself, sometimes further interest arises
in connection with these experimental capabilities. More precisely, it turns out that is some
situations the potential V (x) and / or the dipole µ(x) are not known with a high precision.
Moreover, since we are in a quantum framework the state itself Ψ(t) may be unknown at some
time instants (e.g. initial time); furthermore, according to quantum theory principles, any
measurement on the state Ψ will necessarily disturb it and as such obtaining the full information
on the state Ψ may not be an option. However, some observables 〈Ok〉 = 〈Ψ, OkΨ〉 may still be
available: in this case the system is measured and then is discarded (replaced with a new one).

Thus we can consider the question of inverting the Schrödinger equation (27.1) to find the
potential V (x) and or the dipole µ(x). One of the earliest studies that treated the inversion of
the potential [23] considered the situation where is no control{

i ∂
∂tΨ(x, t) =

(
− 1

2m
∂2

∂x2 + V (x)
)

Ψ(x, t)
Ψ(x, t = 0) = Ψ0(x).

(27.2)

If ρ(x, t) = |Ψ(x, t)|2 can be measured at all times t and spatial locations x one can use the
identity: ∫ ∞

−∞
ρ(x, t)

∂V (x)
∂x

dx = −m d2

dt2

∫ ∞

−∞
xρ(x, t)dx. (27.3)



Experimental inversion algorithms for quantum control 147

to recover V . An interesting conceptual application is observed when we can suppose that, e.g.,
by initially controlling the system, one can bring it to a state which ensure ρj(x, t = τk) =
δ(x− xj) which tells that

∂V (x)
∂x

∣∣∣∣
x=xj

= −m d2

dt2

∫ ∞

−∞
xρj(x, t)dx

∣∣∣∣
t=tj

. (27.4)

In general however, no such simple expression exist and inversion must resort on one hand to
more demanding numerical algorithms and on the other hand ensure that recovery of V and /
or µ is possible from the given partial measurements.

A situation that was recently treated [12] concerns a finite-dimensional discretization of (27.1):
now H0, V and µ are all N ×N complex self-adjoint matrices. We denote by {φi}N

i=1 the eigen-
vectors of H0 + V and {λi}N

i=1 the associated eigenvalues. The measured quantities are for all
instants t ≥ 0 the populations of the eigenstates φi, i.e. pi(t) = |〈φi,Ψ(t)〉|2, i = 1, 2, ..., or their
analogues |〈Ψ, ei〉|2 with respect to elements ei of a basis of CN . Any control intensity ε(t) can
be considered. Both V and the dipole moment µ are to be identified; we will suppose that H0

is known (by spectroscopy or otherwise). The following result can be obtained:

Theorem 27.1 Suppose that there exist two Hamiltonians H1 and H2 and two dipole moments
µ1 and µ2, giving rise to two evolving states Ψ1 and Ψ2 respectively solving

iΨ̇1 = (H1 + ε(t) µ1) Ψ1, (27.5)

iΨ̇2 = (H2 + ε(t) µ2) Ψ2, (27.6)

that produce identical observations for all times t ∈ [0,∞) and all fields ε(t)

|〈Ψ1(t) | ei〉|2 = |〈Ψ2(t) | ei〉|2 i = 1, .., N, (27.7)

where {ei}N
i=1 is the canonical basis of the state space CN . Assume for both Hamiltonians

1. Equation (27.1) is wavefunction controllable [15].

2. The transitions of the Hamiltonian H are non-degenerate: λi1−λj1 6= λi2−λj2 for (i1, j1) 6=
(i2, j2) [19, 20].

3. The diagonal part of the dipole moment µ, when written in the eigenbasis of the Hamilto-
nian H, is zero: 〈φi | µ | φi〉 = 0, i = 1, .., N .

4. the Hamiltonians H1 and H2 have the same eigenvalues.

5. there does not exist a subspace of dimension one or two spanned by the vectors {ei}, which
remains invariant during the free evolution (ε ≡ 0) of the first system (H1 and µ1).

Then, there exists a set of phases {αi}N
i=1 such that, for all 1 ≤ i, j ≤ N ,

(µ1)ij = ei(αi−αj)(µ2)ij , (27.8)

(H1)ij = ei(αi−αj)(H2)ij . (27.9)

Such a result instructs us that the information contained in the |〈Ψ|ei〉|2 is sufficient to
recoved the potential V , the dipole µ and implicitelly some information on the initial state φ0.
Further results can also be obtained in terms of the populations pi, see [12].
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27.3 Practical implementations

The Theorem above links essentially the controllability of the nonlinear system (27.1) to the pos-
sibility of identifying the potential and the dipole moment through quantum control experiments.
However, it does not provide an analytical formula to evaluate these quantities. Experimental
protocols are thus required to realize the inversion. We will present briefly below one such
protocol [7, 6, 12]: the optimal identification which is a mixed laboratory-computer simulation
procedure that aims to recovered the information on the system Hamiltonian from experimental
data. The optimal identification combines optimal control with inversion techniques exploiting
once again the capability of performing a large number of control experiments. The algorithm
employed is the following :

1/ for any laser field ε(t) and any proposal for the dipole moment /potential µ, V we define
a cost functional J(ε, µ, V ) as the distance between

– the experimental measure of a given observable obtained with the field ε(t) on the real
quantum system and

– the measure obtained from a numerical simulation with the Hamiltonian H0 (known) the
potential V , dipole µ and field ε.

2/ Let τ be a given tolerance; for any ε one can define the set S(ε) = {µ, V ;J(ε, µ, V ) ≤ τ}.
Let m(ε) be its measure (precise definitions may vary, see the references above). Then an
optimization algorithm is considered to minimize m(ε). The solution to this procedure ε will
be called discriminating field; any element of S(ε) will then be a possible solution of the initial
inversion (identification) problem.

In practice there is still much to be done to find satisfactory procedures that combine ro-
bustness with algorithmic efficacity. Note that the above formulation solves for each ε an inverse
problem, which is a very demanding task not only due to the nonlinearity but also to the de-
manding computational ressources required to numerically solve (27.1). Procedures are needed
that make optimal use of resolutions of the Time Dependent Schrödinger Equations.
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