Inverse Problems in Tokamaks:

Model of plasma equilibrium:

Physical problem of plasma confinment in a Tokamak (thermonuclear fusion)
Maxwell equations + axisymmetric assumption \Rightarrow Grad-Shafranov equation in poloidal plane sections $(\varphi=$ constant $): \quad-\operatorname{div}\left(\frac{1}{x} \nabla u\right)=j_{T}(=0$ in the vacuum $)$
where $(x, y, \varphi), u(x, y)$ and j_{T} denote respectively the cylindrical coordinates, the poloidal component of the magnetic flux and the toroidal component of the current density vector.

Motivation:

The above issue is a practical important motivation for considering the following so-called conductivity equation in a planar annular domain Ω
$\operatorname{div}(\sigma \nabla u)=0, \sigma$ real-valued and Lipschitz-continuous, $0<c<\sigma<C$ in $\Omega \subset \mathbb{R}^{2}$
From such questions, several inverse boundary value problems may be considered

- given Dirichlet data u on the boundary $\partial \Omega$, recover u in Ω,
- given overdetermined Cauchy data u and the normal derivative $\partial_{n} u$ on a strict subset $I \in \partial \Omega$, recover u in Ω (afterward Cauchy data on $J=\partial \Omega \backslash I$)

1. Conjugate Beltrami equation:

When Ω is simply connected ($\Omega \sim \mathbb{D}$ the unit disc) and when $z=x+i y$ denotes the complex variable, the conductivity equation is linked to the conjugate Beltrami equation by a system of real second order elliptic equations

$$
\begin{aligned}
& f(z, \bar{z})=u(x, y)+i v(x, y), u \text { and } v \text { in } W_{\mathbb{R}}^{1, p}(\Omega) \\
& \quad \text { solves } \bar{\partial} f=\nu \overline{\partial f} \text { a.e in } \Omega
\end{aligned} \Longleftrightarrow u \text { and } v \text { satisfy }\left\{\begin{array}{l}
\operatorname{div}(\sigma \nabla u)=0 \text { in } \Omega \\
\operatorname{div}\left(\frac{1}{\sigma} \nabla v\right)=0 \text { in } \Omega
\end{array} \text { with } \sigma=\frac{1-\nu}{1+\nu}\right.
$$

with $\nu \in W_{\mathbb{R}}^{1, \infty}(\Omega)$ and $\|\nu\|_{L^{\infty}(\Omega)} \leq \kappa, \kappa \in(0,1)$
The study of the solutions of the conjugate Beltrami equation is a generalization of the harmonic case $\bar{\partial} f=0$ (when $\sigma=1$, last system reduces to the Cauchy-Riemann equations).

3. Properties of $H_{\nu}^{p}(\mathbb{D})$:

- Equipped with the norm $\|\cdot\|_{H_{\nu}^{p}(\mathbb{D})}, H_{\nu}^{p}(\mathbb{D})$ is a Banach space,
- If $\nu=0, H_{0}^{p}(\mathbb{D})=H^{p}(\mathbb{D})$, the classical Hardy space of holomorphic funtions on \mathbb{D} such that $\sup _{0<r<1}\|f\|_{L^{p}\left(\mathbb{T}_{r}\right)}<\infty$,
- Each $f \in H_{\nu}^{p}(\mathbb{D})$ has a non-tangential limit $\operatorname{tr} f$ a.e on \mathbb{T} called the trace of f,
- $\operatorname{tr} H_{\nu}^{p}(\mathbb{D})$ is a closed subspace of $L^{p}(\mathbb{T})$,
\bullet On $I \subset \mathbb{T},|I|>0,(\operatorname{trf})_{\left.\right|_{I}}=0 \Longrightarrow f \equiv 0$ in \mathbb{D},
Moreover, the Hilbert transform \mathcal{H} and the Riesz-projection \mathcal{P} are naturally extended to \mathcal{H}_{ν} and \mathcal{P}_{ν} with
$\mathcal{H}_{\nu}: \quad L_{\mathbb{R}}^{p}(\mathbb{T}) \rightarrow L_{\mathbb{R}}^{p}(\mathbb{T})$
$\mathcal{P}_{\nu}: L_{\mathbb{R}}^{p}(\mathbb{T}) \rightarrow L_{\mathbb{R}}^{p}(\mathbb{T})$

$$
\operatorname{Re}(\operatorname{tr} f)=u_{\left.\right|_{\mathbb{T}}} \mapsto \operatorname{Im}(\operatorname{tr} f)=v_{\left.\right|_{\mathbb{T}}}
$$

and

$$
g \mapsto \frac{1}{2}\left(I+i \mathcal{H}_{\nu}\right) g+\frac{1}{4 \pi} \int_{\mathbb{T}} g d s
$$

Density result:

$$
\forall I \subset \mathbb{T} \text { such that }|\mathbb{T} \backslash I|>0, \operatorname{tr} H_{\nu}^{p}(\mathbb{D})_{I} \text { is dense in } L^{p}(I)
$$

Solution of the Dirichlet problem:

$\forall \varphi \in L_{\mathbb{R}}^{p}(\mathbb{T}), \exists!f=u+i v \in H_{\nu}^{p}(\mathbb{D})$ with $\int_{\mathbb{T}} v=0$ such that, a.e on $\mathbb{T}, \operatorname{Re}(\operatorname{tr} f)=\varphi$

Bases of solutions in $\operatorname{tr} H_{\nu}^{2}\left(\mathbb{D}_{0}\right)$ and numerical results:

Solutions on a rectangle $\mathcal{R} \supset \mathbb{D}_{0}$:

$\begin{aligned} & \mathbb{D}_{0}=\{(x, y) \in \mathbb{R}^{2}:\left(x-x_{0}\right)^{2}+y^{2}< \\ & \text { with } x_{0}>0 \text { and } R<\left|x_{0}\right|\end{aligned}$

On \mathcal{R}, explicit solutions are, for every $N \in \mathbb{N}$, of Bessel-exponential type

$$
\begin{aligned}
b_{1}(x, y) & =\sum_{n=1}^{N} x J_{1}\left(\lambda_{n} x\right)\left[\alpha_{n} e^{\lambda_{n} y}+\beta_{n} e^{-\lambda_{n} y}\right] \\
& +\sum_{n=1}^{N} x\left[\gamma_{n} I_{1}\left(\mu_{n} x\right)+\delta_{n} K_{1}\left(\mu_{n} x\right)\right] \sin \left(\mu_{n}(y+c)\right)+a_{0} x^{2}+b_{0} y+c_{0} \\
b_{2}(x, y) & =\sum_{n=1}^{N} J_{0}\left(\lambda_{n} x\right)\left[\alpha_{n} e^{\lambda_{n} y}-\beta_{n} e^{-\lambda_{n} y}\right]
\end{aligned}
$$

$$
+\sum_{n=1}^{n=1}\left[\delta_{n} K_{0}\left(\mu_{n} x\right)-\gamma_{n} I_{0}\left(\mu_{n} x\right)\right] \cos \left(\mu_{n}(y+c)\right)-b_{0} \ln x+2 a_{0} y+d_{0}
$$

where $\mu_{n}=\frac{n \pi}{4 c}$ and $\left(\lambda_{n}\right)_{n \geq 1}$ denotes zeros of $J_{0}\left(\lambda_{n} b\right)=0$.
Density result: Define as \mathcal{B}_{1} and \mathcal{B}_{2} the families of solutions b_{1} and b_{2} given above, then

$$
\mathcal{B}_{1_{\mathbb{T}_{0}}} \text { and } \mathcal{B}_{2_{\mathbb{T}_{0}}} \text { are } L^{2} \text { dense in } L_{\mathbb{R}}^{2}\left(\mathbb{T}_{0}\right)=\operatorname{Re}\left(\operatorname{tr} H_{\nu}^{2}\left(\mathbb{D}_{0}\right)\right)
$$

Constructive aspects of solutions to the bounded extremal problem:

2. Definition of generalized Hardy spaces $(1<p<\infty)$:

Dirichlet problem:

Find u defined on \mathbb{D} with prescribed trace on $\mathbb{T} \Longleftrightarrow$ Find f defined on \mathbb{D} with prescribed $\operatorname{Re} f$ on \mathbb{T} This problem was solved in $W^{1, p}(\mathbb{D})$ only for $W_{\mathbb{R}}^{1-1 / p, p}(\mathbb{T})$-boundary data. With $L^{p}(\mathbb{T})$-boundary data, f does no longer belong to $W^{1, p}(\mathbb{D})$ but to $H_{\nu}^{p}(\mathbb{D})$.

Definition of $H_{\nu}^{p}(\mathbb{D})$:

$H_{\nu}^{p}(\mathbb{D})=$ measurable functions f on \mathbb{D} such that $\sup _{0<r<1}\|f\|_{L^{p}\left(\mathbb{T}_{r}\right)}:=\sup _{0<r<1}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} d \theta\right)^{1 / p}<+\infty$ and solving (CB) in the sense of distributions in \mathbb{D}

4. The Cauchy problem:

Instability of the Cauchy solution:

Bounded extremal problem :

By constraining Ref on J, Cauchy problem admits a unique solution. That solution is the best approximation of $\phi_{\left.\right|_{I}}$ and $\varphi_{\left.\right|_{I}}$. In case $p=2$ and for $M>0$, it is given by

$$
g_{0}(\lambda)=(I+\lambda T)^{-1} \mathcal{P}_{\nu}\left(f_{\left.\right|_{I}} \vee(\lambda+1) h\right) \text { with }\|R e f-h\|_{L_{\mathbb{R}}^{2}(J)} \leq M
$$

where $T(f)=\mathcal{P}_{\nu}\left(\chi_{J} f\right)$ is a Toeplitz operator and $\lambda \in(-1,+\infty) /\|R e f-h\|_{L_{\mathbb{R}}^{2}(J)}=M$

Numerical approximations

Approximations are computed with $\left(c_{0}, r, e, N_{1}, N_{2}\right)=(5,2,1,1,5)$ and $f_{\left.\right|_{\mathbb{T}_{0}}}=u_{\left.\right|_{\mathbb{T}_{0}}}+i v_{\left.\right|_{\mathbb{T}_{0}}} \in \operatorname{tr} H_{\nu}^{2}\left(\mathbb{D}_{0}\right)$.

- $u_{\mathrm{T}_{0}}=\left(x^{2} y^{3}-\frac{3}{4} x^{4} y\right)_{\mathrm{IT}_{0}}$

Error is about 10^{-2} for $N=5$
.

- $v_{\mathbb{I T}_{0}}=\left(\frac{y^{4}}{2}-\frac{3}{2} x^{2} y^{2}+\frac{3}{16} x^{4}\right)_{I_{0}}$

Error is about 10^{-3} for $N=5$

Perspectives

- In an annular domain $\mathbb{A}=\mathbb{D} \backslash \rho \mathbb{D}$? Use of the topological decomposition $H_{\nu}^{p}(\mathbb{A})=H_{\nu_{i}}^{p}(\mathbb{D}) \oplus H_{\nu_{e}}^{p}(\mathbb{C} \backslash \rho \mathbb{D})$, where $\nu_{i} \in W^{1, \infty}(\mathbb{D}), \nu_{e} \in W^{1, \infty}(\mathbb{C} \backslash \rho \mathbb{D})$ such that $\nu_{i_{\mid \mathbb{A}}}=\nu_{e_{\mid \mathbb{A}}}=\nu$.

References:

[1]: K. Astala, L. Päivärinta, Calderón's inverse conductivity problem in the plane, Ann. of Math. (2) 163 (2006), no. 1, 265-299. [2]: L. Baratchart, J. Leblond, S. Rigat, E. Russ, Hardy spaces for the conjugate Beltrami equation, submitted-
[3]: Y. Fischer, J. Leblond, Solutions to conjugate Beltrami equations equations and approximation in generalized Hardy spaces, Advances in Pure and Applied Mathematics, to appear.

