

comparison of a Boundary Element and a Bounded Extremal Problem

Maureen Clerc¹, Bilal Atfeh², Juliette Leblond², Laurent Baratchart²,

Jean-Paul Marmorat³, Théo Papadopoulo², Jonathan Partington⁴

¹ Ecole Nationale des Ponts et Chaussées, ² INRIA Sophia Antipolis, ³ Ecole des Mines de Paris

V and $\partial_{\mathbf{n}} V$

 $\Delta V=0$ in Ω_2

⁴ University of Leeds (U.K.)

1. Cortical Imaging

The head is modeled as 3 nested volumes Ω_i of constant conductivity.

The potential V inside the head satisfies the Poisson equation $-\nabla \cdot (\sigma \nabla V) = \mu$ where μ represents the primary sources localized inside the brain Ω_1 **Data:** pointwise values of V measured by electrodes on the scalp S_3 , denoted **v**. **Goal:** to recover V and $\partial_{\mathbf{n}} V$ on S_1 , representing the surface of the cortex. Cortical imaging enables Source Localization by Rational Approximation.

Data propagation

${\bf v}$ on electrodes	$\Delta V=0$ in Ω_3	V and $\partial_{\mathbf{n}} V$
$\partial_{\mathbf{n}} V = 0$ on S_3	Cauchy problem	on S_2

Cauchy problem on S_1 If V and $\partial_{\mathbf{n}} V$ are known on a **dense subset** of S_3 , then the Cauchy problem has a unique solution. In practice, v is only known at the electrode positions, and is subject to noise. Cortical imaging is **ill-posed**, making regularization necessary.

2. Green identity and Representation Theorems

$$V \Delta W - W \Delta V dv = \int_{\Gamma} (V \partial_{\mathbf{n}} W - W \partial_{\mathbf{n}} V) ds$$

 $\int_{\Omega} (V$ The above identity allows to represent harmonic functions ($\Delta V = 0$), using only their values on the boundary $\partial \Omega.$ The auxiliary function W can be chosen equal to a

fundamental solution of the Laplacian $W(X, Y) = \frac{1}{4\pi ||X-Y||}$. Then: (i) for the Boundary Element Method, using the associated **boundary integral operators**, S single-layer, D double-layer, N hyper-singular, if V is harmonic inside and

outside
$$\partial\Omega$$
, and if $[V]$, $[\partial_{\mathbf{n}}V]$ denote the jumps across $\partial\Omega$,
then, in Ω ,
$$\begin{bmatrix} -\partial_{\mathbf{n}}V = \mathcal{N}[V] - \mathcal{D}^*[\partial_{\mathbf{n}}V],\\ V = -\mathcal{D}[V] + \mathcal{S}[\partial_{\mathbf{n}}V]; \end{bmatrix}$$
(1)

(ii) for the Bounded Extremal Problem, in the case (a) where Ω is an annular region, using the associated **Poisson kernel** \mathcal{P}_{Ω} ,

then, for X in
$$\Omega$$
, $V(X) = \int_{\partial\Omega} V(Y) \partial_{\mathbf{n}} \Psi_{\Omega}(X, Y) ds(Y).$ (2)
In the ball Ω_1 of radius R ,
 $\Psi_{\Omega_1}(X, Y) = \frac{R^2 - \|X\|^2}{4\pi R \|X - Y\|^2} = \partial_{\mathbf{n}} W(X, Y) - \frac{R}{\|X\|} \partial_{\mathbf{n}} W(\frac{R^2}{\|X\|^2}X, Y).$

3. Boundary Element Method (BEM)

The surfaces S_i are represented by a triangular mesh.

 $\begin{bmatrix} V \\ \sigma \partial_{\mathbf{n}} V \end{bmatrix}$ are discretized using piecewise $\begin{cases} \text{linear} \\ \text{constant} \end{cases}$ functions, The variables \langle and represented by a vector \mathbf{Z} . Discretizing the boundary integral equations (1) leads to an underconstrained linear system $H \mathbf{Z} = 0$ [2].

Minimization scheme

A linear measurement operator M extracts from \mathbf{Z} the values of the potential V at the electrode positions. Due to measurement noise, one will minimize

 $\mathbf{M}(\mathbf{Z}) = \|M \, \mathbf{Z} - \mathbf{v}\|^2.$

A regularization is performed by controlling
$$\mathbf{R}(\mathbf{Z})$$
 representing

$$\int_{S_1 \cup S_2 \cup S_3} \|\nabla_S V\|^2 + \|V(r + \alpha \mathbf{n}) - V(r) - \alpha \partial_{\mathbf{n}} V\|^2$$

The goal is to minimize $\mathbf{M}(\mathbf{Z}) + \lambda \mathbf{R}(\mathbf{Z})$ with \mathbf{Z} belonging to Ker H.

By imposing $\mathbf{Z} = P_{\text{Ker}H}^{\perp} \mathbf{Y}$ and seeking \mathbf{Y} , the minimization becomes unconstrained.

Example

4. Bounded Extremal Problem (BEP)

BEP refers to best approximation issues in Hardy classes of analytic functions in $\Omega \subset \mathbb{R}^3$: $H^2(\Omega)=\{\nabla U \text{ for functions } U \text{ such that } \Delta U=0 \text{ in } \Omega \text{ and } \int_{\partial\Omega} \|\nabla_\partial U\|^2<\infty\},$ with the notation $\nabla_{\partial} U = (\partial_{\mathbf{n}} U, \nabla_{S} U)$ on $\partial \Omega$.

(France),

Minimization problem

From **interpolated data** $(v, \partial_{\mathbf{n}} v)$ on S_i , minimize $\int_{S_i} \|\nabla_{\partial} v - \mathbf{g}\|^2$ among the functions $\mathbf{g} \in H^2(\Omega_i)$ constrained by $\int_{S_{i-1}} \|\mathbf{g}\|^2 \leq \rho$.

With an appropriate choice of the regularization parameter ρ ,

the solution $\mathbf{g} \simeq \nabla V$ in Ω_i provides us with Cauchy data $(V, \partial_{\mathbf{n}} V)$ on S_{i-1} [1]. Algorithm

In the case (a) of spherical layers Ω_i , for a Lagrange parameter $\lambda > 0$ such that $\int_{S_{i-1}} \|\mathbf{g}\|^2 = \rho$, the unconstrained minimization of:

$$\int_{S_i} \|\nabla_{\partial} v - \mathbf{g}\|^2 + \lambda \int_{S_{i-1}} \|\mathbf{g}\|^2$$

is performed using (2) and Toeplitz operators, directly from **data** $(v, \partial_{\mathbf{n}}v)$ on S_i .

5. Source Localization by Rational Approximation

Consider an **unknown** pointwise dipolar source **C** in the ball Ω_1 (a): $\mu = \mathbf{p} \cdot \nabla \delta_{\mathbf{C}}$ **Data:** the values of $(V, \partial_{\mathbf{n}} V)$ propagated (from S_3) to S_1 ,

Goal: to recover the source location $\mathbf{C} = (\mathbf{x}_{\mathbf{C}}, \mathbf{y}_{\mathbf{C}}, \mathbf{z}_{\mathbf{C}})$ in Ω_1 .

Filtering outside sources with spherical harmonics provides a function

 $V_{-}(X) = \frac{\langle \mathbf{p}, X - \mathbf{C} \rangle}{4\pi \sigma_{l} \| X - \mathbf{C} \|^{2}} \text{ on } S_{1}. \tag{3}$ Considering X = (x, y, z), the disks $D_{m} = B \cap \{z = z_{m}\} \subset \mathbb{R}^{2} \simeq \mathbb{C}$, the complex variable $\xi = x + i y$, the function $V_m^2(\xi) = V_-^2(x, y, z_m)$ is, for each *m*, **rational** with a triple pole at $\xi_m \in D_m$:

- (ξ_m) are aligned together and also with $\xi_{\mathbf{C}} = \mathbf{x}_{\mathbf{C}} + i\mathbf{y}_{\mathbf{C}}$,
- $|\xi_m|$ is maximum for m^* such that $z_{m^*} = \mathbf{z}_{\mathbf{C}}$.

For each m, (ξ_m) is approximated by the poles of the best $L^2(\partial D_m)$ rational approximant of degree 3 to V_m^2 : this localizes the source position $\mathbf{C}^* \simeq \mathbf{C}$.

Further: the **dipolar moment p** can be estimated with the computation of the residues; this scheme has been extended to situations with several sources [3].

6. Evaluation of Results

In a 3-sphere model of radii (.87; .92; 1), and conductivities (1; 1/30; 1), a dipolar source is placed at $\mathbf{C} = [.7 \ .2 \ .1]$ and \mathbf{v} is generated on S_3 . The cortical potential is: (i) computed explicitly from (3); (ii) propagated by the Boundary Element Method, (iii) propagated by solving two Bounded Extremal Problems.

The source position $\mathbf{C}(\bullet)$ is compared with $\mathbf{C}^{*}(\bullet)$ estimated by Rational Approximation.

References

[1] Atfeh, Baratchart, Leblond, Partington. "Bounded extremal and Cauchy-Laplace problems on 3D spherical domains" in preparation

[2] Kybic, Clerc, Abboud, Faugeras, Keriven, Papadopoulo. "A Common Formalism for the Integral Formulations of the Forward EEG Problem", IEEE Transactions on Medical Imaging, 2005, vol. 24, no.1.

[3] Baratchart, Ben Abda, Ben Hassen, Leblond. "Recovery of pointwise sources or small inclusions in 2D domains and rational approximation", Inverse Problems, 2005, vol. 21, p. 51–74.