
Splines in Endymion

José Grimm, Apics Team

January 29, 2009

Some of the code, definitions, and theorems are taken from Carl de Boor, “A Practical
Guide to Splines”, Springer Verlag, Vol 27 in ‘Applied Mathematical Sciences’, 27.

1 Piecewise polynomial functions, divided differences
A polynomial of order k is just a polynomial of degree less than k, it is defined by k
coefficients. A breakpoint sequence is a sequence of real numbers ξ0 < ξ1 < . . . < ξl. To
each i, with 0 < i < l, we associate an integer νi with 0 ≤ νi ≤ k. An element of Pk,ν,ξ
will be a piecewise polynomial function (or pp function), which is a polynomial of order k
on each interval [ξi, ξi+1], subject to the condition that at ξi, polynomials to the left and
the right agree with order νi. Thus the space P has dimension n = kl −

∑
νi.

1.1 Example. Assume k = 4, so that we consider polynomials of degree at most 3.
Consider the case ξi = 0. A pp function near zero has the form a + bx + cx2 + dx3 for
x > 0, and a′ + b′x + c′x2 + d′x3 for x < 0. If νi = 0, no condition is required. If νi = 1,
we want a = a′, if νi = 2, we want a = a′ and b = b′, if νi = 3, we want a = a′, b = b′

and c = c′, and if νi = 4, we moreover want d = d′. If we know the function for x < 0,
this leaves us k− νi degrees of freedom for the function on [0, ξi+1]. The case of interest is
νi = k− 1, this gives maximum regularity, and one degree of freedom for each interval. In
this case n = k+ l− 1. If we have some values fi, and want f(ξi) = fi, this removes l+ 1
degrees of freedom, so that there are k − 2 remaining degree of freedom. This is zero if
k = 2: there is a single continous piecewise linear function that passes through the points.
For k = 4, we must add two additional constraints. This will be explained later.

Assume that we want periodic pp functions. If f(x+ ξl) = f(x+ ξ0) for small positive
x, we can define the meaning of “agrees at order νl at ξl”. If νl = k − 1, this gives
dimension l for the space P . However, the mapping that associates to f the values f(ξi)
is not necessarily injective. Example: assume ξ0 = −1, ξ1 = 0 and ξ2 = 1. The function f
with value x+ x2 for x < 0 and x− x2 for x > 0 is a pp-function of order 3 with νi = 2.
The two functions f and the constant 1 form a basis of P . Thus, for every g ∈ P we have
g(0) = g(1).

1.2 Given a function g and a sequence τi, we denote by Lτ (g) the Lagrange interpolation
of order k+1 to g at τi and by [τi, . . . , τi+k]g to be the leading coefficient of this polynomial.
These are called the divided differences.

If all τi are different, then h = Lτ (g) is defined by h(τj) = g(τj). In this case an explicit

1

formula is

Lτ (g)(t) =
i+k∑
j=i

g(τj)
∏
l 6=j

t− τl
τj − τl

. (Lagrange)

If we define τi,i+k,j =
∏
l 1/(τj − τl) where the product is over all l between i and i+k,

excluding j, then the divided difference is just
∑
j g(τj)τi,i+k,j . Examples:

[τ1]g = g(τ1) [τ1, τ2]g = g(τ2)− g(τ1)
τ2 − τ1

.

Formula (1.9) below is an alternate representation. An example is

[a, b, c]g = g(a)− g(b)
(a− b)(a− c) −

g(c)− g(b)
(a− c)(b− c) . (1.3)

1.4 The Lagrange interpolation polynomial (hence the divided differences) can be defined
if some τj are repeated: both functions must agree at order k, where k is the number of
repetitions. Taking limits in (1.3) gives

[a, b, b]g = g(a)− g(b)
(a− b)2 + g′(b)

a− b
. (1.5)

A general formula is

Lτ (g)(t) =
i+k∑
j=i

(t− τi) · · · (t− τj−1)[τi, . . . , τj]g. (Newton)

Reverting the order of coefficients gives:

Lτ (g)(t) =
i+k∑
s=i

(t− τs+1) · · · (t− τi+k)[τs, . . . , τi+k]g.

Proof. Let Lk be the Lagrange interpolation polynomial of g at τi, . . . , τi+k. We have
by definition

Lk = L′k−1 + (t− τi) · · · (t− τi+k−1)[τi, . . . , τi+k]g
for some polynomial L′k−1 of order k. Then L′k−1 agrees with Lk, hence g for all τj with
i ≤ j ≤ i+ k − 1. Is is hence Lk−1. This shows the Newton formula by induction.

1.6 The Leibnitz Formula for the product f = gh is

[τi, . . . , τi+k]f =
i+k∑
r=i

[τi, . . . , τr]g · [τr, . . . , τi+k]h. (1.7)

Proof. Define

F (t) =
i+k∑
r=i

(t− τi) · · · (t− τr−1)[τi, . . . , τr]g
i+k∑
s=i

(t− τs+1) · · · (t− τi+k)[τs, . . . , τi+k]h.

By the Newton formulas, this agrees with gh at τj , being the product of the Lagrange
interpolation polynomials. Expand the product as

∑
rs αrβs, consider this as A + B + C

where A is the sum for r < s, B the sum for r = s and C the sum for r > s. Now C
vanishes at all τi, B is of degree k, and A is of degree less than k. Thus, A + B is a
polynomial of degree k that agrees with f , hence is the Lagrange interpolation of f . Its
leading coefficient is that of B, and this is the RHS of (1.7).

2

1.8 Recurrence formula:

[τi, . . . , τi+r]g = [τi+1, . . . , τi+r]g − [τi, . . . , τi+r−1]g
τi+r − τi

. (1.9)

If the τi are distinct this is a trivial consequence of

τi,i+r,j = τi+1,i+r,j − τi,i+r−1,j
τi+r − τi

.

In general, we proceed as follows. Write (1.9) as Ag = (Bg−Cg)/(τi+r − τi), where A, B
and C are three linear operators. It suffices to consider the case where g is a polynomial.
Write g = h+ P

∏
(t− τj), where h is the Lagrange interpolation and P is a polynomial.

Obviously, A, B and C applied to P
∏

(t− τj) give 0 as a result. Hence, we may assume
that g is equal to the Lagrange interpolation polynomial at τi, . . . , τi+r. Note that A, B
and C give a zero result when applied to a polynomial g of degree less than r. Using the
Newton formula, it suffices to consider the case where

g = (t− τi) · · · (t− τi+r−1).

Here Ag = 1, and Cg = 0. Decompose the first factor t − τi = (t − τi+r) + (τi+r − τi).
Then g = (t− τi+1) · · · (t− τi+r) + P , where P = (τi+r − τi)(x− τi+1) · · · (t− τi+r−1). We
have Bg = BP and BP = τi+r − τi.

Note the following application of the Leibnitz formula

[τi, . . . , τi+k]((t− x)g) = (τi − x)[τi, . . . , τi+k]g + [τi+1, . . . , τi+k]g. (1.10)

2 B-splines
Given a sequence ti ≤ ti+1 ≤ . . . ≤ ti+k, we define

Bi,k,t(x) = (ti+k − ti)[ti, . . . , ti+k](· − x)k−1
+ . (2.1)

The notation (· − x)k−1
+ denotes the function g(t), which depends on x, defined to be

0 if t ≤ x, and (t− x)k−1 otherwise.

2.2 Basic properties. The Lagrange polynomial (and its leading coefficient) is a linear
function of the value of g and its derivatives (it is of course a non-linear function of the
interpolation points). As a function of x, g is a polynomial of order k, on each interval
[tj , tj+1]. Thus, the same is true for B. Note that g is continuous (if k > 1), its derivative
is continuous (if k > 2) etc. Hence the same is true for Bi, provided that the interpolation
points are distinct. This implies that B is a pp-function, for the breakpoint sequence
associated to ti, where k− νi is the number of repetitions of ti (this is obvious if there are
no repetitions, the general case is explained later).

Note that Bi(x) has support in [ti, ti+k]. In fact, if x ≥ ti+k, for all j in the interval
[i, i + k], we have g(tj) = 0, hence the divided difference vanishes and B(x) is zero. If
x ≤ ti, then g(tj) = (tj − x)k−1, so that g takes the same values as (t− x)k−1: this is the
Lagrange interpolation polynomial, its coefficient in tk is zero.

Note the following symmetry. Let si = −tN−i be the reflected sequence (we replace
each knot by its opposite, then reorder them). For ti ≤ x ≤ ti+k, Bi,k,t(ti + x) is ti+k − ti

3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 2 4 6 8 10

’D2’
’D1’

Figure 1: Two splines, corresponding to the knot sequence (0,2.5,5,7.5,10) and (0,1,3,6,10)

times the divided differences at ti through ti+k of a function G, such that G(tj) = 0 if
tj ≤ ti+x and G(tj) = (tj−ti−x)k−1 otherwise. Let B′ = BN−i,k,s. Then B′(sN−i−k−x),
for sN−i−k ≤ x ≤ sN−i, or equivalently ti ≤ −x ≤ ti+k is ti+k − ti times the divided
differences at −ti through −ti+k of the function H such that H(−tj) = 0 if tj ≥ ti + x
and H(−tj) = (−tj + ti + x)k−1 otherwise. Now G(t) ±H(−t) = (t − ti − x)k−1, where
the sign depends on the parity of k. The divided differences of G(t)±H(−t) at the k+ 1
points are zero. Hence B′(sN−i−k − x) = ±Bi,k,t(ti + x).

2.3 Basic recurrence. Applying (1.10) to

(t− x)k−1
+ = (t− x)(t− x)k−2

+ .

gives

[ti, . . . , ti+k](· − x)k−1
+ = (ti − x)[ti, . . . , ti+k](· − x)k−2

+ + [ti+1, . . . , ti+k](· − x)k−2
+ .

Apply (1.9) to the first term, and simplify. We get the following recurrence formula

Bi,k(x) = x− ti
ti+k−1 − ti

Bi,k−1(x) + ti+k − x
ti+k − ti+1

Bi+1,k−1(x). (2.4)

2.5 In the case k = 1, Bi,1(x) = 1 if ti < x < ti+1, and the function is zero otherwise. Its
value is not well-defined at ti or ti+1. In the case k = 2, the previous formula gives

Bi,2(x) = x− ti
ti+1 − ti

(ti < x < ti+1), Bi,2(x) = ti+2 − x
ti+2 − ti+1

(ti+1 < x < ti+2).

Hence Bi,2 is a piecewise linear continuous function taking the value 0 at −∞, ti, ti+2, ∞,
and the value 1 at ti+1. We allow the degenerate case ti = ti+1 or ti+1 = ti+2. In this case
the function can be discontinuous. In the special case ti = ti+2, the function is zero.

4

2.6 In the case k = 3, we get the following formulas, valid respectively for ti < x < ti+1,
ti+2 < x < ti+3 and ti+1 < x < ti+2:

Bi,3(x) = (x− ti)2

(ti+1 − ti)(ti+2 − ti)
, Bi,3(x) = (ti+3 − x)2

(ti+3 − ti+1)(ti+3 − ti+2)

Bi,3(x) = (x− ti)(ti+2 − x)
(ti+2 − ti)(ti+2 − ti+1) + (x− ti+1)(ti+3 − x)

(ti+3 − ti+1)(ti+2 − ti+1)

2.7 Consider the case k = 4. For simplicity, we consider here the case ti = a+ib. Fix some
i, define x′ = (x− a)/b− i. The values of the splines on the intervals [a+ ib, a+ (i+ 1)b],
[a+ (i+ 1)b, a+ (i+ 2)b] [a+ (i+ 2)b, a+ (i+ 3)b] and [a+ (i+ 3)b, a+ (i+ 4)b] are

6B(x) = (x′)3, or 4− 3(x′ − 2)2x′, or 4 + 3(x′ − 2)2(x′ − 4), or (4− x′)3.

2.8 The B-splines form a partition of unity, namely, they have compact support, are
non-negative, and satisfy

i+k−1∑
j=i

Bi,k = 1 ti+k−1 < x < ti+k. (2.9)

The fact that B is non-negative is obvious by (2.4). In fact, if x < ti, then Bi,k−1(x) = 0,
otherwise x− ti ≥ 0, and Bi,k−1(x) ≥ 0, etc.

Let Si,k =
∑
Bj,k, where the sum is for i ≤ j ≤ i+ k− 1. If ti+k−1 < x < ti+k we have

Bi+k,k−1(x) = Bi,k−1(x) = 0. Hence

Sj,k =
i+k−1∑
j=i

Bi,k =
i+k−1∑
j=i

x− tj+1
tj+k − tj+1

Bj+1,k−1(x) +
i+k−2∑
j=i

tj+k − x
tj+k − tj+1

Bj+1,k−1(x).

This is
∑i+k−2
j=i Bj+1,k−1(x) = Si−1,k−1. This hows equation (2.9) by induction.

2.10 Evaluation of splines. The eval_spline procedure of Endymion uses equation (2.4).
It takes three arguments: a number x, an index L, and a knot sequence ti. It is assumed
that tL ≤ x ≤ tL+1. The only non-vanishing B-splines of order k have index i with
ti < x < ti+k, hence L−k+1 ≤ i ≤ L. We consider only the case k = 4, so that i = L−3,
i = L−2, i = L−1 and i = L. In order to simplify notations we write a, b, c, etc., instead
of tL+1, tL+2, etc.

Thus we assume that the knots are . . . ≤ D ≤ C ≤ B ≤ A < a ≤ b ≤ c ≤ d ≤ . . .,
etc, and A ≤ x ≤ a. There are four splines that do not vanish at x, they have support in
[D, a], [C, b], [B, c], [A, d]. The values at x are computed in h. Values of D and d are not
required.

Let u = (a−x)/(a−A), v = (x−A)/(a−A). These are the values of the two B-splines
of order 2 that do not vanish at x. Write d2 = u/(a−B), d3 = v/(b−A), u1 = d2(a− x),
u2 = d2(x − B) + d3(b − x), and u3 = d3(x − A). The quantities ui are the values of the
three B-splines of order 3 that do not vanish at x. Write e1 = u1/(a−C), e2 = u2/(b−B),
e3 = u3/(c−A). The values of the B-splines of order 4 that do not vanish at x are

h0 = e1(a− x), h1 = e1(x− C) + e2(b− x), h2 = e2(x−B) + e3(c− x), h3 = e3(x−A).

5

An alternate presentation of the formulas is

u1 = (a− x)(a− x)
(a−B)(a−A) , u2 = (a− x)(x−B)

(a−A)(a−B)+ (b− x)(x−A)
(b−A)(a−A) , u3 = (x−A)(x−A)

(b−A)(a−A) ,

then
h0 = (a− x)3

(a−A)(a−B)(a− C) , h3 = (x−A)3

(c−A)(b−A)(a−A) ,

h1 = x− C
a− C

u1 + b− x
b−B

u2, h2 = x−B
b−B

u2 + c− x
c−A

u3.

2.11 Assume that the knots are (..., 0, 2, 3, 4, 5, 6, ..., n− 3, n− 2, n, ...). The first value
0 and the last value n is repeated as much as needed. There is a hole between 0 and 2, a
hole between n−2 and n. If we evaluate at i+1/2, where i is an integer, we get in general
the four values 1/48, 23/48, 23/48 and 1/48. We write this as (1,23,23,1)/48. According
to (2.9), the sum of the four coefficients is always 1. If x is an integer, we chose A = x
(except for x = n). The coefficients are generally (1,4,1,0)/6. Exceptions: For x = 0 we
get (1,0,0,0)/1, For x = 1 we get (9,37,23,3)/72, For x = 2 we get (1,5,3,0)/9, For x = 3
we get (3,17,4,0)/24, For x = n− 3 we get (4,17,3,0)/24, For x = n− 2 we get (3,5,1)/9,
For x = n− 1 we get (3,23,37,1)/72, For x = n we get (0,0,0,1)/1.

2.12 More relations. Assume ti+k−1 ≤ x ≤ ti+k. The following is obvious from the
definition.

Bi(x) =
i+k−1∏
j=i+1

ti+k − x
ti+k − tj

. (2.13)

Assume now ti ≤ x ≤ ti+1. Then

Bi(x) =
i+k−1∏
j=i+1

x− ti
tj − ti

. (2.14)

Assume again ti+k−1 ≤ x ≤ ti+k. We have then by definition

Bi+1(x) = ti+k+1 − ti+1
ti+k − ti+k+1

i+k−1∏
j=i+1

ti+k − x
ti+k − tj

+
i+k∏
j=i+2

ti+k+1 − x
ti+k+1 − tj

.

Define d = ti+k+1 − ti+1
ti+k − ti+k+1

. The first term is dBi, thus

Bi(x) +Bi+1(x) = 1
ti+k − ti+k+1

[
(ti+k − x)k−1∏
j(ti+k − tj)

− (ti+k+1 − x)k−1∏
j(ti+k+1 − tj)

]
(2.15)

where the products on j are for i+ 2 to i+ k − 1.
We have now the (perhaps surprising) formula

(k − 1)Bi+1(x) = (ti+1 − x)B′i(x) + (x− ti+k+1)(B′i(x) +B′i+1(x)), (2.16)

where B′i is the derivative of Bi. This can be shown as follows: Define u = ti+k, v = ti+k+1,
let d be as above. We have shown that for some constants a and b, we have

Bi(x) = a(x− u)k−1 Bi+1 = ad(x− u)k−1 + b(x− v)k−1.

6

The RHS of (2.16) is then d(v − u)B′i + (x− v)B′i+1, hence

(k − 1)[ad(v − u)(x− u)k−2 + ad(x− v)(x− u)k−2 + b(x− v)k−1]

and this is clearly the LHS of the equation.
Assume now ti ≤ x ≤ ti+1. The analog formula is

(k − 1)Bi−1(x) = (ti+k−1 − x)B′i(x) + (x− ti−1)(B′i(x) +B′i−1(x)). (2.17)

2.18 Evaluation. There is a function in Endymion that converts splines to pp functions.
More precisely, we shall assume k = 4, and consider a pp function B =

∑
αiBi,k,t. Let x

be a point, j an index such that tj+3 < x < tj+4. Then B is a polynomial of order 4 in
the interval, so that we can write

B(y) = s0 + s1(y − x) + s2(y − x)2 + s3(y − x)3 (tj+3 < y < tj+4)

The program computes some Ti such that B(x) = T0, B′(x) = 3T1, B′′(x) = 6T2 and
B′′′(x) = 6T3. From this we get s0 = T0, s1 = 3T1, s2 = 3T2 and s3 = T3.

In fact, on each interval there are four non-vanishing splines, so that the program
computes Tij , then multiplies by the coefficients shown above, (depending on whether the
quantities si or the derivatives of B is wanted), multiplies by αi and sums. For simplicity,
we shall assume j = 0, so that the splines are B0, B1, B2 and B3. The program uses the
following quantities

m21 = −1
(t4 − t3)(t4 − t2)(t5 − t2) m22 = 1

(t4 − t3)(t5 − t2)(t5 − t3)

m31 = t4 − x
(t4 − t3)(t4 − t2)(t5 − t2) m32 = x− t3

(t4 − t3)(t5 − t2)(t5 − t3)

m41 = (x− t2)(t4 − x)
(t4 − t3)(t4 − t2)(t5 − t2) m42 = (x− t3)(t5 − x)

(t4 − t3)(t5 − t2)(t5 − t3)
as well as

A0 = m41 +m42, A1 = 2(m31 −m32), A2 = 2(m21 −m22).

It is clear that the second derivative of A0 is A2. It is also easy to see that the first
derivative of A0 is A1.

Since t3 ≤ x ≤ t4 we have, by relation (2.13):

B0(x) = (x− t4)3

(t1 − t4)(t2 − t4)(t3 − t4) ,

and (2.14) gives

B3(x) = (x− t3)3

(t4 − t3)(t5 − t3)(t6 − t3) .

If c is inverse of the denonimator of B0 we get T03 = c, T02 = (x−t4)T03, T01 = (x−t4)T02,
T00 = (x− t4)T01, and similar formulas for T3i. Now, by (2.15) we have

B0(x) +B1(x) = 1
t4 − t5

[
(t4 − x)3

(t4 − t2)(t4 − t3) −
(t5 − x)3

(t5 − t2)(t5 − t3)

]
.

7

We pretend that the derivative of this expression is −3A0. Hence T11 = −T01−m41−m42,
T12 = −T02 −m31 +m32, T13 = −T03 −m21 +m22.

The relation
∑
Bi = 1 gives

∑
B′i = 0 after differentation. Hence T21 = −T31 +m41 +

m42, T22 = −T32 +m31 −m32, T23 = −T33 +m21 −m22.
Equations (2.16) and (2.17) read

3B1(x) = (t1 − x)B′1(x) + (x− t5)(B′0(x) +B′1(x))

3B2(x) = (t6 − x)B′3(x) + (x− t2)(B′2(x) +B′3(x))

This gives T10 = (t1−x)T01+(t5−x)(m41+m42) and T20 = (t6−x)T31+(x−t2)(m41+m42)

2.19 Derivatives We assume here that the knots have no repetition. Let Df be the
derivative of f with respect to x. Using relation (1.9) gives

Bi,k,t(x) = [ti+1, . . . , ti+k](· − x)k−1
+ − [ti, . . . , ti+k−1](· − x)k−1

+ .

Now
D(t− x)k−1

+ = −(k − 1)(t− x)k−2
+

so that
DBi,k(x) = (k − 1)

[
− Bi+1,k−1,t
ti+k − ti+1

(x) + Bi,k−1,t
ti+k−1 − ti

(x)
]

(2.20)

hence
D(
∑

αiBi,k,t) = (k − 1)
∑ αi − αi−1

ti+k−1 − ti
Bi,k−1,t. (2.21)

Hence
Dj(

∑
i

αiBik) =
∑
i

α
(j)
i Bi,k−j . (2.22)

where

α(j+1)
r =

α
(j)
r − α(j)

r−1
tr+k−j−1 − tr

(k − j − 1). (2.23)

2.24 There is a function disc_jump in Endymion that computes the jump of the third
derivatives at a knot. It does not use (2.23), but direct computation. Define

g(t) = (t− x)k−1
+ fi = ti+k − ti ti,i+k,j =

k∏
l=i

1
tj − tl

.

Then Bi = fi
∑
j g(tj)ti,i+k,j and

B
(k−1)
i = (k − 1)!fi

∑
j

(tj − x)0
+ti,i+k,j .

The objective is to compute the jump Jij of this derivative at tj . This is obviously
(k − 1)!fiti,i+k,j . The program omits the factorial, but normalises it by multiplication by
((n−7)/(tn−4−t3))3. In the case where ti = a+ib, this is 1/b3. From section 2.7, we know
that the third derivatives, after normalisation, are 1, −3, 3 and −1, so that the jumps are
1, −4, 6, −4 and 1.

8

3 Splines and pp functions
3.1 Main result The set of Bi,k,t is a basis of Pk,ν,ξ provided that the breakpoint
sequence ξ0 < ξ1 < . . . < ξl is related to the knot sequence t0 ≤ t1 ≤ . . . ≤ tn+k−2 ≤ tn+k−1
by the condition: Each ξi must appear exactly k− νi in the sequence tj , where ν0 = 0 and
νl = 0.

This gives n = k +
∑l−1
i=1(k − νi). This is the dimension of P . Hence we must prove

that B-splines are in P , and linearly independent. The condition ti = ξ0 for i < k can be
replaced by ti ≤ ξ0, likewise for the case i ≥ n− 1.

We may assume 0 < νi < k. In fact, if νi = k, every element of P is a polynomial
in a neighborhood of ξi. Thus, if ξ′ and ν ′ are the sequence without ξi and νi, we have
Pk,ν,ξ = Pk,ν′,ξ′ . On the other hand, since ξi does not appear in the knot sequence, the
set of B-splines is not affected by this change. Assume νi = 0. There are no constraint at
the point ξi. Hence, if ξ′ and ξ′′ are the sequences obtained for j ≤ i or j ≥ i, likewise
for ν ′ and ν ′′, we have that Pk,ν,ξ is the direct sum of Pk,ν′,ξ′ and Pk,ν′′,ξ′′ . Assume that
ξi = tj+1 = tj+k. The set of B-splines associated to the knots up to tj+k is a basis of the
first space, the set of B-splines associated to the knots starting with tj is a basis of the
second set.

Let’s show that the B-splines are in P . We know that they are polynomials on each
[tj , tj+1]. Let δij be the regularity of Bi at tj . This is 0 if the function is discontinuous, 1
if the function is continuous, but the first derivative is not, etc. Let δ′ij be regularity of the
splines of order k− 1 with the same knot sequence. Let ri be the number of repetitions of
t)i. We must show that δij ≥ ν ′j , where ν ′j is the νl at the tj , hence k − ν ′j = rj , so that
we must show δij ≥ k − rj . We shall use (2.20). It says that the δij is at least one more
that the minimum of delta′ij and delta′i+1,j . These two quantities are at least k − 1 − rj
by induction.

Assume
∑
αiBik = 0. Let’s differentiate, and consider relation (2.21). By induction,

the B-splines of order k − 1 are linearly independent, and this gives α+ i = αi+1 (we use
here the fact that νi is not zero, i.e. that the denominator ti+k−1− ti does not vanish. We
get αi(

∑
Bik) = 1. Since the sum of the bi is one, this implies αi = 0.

3.2 Interpolator The purpose of the interpolator class is to help finding the zero of
a function f . The assumption is that f is defined for x ≥ 0, is decreasing, and vahishes
somewhere. A simple algorithm is: evaluate the function at two points, find a function r
that fits at these points, get the zero of r, discard one of the two points, and iterate until
precision is met. Our algorithm uses three points. Initially we know the value at zero,
infinity and a third point.

We assume that the function looks like r(p) = (up+ v)/(zp−w). So that the problem
becomes Given three points (p1, f1), (p2, f2) and (p3, f3), find the rational function such
that r(pi) = fi, then p such that r(p) = 0.

We want to find p such that
p1 1 f1 f1p1
p2 1 f2 f2p2
p3 1 f3 f3p3
p 1 0 0

u
v
w
−z

 = 0

9

has a non-zero solution (u, v, w, z). This implies that the matrix is singular, hence

p =

∣∣∣∣∣∣∣
p1 f1 f1p1
p2 f2 f2p2
p3 f3 f3p3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 f1 f1p1
1 f2 f2p2
1 f3 f3p3

∣∣∣∣∣∣∣
Consider h1 = f1(f2 − f3), h2 = f2(f3 − f1), h3 = f3(f1 − f2). We have then

p = −h1p2p3 + h2p1p3 + h3p1p2
h1p1 + h2p2 + h3p3

.

In the special case where p3 =∞, this formula simplifies to

p = −h1p2 + h2p1/h3.

3.3 Assume now p1 < p2 < p3 and f1 > f2 > f3, and f1f3 < 0. It is obvious that the
function r is uniquely defined: in fact, if z is non-zero, we can normalise it as z = 1,
then r exists if and only if the points (pi, fi) are not aligned, and if z is zero, then r is
linear and is defined if and anly if the points are aligned. Assume that r has a pole in the
interval [p1, p3]. The condition r(p1) > r(p3) implies that r is locally increasing; if p2 is in
the interval, we have either r(p2) > r(p1) or r(p2) < r(p3). This contradicts assumptions
f1 > f2 > f3. Thus r is continuous on [p1, p3]. Because of f1f3 < 0, r has a zero between
p1 and p3. Ifn fact, if f2 > 0, we have p2 < p < p3 and we can discard p1, if f2 < 0 we
have p1 < p < p2 and we can discard p3.

3.4 Computing Fourier coefficients The Fourier coefficient of index j of a function
f s given by

cj(f) = 1
2π

∫ 2π

0
f(θ)e−ijθdθ.

We shall consider the case where f is defined by splines. This means that there are
some intervals Ik, and on each Ik we have f(x) = fk(x). Define fk to be zero outside Ik.
Then f =

∑
k fk, so that cj(f) =

∑
k cj(fk). For each k we can restrict the integration

interval
cj(fk) = 1

2π

∫ θ2k

θ1k
fk(θ)e−ijθdθ.

Lets’s assume that fk is a polynomial on the interval, say fk(θ + t) =
∑
l aklθ

l. We chose
t = (θ1 + θ2)/2, this is numerically much better then t = 0. We have

cj(fk) = 1
2πe

−ijt
∫ θ2k−t

θ1k−t
fk(θ + t)e−ijθdθ

Note that the integral is between −δk and +δk, where 2δk = t2k − t1k, hence if

mlj(δ) = 1
2π

∫ δ

−δ
θle−ijθdθ

10

we get
cj(f) =

∑
k

∑
j

e−ijtkaklmlj(δk).

Let’s compute mlj for 0 ≤ l ≤ 3. For j = 0, the integrand is a polynomial.

mlj(δ) = δL − (−δ)L

2πL , L = l + 1

This is 0 if l = 1 or l = 3. This is δ/π if l = 1 and δ3/3π if l = 2. In the case l = 0, we
have

1
2π

∫ δ

−δ
e−ijθdθ = sin jδ

jπ
.

In the general case, we integrate by parts: we integrate the exponential, and differentiate
θl. The result is

mlj = 1
j

[
δl + (−δ)l

2π sin jδ + i
δl − (−δ)l

2π cos jδ − ilml−1,j

]
.

mlj = 1
j

[δ
l

π
sin jδ − ilml−1,j] (l even) = 1

j
[iδ

l

π
cos jδ − ilml−1,j] (l odd).

4 Computing splines
The user program takes three arguments, a vector of points τi, a vector of values gi, that
defines a function g such that g(τi) = gi and a vector of weights wi. Let δi be f(τi)−g(τi),
d1(f, g) be the sum of the δ2

iwi. Denote by dp(f, g) the sum of d1(f, g) and p times the
disc-norm of f (this is a quantity that measures how irregular the function f is). The user
gives a number s, the target for d1(f, g). The idea of the program is the following:

• Given a knot sequence, a subsequence of the τi, we find f that such that d1 = d1(f, g)
is minimal. If d1 > s, more knots must be used. If s = 0 all τi will be used.

• Given p, we find f that such that d = d(f, g) is minimal. Let dp = d1(f, g) for this
p. This is an increasing function of p, and dp > d1. We chose p such that dp = s>
Different values of p are tried. In each case, we find f such that ‖f − g‖2 is minimal,
and chose p such that ‖f − g‖21 = s.

The function f is defined to be
∑
ciBi. Then ci is a solution of a linear system.

We consider the following matrices. For each i, xi is τi, yi is g(τi), and wi is the weight
associated to this point. Let tj be the knot sequence, and l be such that tl+3 ≤ xi ≤ tl+4.
Let h0, h1,h2 and h3 be the values of the splines that do not vanish at xi, as computed by
the eval-spline procedure. We have Qi,l+j = hij and Rij = Qijwi.

We want to find coefficients cj such that
∑
j cjBi(τj) = yi. This can be written as∑

j Qijcj = yi. This is Qc = y. If we multiply by the transposer of Q∗ and introduce
weights we get ∑

jl

QliQljw
2
l cj =

∑
l

Qliw
2
l yl

This is Q∗Qc = Q∗y.

11

This function is called with the following arguments: Find a knot sequence t, the
splines for it, and the coefficients c, such that, if f =

∑n−1
i=0 ciBi, and g the function that

takes the value gtau(i) at tau(i), then the weighted L2 norm of f−g is s. Return values
are t, c, n, and the norm |fp|. Input parameters are k = 3, s, the maximum number of
knots nest, and the structure data.

Main idea: Define
‖f‖ =

∑
i

f(τi)2wi + p
∑
j

f2
j .

In case f = g, the data, we have gj = 0, and g(τi) = |gtau(i)|. Otherwise, given the knot
sequence ξi, and the B-splines Bi associated to it, we have f =

∑
cjBj , and fj is the

discontinuity of the second derivative of f at ξj .
Minimising the norm of f − g is then obviously to solve in ci the following system:∑

jl

Bj(τl)Bi(τl)wlcj + p
∑
jl

∆Bj(ξl)∆Bi(ξl)cj =
∑
l

Bi(τl)g(τl)wl.

The quantity p is defined in such a way that the norm of f − g is exactly s. Since p ≥ 0,
in a first pass we chose ξj such that for p = 0, the norm is less than s. After that, p is
chosen in a second pass.

exterior_knots: We assume here t0 = t1 = t2 = t3 = ξ0 = τ0, and similarly ti =
τ −m− 1 for the last data points. Moreover νi = k − 1. In otherwords, our splines will
be c2. We add the 2k1 knots that are exterior, making them equal to the left and right
boundary of the interval.

If s = 0, the result is an interpolating spline. Use the maximum number of knots.
Note that the default is to use the minimal number of knots.

init_knots1: We assume that nrdata(i) is zero if τi is not a knot. Otherwise, it is
the location of the next knot. In other words, if tj = τi and tj+1 = τi+l then l will be in
|nrdata(i)|. This piece of code assume k = 3. In that case, τ1 and τm−2 are missing.

In the main loop, we increase the number of knots, until the good number if found.
These knots are found by solving a linear equation. We start by emptying the matrix and
the RHS.

5 Part two
We have determined the number of knots and their position.

We now compute the B-Spline coefficients of the smoothing spline SP. The observation
matrix A is extended by the rows of matrix B expressing that the k-th derivative discon-
tinuities of |SP| at the interior knots must be zero. The corresponding weights of these
additional rows are set to 1/p. Iteratively we then have to determine the value of p such
that

F (p) =
∑

wi[g(τi)− |SP |(τi)] = s.

We already know that the least-squares k-th degree polynomial corresponds to p = 0,
and that the least-squares spline corresponds to p = ∞. The iteration process which is
proposed here, makes use of rational interpolation. Since F (p) is a convex and strictly
decreasing function of p, it can be approximated by a rational function R(p) = (Up +
V)/(p + W). Three values of p (p1, p2, p3) with corresponding values of F (p) are used
to calculate the new value of p such that R(p) = s. Convergence is guaranteed by taking
F1 > 0 and F3 < 0.

12

code of fill-gsave: This piece of code does the following: add hh′ to the matrix. In
other words, add hihj at positions (i+ L, j + L) where the offset L is it. Now, since the
matrix is symmetric, only half of the matrix needs to be stored. We store it at locations
(j + L, i− j), i.e. g[i− j + 5(j + L)].

6 The Completion algorithm
6.1 The Moebius Transform Let z = φ(s) = (s−1)/(s+1). Then s = (1+z)/(1−z).
The transformation of the function is the following:

g(z) = (1 + s

2) · f(s) f(s) = (1− z) · g(z)

It is obvious that |z| ≤ 1 if and only if <s ≥ 0. Assume equality, namely exp(iθ) = φ(iω)
where ω is real. This gives

ω2 − 1
ω2 + 1 + i

2ω
ω2 + 1 = cos θ + i sin θ.

This implies tan(θ/2) = 1
ω . We can also write tan θ = 2ω

ω2−1 . The function from ω
to θ maps the interval [−∞,∞] to the interval [0, 2π], it is monotone decreasing. The
Endymion code has a Moebius function. It computes m such that tanm = 2ω/(ω2 − 1)
and −π/2 ≤ m ≤ π/2. Then θ = m+ 2π if ω < −1, θ = m+ π if −1 < ω < 1 and θ = m
if ω > 1.

6.2 From Line to Circle We describe here the method convert-to-circle from CvCircle.
Given a PW function f : xi → fi it computes g : yi → gi as follows. If the boolean
data-on-circle is true, data are already on the circle. We take fi = gi and yi = xi−ω0 + π.
Said otherwise: if xi is symmetric around ω0 then yi is symmetric around π.

Otherwise, for each i, we let ωa = xi. We define ω = (ωa − ω0)R where R is in
the variable real-coef, this should be 1/dω. If real-transform is true, then we use ω =
(ωa/ω0 − ω0/ωa)R instead. Let θ be the Moebius transform of ω. Then yi is θ (since θ is
decreasing, we must re-order the sequence later on). The quantity fi is multiplied by cn
where c = (1 + iω)/2. Here n is the value at inf-order. Normally this is one. The quantity
fi is also multiplied by exp(it) where t = αω1 +β where ω1 = (ωa−ωn0)/dωn (this is some
kind of normalisation of ω). The two quantities α and β are normally zero.

If xi is symmetric around ω0 then yi is symmetric around π, unless the real transfor-
mation is used; in that case, we call make-symmetric (this can either truncate the interval,
or shift it).

7 Fourier series
7.1 The Toeplitz Matrix Assume 0 ≤ θ1 ≤ θ2 ≤ π, and that I is the set formed by
[θ1, θ2] and its symmetric part [−θ2,−θ1]. The set J is [−π, π]− I. Define

〈f |g〉J = 1
2π

∫
J
f(eiθ)g(eiθ)dθ.

We consider the case where f = zk and g = zj . Then

Ujk = 1
2π

∫
J
ei(j−k)θdθ = bj−k.

13

The U matrix is called the Toeplitz matrix, because Uij depends only on i− j. If V is the
matrix corresponding to the set I, then U + V is the identity matrix.

Easy computations show that

b0 = 1− θ2 − θ1
π

bj = b−j = sin(jθ1)− sin(jθ2)
jπ

.

The Toeplitz data structure contains the parameters θ1, θ2, the bj table, and the size
of the table. There are methods that return Uij or Vij as a function of i and j.

If ck are the coefficients of f then we have

‖f‖2I + ‖f‖2J = ‖f‖ =
∑
‖ck‖2

and
‖f‖2J =

∑
jk

ck · cj · 〈eikθ|eijθ〉 =
∑
jk

ck · cj · Ukj.

If ck = xk + iyk, Ukj = Ujk = Tj−k this is

‖f‖2J = T0‖f‖2 + 2
∑
j<k

(xkxj + ykyj)Tk−j .

14

