Roots in Endymion

Jos Grimm, Apics Team

June 10, 2005

We want to find the n-th root of an integer number x. We assume x positive, at least 2 , and we want to find the integer part of $b=x^{1 / n}$, the positive root. Consider

$$
\begin{gather*}
g_{x}(a)=a-\frac{a-\left(x / a^{n-1}\right)}{n}=\frac{x+(n-1) a^{n}}{n a^{n-1}}, \tag{1}\\
f_{x}(a)=a+\left\lfloor\frac{\left\lfloor x / a^{n-1}\right\rfloor-a}{n}\right\rfloor, \tag{2}\\
h_{x}(a)=a-\left\lfloor\frac{a-\left\lfloor x / a^{n-1}\right\rfloor}{n}\right\rfloor . \tag{3}
\end{gather*}
$$

In most of the cases, we shall omit the index x. We shall define three algorithms, noted isqrt, iroot and jroot. In this document, all timings on dor on a 3.06Ghz Intel processor

1 The Newton method

One way to solve $F(a)=0$ is to consider $a_{k+1}=a_{k}-F\left(a_{k}\right) / F^{\prime}\left(a_{k}\right)$. If this converges to a fixed point a, we have $F(a)=0$. If we apply this to $F(a)=a^{n}-x$, we get $a_{k+1}=g\left(a_{k}\right)$. We have

$$
\begin{equation*}
g(a)=\frac{a}{n}\left[n-1+\left(\frac{b}{a}\right)^{n}\right] . \tag{4}
\end{equation*}
$$

This shows that $g(a)>0$ if $a>0$. Thus, we may assume $a_{k}>0$ for each k. From (1), we have obviously $g(a) \geq a$ if and only if $a \leq b$, so that g has a unique fixed point. Let $c=b / a$. We have $g(a) \geq b$ if and only if $n-1+c^{n} \geq n c$. If $w(c)=n-1+c^{n}-n c$, it is obvious that w has a minimum at $c=1$, and $w(1)=0$. As a consequence the sequence a_{k} decreases for $k>0$, and converges to b.

Assume that $a=b /(1+\epsilon)$ and ϵ is small. Then

$$
g(a)=\frac{b}{1+\epsilon}\left(1+\epsilon+\frac{n-1}{2} \epsilon^{2}+\ldots\right)
$$

so that $g(a)=b /\left(1+\alpha \epsilon^{2}+\ldots\right)$, and the convergence is quadratic.
The idea is now the following: if we consider $a_{k+1}=f\left(a_{k}\right)$, or $a_{k+1}=h\left(a_{k}\right)$, each iteration doubles the number of exact digits. In fact, the number of exact digits is the initial number times $2-\log \alpha$, the quantity $\log \alpha=\log (n / 2)$ is ϵ is (10). If we start with one exact digit, and need N digits, the cost is $\log N$. For instance, if $N=1024$, we need 10 iterations.

2 Square roots

In the case $n=2$, we can rewrite f, g as

$$
f(a)=\left\lfloor\frac{\lfloor x / a\rfloor+a}{2}\right\rfloor \quad g(a)=\frac{1}{2}\left(a+\frac{x}{a}\right) .
$$

The essential cost of f is the division of x by a, adding a and dividing by 2 is linear w.r.t. the size of x. Experimentally, if we chose $x=2^{2045}$, if we start with $a_{1}=2^{1023}$, the number of correct digits is

a_{2}	a_{3}	a_{4}	a_{5}	a_{6}	a_{7}	a_{8}	a_{9}	a_{10}
1	2	5	11	24	48	97	195	308

We have $a_{10}=a_{11}$, but this is not always true: assume $x=c^{2}-1$, where c is an integer. Then $f(c)=c-1$ and $f(c-1)=c$, so that f need not have a fixed point. By the definition of the integer part, $f(a)$ is the only integer satisfying

$$
\begin{equation*}
\frac{1}{2}\left(a+\frac{x}{a}+\frac{1}{a}-2\right) \leq f(a) \leq \frac{1}{2}\left(a+\frac{x}{a}\right) \tag{5}
\end{equation*}
$$

From this, we have immediately: if $a \leq f(a)$ then $a \leq b$; if $f(a) \leq a$ then $x+2 \leq(a+1)^{2}$. This implies $x+1<(a+1)^{2}$, then $b<a+1$. In particular, if a is a fixed point, i.e. $f(a)=a$, we have $a=\lfloor\sqrt{x}\rfloor$. The fixed point is unique, and is the desired result. The first term of (5) is $b-1+\left[(a-b)^{2}+1\right] /(2 a)$, so that $f(a)>b-1$. Consider the sequence $a_{k+1}=f\left(a_{k}\right)$. Since $a>b$ implies $a>f(a)$, we shall have $a_{1}>a_{2}>\ldots>a_{k+1}$ with $a_{i}>b$. As a consequence, there must exist an index k such that $a_{k+1} \leq b$. Since $b-1<a_{k+1}$, we have $a_{k+1}=\lfloor\sqrt{x}\rfloor$.

Let $A=a_{k+1}$. We consider here the smallest k such that $f(A) \geq A$. If $f(A)=A$, the algorithm converges. Otherwise, we have

$$
b-1+\frac{1}{2 b} \leq f(A) \leq b+\frac{1}{2(b-1)}
$$

provided that $b-1<A<b$. This is because $a+x / a$ is decreasing for $a \leq b$. This implies $f(A) \leq A+1$. If $f(A)=A+1$, equation (5) says $(A+1)^{2} \leq x+1$. If x is not of the form $c^{2}-1$, we deduce $(A+1)^{2} \leq x$, $A+1 \leq b$, contradicting $A>b-1$. Thus, $f(A)=A$, except in the exceptional case where f has no fixed point.

Consider now the case $f(f(a))=a$. In the case $f(a)=a$, we have our result. Otherwise, let A be the smallest of a and $f(a)$. Since A is in the image of f, we have $A>b-1$. Since $A<f(A)$, we have $A+1 \leq(A+x / A) / 2,(A+1)^{2} \leq x+1$. Since $A+1>b$, this implies $(A+1)^{2}=x+1$, and we are in the exceptional case.

The algorithm is the following: Consider l such that

$$
\begin{equation*}
2^{l-1} \leq x \leq 2^{l} . \tag{6}
\end{equation*}
$$

Let $s=\lfloor(l+1) / 2\rfloor$, and $a_{0}=2^{s}$. We consider $a_{k+1}=f\left(a_{k}\right)$ and find the first k such that $a_{k+1}=a_{k}$, or $a_{k+1}=a_{k-1}$, in this case, the smallest of a_{k} and a_{k+1} is returned.

3 General algorithm

Let l be as in (6). Write $l=s n+r$ by Euclidean division. Set

$$
\begin{equation*}
u_{0}=\left\lfloor\frac{(n+1+r) 2^{s}}{n}\right\rfloor . \tag{7}
\end{equation*}
$$

Consider the sequence $u_{k+1}=h_{x}\left(u_{k}\right)$. Consider the first index k such that $k \geq 2$ and $u_{k} \geq u_{k-1}$. Write this quantity A_{0}. Consider this as a good guess of the result. Said otherwise, we find i such that $A_{i}=A+i$, and $A_{i}^{n} \leq x<A_{i+1}^{n}$, by trying in order A_{0}, A_{1}, A_{2}, etc, or downwards A_{0}, A_{-1}, A_{-2}, etc. This gives obviously the good result.

Example. Take $x=10^{8}$ and $n=3$. The initial value is 682 , then comes 526,471 , and 464 , that is a fixed point.

Example $x=10^{10}, n=3$. The values are $3413,2562,2216,2156$, and 2155 . We also get a fixed point, but the result is 2154 .

4 The J root algorithm

The alternate algorithm is the following. We consider $G_{x}(l)$ defined as follows. We defined u_{0} as in (7). After that we write $u_{k+1}=f_{x}\left(u_{k}\right)$, and we consider the first k such that $u_{k+1} \geq u_{k}$. Then $G_{x}(l)=u_{k}$.

We consider $F(x, n, l, \epsilon)$ as follows. Let $l=s n+r$, Euclidean division of l by n. Let $y=\lfloor s / 2\rfloor-\epsilon$. If y is "small", then F is $G_{x}(l)$. Otherwise, let

$$
\begin{equation*}
u=F\left(\left\lfloor\frac{x}{2^{y n}}\right\rfloor, n, l-n y, \epsilon\right) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
F(x, n, l, \epsilon)=\left\lfloor g_{x}\left(u 2^{y}\right)\right\rfloor . \tag{9}
\end{equation*}
$$

Finally, jroot is defined as follows. We define l and ϵ by

$$
\begin{equation*}
2^{l} \leq x<2^{l+1} \quad 2^{2 \epsilon} \leq n<2^{2 \epsilon+2} \tag{10}
\end{equation*}
$$

Let $A_{0}=F(x, n, l, \epsilon)$. Consider this as a good guess of the result. Said otherwise, we find i such that $A_{i}=A+i$, and $A_{i}^{n} \leq x<A_{i+1}^{n}$, by trying in order A_{0}, A_{-1}, A_{-2}, etc.

Example. Let $x=10^{100000}$. Take $n=3$. Let a be the result. The runtime for a^{2} and a^{3} is 0.62 and 1.87 seconds; the runtime for computing a via iroot is 36.27 seconds, 16 iterations are needed. In the case of jroot, the runtime is 4.48 , with 1.47 for F.

Example. Let $x=10^{1000000}, n=30$. The number x is huge; it needs 97 s to compute it, and 154 s to print it. Computing the root with iroot costs 3840 s . Each iteration costs $200 \mathrm{~s}, 17$ iterations are needed. In the other hand, the cost of jroot is 286.17 , with 88 seconds for F, and 200 s for checking that $a^{n} \leq x$.

5 Complexity

Let us consider the cost of computing a^{n}. The method we use is the following

$$
a^{2 n}=\left(a^{2}\right)^{n} \quad a^{2 n+1}=a \times\left(a^{2}\right)^{n}
$$

For instance, for a^{16}, we compute a^{2}, a^{4}, a^{8} and a^{16}. For a^{31} we compute $a^{2}, a^{3}, a^{4}, a^{7}, a^{15}, a^{16}$ and a^{31}. Assume that $n=\sum b_{k} 2^{k}$ is the binary The number of products required is the number of the b_{k} plus the sum of the non-zero b_{k} (the last b_{k} is not counted here). This means that the number of multiplications required is of the order of $\log n$. However, assume that a is of size N, so that a^{k} is of size $k N$. Let's assume that the cost of a product of N_{1} and N_{2} bits costs $N_{1} N_{2}$. Then the cost of a^{16} is $\sum k^{2} N^{2}$, where k is $1,2,4$ and 8 . This is N^{2} times the sum of powers of 4 . If p the largest if the k^{2}, this is $N^{2}(4 p-1) / 3$. In the case n is a power of two, we have $p=(n / 2)^{2}$, the cost is near $N^{2} n^{2} / 3$. In the case of a^{31},

This is a sequence of real numbers, associated to the Newton Method. If we compare the two equations, then $f(a)$ is the unique integer satisfying

$$
\begin{equation*}
g(a)-\frac{a^{n-1}-1}{n a^{n-1}} \leq h_{x}(a) \leq g(a)+\frac{n-1}{n} \tag{11}
\end{equation*}
$$

In particular, we get $|g(a)-f(a)| \leq 1$. From the relation $g(a) \geq b$, we deduce $g(a)>1$, hence $f(a)>0$ (we exclude the case $x=1$, where the solution is $b=1$). As a consequence, the following algorithm gives the desidered result.

We start with u such that $2^{u-1} \leq x \leq 2^{u}$, write $u=q n+r$, define

$$
a_{0}=\left\lfloor\frac{2^{q}(n+r+1)}{u}\right\rfloor
$$

then iterate $a_{k+1}=f\left(a_{k}\right)$, and consider the first k such that $k \geq 2$ and $a_{k} \geq a_{k-1}$. Let $A_{i}=a_{k}+i$. We find by trial and error i such that $A_{i}^{n} \leq x \leq A_{i+1}^{n}$. Let N be the number of bits of b. This is essentially $\log (x) / n$. The numbers of iterations, the value of k, is essentially $\log N$. Let $M=\log x$. The cost of f is essentially $M^{2} \log n$. This, we get a cost of $(i+\log N) M^{2} \log n$. For instance, if $x=10^{200}$, and $n=13$, we have $i=2$, and $\log N=8$. In fact, $a_{7}=a_{8}$, and this is too big, thus we have to compute $\left(a_{8}-1\right)^{13}$.

Question: what is the value of i in A_{i}. We have $f(a) \leq a$ if and only if $b^{n}<a^{n}+a^{n+1}$. This is in particular true if $a \geq b$. We have $f(a) \geq a$ if and only if $b^{n} \geq a^{n}+(1-n) a^{n-1}$. Note that this implies that f has a fixed point (but it is not unique for $n>2$). In the case

$$
a^{n}+(1-n) a^{n-1} \geq(a-1)^{n}
$$

the condition $f(a) \geq a$ implies $b \geq a-1$, hence $b-1 \leq a \leq b+1$. This condition is true if $a \geq n(n-1) / 2$ (asymptotically). Thus, if a is big enough, the error with the result is rather small.

