
Roots in Endymion

Jos Grimm, Apics Team

June 10, 2005

We want to find the n-th root of an integer number x. We assume x positive, at least 2, and we
want to find the integer part of b = x1/n, the positive root. Consider

gx(a) = a −
a − (x/an−1)

n
=

x + (n − 1)an

nan−1 , (1)

fx(a) = a +
⌊
bx/an−1

c − a
n

⌋
, (2)

hx(a) = a −
⌊

a − bx/an−1
c

n

⌋
. (3)

In most of the cases, we shall omit the index x. We shall define three algorithms, noted isqrt,
iroot and jroot. In this document, all timings on dor on a 3.06Ghz Intel processor

1 The Newton method

One way to solve F(a) = 0 is to consider ak+1 = ak − F(ak)/F′(ak). If this converges to a fixed point a,
we have F(a) = 0. If we apply this to F(a) = an

− x, we get ak+1 = g(ak). We have

g(a) =
a
n

[
n − 1 +

(
b
a

)n]
. (4)

This shows that g(a) > 0 if a > 0. Thus, we may assume ak > 0 for each k. From (1), we have
obviously g(a) ≥ a if and only if a ≤ b, so that g has a unique fixed point. Let c = b/a. We have
g(a) ≥ b if and only if n − 1 + cn

≥ nc. If w(c) = n − 1 + cn
− nc, it is obvious that w has a minimum

at c = 1, and w(1) = 0. As a consequence the sequence ak decreases for k > 0, and converges to b.
Assume that a = b/(1 + ε) and ε is small. Then

g(a) =
b

1 + ε
(1 + ε +

n − 1
2
ε2 + . . .)

so that g(a) = b/(1 + αε2 + . . .), and the convergence is quadratic.
The idea is now the following: if we consider ak+1 = f (ak), or ak+1 = h(ak), each iteration doubles

the number of exact digits. In fact, the number of exact digits is the initial number times 2− logα,
the quantity logα = log(n/2) is ε is (10). If we start with one exact digit, and need N digits, the
cost is log N. For instance, if N = 1024, we need 10 iterations.

1

2 Square roots

In the case n = 2, we can rewrite f , g as

f (a) =
⌊
bx/ac + a

2

⌋
g(a) =

1
2

(
a +

x
a

)
.

The essential cost of f is the division of x by a, adding a and dividing by 2 is linear w.r.t. the size of
x. Experimentally, if we chose x = 22045, if we start with a1 = 21023, the number of correct digits is

a2 a3 a4 a5 a6 a7 a8 a9 a10
1 2 5 11 24 48 97 195 308

We have a10 = a11, but this is not always true: assume x = c2
− 1, where c is an integer. Then

f (c) = c − 1 and f (c − 1) = c, so that f need not have a fixed point. By the definition of the integer
part, f (a) is the only integer satisfying

1
2

(a +
x
a
+

1
a
− 2) ≤ f (a) ≤

1
2

(a +
x
a

) . (5)

From this, we have immediately: if a ≤ f (a) then a ≤ b; if f (a) ≤ a then x+ 2 ≤ (a+ 1)2. This implies
x + 1 < (a + 1)2, then b < a + 1. In particular, if a is a fixed point, i.e. f (a) = a, we have a = b

√
xc.

The fixed point is unique, and is the desired result. The first term of (5) is b− 1+ [(a− b)2 + 1]/(2a),
so that f (a) > b − 1. Consider the sequence ak+1 = f (ak). Since a > b implies a > f (a), we shall have
a1 > a2 > ... > ak+1 with ai > b. As a consequence, there must exist an index k such that ak+1 ≤ b.
Since b − 1 < ak+1, we have ak+1 = b

√
xc.

Let A = ak+1. We consider here the smallest k such that f (A) ≥ A. If f (A) = A, the algorithm
converges. Otherwise, we have

b − 1 +
1
2b
≤ f (A) ≤ b +

1
2(b − 1)

provided that b−1 < A < b. This is because a+x/a is decreasing for a ≤ b. This implies f (A) ≤ A+1.
If f (A) = A+1, equation (5) says (A+1)2

≤ x+1. If x is not of the form c2
−1, we deduce (A+1)2

≤ x,
A + 1 ≤ b, contradicting A > b − 1. Thus, f (A) = A, except in the exceptional case where f has no
fixed point.

Consider now the case f (f (a)) = a. In the case f (a) = a, we have our result. Otherwise, let A
be the smallest of a and f (a). Since A is in the image of f , we have A > b − 1. Since A < f (A), we
have A + 1 ≤ (A + x/A)/2, (A + 1)2

≤ x + 1. Since A + 1 > b, this implies (A + 1)2 = x + 1, and we
are in the exceptional case.

The algorithm is the following: Consider l such that

2l−1
≤ x ≤ 2l. (6)

Let s = b(l + 1)/2c, and a0 = 2s. We consider ak+1 = f (ak) and find the first k such that ak+1 = ak, or
ak+1 = ak−1, in this case, the smallest of ak and ak+1 is returned.

3 General algorithm

Let l be as in (6). Write l = sn + r by Euclidean division. Set

u0 =

⌊
(n + 1 + r)2s

n

⌋
. (7)

2

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06

Runtime of sqrt (3^n)

Consider the sequence uk+1 = hx(uk). Consider the first index k such that k ≥ 2 and uk ≥ uk−1. Write
this quantity A0. Consider this as a good guess of the result. Said otherwise, we find i such that
Ai = A + i, and An

i ≤ x < An
i+1, by trying in order A0, A1, A2, etc, or downwards A0, A−1, A−2, etc.

This gives obviously the good result.
Example. Take x = 108 and n = 3. The initial value is 682, then comes 526, 471, and 464, that is

a fixed point.
Example x = 1010, n = 3. The values are 3413, 2562, 2216, 2156, and 2155. We also get a fixed

point, but the result is 2154.

4 The J root algorithm

The alternate algorithm is the following. We consider Gx(l) defined as follows. We defined u0 as
in (7). After that we write uk+1 = fx(uk), and we consider the first k such that uk+1 ≥ uk. Then
Gx(l) = uk.

We consider F(x,n, l, ε) as follows. Let l = sn+ r, Euclidean division of l by n. Let y = bs/2c − ε.
If y is “small”, then F is Gx(l). Otherwise, let

u = F(b
x

2yn c,n, l − ny, ε) (8)

and
F(x,n, l, ε) = bgx(u2y)c . (9)

Finally, jroot is defined as follows. We define l and ε by

2l
≤ x < 2l+1 22ε

≤ n < 22ε+2 (10)

3

Let A0 = F(x,n, l, ε). Consider this as a good guess of the result. Said otherwise, we find i such
that Ai = A + i, and An

i ≤ x < An
i+1, by trying in order A0, A−1, A−2, etc.

Example. Let x = 10100000. Take n = 3. Let a be the result. The runtime for a2 and a3 is 0.62 and
1.87 seconds; the runtime for computing a via iroot is 36.27 seconds, 16 iterations are needed. In
the case of jroot, the runtime is 4.48, with 1.47 for F.

Example. Let x = 101000000, n = 30. The number x is huge; it needs 97s to compute it, and 154s
to print it. Computing the root with iroot costs 3840s. Each iteration costs 200s, 17 iterations are
needed. In the other hand, the cost of jroot is 286.17, with 88 seconds for F, and 200s for checking
that an

≤ x.

5 Complexity

Let us consider the cost of computing an. The method we use is the following

a2n = (a2)n a2n+1 = a × (a2)n.

For instance, for a16, we compute a2, a4, a8 and a16. For a31 we compute a2, a3, a4, a7, a15, a16 and
a31. Assume that n =

∑
bk2k is the binary The number of products required is the number of the

bk plus the sum of the non-zero bk (the last bk is not counted here). This means that the number of
multiplications required is of the order of log n. However, assume that a is of size N, so that ak is
of size kN. Let’s assume that the cost of a product of N1 and N2 bits costs N1N2. Then the cost of
a16 is

∑
k2N2, where k is 1, 2, 4 and 8. This is N2 times the sum of powers of 4. If p the largest if the

k2, this is N2(4p− 1)/3. In the case n is a power of two, we have p = (n/2)2, the cost is near N2n2/3.
In the case of a31,

This is a sequence of real numbers, associated to the Newton Method. If we compare the two
equations, then f (a) is the unique integer satisfying

g(a) −
an−1
− 1

nan−1 ≤ hx(a) ≤ g(a) +
n − 1

n
(11)

In particular, we get |g(a)− f (a)| ≤ 1. From the relation g(a) ≥ b, we deduce g(a) > 1, hence f (a) > 0
(we exclude the case x = 1, where the solution is b = 1). As a consequence, the following algorithm
gives the desidered result.

We start with u such that 2u−1
≤ x ≤ 2u, write u = qn + r, define

a0 =

⌊
2q(n + r + 1)

u

⌋
then iterate ak+1 = f (ak), and consider the first k such that k ≥ 2 and ak ≥ ak−1. Let Ai = ak + i. We
find by trial and error i such that An

i ≤ x ≤ An
i+1. Let N be the number of bits of b. This is essentially

log(x)/n. The numbers of iterations, the value of k, is essentially log N. Let M = log x. The cost of
f is essentially M2 log n. This, we get a cost of (i + log N)M2 log n. For instance, if x = 10200, and
n = 13, we have i = 2, and log N = 8. In fact, a7 = a8, and this is too big, thus we have to compute
(a8 − 1)13.

Question: what is the value of i in Ai. We have f (a) ≤ a if and only if bn < an + an+1. This is in
particular true if a ≥ b. We have f (a) ≥ a if and only if bn

≥ an + (1 − n)an−1. Note that this implies
that f has a fixed point (but it is not unique for n > 2). In the case

an + (1 − n)an−1
≥ (a − 1)n

the condition f (a) ≥ a implies b ≥ a−1, hence b−1 ≤ a ≤ b+1. This condition is true if a ≥ n(n−1)/2
(asymptotically). Thus, if a is big enough, the error with the result is rather small.

4

