INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Rational approximation of transfer functions in the hyperion software

José Grimm

No ????
Septembre 2000

THÈME 4 \qquad

Rational approximation of transfer functions in the hyperion software

José Grimm *
Thème 4 - Simulation et optimisation de systèmes complexes
Projet MIAOU
Rapport de recherche no ???? - Septembre 2000 - 245 pages

Abstract

The objective of this paper is to explain how rational approximation is performed within the hyperion software. This work is divided into three parts. In the first part, we explain the theory underlying the algorithm: given some Fourier coefficients, find a rational transfer function of McMillan degree n of best approximation in the l^{2}-sense to the corresponding Fourier series. This gives a certain number of equations for stationary points and we detail in the second part how they can be efficiently solved numerically, using techniques of automatic differentiation. In the last part, we further discuss the complexity of the implementation thus obtained.

Key-words: System theory, stable linear systems, transfer function, McMillan degree, Schur parameters, automatic differentiation, code generation, complexity.

The author wishes to thank all members of the Safir and Miaou teams.

* This work was mainly done while the author was in the Safir team.

Approximation rationelle de fonctions de transfert dans le logiciel hyperion

Résumé : Dans cet article, nous supposons donné un certain nombre de coefficients de Fourier, qui est censé représenter la fonction de transfert d'un système linéaire stable, rationnel de degré de McMillan n. Nous présentons un algorithme qui permet de retrouver ce système. L'article contient essentiellement trois parties : d'une part, une étude théorique du problème qui nous donne un ensemble d'équations, puis une implémentation effective de ces équations, et de leur dérivées via des techniques de différentiation automatique, et finalement, une discussion sur la complexité de cette implémentation dans le logiciel HYPERION.

Mots-clés : Théorie des systèmes, systèmes linéaires stables, fonction de transfert, degré de McMillan, paramètres de Schur, différentiation automatique, génération automatique de code, complexité.

Chapter 1

Introduction

The aim of this paper is the following: given the Fourier coefficient of a stable, rational, transfer function, find the function as the quotient of two polynomials. This is the heart of the HYPERION software. We shall distinguish the scalar and the non-scalar case, because there is a fundamental difference in the topological structure of the set of functions we are looking for, see for instance [3]

Let \mathcal{H} be the transfer function, this is a $p \times m$ matrix. The scalar case is when $m=1$ or $p=1$, the non-scalar case is when $m \neq 1$ and $p \neq 1$. In the scalar case, we can assume $m=p=1$. The problem is then: find two polynomials p and q such that $\mathcal{H}=p / q$, and $\operatorname{deg}(q)=n, \operatorname{deg}(p)<n$. In the non-scalar case, we write $\mathcal{H}=P Q^{-1}$, where P and Q are matrices. There are different kinds of factorisations of this form. We shall chose Q inner, of McMillan degree n, and $P \in H^{\infty}$. This is called the Douglas-Shapiro-Shields factorisation.

In this chapter we shall give some definitions, some well-known theorems, and some general properties needed later on. We shall explain what an inner matrix is, how to define the McMillan degree of a matrix, etc. In the scalar case, a necessary condition for p / q to be of degree n is that p and q are coprime. The same is also required in the non-scalar case, but the definition of coprime is more complex.

It happens, in general, that the Fourier coefficients of \mathcal{H} are not precise, that only a finite number of coefficients are given, that the physical device that gives \mathcal{H} is only an approximation of a linear system, etc. For all these reasons, it is impossible to have an equality $\mathcal{H}-P Q^{-1}=0$. Hence, we try to minimise the norm of the difference. If the norm well-chosen, then the solution is defined by $P=L(Q)$, where Q minimises the function ψ. The aim of the chapter 2 is to define the functions L and ψ, and study their properties.

In Chapter 3, we study in great detail the set of inner matrices of given McMillan degree. This set is a manifold, and we shall define charts, associated to the Schur algorithm. Hence, given u, almost every inner function Q can be written as $Q=f(u, y)$, for some function f, where y lies in open set of \mathbb{R}^{k}. Minimising $\psi(Q)$ is then the same as minimising $\psi_{1}(y)$.

In Chapter 4, we explain how the formulas given in the previous chapters are implemented in HYPERION in an efficient way. In the last chapter, we compute the complexity of the implementation, and of equivalent formulas.

1.1 Definitions

Throughout this paper, if z is a complex number, we shall denote the complex conjugate of z by \bar{z}. The notations $\Re z$ and $\Im z$ stand for the real and imaginary parts of z.

If A is a matrix, A^{t} will be the transpose of A, and A^{*} the transpose conjugate of A. If q is a polynomial, then \tilde{q} will be $z^{n} \bar{q}(1 / z)$. Unless stated otherwise, n is the degree of q, or is clear from the context; in particular, if p is the remainder of the Euclidean division of A by B, then $\tilde{p}=z^{n} \bar{p}(1 / z)$ where n is the degree of B minus one. If $q=\sum_{k=0}^{n} q_{k} z^{k}$, then $\tilde{q}=\sum_{k=0}^{n} \overline{q_{k}} z^{n-k}$. We have $\widetilde{A B}=\tilde{A} \tilde{B}$, so that,
if $q=\prod\left(z-\alpha_{i}\right)$, then $\tilde{q}=\prod\left(1-\bar{\alpha}_{i} z\right)$. Note that \tilde{q} has degree exactly n if and only if $q(0) \neq 0$. If A is a matrix of polynomials of degree $\leq n$, then \tilde{A} is the matrix of all $\tilde{A}_{j i}$, it is also $z^{n} A^{*}(1 / z)$.

If A and B are two matrices, two polynomials, or two matrices of polynomials, we define

$$
\left.\begin{array}{c}
\langle A \mid B\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{Tr}\left[\overline{A\left(e^{i \theta}\right)}\right. \tag{1.1}\\
t \\
\|A\| \\
\| A \\
i \theta
\end{array}\right] d \theta, \sqrt{\langle A \mid A\rangle} .
$$

Here Tr stands for the trace of the matrix. If the entries of A and B are $A_{i j}$ and $B_{i j}$, then the trace of $A^{t} B$ is $\sum_{i j} A_{i j} B_{i j}$, so that $\langle A \mid B\rangle=\sum\left\langle A_{i j} \mid B_{i j}\right\rangle$. Note that if A and B are vectors, then $\operatorname{Tr}\left(A^{*} B\right)$ is just $A^{*} B$.

If A and B are polynomials, say $A=\sum a_{k} z^{k}$ and $B=\sum b_{k} z^{k}$, then

$$
\langle A \mid B\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} \sum_{k l} \overline{a_{k}} b_{l} e^{i \theta(l-k)} d \theta=\sum_{k} \overline{a_{k}} b_{k}
$$

Finally, if A is a matrix of polynomials with entries $A_{i j}=\sum_{k} a_{i j k} z^{k}$, then $\langle A \mid A\rangle=\sum_{i j k}\left|a_{i j k}\right|^{2}$, and $\langle A \mid B\rangle$ is the Hermitian form associated to this quadratic form.

A consequence of equation (1.1) that will be used throughout this paper is

$$
\langle A B \mid C\rangle=\left\langle A z^{n} \mid \tilde{B} C\right\rangle \quad\left(\tilde{B}=z^{n} \bar{B}(1 / z)\right)
$$

$1.2 \quad H^{p}$ spaces

Let \mathbb{T} be the set of all complex numbers z with $|z|=1$ (the unit circle in the complex plane), \mathbb{U} be the set of all complex numbers z with $|z|<1$ (the open unit disk) and $\overline{\mathbb{U}}$ the set of all complex numbers with $|z| \leq 1$ (the closed unit disk).

If f is analytic in \mathbb{U}, we define

$$
\begin{gathered}
M_{p}(f, r)=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} d \theta\right\}^{1 / p} \quad(0<p<\infty) \\
M_{\infty}(f, r)=\sup _{\theta}\left|f\left(r e^{i \theta}\right)\right|
\end{gathered}
$$

Let $\|f\|_{p}$ be the limit (if it exists) of $M_{p}(f, r)$ as $r \rightarrow 1$, and H^{p} the set of all functions analytic in \mathbb{U} for which this quantity is finite. It can be shown, if $p \geq 1$, that $M_{p}(f, r)$ is a monotonically increasing function of r, so that $\|f\|_{p}$ exists, and H^{p} is a Banach space. If $1 \leq s \leq p<\infty$ then

$$
H^{\infty} \subset H^{p} \subset H^{s}
$$

One can show (for instance [17, Th 17.12]) that if $f \in H^{1}$ (hence for $f \in H^{p}, p \geq 1$), that

$$
f^{*}\left(e^{i \theta}\right)=\lim _{r \rightarrow 1} f\left(r e^{i \theta}\right)
$$

exists at almost every point in \mathbb{T}, and

$$
\lim _{r \rightarrow 1} \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f^{*}\left(e^{i \theta}\right)-f\left(r e^{i \theta}\right)\right| d \theta=0
$$

Moreover, f is the Poisson integral, and the Cauchy integral of f^{*}. This can be sharpened in the case of of $H^{2}(\operatorname{cf}[17$, Th 17.10] $)$

- If f is analytic in $\mathbb{U}, f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$, then $f \in H^{2}$ if and only if $\sum\left|a_{k}\right|^{2}<\infty$. We have $\|f\|_{2}^{2}=\sum\left|a_{k}\right|^{2}$.
- If $f \in H^{2}$, the function f^{*} is in $L^{2}(\mathbb{T})$, the n-th Fourier coefficient of f is a_{n} for $n \geq 0$, zero otherwise, and the mapping $f \rightarrow f^{*}$ is an isometry from H^{2} onto the subset of $L^{2}(\mathbb{T})$ formed of those functions for which Fourier coefficients with negative index vanish.
- If $f(z)=\sum a_{k} z^{k}, g(z)=\sum b_{k} z^{k}$ then

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \overline{f^{*}\left(e^{i \theta}\right)} g^{*}\left(e^{i \theta}\right) d \theta=\sum_{k} \overline{a_{k}} b_{k}
$$

is a scalar product in H^{2} that makes it a Hilbert space. Note that this is $\left\langle f^{*} \mid g^{*}\right\rangle$, so that H^{2} is nothing else than the completion of the set of polynomials for the inner product defined by (1.1).

- If $P_{r}(\theta)=\frac{1-r^{2}}{1-2 r \cos \theta+r^{2}}$ is the Poisson kernel, then f is the Poisson integral of f^{*}, i.e.

$$
f\left(r e^{i \theta}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} P_{r}(\theta-t) f^{*}\left(e^{i t}\right) d t
$$

- f is the Cauchy integral of f^{*}, that is

$$
f(z)=\frac{1}{2 i \pi} \int_{\Gamma} \frac{f^{*}(\xi)}{\xi-z} d \xi
$$

where Γ is the positively oriented unit circle. If $|\alpha|<1$, this is

$$
f(\alpha)=\left\langle\left.\frac{1}{1-z \bar{\alpha}} \right\rvert\, f^{*}\right\rangle
$$

Recall that $L^{p}(\mathbb{T})$ is the set of functions f defined on \mathbb{T} such that

$$
\|f\|_{p}=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)\right|^{p} d \theta\right\}^{1 / p}<\infty
$$

and $\|f\|_{p}$ makes this set a Banach space for $p \geq 1$. If $1 / p+1 / q=1, f \in L^{p}$ and $g \in L^{q}$, then $f g \in L^{1}$, so that the integral of $|f g|$ is defined. The n-th Fourier coefficient of f is defined as

$$
c_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{i \theta}\right) e^{-i n \theta} d \theta
$$

Assume $c_{n}=0$ for $n<0$. Then $F(z)=\sum c_{n} z^{n}$ is analytic in \mathbb{U}. If $p>1$ and $f \in L^{p}$, then $F \in H^{p}$. Hence, if $1 / p+1 / q=1, f \in H^{p}$ and $g \in H^{q}$, the product $f g$ is in H^{1}.

Lemma 1

Assume $p>1$ and $g \in L^{p}(\mathbb{T})$ and

$$
h(\omega)=\frac{1}{2 \pi} \int_{0}^{2 \pi} g\left(e^{i \theta}\right) \frac{d \theta}{e^{i \theta}-\omega}
$$

vanishes on Ω, which is a subset of \mathbb{U} that has an accumulation point in \mathbb{U}. Then there exists a function $g_{1} \in H^{p}$, such that $g_{1}^{*}\left(e^{i \theta}\right)=g\left(e^{-i \theta}\right)$ almost everywhere on \mathbb{T}.

Proof. We have

$$
h(\omega)=\sum_{k=0}^{\infty} \omega^{k} \frac{1}{2 \pi} \int_{0}^{2 \pi} g\left(e^{i \theta}\right) e^{-i(k+1) \theta} d \theta
$$

Hence h is analytic in \mathbb{U}. The assumption says that h is identically zero, so that Fourier coefficients of g with positive index are zero. If we replace g by $g\left(e^{-i \theta}\right)$, we get a function in H^{p}.

If f is a function of z, we shall define

$$
\check{f}(z)=(1 / z) \bar{f}(1 / z)
$$

If f is analytic in \mathbb{U}, then \check{f} is analytic outside \mathbb{U}. The set H_{2}^{-}will be the set of all \check{f} for f in H^{2}. A function f is in H_{2}^{-}if and only if it has the form $\sum_{k \geq 0} a_{k} / z^{k+1}$ where $\sum\left|a_{k}\right|^{2}<\infty$. We can define f^{*} as previously $\left(f^{*}\left(e^{i \theta}\right)=\lim _{r \rightarrow 1} f\left(r e^{i \theta}\right), r>1\right)$, and the mapping $f \rightarrow f^{*}$ is a isometry from H_{2}^{-}into a subspace of $L^{2}(\mathbb{T})$, which is the orthogonal of the image of H^{2} by the mapping $f \rightarrow f^{*}, f \in H^{2}$.

We define \bar{H}_{2} to be the set of all $f(1 / z)$ where f is in H^{2}. In what follows, we shall identify f and f^{*}, and reserve the notation x^{*} for the transpose conjugate of x. We shall sometimes write H_{2} instead of H^{2}. In particular, H_{2}^{p} and $H_{2}^{n \times m}$ will be the set of vectors of size p, or matrices of size $n \times m$ with components in H^{2}. If M is a $n \times m$ matrix, we sometimes say $M \in H^{2}$ instead of $M \in H_{2}^{n \times m}$.

Note that if f is a rational function, $f=p / q, p$ and q coprime, then f is in H^{2} if and only if the roots of q lie outside $\overline{\mathbb{U}}$. Then f is also in H^{∞}.

If q is of degree n, then $\tilde{q}(z)=z^{n} \bar{q}(1 / z)$. If the roots of q are in \mathbb{U}, then q is called stable. Hence $f=p / q$ is in H^{2} if and only if \tilde{q} is stable (if p and q are coprime). If $\operatorname{deg}(p)<\operatorname{deg}(q)$, then f is called strictly proper. If q is stable, then f is called stable. Hence a rational function f is in H_{2}^{-}if and only if f is strictly proper and stable.

Lemma 2

If f is analytic in Ω, q a polynomial with roots in Ω, there exists a unique polynomial $r, \operatorname{deg}(r)<\operatorname{deg}(q)$ such that $(f-r) / q$ is analytic in Ω. If $\Omega=\mathbb{U}$, if $f \in H^{2}$, then $(f-r) / q \in H^{2}$.

Writing $f=a q+r$ will be called the Euclidean division of f by q.
Proof. Unicity of r is obvious, since r / q can be analytic only if its has no poles, hence $r=0$ because of the condition on degrees.

We shall prove existence by induction on the degree of q. We may hence assume $q=z-\alpha$. Take $r=f(\alpha)$. Define $g(z)=(f(z)-r) / q(z)$ for $z \neq \alpha$ and $g(\alpha)=f^{\prime}(\alpha)$. This defines a function which is analytic in Ω, it will be denoted by $R_{\alpha}(f)$ later on.

Assume now $\alpha \in \mathbb{U}, f \in H^{2}$. We must show $g \in H^{2}$. Write $f_{\alpha}(z)=f(z)-f(\alpha)$. Let now r be a real number, and

$$
M_{r}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\frac{f_{\alpha}\left(r e^{i \theta}\right)}{r e^{i \theta}-\alpha}\right|^{2} d \theta
$$

By definition, if this has a limit as $r \rightarrow 1$, then g is in H^{2} and the limit is the square of the norm of g. Assume $r>|\alpha|$. The quantity $|r z-\alpha|$ is minimal on \mathbb{T} for $z=\alpha /|\alpha|$, and the minimum is $r-|\alpha|$. Hence

$$
M_{r} \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f_{\alpha}\left(r e^{i \theta}\right)\right|^{2} d \theta /(r-|\alpha|)^{2}
$$

The integral is an increasing function of r, so that $M_{r} \leq\left\|f_{\alpha}\right\|^{2} /(r-|\alpha|)^{2}$. Hence, the limit of M_{r} is bounded by $\left\|f_{\alpha}\right\|^{2} /(1-|\alpha|)^{2}$.

Note: assume $q=z-\alpha$, where $|\alpha|>1$. If $f \in H^{2}$, then $(f-r) / q \in H^{2}$ for every constant r.

Lemma 3

Assume that q is a stable polynomial. There exists a constant C such that, for every $x \in H^{2},\|x\| \leq C\|q x\|$.

Proof. Let $x \in H^{2}, \alpha \in \mathbb{C}$. Define $A=\langle z x \mid x\rangle /\|x\|^{2}$. Then

$$
\|(z-\alpha) x\|^{2}=\|x\|^{2}\left(1+|\alpha|^{2}-2 \Re \alpha A\right)
$$

Taking $\alpha=1 / A$ shows $|A| \leq 1$, hence $\Re \alpha A \leq|\alpha|$. Thus

$$
\|(z-\alpha) x\|^{2} \geq\|x\|^{2}(1-|\alpha|)^{2}
$$

The proof is now obvious: take for $1 / C$ the product of the leading coefficient of q and the $1-\left|\alpha_{i}\right|$, where α_{i} is a root of q.

1.3 Form of Smith McMillan

We consider here a ring R and its quotient field K.
If M is a square matrix in R and has an inverse in R, then M is called unimodular. M is unimodular if and only if its determinant is an invertible element of R. If $R=A[z]$, where A is a field, then M is unimodular if and only if its determinant is a non-zero constant.

Theorem 1

Let R be a Euclidean ring, M a matrix with entries in R. There exist two unimodular matrices A and B in R, such that $A M B$ has the form $\left(\begin{array}{cc}D & 0 \\ 0 & 0\end{array}\right)$, where D is a $k \times k$ diagonal matrix, diagonal entries d_{i} of D are non-zero, and d_{i} divides d_{i+1}. Moreover, if $f_{i}=\prod_{j \leq i} d_{j}$, for $i \leq k$, and $f_{i}=0$ for $i>k$, then f_{i} is the gcd of all minors of order i of M.

If K is the quotient field of R, M a matrix with entries in K, there are two unimodular matrices A and B such that $A M B$ has the form above, with $d_{i}=a_{i} / b_{i}, a_{i}$ and b_{i} are coprime. Moreover a_{i} divides a_{i+1} and b_{i+1} divides b_{i}. These quantities are unique up to an invertible factor in R.

Definition 1

If M is a matrix of polynomials, the quantities f_{i} are called the invariants of M. If M is a matrix of polynomials or rational functions, the matrix $A M B$ is called the form of Smith of M. The maximum of the degrees of $\prod a_{i}$ and $\prod b_{i}$ is called the McMillan degree of M.

Proof. 1. Let $E_{i j}$ be the matrix whose only non-zero element is one at position (i, j) and $F_{i j}(\lambda)=$ $I+\lambda E_{i j}$. Let also $G_{i j}$ be the matrix, which is like the identity matrix, but entries at location (i, i) and (j, j) are zero, while entries at locations (i, j) and (j, i) are one. It is obvious that if $i \neq j, F_{i j}(\lambda)$ and $G_{i j}$ are unimodular matrices. Moreover, if D is a diagonal matrix, whose diagonal elements are invertible, then D is unimodular. The proof will show that every unimodular matrix is the product of matrices of the form $D, F_{i j}(\lambda)$ and $G_{i j}$. Note that, if A is a matrix, $A G_{i j}$ is A with columns i and j swapped, while $A F_{i j}(\lambda)$ is A with column j replaced by its sum with λ times column i. Replacing A by $A G_{i j}$ or $A F_{i j}(\lambda)$ is called an elementary operation.
2. Let a and b be elements of R. The extended gcd algorithm gives quantities u, v, x and y such that

$$
\left(\begin{array}{ll}
u & v \tag{1.2}\\
x & y
\end{array}\right)\binom{a}{b}=\binom{c}{0}
$$

where c is the gcd of a and b. The matrix in this equation is unimodular (its determinant is 1), and is the product of elementary operations. In the same fashion, there exists elementary operations that replace elements of column j, rows i_{1} and i_{2} by the gcd and 0 , and only rows i_{1} and i_{2} are modified. Operating on columns instead of rows, we can replace two elements of a row i, columns j_{1} and j_{2} by 0 and the gcd, modifying only columns j_{1} and j_{2}.
3. If the matrix M is identically zero, there is nothing to do. Otherwise, swapping columns, we may assume that the first column is not identically zero. Swapping rows, we may assume that $M_{i 1}=0$ if $i>k$
and $M_{i 1} \neq 0$ for $i \leq k$. Consider operations (1.2) with $a=M_{11}$ and $b=M_{i 1}, i=k, k-1, \ldots, 2$. After that, we have $M_{i 1}=0$ for each i. We may do the same for the first row. However, this will modify the first column. Apply these transformation as many times as needed, alternatively to the first row, and to the first column. Let x_{k} be the value of M_{11} after the k-th transformation. If the transformation is not trivial (i.e. if there is a non-zero element on the row or the column, other than element at $(1,1)$), then x_{k+1} is a strict divisor of x_{k}. Since x_{1} has only a finite number of divisors (up to an invertible factor), this show that the process must end. We get

$$
M^{\prime}=\left(\begin{array}{cc}
M_{11} & 0 \\
0 & M^{\prime \prime}
\end{array}\right)
$$

and conclude by induction that there are matrices A and B such that

$$
A M B=\left(\begin{array}{cc}
D & 0 \tag{1.3}\\
0 & 0
\end{array}\right)
$$

where D is diagonal, with non zero entries on the diagonal.
4. A consequence of (1.2) is

$$
\left(\begin{array}{ll}
u & v \tag{1.4}\\
x & y
\end{array}\right)\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)\left(\begin{array}{cc}
1 & -v b / c \\
1 & u a / c
\end{array}\right)=\left(\begin{array}{cc}
c & 0 \\
0 & d
\end{array}\right)
$$

where d is the lcm of a and b. Note that the third matrix in this equation is the product of elementary matrices, namely $F_{21}(1) F_{12}(-v b / c)$. This means that there are elementary operations that replace d_{i} and d_{j} by their gcd and lcm. If we apply these operations for each i and j, we obtain the relation: d_{i} divides d_{i+1}.
5. Assume now M unimodular. There exist matrices A and B, that are product of elementary operations such that (1.3) holds. Note that the right hand side is unimodular, so that $A M B=D$, $M=A^{-1} D B^{-1}$. This means that any unimodular matrix is the product of elementary matrices, and unimodular diagonal matrices.
6. We show now unicity of the quantities d_{i}. The previous remark tells us that it suffices to show that $M A$ and M have the same invariants if A is of the form $F_{i j}(\lambda)$, or $G_{i j}$, or diagonal unimodular. This is obvious for the last two cases. Let's show that $M F_{i j}(\lambda)$ and M have the same invariants. Consider a minor of size k. Let U be the minor in M, V the same in $M F_{i j}(\lambda)$. Let W be the minor obtained by replacing column i with column j (this is zero in case column i does not appear in U). Then $V=U+\lambda W$. If f_{k} is the k-th invariant of M, it divides U and W, hence V. Thus, if f_{k}^{\prime} is the k-th invariant of $M^{\prime}=M F_{i j}(\lambda)$, f_{k} divides f_{k}^{\prime}. The converse is true, because $M=M^{\prime} F_{i j}(-\lambda)$.
7. Finally, if M is a matrix over K, there exists u in R such that $u M$ has entries in R. Hence, there are unimodular matrices A and B such that

$$
A M B=\left(\begin{array}{cc}
D^{\prime} & 0 \\
0 & 0
\end{array}\right), \quad D^{\prime}=D / u
$$

We have $d_{i}^{\prime}=d_{i} / u=a_{i} / b_{i}$. If we take a_{i} and b_{i} coprime, then the relations " d_{i} divides d_{i+1} " imply a_{i} divides a_{i+1} and b_{i+1} divides b_{i}. These quantities are unique, because, if we have another such form with $a_{i}^{\prime} / b_{i}^{\prime}$ on the diagonal, and multiply everything by $\prod b_{i} \prod b_{i}^{\prime}$, we get, by unicity in R,

$$
\frac{a_{i}}{b_{i} \prod b_{j} \prod b_{j}^{\prime}}=\frac{a_{i}^{\prime}}{b_{i}^{\prime} \prod b_{j} \prod b_{j}^{\prime}}
$$

hence $a_{i} / a_{i}^{\prime}=b_{i} / b_{i}^{\prime}$.

1.4 Inner matrices

If A is a square constant matrix, $A^{*} A=I$, then A is called unitary. If A is real, it is called orthogonal. Unitary matrices satisfy

$$
\langle A x \mid A y\rangle=\langle x \mid y\rangle .
$$

If A is a matrix of functions with entries in H^{∞}, x and y are vectors with entries in H^{2}, the previous relation is true (using the scalar product in H^{2}) if $A(z)$ is unitary for almost all z in \mathbb{T}.

Definition 2

A matrix $M(z)$ is called inner if it is square, its entries are in H^{∞}, and the inverse of $M(z)$ is $M(z)^{*}$ almost everywhere on \mathbb{T}.

The following obvious theorem will be used everywhere.

Theorem 2

Let A and B be inner matrices. The product $A B$ is inner. The quotients $A B^{-1}$ and $B^{-1} A$ are inner provided they are in H^{∞}. The transpose and the conjugate of A are inner.

Let $z=r e^{i \theta}$ and $\alpha=s e^{i \phi}$ be two complex numbers. Assume $|\alpha|<1$, i.e. $s<1$. Let $x=$ $(z-\alpha) /(1-z \bar{\alpha})$. We have

$$
\begin{equation*}
\frac{1}{|x|^{2}}-1=\frac{\left(1-r^{2}\right)\left(1-s^{2}\right)}{r^{2}-2 r s \cos (\theta-\phi)+s^{2}} \tag{1.5}
\end{equation*}
$$

Thus $z \in \mathbb{T}$ is equivalent to $x \in \mathbb{T}$, and $z \in \mathbb{U}$ is equivalent to $x \in \mathbb{U}$. Hence, if c is a complex number, with modulus one, α_{i} are elements of \mathbb{U}, the quantity

$$
c \prod \frac{z-\alpha_{i}}{1-z \bar{\alpha}_{i}}
$$

is inner. This is called a Blaschke product. See [17, Theorem 15.21] for how to construct infinite Blaschke products. According to [17, Theorem 17.15], any inner function is the product of a Blaschke product and a factor of the form

$$
\exp \left\{-\int_{0}^{2 \pi} \frac{e^{i t}+z}{e^{i t}-z} d \mu(t)\right\}
$$

where μ is a finite positive measure which is singular with respect to the Lebesgue measure. For instance $\exp ((z+1) /(z-1))$ is inner. At the end of the second chapter, we shall consider functions that are analytic in the half plane (continuous time systems). The typical example of a non-rational inner function is then the function $\exp (s)$.

Consider a Blaschke product as above. We can write it as $c q / \tilde{q}$, where q is defined by its roots and its leading coefficient. If we change the leading coefficient, we get another value for c. In general, we shall assume that q is monic, but in some other cases, we shall assume $q(1)=1$ (recall that $q(1)$ cannot be zero). Hence, a Blaschke product will be a product of terms of the form

$$
\begin{equation*}
\beta_{\omega}(z)=\frac{(z-\omega)(1-\bar{\omega})}{(1-z \bar{\omega})(1-\omega)} \tag{1.6}
\end{equation*}
$$

The notation β_{ω} will be used constantly in this paper.

Theorem 3

A rational function f is inner if and only if it is a Blaschke product.
Proof. Let f be an inner rational function. Since f is rational, there exists a polynomial p, with zeroes in \mathbb{U}, such that $f=p g, g$ is analytic in \mathbb{U}, and does not vanish in \mathbb{U}. Let $h=\tilde{p} g$, so that $f=h p / \tilde{p}$. Note that p / \tilde{p} is a Blaschke product, so that h is inner. We have to show that h is constant.

Since h is inner, we have

$$
\begin{equation*}
h(1 / z)=1 / \bar{h}(z) \tag{*}
\end{equation*}
$$

for every $z \in \mathbb{T}$. But since h is rational, this is true whenever both terms are defined. Since h does not vanish on $\mathbb{U}, h(1 / z)$ is defined on \mathbb{U}. Since h has no poles, even at infinity, it must be constant.

Note: if h is inner, the maximum modulus principle says that h is bounded by 1 in \mathbb{U}. Now $1 / h$ is analytic in \mathbb{U}. If it is bounded (for instance if h is rational), then h must be constant. In the case of $h=\exp ((z+1) /(z-1))$, it happens that h is not zero on \mathbb{U}, but the minimum of $|h|$ is zero.

Theorem 4

A rational matrix A is inner if and only if there exists a polynomial matrix D, whose entries are of degree at most n, a stable polynomial q of degree n, an element c in \mathbb{T}, such that, if $\tilde{q}=z^{n} \bar{q}(1 / z)$ and $\tilde{D}=z^{n} \bar{D}^{t}(1 / z)$, then

$$
\begin{equation*}
A=\frac{D}{\tilde{q}}, \quad A^{-1}=\frac{\tilde{D}}{q}, \quad \operatorname{det} A=c \frac{q}{\tilde{q}} . \tag{1.7}
\end{equation*}
$$

The integer n is the McMillan degree of A.
Proof. By definition, A is inner if and only if

$$
\begin{equation*}
A^{-1}(z)=\bar{A}(1 / z)^{t} \tag{**}
\end{equation*}
$$

for almost every $z \in \mathbb{T}$. Since A is rational, this equation is true for every z for which both members are defined. Since A is in H^{∞}, it is defined on \mathbb{T}, so that $(* *)$ is true for each $z \in \mathbb{T}$.

Let d be the determinant of A. We have

$$
\frac{1}{d(z)}=\bar{d}\left(\frac{1}{z}\right)
$$

so that d is inner, and $d=c q / \tilde{q}$ for some stable polynomial q of degree n, and some constant c. Let C be the matrix of cofactors of A, so that $A^{-1}=C / d$. We have

$$
c q A^{-1}=C \tilde{q}
$$

The rational function $E=q A^{-1}$ is defined for all $|z| \leq 1$, being the right hand side of this equation. But the left-hand side is defined for $|z| \geq 1$ according to $(* *)$. Thus E is a polynomial. Its degree is at most n : E / z^{n} has a limit as $z \rightarrow \infty$, this limit being $A^{-1}(\infty)=\bar{A}(0)^{t}$ (modulo the leading coefficient of q). This means that there exists a polynomial matrix D such that $E=\tilde{D}$. The relation $A=D / \tilde{q}$ is now obvious from ($* *$).

We have now to show that n is the McMillan degree of A. Consider the form of Smith of A. If the diagonal elements are a_{i} / b_{i}, we have

$$
c \frac{q}{\tilde{q}}=\frac{\prod a_{i}}{\prod b_{i}}
$$

We pretend that $\prod a_{i}$ and $\prod b_{i}$ are coprime, so that the max of their degrees is the max of the degrees of q and \tilde{q}, which is n.

If $\prod a_{i}$ and $\prod b_{i}$ were not coprime, there would exist a complex number α which is a root of a_{i} and b_{j}, with $i \neq j$. For this α neither $A(z)$ nor $A(1 / z)$ is defined. But equation $(* *)$ says that, for any α, $A(z)$ or $A(1 / z)$ is defined.

Note: the McMillan degree n is uniquely defined by the determinant of Q. Thus, the McMillan degree of the product of two inner matrices is the sum of the degrees.

Corollary 1

\tilde{q}^{i-1} divides every minor of size i of D.

Proof. This is because the i-th invariant of D is

$$
\tilde{q}^{i} \prod_{j \leq i}\left(a_{j} / b_{j}\right)=c \tilde{q}^{i-1} \prod_{j \leq i} a_{j} \prod_{j>i} b_{j}
$$

The corollary will be used with $i=2: \tilde{q}$ divides any minor of order 2 .
In the case $i=1$, we get the following: the first invariant is $f_{1}=a_{1} \tilde{q} / b_{1}$. If A has positive McMillan degree, then $b_{1} \neq 1$ (since b_{i} divides b_{1}). Hence \tilde{q} does not divide f_{1}. In other terms, \tilde{q} does not divide every entry of D. It can happen that $D(z)=0$ whenever $\tilde{q}(z)=0$. A typical case is: take $b=(z-a) /(1-\bar{a} z)$, and $A=b I_{n}$. Then $q=(z-a)^{n}, D=(z-a)(1-z \bar{a})^{n-1} I$.

It is well known that a polynomial can be written as the product of polynomials of degree one. We shall show that the same holds for inner matrices.

Consider

$$
\begin{gather*}
Q_{0}=I-\left(1-\beta_{\omega}\right) u u^{*} \tag{1.8.a}\\
Q_{1}=\left[I-\left(1-\beta_{\omega}\right) u u^{*}\right]\left[I-\left(1-\beta_{\bar{\omega}}\right) u^{\prime} u^{\prime *}\right] . \tag{1.8.b}
\end{gather*}
$$

In the case where u has components $(1,0, \ldots, 0)$, then Q_{0} has the form

$$
Q_{\omega}=\operatorname{diag}\left(\beta_{\omega}, 1, \ldots, 1\right)
$$

and if u is of unit norm, there exists a unitary matrix P such that $Q_{0}=P Q_{\omega} P^{-1}$.

Lemma 4

If $\omega \in \mathbb{U}$, and $\|u\|=1$, then Q_{0} is inner, of McMillan degree one. Its determinant is β_{ω}, its value at $z=1$ is the identity matrix. If $\left\|u^{\prime}\right\|=1$, then Q_{1} is inner of McMillan degree two.

Assume that ω is not real. Let Q_{0}^{\prime} be the second factor of Q_{1}. Then Q_{1} is real if and only if u^{\prime} is proportional to $Q_{0}(\bar{\omega})^{*} \bar{u}$, this condition is equivalent to u proportional to $Q_{0}^{\prime}(\omega) \bar{u}^{\prime}$. It is also

$$
\begin{equation*}
u^{\prime}=\lambda\left(1+\frac{\omega-\bar{\omega}}{1-|\omega|^{2}}-u u^{*}\right) \bar{u} \tag{1.8.c}
\end{equation*}
$$

Assume Q inner. Then $Q_{0}^{-1} Q$ is inner if and only if $u^{*} Q(\omega)=0$. If Q is real, then $Q_{1}^{-1} Q$ is inner if and only if this condition is true, together with condition (1.8.c).

Proof. The first claim is obvious. We have

$$
Q_{0}^{-1}=I-\left(1-1 / \beta_{\omega}\right) u u^{*}
$$

Hence $Q_{0}^{-1} Q$ is inner if and only if it has no singularity at $z=\omega$, which is $u^{*} Q(\omega)=0$. The result in the real case will be shown in chapter 3 (theorem 26).

Corollary 2

Assume that Q is inner, $\operatorname{det} Q=c q / \tilde{q}$, and $q(\omega)=0$. There exists an inner matrix Q_{0} of the form (1.8.a) such that $Q_{0}^{-1} Q$ is inner. If Q is real, and ω is real, we can assume Q_{0} real. If Q is real, and ω is not real, there exists a real matrix Q_{1} of the form (1.8.b) such that $Q_{1}^{-1} Q$ is inner.

Proof. The assumption is that $\operatorname{det} Q$ vanishes at $z=\omega$, and $\omega \in \mathbb{U}$. Hence, there exists a non-zero vector u such that $u^{*} Q(\omega)=0$. We may assume $\|u\|=1$. If Q and ω are real, we can also assume that u is real.

Theorem 5 (Potapov)

Assume that Q is an inner rational matrix, $\operatorname{det} Q=c q / \tilde{q}$ and $q=\left(z-\omega_{1}\right)\left(z-\omega_{2}\right) \cdots\left(z-\omega_{n}\right)$. We can write

$$
\begin{equation*}
Q=Q_{1} Q_{2} \cdots Q_{n} A \tag{1.9}
\end{equation*}
$$

where each Q_{i} has the form (1.8.a), with determinant $\beta_{\omega_{i}}$:

$$
\begin{equation*}
Q_{i}=I-\left(1-\beta_{\omega_{i}}\right) u_{i} u_{i}^{*} \tag{1.10}
\end{equation*}
$$

If Q is real, and $q=q_{1} q_{2} \ldots q_{n}$, where each q_{i} is irreducible, then Q_{i} has the form (1.8.a) in case q_{i} is of degree one, and the form (1.8.b) if q_{i} is of degree two. In any case, the matrix A is constant and unitary.

Proof. Denote by $q(Q)$ the polynomial q such that $\operatorname{det} Q=c q / \tilde{q}$. Then $q\left(Q_{1} Q_{2}\right)=q\left(Q_{1}\right) q\left(Q_{2}\right)$. We proceed by induction on the number of factors of q, hence obtain (1.9) for some matrix A, which is inner, and has constant determinant. Thus A must be constant. Note that $Q_{i}(1)$ is the identity matrix, so that $A=Q(1)$.

Note: We shall give later (theorem 26) a more elaborate version of this theorem. If we impose the condition $Q(1)=I$, then Q lies in a manifold of dimensuion $n p$, where n is the degree and p the size of Q. The decomposition above has exactly $n p$ free parameters, but we cannot use it to parameterise the manifold. In fact, if q has n distint roots, then u_{i} is uniquely defined (modulo a phase factor), once an ordering for the roots is given. The next corollary implies that the span of the vectors u_{i} depends only on Q. We can also restate the theorem as: any inner matrix the product of some matrices Q_{ω} and some unitary matrices, but in this decomposition, there are much more free parameters.

Corollary 3

If $\omega \in \mathbb{U}$, and Q is inner, rational, then $\left\|Q(\omega)^{*} u\right\| \leq\|u\|$. We have equality if and only if u is orthogonal to every u_{i}, for a factorisation like (1.9), (1.10).

Proof. The proof is by induction on the McMillan degree of Q. There is nothing to show if Q is constant. Assume $Q=Q_{1} B$. Let $\lambda=1-\overline{\beta_{\omega_{1}}(\omega)}$ and $w=Q_{1}(\omega)^{*} u=\left(I-\lambda u_{1} u_{1}^{*}\right) u$. We have

$$
\|w\|^{2}=\|u\|^{2}-\left(1-\left|\beta_{\omega_{1}}(\omega)\right|^{2}\right)\left|u_{1}^{*} u\right|^{2}
$$

so that $\|w\| \leq\|u\|$, and $\|w\|=\|u\|$ if and only if $u_{1}^{*} u=0$, case where $w=u$ (recall that $|\beta(\omega)|<1$).
By induction,

$$
\left\|Q(\omega)^{*} u\right\|=\left\|B(\omega)^{*} w\right\| \leq\|w\| \leq\|u\|
$$

If $\left\|Q(\omega)^{*} u\right\|=\|u\|$, then $u=w$, and $\left\|B(\omega)^{*} u\right\|=\|u\|$, hence by induction, u is orthogonal to every u_{i}.

1.5 Shift invariant spaces

Assume that we have a discrete time system, which is defined by a time-invariant input-output relation. Given a sequence $\left(u_{i}\right)_{i}$, which is the input, we associate a series $U=\sum u_{i} z^{-i}$. Given an input U, the system defines an output Y. The origin of time is $i=0$, the past is defined by $i<0$, and the future by $i>0$. With our conventions, a polynomial U defines a sequence for which only a finite number of values are not zero, none of them are in the future. The system is time-invariant if the output of $z^{i} U$ is $z^{i} Y$ whenever the output of U is Y. The system is said causal in case y_{i} depends only on u_{j} for $j \leq i$ (it is called strictly causal if y_{i} does not depend on u_{i}). For details, see [19].

Under these assumptions, it is possible to compute the output associated to a given input, provided that we can compute the output associated to an input with $u_{i}=0$ for $i>0$. We shall say that the system is stable in case $\sum_{i \leq 0}\left\|u_{i}\right\|^{2}$ gives an output where $\sum_{i<j}\left\|y_{i}\right\|^{2}$ is finite, whatever j. For instance,
if \mathcal{H} is an element of H_{2}^{-}or $\overline{H_{2}}$, the system defined by $Y=\mathcal{H} U$, is time-invariant, stable and causal (or strictly causal).

We can identify two sequences u_{i} and u_{i}^{\prime} (defined for $\left.i<0\right)$ if, whatever $v_{i}(i \geq 0)$, the outputs Y and Y^{\prime} corresponding to the concatenations of u and v, or of u^{\prime} and v, are identical for $i \geq 0$. The state of the system is then defined by the set of all past inputs, modulo this identification. If the system is stable, we identify U with zero provided that Y is in H^{2}.

If the system is not stable, we shall assume that, at some time t_{0} in the past, the state is zero, and we consider only inputs u_{i} such that $u_{i}=0$ if $i<t_{0}$. We assume that this implies $y_{i}=0$ for $i<0$. Such a system can be defined by $Y=\mathcal{H} U$, where \mathcal{H} is proper (or strictly proper), this gives a causal (or stricly causal) time-invariant system. Here the state is defined by all past inputs (here polynomials U), modulo identification: U is identified to zero if it gives an output Y which is a polynomial.

In any case, the state space \mathcal{X} is the quotient of past inputs, modulo a space \mathcal{V}. If the system is stable, both methods fo defined the state space give the same result. This property will be used in order to show that Q is rational in the factorisation $\mathcal{H}=Q^{-1} C$. Since the system is time-invariant, the set \mathcal{V} is shift invariant.

In what follows, a shift invariant vector space will be a set E of functions, such that, if $f \in E$, then the function $z \rightarrow z f(z)$ is in E. Since E is a vector space, it implies that $p f \in E$, whenever p is a polynomial and f an element of E.

The easy case is when E is a set of polynomials over a field K. Then E is an ideal of $K[z]$, hence is of the form $r K[z]$, for some polynomial r. In particular, if p and q are two polynomials, E is the set of all $u p+v q$, where u and v are polynomials, then the polynomial r is the gcd of p and q. The polynomials p and q are coprime if $E=K[z]$.

We shall consider two extensions of this easy case: the case where E is a set of vectors of polynomials, and the case where E is a set of analytic functions. In this last case, we have to make some assumptions. For instance, if $1 \in E$, then every polynomial is in E. However, there are many shift invariant spaces that satisfy this condition. We shall restrict our attention to functions analytic in \mathbb{U}, in fact, E will be a subset of H^{2}. Since H^{2} is a metric space, we may add the condition that E is closed. Now, the theorem of Beurling says that $E=r H^{2}$ for some inner function r. An extension of this theorem in the non-scalar case will be given here.

Assume that E is formed of vectors of size p. Then E is called of full rank if there are p elements $x_{1}, x_{2}, \ldots, x_{p}$ such that for some evaluation point z_{0}, the vectors $x_{i}\left(z_{0}\right)$ are linearly independent.

Theorem 6

Let E be a subset of $\mathbb{C}^{p}[z]$, which is shift invariant, of full rank. There exists a matrix $Q \in \mathbb{C}^{p \times p}[z]$, with non-zero determinant, unique up to a unimodular factor, such that E is the set of all $Q x$, where $x \in \mathbb{C}^{p}[z]$.

Theorem 7 (Beurling-Lax)

Let E be a subset of H_{2}^{p}, which is shift invariant, closed, of full rank. There exists an inner matrix Q, of size p, unique up to a constant unitary factor, such that E is the set of all $Q x$, where $x \in H_{2}^{p}$.

Let's first consider unicity. Assume that we have two matrices Q and Q^{\prime} that satisfy the conditions. Hence, we get two matrices R and S such that $Q^{\prime}=Q R$ and $Q=Q^{\prime} S$. Since Q and Q^{\prime} have non-zero determinant, the matrix S is the inverse of R. In the polynomial case, it follows that R is polynomial, with polynomial inverse, hence is unimodular. In the H^{2} case, S is in H^{2}, with inverse in H^{2}. Since $Q=Q^{\prime} S$, and Q and Q^{\prime} are inner, S is inner. We pretend that S is constant.

In the scalar case, the proof of [17, Th 17.21] is the following. Let $h=s+1 / s$. Now h is in H^{2}, and its imaginary part is zero on \mathbb{T} (on \mathbb{T}, we have $s \bar{s}=1$, hence $h=2 \Re s$). But h is the Poisson integral of its value on \mathbb{T}, hence h is real, thus h is constant. This implies that s is constant (take square roots). In the matrix case, we cannot take square roots. We know for instance that $S^{t}+S^{-1}$ is constant, and $d+1 / d$ is constant, where d is the determinant of S. But this is not enough: for instance $S=\left(\begin{array}{ll}1+\cos z & \sin z-1 \\ 1+\sin z & 1-\cos z\end{array}\right)$ satisfies $\operatorname{det} S=1$ and $S^{t}+S^{-1}$ constant.

In the general case, we apply the following result.

Lemma 5

Assume that S is an inner $p \times p$ matrix, and S^{-1} has entries in H^{2}. Then S is a constant unitary matrix.
Proof. Let x and y be constant vectors, $t=S^{-1} y$. This is some element of H^{2}. We have

$$
\left\langle z^{n} S x \mid y\right\rangle=\left\langle z^{n} S x \mid S t\right\rangle=\left\langle z^{n} x \mid t\right\rangle .
$$

Since y is constant, it is orthogonal to $z^{n} S x$ for $n>0$, so that t is orthogonal to $z^{n} x$ for $n>0$. Since x is arbitrary, it implies that t is constant. Hence S is constant.

Assume that we have $E=Q \mathbb{C}^{k}[x]$ or $E=Q H_{2}^{k}$. We know that there are p elements x_{i} in E, of the form $x_{i}=Q y_{i}$ such that, evaluated at z_{0}, this gives p linearly independent vectors. This implies $k \geq p$.

Let's show the existence in the polynomial case. Define E_{i} to be the set of all elements of E for which components of index $<i$ are zero. For $0<i \leq n$, we consider an element p_{i} in E_{i} for which component i has smallest degree. It may happen that all elements p in E_{i} have 0 as i-the component, said otherwise $E_{i}=E_{i+1}$. In this case, we chose $p_{i}=0$.

Let x be an element of E. We consider some polynomials y_{i}, such that $x_{i}=x-\sum_{j \leq i} y_{j} p_{j}$ is in E_{i}. These numbers are found by induction on i. We define y_{i} to be zero in case the i-th component of x_{i} is zero. Otherwise, y_{i} is the remainder of the i-the component of x_{i} by the i-th component of p_{i}. This shows that any x is a linear combinations (with coefficients in $K[z]$) of the p_{i}. If Q is the matrix whose columns are the non-zero elements p_{i}, we have $x=Q y$ for some y. Clearly, the rank of Q is the number of columns, and the remark above says that it must br p, so that Q is square and has non-zero determinant.

Consider now the H^{2} case. Let $z E$ be the set of all $z x, x \in E$. Let L be its orthogonal complement. It is easy to show that $z E$ is closed (recall that E is closed in H^{2}). This implies that $z E$ is the orthogonal of L. In other words

$$
\begin{equation*}
\forall x \in E, \quad \exists t \in E, \exists y \in L, \quad x=y+z t \tag{1.11}
\end{equation*}
$$

Consider n elements x_{i} in L, of unit norm, which are orthogonal. Then

$$
\begin{equation*}
\left\langle x_{i} z^{j} \mid x_{k} z^{l}\right\rangle=\delta_{i k} \delta_{j l} \tag{1.12}
\end{equation*}
$$

This is because the scalar product is $\left\langle x_{i} z^{j-l} \mid x_{k}\right\rangle$ or $\left\langle x_{i} \mid x_{k} z^{l-j}\right\rangle$, depending on the sign of $j-l$. Since x_{i} and x_{k} are in L, the product is zero if $j \neq l$; it is $\left\langle x_{i} \mid x_{k}\right\rangle$ otherwise. Let now $v_{i j}(z)=\sum_{k} \overline{x_{i k}(z)} x_{j k}(z)$. This is in $L^{1}(\mathbb{T})$, and (1.12) says

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i n \theta} v_{j k}\left(e^{i \theta}\right) d \theta=0
$$

for each integer $n \in \mathbb{Z}$ (if $n=0$, the relation is true only if $j \neq k$, if $j=k$, the integral is one). Thus, $v_{i j}$ is constant, it is $\delta_{i j}$. This means that the set of vectors $x_{i}(z)$ is orthonormal in \mathbb{C}^{p}, for almost every $z \in \mathbb{T}$. In particular, L has finite dimension, at most p.

Let $\left(\Phi_{\alpha}\right)_{\alpha}$ be an orthonormal basis of L. Let Q be the matrix whose columns are the Φ_{α}. Then $Q^{*} Q(z)$ is the identity matrix if $z \in \mathbb{T}$. Equation (1.12) implies that $\sum_{i, \alpha} \lambda_{i, \alpha} z^{i} \Phi_{\alpha}$ is in H^{2} provided that $\sum\left|\lambda_{i, \alpha}\right|^{2}<\infty$. Since E is closed, this expression is in E, and $Q x \in E$ whenever x has components in H^{2}. On the other hand, let $u \in E, \lambda_{i, \alpha}=\left\langle z^{i} \Phi_{\alpha} \mid u\right\rangle$, and $x_{0}=u-\sum_{i, \alpha} \lambda_{i, \alpha} z^{i} \Phi_{\alpha}$. This element is in H^{2}. It is in E, and orthogonal to each $z^{i} \Phi_{\alpha}$. Write $x_{0}=z^{i} x$, with i as large as possible. Then x is orthogonal to each Φ_{α}. Write $x=y+z t$ like in (1.11). Then $y=0$, because $\left(\Phi_{\alpha}\right)_{\alpha}$ is a basis of L. This contradicts the fact that i is maximal. It implies $x=0$, and $u=Q y$ for some y.

The same argument as above shows that Q must have at least p columns. The relation $Q^{*} Q(z)=I$ on \mathbb{T} says now that Q is inner.

1.6 The state space

Let H be a $m \times p$ matrix. We shall consider the following sets

$$
\begin{gathered}
\mathcal{V}(H)=\left\{x \in \mathbb{C}^{p}[z], H x \in \mathbb{C}^{m}[z]\right\} \\
\mathcal{V}^{\prime}(H)=\left\{x \in H_{2}^{p}, H x \in H_{2}^{m}\right\}
\end{gathered}
$$

Lemma 6

Assume H rational. Then $\mathcal{V}(H)$ is shift invariant, of full rank. Assume moreover $H \in \overline{H_{2}}$. Then $\mathcal{V}^{\prime}(H)$ is shift invariant, of full rank, and closed.

Proof. We can always assume $H=P / q$, where P is a matrix of polynomials, and q a polynomial. If q is of minimal degree, then H is defined if and only if $1 / q$ is defined, so that, if $H \in \overline{H_{2}}$, we may assume that the roots of q are in \mathbb{U}.

If e_{i} is a basis of \mathbb{C}^{p}, then $q e_{i}$ is a set of p vectors in \mathcal{V} and \mathcal{V}^{\prime} which are linearly independent, whenever evaluated at z_{0} which is not a zero of q. Thus \mathcal{V} and \mathcal{V}^{\prime} are shift invariant, of full rank.

Let's show that \mathcal{V}^{\prime} is closed. Consider a Cauchy sequence x_{i}. Let $y_{i}=H x_{i}$. Then $q y_{i}=P x_{i}$. Obviously, x_{i} converges in H^{2} to some x, and $P x_{i}$ converges to $P x$. Lemma 3 says that the sequence y_{i} is Cauchy, hence converges to some y. Obviously $q y=P x$. Thus $y=H x$ is in H^{2} and x is in $\mathcal{V}^{\prime}(H)$.

Theorem 8

Let \mathcal{H} be a $m \times p$ matrix of rational functions. There exists a $p \times p$ polynomial matrix D, a $m \times p$ polynomial matrix N, two polynomial matrices X and Y such that

$$
\begin{equation*}
\mathcal{H}=N D^{-1}, \quad X N+Y D=I \tag{1.13}
\end{equation*}
$$

If $\mathcal{H}=N_{1} D_{1}^{-1}$, then $D_{1}=D U$ for some polynomial matrix U. If moreover $X_{1} N_{1}+Y_{1} D_{1}=I$ then U is unimodular.

Assume moreover that $\mathcal{H} \in \overline{H_{2}}$. There exists an inner matrix Q, a matrix $C \in H^{\infty}$, two matrices X^{\prime} and Y^{\prime} in H^{2} such that

$$
\begin{equation*}
\mathcal{H}=C Q^{-1}, \quad X^{\prime} C+Y^{\prime} Q=I \tag{1.14}
\end{equation*}
$$

If $\mathcal{H}=C_{1} Q_{1}^{-1}$, then $Q_{1}=Q U$ for some matrix U in H^{2}. If moreover $X_{1}^{\prime} C_{1}+Y_{1}^{\prime} Q_{1}=I$, then U is constant.

The matrix Q is rational. If its determinant is q / \tilde{q}, then q is the determinant of D. If \mathcal{H} is real, all matrices can be chosen real.

In the same fashion, we have a factorisation $\mathcal{H}=D^{-1} N$ and $\mathcal{H}=Q^{-1} C$.
Proof. 1. We know that there exists a matrix D such that

$$
\begin{equation*}
x \in \mathcal{V}(\mathcal{H}) \Longleftrightarrow D^{-1} x \text { is a polynomial. } \tag{1.15}
\end{equation*}
$$

From this, we deduce first that $N=\mathcal{H} D$ is a polynomial. Let E be the set of all $N^{t} x+D^{t} y$, where x and y are polynomials. This space is shift invariant, of full rank, so that this is the set of all $R^{t} u$ for some polynomial matrix R^{t}; there are matrices X_{1}, Y_{1}, D_{1} and N_{1} such that

$$
R^{t}=N^{t} X_{1}^{t}+D^{t} Y_{1}^{t}, \quad D^{t}=R^{t} D_{1}^{t}, \quad N^{t}=R^{t} N_{1}^{t}
$$

If we transpose, we get

$$
R=X_{1} N+Y_{1} D, \quad D=D_{1} R, \quad N=N_{1} R
$$

Note that $\left(I-X_{1} N_{1}-Y_{1} D_{1}\right) R=0$. Since R is of full rank, we get

$$
X_{1} N_{1}+Y_{1} D_{1}=I
$$

Since $\mathcal{H}=N D^{-1}=N_{1} D_{1}^{-1}, D_{1} x \in \mathcal{V}$ whenever x is a polynomial. Using (1.15) a second time, we see that $D^{-1} D_{1}$ is a matrix of polynomials. Since it is R^{-1}, R is unimodular. So

$$
I=R^{-1} X_{1} N+R^{-1} Y_{1} D
$$

and we get (1.13) with $X=R^{-1} X_{1}, Y=R^{-1} Y_{1}$.
2. Suppose now $\mathcal{H}=N_{1} D_{1}^{-1}$. Then

$$
X N_{1}+Y D_{1}=D^{-1} D_{1}
$$

This implies that $U=D^{-1} D_{1}$ is a matrix of polynomials. If moreover $X_{1} N_{1}+Y_{1} D_{1}=I$, its inverse is polynomial, hence unimodular. Note that, if \mathcal{H} is real, we may chose D real. It follows that N is real, and $X N+Y D=I$ implies $\Re(X) N+\Re(Y) D=I$.
3. The second claim can be proved in the same fashion. We know that $\mathcal{V}^{\prime}(\mathcal{H})$ is closed, so that there exists Q such that $\mathcal{V}^{\prime}(\mathcal{H})=Q H^{2}$. Let $C=\mathcal{H} Q$. This is in H^{2}, but also in L^{∞}, since \mathcal{H} and Q are in L^{∞}. Hence $C \in H^{\infty}$. We can consider the space of all $C^{t} x+Q^{t} y$, where x and y are in H^{2}. This is a full rank, shift invariant closed subspace of H^{2}.

Using lemma 5, we see that the matrices R and U are constant, wherever they were unimodular in the previous point. This shows the second claim of the theorem. We shall see in the next point that Q is rational. This implies that $Q(1)$ is defined and invertible, so that we can multiply Q by $Q(1)^{-1}$, hence assume $Q(1)=I$. If \mathcal{H} is real, we have $\mathcal{H}=C Q^{-1}=\bar{C} \overline{Q^{-1}}$, so that $Q^{-1} \bar{Q}$ is constant. Since this is the identity matrix for $z=1$, it follows that Q is real, and C is real also. As above, we can then assume that X^{\prime} and Y^{\prime} are real.
4. A consequence of the unicity relations is that $Q^{-1} D$ is in H^{2}, with inverse in H^{2}. Let e_{k} be a basis of \mathbb{C}^{p}. We have

$$
\left\langle e_{k} z^{i} \mid Q^{-1} D e_{j}\right\rangle=\left\langle Q e_{k} z^{i} \mid D e_{j}\right\rangle
$$

In the case where i is greater than the degree of D, the last scalar product is zero. Hence $Q^{-1} D$ is a polynomial, and Q is rational.

We know that the determinant of Q has the form q / \tilde{q}. Let r be the determinant of D. Since $Q^{-1} D$ is in H^{2}, with inverse in H^{2}, the same is true for the determinant $r \tilde{q} / q$. This means that q divides r, and the stable part of r divides q. Since $X \mathcal{H}+Y=D^{-1}$, all zeroes of r are in \mathbb{U}, thus r / q is constant.

Let's introduce the spaces $\mathcal{X}(H)$, the quotient of the $\mathbb{C}^{p}[z]$ by $\mathcal{V}(H)$, and $\mathcal{X}^{\prime}(H)$, the quotient of H_{2}^{p} by $\mathcal{V}^{\prime}(H)$.

Lemma 7
Let A be a rational matrix. Assume that $A=U B V$, where U and V are unimodular, $B=\left(\begin{array}{ll}C & 0 \\ 0 & 0\end{array}\right)$. Then $\mathcal{X}(A)=\mathcal{X}(C)$. If C is diagonal, with terms c_{i} on the diagonal, then $\mathcal{X}(A)$ is the direct sum of $\mathcal{X}\left(c_{i}\right)$. In the same fashion, $\mathcal{X}^{\prime}(A)$ is the sum of $\mathcal{X}^{\prime}\left(c_{i}\right)$.

If $c=a / b, a$ and b coprime, then $\mathcal{X}(c)$ is isomorphic to the set of polynomials of degree $<\operatorname{deg}(b)$. The same is true of $\mathcal{X}^{\prime}(c)$, provided that b is stable.

Proof. It is obvious that $\mathcal{X}(B)=\mathcal{X}(C)=\sum_{i} \mathcal{X}\left(c_{i}\right)$, and $\mathcal{X}^{\prime}(B)=\mathcal{X}^{\prime}(C)=\sum_{i} \mathcal{X}^{\prime}\left(c_{i}\right)$,
Note that $U B V x$ is a polynomial (resp. in H^{2}) if and only $B V x$ is, because U and U^{-1} are polynomial matrices (hence are in H^{∞}). On the other hand, the multiplication by V leaves the set of polynomial vectors invariant, it leaves also H^{2} invariant. Hence, we can replace A by B.

Finally, any x can be written as $x=b q+r$, with $\operatorname{deg}(r)<\operatorname{deg}(b)$. If x is a polynomial, then q is a polynomial, if x is in H^{2}, then q is in H^{2}. Now $x a / b=a q+a r / b$. This is a polynomial if and only if b divides $a r$. Since b is coprime to a, it is a polynomial if and only if $r=0$. In the same fashion, $a r / b$ is in H^{2} if and only if $r=0$, since b is stable.

Theorem 9

Under the assumptions of the previous theorem, we have

$$
\mathcal{V}^{\prime}(\mathcal{H})=\mathcal{V}^{\prime}\left(Q^{-1}\right)=\mathcal{V}^{\prime}\left(D^{-1}\right) \quad \mathcal{V}(\mathcal{H})=\mathcal{V}\left(D^{-1}\right), \quad \mathcal{X}(\mathcal{H})=\mathcal{X}^{\prime}(\mathcal{H})
$$

Proof. The relations $\mathcal{V}^{\prime}(\mathcal{H})=\mathcal{V}^{\prime}\left(Q^{-1}\right)$ and $\mathcal{V}(\mathcal{H})=\mathcal{V}\left(D^{-1}\right)$ are obvious, equivalent to (1.13) and (1.14). The relation $\mathcal{V}^{\prime}(\mathcal{H})=\mathcal{V}^{\prime}\left(D^{-1}\right)$ is clear also: it is a consequence of (1.13) and the fact that any polynomial is in H^{2}.

The last claim is $\mathcal{X}\left(D^{-1}\right)=\mathcal{X}^{\prime}\left(D^{-1}\right)$. According to the lemma, we can replace D by its form of Smith. But the form of Smith is $D^{-1}=U C V, C=\operatorname{diag}\left(1 / c_{i}\right)$, and $\operatorname{det} D=\prod c_{i}$. Hence c_{i} is stable.

Assume M square and invertible. Let the form of Smith of M be $A M B=\operatorname{diag}\left(a_{i} / b_{i}\right)$. Then $B^{-1} M^{-1} A^{-1}=\operatorname{diag}\left(b_{i} / a_{i}\right)$. There are permutation matrices that replace this by $\operatorname{diag}\left(b_{n-i} / a_{n-i}\right)$. This is the form of Smith of M^{-1}. Hence M and M^{-1} have the same McMillan degree.

Lemma 8

If M is rational and proper, the $M c M i l l a n$ degree of M is the dimension of $\mathcal{X}(M)$. Thus, if A is constant, M and $M+A$ have same McMillan degree.

Proof. Let q be a polynomial of degree n, such that entries of $M q$ are polynomials. By assumption, these entries are of degree $\leq n$. Let $f_{1}, f_{2}, \ldots, f_{k}$ be the invariant factors of $M q$. Take a minor x of size $k \times k$ of $M q$. Then x has degree $\leq k n$. Since f_{k} is the gcd of these quantities, the degree of f_{k} satisfies this condition. Hence f_{k} / q^{k} is proper. But f_{k} / q^{k} is $\prod a_{i} / b_{i}$, where a_{i} / b_{i} are the diagonal elements of the form of Smith of M. Thus $\operatorname{deg} \prod a_{i} \leq \operatorname{deg} \prod b_{i}$. This implies that the McMillan degree of M is $\operatorname{deg} \prod b_{i}$, which is the dimension of $\mathcal{X}(M)$.

Corollary 4

The matrices \mathcal{H}, D and Q have the same McMillan degree.

Lemma 9

If Q is inner rational, $Q=D / \tilde{q}, Q^{-1}=\tilde{D} / q$, then $Q^{-1} C$ is strictly proper, stable, rational of McMillan degree $\leq n$ and C is in H^{∞} if and only if $\tilde{q} C$ and $\tilde{D} C$ are polynomials of degree $<n$.

Proof. Assume $Q^{-1} C$ strictly proper, stable, rational. Then $Q^{-1} C=N / s$, where N is a polynomial matrix, and s a stable polynomial. We have $C=D N /(\tilde{q} s)$. Since $C \in H^{\infty}, s$ divides $D N, D N=T s$, hence $q \tilde{q} N=\tilde{D} T s$. Thus s divides $q \tilde{q} N$. But s is stable, \tilde{q} is unstable, and we may assume s coprime to N (i.e. s coprime to the gcd of the entries of N). Hence s divides $q, q=k s$. Hence $\tilde{D} C=k N, \tilde{q} C=T$. Since $Q^{-1} C$ is strictly proper, $k N$ and T are of degree less than n.

On the other hand, if $\tilde{D} C=N$, then $Q^{-1} C=N / q$, and $Q^{-1} C$ is rational, strictly proper and stable. If moreover $C=T / \tilde{q}$, then $C \in H^{\infty}$. Since $\mathcal{X}\left(C Q^{-1}\right) \subset \mathcal{X}\left(Q^{-1}\right), C Q^{-1}$ (hence $\left.Q^{-1} C\right)$ cannot have greater McMillan degree than Q^{-1}.

1.7 Left shift

Assume that f is analytic in $\Omega, \alpha \in \Omega$. We define $g=R_{\alpha}(f)$ by $g(z)=(f(z)-f(\alpha)) /(z-\alpha)$ and $g(\alpha)=f^{\prime}(\alpha)$. Then g is analytic in Ω. We also know that if $f \in H^{2}$, then $g \in H^{2}$. The case of interest will be the case $\alpha=0$, because the orthogonal of $Q H^{2}$ is R_{0}-invariant, and finite dimensional. The operator R_{α} is called the left shift, or backwards shift.

An easy remark is the following: $R_{0}^{k}(f)=(f(z)-P) / z^{k}$, where P is some polynomial. Thus, if $\sum \lambda_{i} R_{0}^{i}(f)=0$, then $f=p / q$ where p and q are polynomials. Thus, if X is a finite dimensional $R_{0^{-}}$ invariant space, every element of X is a rational function. Moreover, it is obvious that there exists a polynomial q of degree $\leq n$, such that $f q$ is a polynomial of degree $\leq n$, for every f in X. The objective of this section is to prove the more precise following result.

Theorem 10

Assume that X is a set of functions, analytic in Ω, with range in \mathbb{C}^{p}. Assume that X is R_{α}-invariant, and is a vector space of finite dimension n. There exists an observable pair $(A, C), C$ of size n, such that

$$
\begin{equation*}
X=A[I-(z-\alpha) C]^{-1} \mathbb{C}^{n} \tag{1.16}
\end{equation*}
$$

The space X is R_{β}-invariant for every $\beta \in \Omega$, in fact, for every β such that $I-(\beta-\alpha) C$ is invertible. Let $B=I+\alpha C, P$ an invertible constant matrix, and

$$
\begin{equation*}
K(z, \omega)=A(B-z C)^{-1} P^{-1}\left(B^{*}-\bar{\omega} C^{*}\right)^{-1} A^{*} \tag{1.17}
\end{equation*}
$$

Then X is the linear span of the vectors $K\left(z, \omega_{i}\right) c_{i}, \omega_{i} \in \Omega_{0}, c_{i} \in \mathbb{C}^{p}$, provided that the subset Ω_{0} of Ω has an infinite number of elements.

The condition (A, C) observable says that the space defined by (1.16) has dimension n. By definition, (A, C) is observable if it satisfies the conditions (1.18). In the next chapter, we shall give an alternate proof of the equivalence of these conditions.

Lemma 10

Assume that A is a $p \times n$ matrix, C is a square $n \times n$ matrix. The following conditions are equivalent.

$$
\begin{gather*}
\forall x, \quad \forall \lambda \in \mathbb{C}, \quad A x=0, C x=\lambda x \text { implies } x=0 \tag{1.18.a}\\
\forall x, \quad A C^{i} x=0 \quad(0 \leq i<n) \text { implies } x=0 \tag{1.18.b}
\end{gather*}
$$

Proof. Clearly, if $A x=0$ and $C x=\lambda x$, then $A C^{i} x=\lambda^{i} A x=0$, so that (1.18.b) implies (1.18.a).
Define some numbers a_{i} by $P=\operatorname{det}(z I-C)=z^{n}-\sum a_{i} z^{i}$. The Cayley-Hamilton theorem says

$$
\begin{equation*}
C^{n}=a_{0}+a_{1} C+\cdots+a_{n-1} C^{n-1} \tag{1.19}
\end{equation*}
$$

Write $P=\prod_{i}\left(z-\lambda_{i}\right)^{\alpha_{i}}$, with $\lambda_{i} \neq \lambda_{j}$ for $i \neq j$. There are some polynomials u_{i} such that

$$
\sum_{i} u_{i}(z) \prod_{j \neq i}\left(z-\lambda_{j}\right)^{\alpha_{j}}=1
$$

Fix some vector x, and define $a_{i}=u_{i}(C) \prod_{j \neq i}\left(C-\lambda_{j}\right)^{\alpha_{j}} x$. Then $x=\sum a_{i}$, and $\left(C-\lambda_{i}\right)^{\alpha_{i}} a_{i}=0$.
Define $y_{m}=\left(C-\lambda_{i}\right)^{m} a_{i}$. Assume now $A C^{i} x=0$. Then $A p(C) x=0$, for every polynomial p, so that $A y_{m}=0$. Assume moreover (1.18.a) true. Then, if $y_{m}=0$, we have $A y_{m-1}=0$, and $C y_{m-1}=\lambda_{i} y_{m-1}$ so that $y_{m-1}=0$. Since $y_{m}=0$ for $m=\alpha_{i}$, by induction, we have $y_{m}=0$ for each m, thus $a_{i}=0$ and $x=0$.

Lemma 11

Assume (A, C) observable, C of size $n, \omega_{i} \in \mathbb{C}$ for $1 \leq i \leq n, \omega_{i} \neq \omega_{j}$ for $i \neq j$, and $I-\omega_{i} C$ invertible.
Then, if $A\left(I-\omega_{i} C\right)^{-1} x=0$ for each i, we have $x=0$. Moreover, if $v \in \mathbb{C}^{n}$, there are some vectors c_{i} in \mathbb{C}^{p} such that

$$
\begin{equation*}
v=\sum_{i}\left(I-\bar{\omega}_{i} C^{*}\right)^{-1} A^{*} c_{i} \tag{1.20}
\end{equation*}
$$

Proof. 1. The two claims are clearly equivalent. If f is any analytic function, defined on the eigenvalues of C, then $f(C)$ is a polynomial function of C, because of (1.19). Take $f(C)=(I-\omega C)^{-1}$. The proof consists of finding an explicit formula for the coefficients of this polynomial.
2. Define some numbers x_{i} by

$$
\begin{equation*}
x_{i}=\omega^{i} \frac{1-a_{n-1} \omega-a_{n-2} \omega^{2}-\cdots-a_{i+1} \omega^{n-i-1}}{1-a_{n-1} \omega-a_{n-2} \omega^{2}-\cdots-a_{0} \omega^{n}} \tag{1.21}
\end{equation*}
$$

We consider $a_{n}=-1$, and a_{i} is defined by (1.19). Thus, the denominator Δ is just the determinant of $I-\omega C$. Let $x_{i}^{\prime}=\Delta x_{i}$. This is a multiple of ω^{i}, so that there exists some numbers $b_{i k}$, depending only on a_{i}, such that

$$
\begin{equation*}
\omega^{i}=x_{i}^{\prime}+\sum_{k>i} b_{i k} x_{k}^{\prime} \tag{1.22}
\end{equation*}
$$

For each ω_{j}, we define $x_{i j}$ and $x_{i j}^{\prime}$. By assumption, the determinant of ω_{j}^{i} is not zero, so that the determinant of $x_{i j}^{\prime}$ is not zero (moreover, the denominator of $x_{i j}$ is not zero).
3. We have

$$
\begin{gathered}
\sum_{i=0}^{n-1} x_{i}^{\prime} C^{i}=-\sum_{j=0}^{n} a_{j} \omega^{n-j} \sum_{i=0}^{j-1} \omega^{i} C^{i} \\
(I-\omega C) \sum_{i=0}^{n-1} x_{i}^{\prime} C^{i}=-\sum_{j=0}^{n} a_{j} \omega^{n-j} \sum_{i=0}^{j-1} \omega^{i} C^{i}(I-\omega C)=-\sum_{j=0}^{n} a_{j} \omega^{n-j}+\omega^{n} \sum_{j=0}^{n} a_{j} C^{j} .
\end{gathered}
$$

If we apply (1.19) we get

$$
\begin{equation*}
(I-\omega C)^{-1}=\sum_{i=0}^{n-1} x_{i} C^{i} \tag{1.23}
\end{equation*}
$$

4. Assume $A\left(I-\omega_{j} C\right)^{-1} y=0$. Then, for each $j, \sum x_{i j}^{\prime} A C^{i} y=0$. Since the determinant of $x_{i j}^{\prime}$ is not zero, it follows that $A C^{i} y=0$, hence $y=0$, since (A, C) is observable.

Corollary 5

The space X defined by (1.16) is of dimension n, and the linear span of $K\left(z, \omega_{i}\right) c_{i}$ is X.

Lemma 12

Assume $R_{\alpha}(f)=\lambda f$ for some constant λ, and f not identically zero. Then $f(\alpha) \neq 0$, and if $\beta=\alpha+1 / \lambda$, then $\beta \notin \Omega$.

Proof. From

$$
f(z)=\frac{f(\alpha)}{1-\lambda(z-\alpha)}=\frac{f(\alpha) / \lambda}{\beta-z}
$$

it is obvious that, if $f(\alpha)=0$, then f is identically zero, otherwise f is not analytic at β.
From the relation

$$
[I-(z-\alpha) C]^{-1}-[I-(\beta-\alpha) C]^{-1}=[I-(z-\alpha) C]^{-1} C(z-\beta)[I-(\beta-\alpha) C]^{-1}
$$

we get

$$
R_{\beta}\left(A[I-(z-\alpha) C]^{-1} u\right)=A[I-(z-\alpha) C]^{-1} C(z-\beta)[I-(\beta-\alpha) C]^{-1} u
$$

Define

$$
M=A[I-(z-\alpha) C]^{-1}
$$

Then

$$
\begin{equation*}
R_{\beta}(M u)=M C[I-(\beta-\alpha) C]^{-1} u \tag{1.24}
\end{equation*}
$$

This shows that X is R_{β}-invariant, whenever $I-(\beta-\alpha) C$ is invertible. It also shows that X is $R_{\alpha-}$ invariant, and R_{α} is defined by the matrix $C: R_{\alpha}(M u)=M C u$.

Assume now that X is R_{α}-invariant. Define two operators A with range in \mathbb{C}^{p} by $A f=f(\alpha)$ and C with range in X by $C f=R_{\alpha}(f)$. By definition, we have

$$
\begin{equation*}
f(\alpha)=f(z)+\alpha R_{\alpha}(f)-z R_{\alpha}(f) \tag{1.25}
\end{equation*}
$$

If $B=I+\alpha C$, this is

$$
\begin{equation*}
A f=(B-z C) f \tag{1.26}
\end{equation*}
$$

Replace in (1.23) ω by $z-\alpha$. Then $(B-z C)^{-1}=\sum x_{i} C^{i}$, where x_{i} is some rational function. Then we get $f=\sum x_{i} A C^{i} f$, so that f is a rational function, the denominator being the determinant of $I-(z-\alpha) C$. If we want a more precise result, we have to use a basis.

Let $\left(e_{1}, \ldots, e_{n}\right)$ be a basis of $X,\left(\epsilon_{1}, \ldots, \epsilon_{p}\right)$ the canonical basis of \mathbb{C}^{p}, and $M_{j i}$ the i-component of e_{i}. Then $e_{i}=\sum M_{j i} \epsilon_{j}$. Define $C_{j i}$ by $C e_{i}=\sum C_{j i} e_{j}, B_{j i}=\delta_{i j}+\alpha C_{j i}$ and $A_{j i}=M_{j i}(\alpha)$. Then (1.25) is

$$
\begin{equation*}
A=M(B-z C) \tag{1.27}
\end{equation*}
$$

Note that this is $A=M B-z M C$, where $M B$ and $M C$ are matrices, product of the matrices $M_{j i}, B_{j i}$ and $C_{j i}$. It gives $M=A(B-z C)^{-1}$.

Thus, X has the form (1.16). Assume now $(B-\beta C) u=0, u \neq 0$. If $\lambda=1 /(\beta-\alpha)$, this is the same as $C u=\lambda u$. Let $f=M u$. Then $R_{\alpha}(f)=\lambda f$. We know that this implies $\beta \notin \Omega$. This means that M is analytic in Ω. It also implies $f(\alpha) \neq 0$. But $f(\alpha)=A u$, so that $A u \neq 0$. In other words, (A, C) is observable, and this concludes the proof of the theorem.

Chapter 2

System Theory

We know that a strictly proper stable rational matrix \mathcal{H} can be factored as $\mathcal{H}=C Q^{-1}$, where Q is inner. We show here that the minimum of $\left\|F-C Q^{-1}\right\|$ has the form $\psi_{F}(Q)$, for fixed Q. Some properties of this function ψ will be studied.

2.1 Realization

Definition 3

Let K be a field $(\mathbb{C}$ or $\mathbb{R}), \mathcal{H}$ a $m \times p$ matrix of functions over K. A state-space realization of \mathcal{H} is given by a vector space \mathcal{X} (called the state-space) and three linear mappings H, F and G, where G is from K^{p} to \mathcal{X}, F from \mathcal{X} to \mathcal{X}, and H from \mathcal{X} to K^{m}, such that

$$
\begin{equation*}
\mathcal{H}=H(z I-F)^{-1} G . \tag{2.1}
\end{equation*}
$$

The realization is called minimal if the space \mathcal{X} has minimal dimension. (H, F) is observable if for every complex λ, the matrix $\binom{\lambda I-F}{H}$ is of full rank (injective); (F, G) is reachable if $\left(G^{t}, F^{t}\right)$ is observable, i.e. if $\left(\begin{array}{ll}\lambda & F \\ \hline\end{array}\right)$ is of full rank. The realization is called canonical if (H, F) is observable and (F, G) is reachable.

Note that if \mathcal{X} is of finite dimension, then \mathcal{H} is rational, strictly proper. If F is stable, then \mathcal{H} is stable. We shall prove the converse: if \mathcal{H} is strictly proper, rational, it has a finite-dimensional realization, and if \mathcal{H} is stable, then F is stable for every minimal realization.

Unless stated otherwise, all results are valid in the real and in the complex case.

Theorem 11

We assume that \mathcal{X} is of finite dimension n. A triple (H, F, G) is minimal if and only if it is canonical. For every triple (H, F, G), there exists a minimal triple $\left(H_{1}, F_{1}, G_{1}\right)$ such that

$$
\begin{equation*}
H(z I-F)^{-1} G=H_{1}\left(z I-F_{1}\right)^{-1} G_{1} \tag{2.2}
\end{equation*}
$$

and if both triples are minimal, there exists a isomorphism U from \mathcal{X}_{1} to \mathcal{X} such that

$$
\begin{equation*}
G=U G_{1} \quad F_{1}=U^{-1} F U \quad H_{1}=H U \tag{2.3}
\end{equation*}
$$

in other words, the following diagram commutes

Proof. 1. Consider the matrix $A_{q}=\left(\begin{array}{c}H \\ H F \\ \vdots \\ H F^{q-1}\end{array}\right)$. The matrix A_{n} is called the observability matrix of (H, F). The Cayley-Hamilton theorem says that $F^{n}=\sum_{k=0}^{n-1} \lambda_{k} F^{k}$, where $z^{n}-\sum \lambda_{k} z^{k}$ is the characteristic polynomial of F. Hence A_{q} has the same rank as A_{n} if $q \geq n$. The matrix

$$
\left(G F G F^{2} G \ldots F^{n-1} G\right)
$$

is called the reachability matrix of the pair (F, G). We shall show that (H, F, G) is canonical if and only if the reachability and observability matrices are of full rank.
2. Assume A_{n} of full rank. If $(\lambda I-F) x=0, H x=0$ then $H F^{i} x=\lambda^{i} H x=0$, hence $A_{n} x=0$, so that $x=0$.

Assume now that A_{n} is not of full rank. There exists a regular matrix U such that $A U=\left(\begin{array}{ll}B & 0\end{array}\right), B$ is of full rank. Write

$$
H U=\left(\begin{array}{ll}
H_{1} & H_{2}
\end{array}\right) \quad U^{-1} F U=\left(\begin{array}{cc}
F_{1} & F_{2} \tag{2.4}\\
F_{3} & F_{4}
\end{array}\right) \quad U^{-1} G=\binom{G_{1}}{G_{2}}
$$

Since $H F^{i} U=H U\left(U^{-1} F U\right)^{i}$, and the last columns of this matrix are zero, we get $H_{2}=0$ and $H_{1} F_{1}^{i} F_{2}=$ $0(0 \leq i \leq n-2)$. Moreover B is the matrix whose rows are $H_{1} F_{1}^{i}$. Hence $B F_{2}=0, F_{2}=0$.

Let y be any eigenvector of F_{4} associated to an eigenvalue λ, and $x=U\binom{0}{y}$. Then $(\lambda I-F) x=0$, $H x=0$, so that (H, F) is not observable. In the same fashion (F, G) is reachable if and only if the reachability matrix is of full rank.
3. If (H, F, G) is minimal, then it is canonical. This is because, if the system is not observable, equation (2.4) together with $F_{2}=0, H_{2}=0$ gives $H(z I-F)^{-1} G=H_{1}\left(z I-F_{1}\right)^{-1} G_{1}$, so that the system is not minimal.
4. Assume that (H, F, G) and $\left(H_{1}, F_{1}, G_{1}\right)$ are canonical and $H(z I-F)^{-1} G=H_{1}\left(z I-F_{1}\right)^{-1} G_{1}$.

Let $x \in \mathcal{X}_{1}$. Since $\left(F_{1}, G_{1}\right)$ is reachable, there are vectors u_{i} such that $x=\sum_{i=0}^{n-1} F_{1}^{i} G_{1} u_{i}$. This representation is of course not unique, so consider also $x=\sum F_{1}^{i} G_{1} u_{i}^{\prime}$. Let $y=\sum F^{i} G u_{i}$ and $y^{\prime}=$ $\sum F^{i} G u_{i}^{\prime}$. The relation $H(z I-F)^{-1} G=H_{1}\left(z I-F_{1}\right)^{-1} G_{1}$ says

$$
\begin{equation*}
H F^{i} y=H F^{i} y^{\prime}=H_{1} F_{1}^{i} x \quad(i \geq 0) \tag{2.5}
\end{equation*}
$$

and the observability of (H, F) says $y=y^{\prime}$. We can define a mapping U from \mathcal{X}_{1} to \mathcal{X}, by defining $U x=y$. In the same fashion, since (F, G) is reachable and $\left(H_{1}, F_{1}\right)$ observable, we can define a mapping V from \mathcal{X} to \mathcal{X}_{1}. These mappings U and V are obviously linear, and V is the inverse of U.

By definition $G=U G_{1}$ (take $x=G_{1} u$). On the other hand, (2.5) says

$$
H F^{i} U=H_{1} F_{1}^{i}
$$

For $i=0$, this gives $H_{1}=H U$, hence $H F^{i}=H\left(U F_{1} U^{-1}\right)^{i}$. Write $U F_{1} U^{-1}=F+X$. Then $H F^{i} X=0$ for every $i, X=0$, and $U F_{1} U^{-1}=F$.
5. Assume (H, F, G) is canonical. There exists a minimal realization $\left(H_{1}, F_{1}, G_{1}\right)$ such that $H(z I-$ $F)^{-1} G=H_{1}\left(z I-F_{1}\right)^{-1} G_{1}$. Since $\left(H_{1}, F_{1}, G_{1}\right)$ is canonical, the existence of U with $U F_{1} U^{-1}=F$ shows that F and F_{1} have the same size.

The converse is the following.

Theorem 12

Let \mathcal{H} be a strictly proper rational matrix of McMillan degree n. Then \mathcal{H} has a minimal realization, the dimension of the state space being n.

Proof. 1. Let $\mathcal{X}=\mathcal{X}(\mathcal{H})$ be the space defined in the previous chapter. Recall that this is the space of polynomial vectors, and $x=y$ in \mathcal{X} if and only if $\mathcal{H}(x-y)$ is a polynomial. The dimension of the space is the McMillan degree of \mathcal{H}.
2. If u is a constant vector, we can consider it as a polynomial vector of degree zero, hence as an element $G u$ of \mathcal{X}. Obviously, this defines a linear function G. Now, if $x=y$ in \mathcal{X}, then $z x=z y$, so that the multiplication by z is defined in \mathcal{X}. Call it $F x$. Then F is a linear mapping, and clearly every element of \mathcal{X} can it be written as $\sum F^{i} G u_{i}$, so that (F, G) is reachable.
3. For every polynomial x, we can uniquely write $\mathcal{H} x=\sum_{k>K} \alpha_{k} / z^{k+1}$. If $\mathcal{H} y=\sum_{k>K} \beta_{k} / z^{k+1}$, then $x=y$ in \mathcal{X} is $\alpha_{k}=\beta_{k}$ for $k \geq 0$. Hence, the mapping $x \rightarrow \alpha_{0}$ is well defined. If we denote it by H, we have $H F^{i} x=\alpha_{i}$, so that $H F^{i} x=0$ for every i implies that $\mathcal{H} x$ is a polynomial, hence $x=0$ in \mathcal{X}. Thus (H, F) is observable.
6. Finally, if $H=\sum_{k \geq 0} H_{k} / z^{k+1}$ (recall that \mathcal{H} is strictly proper), then $H F^{i} G=H_{i}$, hence $\mathcal{H}=$ $H(z I-F)^{-1} G$.

In the remainder of this section, we explain how to get the matrices H, F and G. According to the theorem, it suffices to find a basis $\left(e_{i}\right)$ of \mathcal{X} and compute the Taylor expansion of $\mathcal{H} e_{i}$ (this gives H). We get F and G if we know how constants and $z e_{i}$ are expressed in this basis.

Assume first $\mathcal{H}=C Q^{-1}$, where C and Q are coprime. Then $\mathcal{X}=\mathcal{X}^{\prime}\left(Q^{-1}\right)$. Define

$$
K_{Q}(z, \omega)=\frac{I-Q(z) Q(\omega)^{*}}{1-z \bar{\omega}}
$$

One of the results of the next chapter is that we can find $e_{i}=K_{Q}\left(z, \omega_{i}\right) c_{i}$, such that every element $x \in H^{2}$ can be uniquely written as

$$
x=Q a+\sum \lambda_{i} e_{i},
$$

where $a \in H^{2}$ and λ_{i} is complex. Hence e_{i} can be chose as a basis. Moreover,

$$
\left\langle K_{Q}(z, \omega) c \mid x\right\rangle=\sum \lambda_{i} c^{*} e_{i}(\omega)
$$

so that finding F and G becomes easy: it suffices to compute some scalar products, evaluate $e_{i}(\omega)$ and invert a matrix. We do not explain here how e_{i} is to be chosen. We just consider a simple example, the case where Q is of McMillan degree one. It can be written as $Q=I-\left(1-\beta_{\omega}\right) u u^{*}$, so that

$$
K_{Q}(z, \mu)=\frac{A}{1-z \bar{\omega}}, \quad A=\frac{1-|\omega|^{2}}{1-\bar{\mu} \omega} u u^{*} .
$$

Taking $e_{1}=K_{Q}(z, \omega) u$ gives $A=u u^{*}$. Because u is of unit norm, we get

$$
\lambda=\left\langle\left.\frac{1-|\omega|^{2}}{1-z \bar{\omega}} u \right\rvert\, x\right\rangle
$$

Hence $\lambda=\left(1-|\omega|^{2}\right) u^{*} x(\omega)$. The matrix G is trivial: evaluate this expression for a constant x. The matrix F is even more trivial: if we evaluate at $x=z e_{i}$, we get $F=\omega$ (since ω is the single pole of \mathcal{H}, F has to be equal to ω).

In what follows, we consider the decomposition $\mathcal{H}=N D^{-1}$. Since this decomposition has more free parameters, it is possible to chose one for which the matrices F and G are easy to compute.

Let A be a matrix of polynomials. Denote by $d_{i j}$ the degree of entry $A_{i j}$ and by d_{j} the maximum of all $d_{i j}$. This will be called the degree of column j. The column j can be written as $B_{j} z^{d_{j}}+C_{j}$, where C_{j} is of degree less then d_{j}, and B_{j} is constant. In case the matrix whose columns are B_{j} is of full rank, the matrix A is called column reduced.

Lemma 13

Let D be a square matrix, with non-zero determinant of degree n. There exists a unimodular matrix U such that $D U$ is column reduced. The sum of the degrees of the columns is n.

Proof. Assume D not column reduced. There exist some λ_{i} such that $\sum \lambda_{i} B_{i}=0$. Chose k such that $\lambda_{k} \neq 0$ and d_{k} is maximal. Subtract form column k column i multiplied by $z^{d_{k}-d_{i}} \lambda_{i} / \lambda_{k}$. Then the degree of column k decreases. Note that no column of D can be identically zero, and the degree of the determinant is at most $d=\sum d_{i}$. If the matrix is column reduced, the coefficient of z^{d} in the determinant is the determinant of the B_{j}, hence is not zero, so that $n=\sum d_{i}$.

Lemma 14

Let D be a square matrices of polynomials, with non-zero determinant. There exists a permutation matrix V, a unimodular matrix U such that $A=V D U$ satisfies the following conditions, where $d_{i j}$ is the degree of $A_{i j}$:

1. Diagonal elements have degree $d_{i i}=d_{i}$, they are monic, and $d_{i} \leq d_{j}$ for $i \leq j$.
2. $d_{i j}<d_{i}$ for $j>i$;
3. $d_{i j} \leq d_{j}$ for $j<i$;
4. $d_{i j}<d_{i}$ for $j<i$.

Conditions (1), (2) and (4) imply that row i is of degree d_{i}. In fact, there is only one term on the row which is of degree d_{i}, this element is on the diagonal. In particular, the matrix A is row reduced (its transpose is column reduced). Since diagonal terms are monic, for the matrix $B=V D U-\operatorname{diag}\left(z^{d_{i}}\right)$, row i is of degree $<d_{i}$. Thus column j is a linear combination of vectors of the form $e_{k} z^{i}$, with $i<d_{k}$, where e_{k} is the canonical basis of \mathbb{C}^{p}.

Conditions (1), (2) and (3) imply $d_{i j} \leq d_{j}$, (and $d_{i j}<d_{j}$ if $i<j$). Thus d_{j} is the degree of column j, and A is column reduced, because the matrix that must be of full rank is triangular.
Proof. Let's start with D, and apply the following operations. We may assume that D is column reduced, with degree d_{j} on column j. We may also assume that the sequence d_{j} is non-decreasing, by re-ordering the columns.

We assume that for every i, every $j<k, d_{i j}$ satisfies conditions (2) and (3). Moreover, if $j<i<k$, condition (4) is true. These relations are trivially true for $k=1$, because they are empty. We apply some operations to the matrix so that they become true for $k+1$.

Let a_{i} be the term $A_{i k}$, and b_{i} its degree. Consider index $i<k$ such that $b_{i}-d_{i}=t$ is maximal. If $t<0$, then relation (2) is true. Otherwise, subtract from column k the column i, multiplied by $\alpha_{i} z^{t}$, where α_{i} is the leading coefficient of a_{i}.

Consider now what happens on row j. First, all elements of column i are of degree at most d_{i}, so that we add terms of degree at most $d_{i}+t$. This is $b_{i} \leq d_{k}$. Thus, the degree of row k will remain at most k. Assume $j \neq i$. Then $d_{j i}<d_{j}$. This means that we add a term of degree less than $d_{i}+t$. On the other hand, if $i=j$, we add a term of degree $b_{i}=d_{i}+t$, and by construction, the leading coefficient vanishes. After this operation, the number of rows i such that $t=b_{i}-d_{i}$ has diminished. If all rows satisfy $b_{i}+d_{i}<t$, we can chose a smaller t.

Assume now that condition (2) is satisfied. For $i \geq k$, we have $d_{i k} \leq d_{k}$, which is condition (3). But equality must hold somewhere (otherwise the degree of the determinant would be smaller that $\sum d_{i}$). By
permuting rows, we may assume that element of row k has degree d_{k} (this is the only operations on rows that will be performed). By multiplication of the column by a scalar, we may assume that this element is monic.

We must now modify our matrix so that condition (4) holds, namely $d_{k j}<d_{k}$, for $j<k$. We know $d_{k j}<d_{j}$, so that there is nothing to do if $d_{j}<d_{k}$. Otherwise, it is of degree $\leq d_{k}$, and equality can happen. We handle columns $k-1, k-2$, etc., in order. If (4) is true, there is nothing to do; otherwise, let α be the leading coefficient of $A_{k j}$.

Subtract from column j the column k multiplied by α. On row i, the following conditions must be true: if $i<j$, the degree must be less than d_{i}. This is true before the operation on columns j and k, and remains true after subtraction. If $i>k$, the degree must be at most d_{j} and d_{k}. This is true before the subtraction, and remains true after it, because $d_{j}=d_{k}$. If $j \leq i<k$, the degree on column k is less than d_{k}. The degree on column j is at most d_{j} (equal if $i=j$, different otherwise, because these columns are already handled). Finally, if $i=k$, we add the quantity that makes the degree decrease.

The proof is a bit complicated, but the algorithm is easy to implement. Finding U such that $D U$ is column reduced is numerically harder, because we have to compute determinants.

Lemma 15

Let D be a square matrix of polynomials, $A=V D U$ as in the previous lemma. If x is any polynomial vector, either $x=0$, or $y=V D x$ has at least one entry y_{i} of degree $\geq d_{i}$.

Proof. Let $t=U^{-1} x$. Then $y=A t$, and $t=A^{-1} y$. Let δ be the determinant of A and B the matrix of cofactors. We have $\delta t=B y$. If n is the degree of δ, then B is column reduced, the degree of the column i being $n-d_{i}$ (this is because A is row reduced). Thus entries of $B y$ are of degree $<n$ if entries of y_{i} are of degree $<d_{i}$. This implies $t=0$.

Lemma 16

Let D be a square matrix of polynomials, U and V as above. Let $A=V D$. Let ϵ_{j} be the set of vectors $e_{i} z^{j}$, with $j<d_{i}$.

For every polynomial vector y, there exists a vector polynomial x, and constants λ_{i}, uniquely defined, such that

$$
\begin{equation*}
y=A x+\sum \lambda_{i} \epsilon_{i} . \tag{2.6}
\end{equation*}
$$

Proof. Unicity comes from the previous lemma. Of course, elements $z^{j} e_{i}$ with $j<d_{i}$ can be written in this form, with $x=0$. We want to show that this is true for every j.

Every y can be written as a sum of elements of the form $z^{j} e_{i}$, each term having one of the following forms: either $j<e_{i}$, and $z^{j} e_{i}$ is some ϵ_{k}, or $d_{i} \neq 0$, and $z^{j} e_{i}=z^{k} \epsilon_{l}$, or $d_{i}=0$. In the last case, we know that $e_{i}-A U e_{i}$ is a linear combination of the ϵ_{i}. Thus, for some x

$$
z^{j} e_{i}=A x z^{j}+\sum \lambda_{k} \epsilon_{k} z^{j}
$$

Thus, this last case reduces to the other ones.
We also know that $z^{d_{i}} e_{i}$ can be written in this form (with $x=U e_{i}$). This means that $z \epsilon_{i}$ can be written in this form.

$$
\begin{equation*}
z \epsilon_{i}=A x_{i}+\sum \lambda_{i j} \epsilon_{j} \tag{2.7}
\end{equation*}
$$

From this relation, it is obvious that we can write $z^{k} \epsilon_{i}$ in this form.
This lemma says that ϵ_{i} is a basis of $\mathcal{X}\left(D^{-1}\right)$, the state-space of \mathcal{H}, and the matrices of F and G in this basis are easy to obtain from A.

2.2 Study of the approximation problem

Let

$$
F=\sum_{k=0}^{\infty} \frac{F_{k}}{z^{k+1}}, \quad G=\sum_{k=0}^{\infty} F_{k}^{*} z^{k}
$$

We assume that $F \in H_{2}^{-}$, that is, $G \in H^{2}$, or $\sum\left\|F_{k}\right\|^{2}<\infty$. We want to find \mathcal{H}, strictly proper, stable, of McMillan degree n such that

$$
\|F-\mathcal{H}\| \text { is minimal. }
$$

We shall assume in what follows that G (or F) has only a finite number of coefficients, hence $G=$ $\sum_{k=0}^{M} G_{k} z^{k}$ is a polynomial. In principle, the theory works with an infinite number of coefficients, but the program can handle only a finite number of inputs. Moreover, unless stated otherwise, we consider the L^{2} norm.

2.2.1 Scalar case

Statement of the problem In this subsection, we use the factorisation $\mathcal{H}=N D^{-1}$. We know that \mathcal{H} is of degree n if D and N are coprime, and $\operatorname{det} D$ is of degree n. If F is a $m \times p$ matrix, then D is a square $p \times p$ matrix, but there is no simple bound on the degree of the entries of D. If however $p=1$, we know that D is a scalar, whose degree is n. In the case $m=1$, we transpose F, apply the theory, and transpose the result.

Hence, we may assume $\mathcal{H}=P / q$, where P is a vector of polynomials and q is a polynomial. The condition " P and q coprime" is that there exists a polynomial vector X, a polynomial y such that $X^{*} P+q y=1$. This means that q is coprime to the gcd of the entries P_{i} of P. The problem is hence:

Find P and q such that

$$
\begin{equation*}
\|F-P / q\| \tag{2.9}
\end{equation*}
$$

is minimal, under the conditions: 1) q is stable, of degree $n, 2$) entries of P have degree $<n$, and 3) P and q are coprime.

This problem has been studied extensively in [2]. Before solving this problem, let's discuss the conditions introduced before. It is obvious that we can take q of the form $z^{n}+\sum_{i<n} q_{i} z^{i}$. Then q will be of degree n. The set of stable polynomials q is bounded (with the usual metric), but is not compact. This will introduce some difficulties (in particular, there is no guaranty that (2.9) has a minimum). What we shall do is establish formulas for the stable case, and discuss what happens otherwise. In particular, we shall see that minimising (2.9) is equivalent to minimising $\psi(q)$ on the set of all polynomials with roots in $\overline{\mathbb{U}}$, which is a compact.

We can trivially relax the condition that P is of degree $<n$, for if $P=A q+B$ (Euclidean division), then $\|F-P / q\|^{2}=\|F-B / q\|^{2}+\|A\|^{2}$, and this can be minimal only if $A=0$. On the other hand, we can add the condition $\operatorname{deg} P<n-k$, see section 2.3.7.

We shall ignore the last condition and, later on, check if it is satisfied. The trouble is essentially that the set of polynomials q, with roots in $\overline{\mathbb{U}}$, which are coprime to $L(q)$, is not compact $(L(q)$ is the unique P which minimises (2.9) when q is fixed). In fact, if $F=P_{0} / q_{0}$ is rational and has McMillan degree $<n$, if q_{1} is any stable polynomial, which is coprime to q_{0}, and whose degree is such that $\operatorname{deg}\left(q_{0} q_{1}\right)=n$, then $P / q=P_{0} / q_{0}+\epsilon / q_{1}$ has McMillan degree n for non-zero ϵ, and the norm of the distance to F is (a constant times) ϵ. Thus $\min \|F-P / q\|$ is zero, and the minimum is not of degree n.

We shall prove that the algorithm we propose is a good one, namely that it gives P and q which are coprime, whenever this is possible, in fact, in all cases where F is not a rational function of McMillan degree $<n$.

The equation for ψ For every polynomial S we have

$$
\left\|F-\frac{P+S}{q}\right\|^{2}=\left\|F-\frac{P}{q}\right\|^{2}+\left\|\frac{S}{q}\right\|^{2}-2 \Re\left\langle\left. F-\frac{P}{q} \right\rvert\, \frac{S}{q}\right\rangle .
$$

A necessary and sufficient condition for P / q to be minimal is

$$
\begin{equation*}
\left\langle\left. F-\frac{P}{q} \right\rvert\, \frac{S}{q}\right\rangle=0 \tag{2.10}
\end{equation*}
$$

for every polynomial S of degree less than n. This means that P / q is the orthogonal projection of F on the space of all functions S / q. Note: this is true whenever the norm used in (2.9) is associated to a scalar product. In case we use the H^{2} norm, more can be said, in fact, we have a formula for the projection.

Let's consider

$$
\begin{equation*}
G \tilde{q}=V q+R \tag{2.11.a}
\end{equation*}
$$

the Euclidean division of $G \tilde{q}$ by q. Here R is a polynomial of degree $<n$, and V an element of H^{2} (if G is a polynomial, it is a polynomial with the same degree as G). Define

$$
\begin{equation*}
P=\tilde{R}=z^{n-1} \bar{R}^{t}(1 / z) \tag{2.11.b}
\end{equation*}
$$

Recall that $\check{V}=(1 / z) \bar{V}^{t}(1 / z)$ (this is in H_{2}^{-}) and $\tilde{q}=z^{n} \bar{q}(1 / z)$. Then Equations (2.11) are

$$
\begin{equation*}
F-\frac{P}{q}=\check{V} \frac{\tilde{q}}{q} \tag{2.12}
\end{equation*}
$$

If X is the RHS of this equation, then $\|X\|=\|\check{X}\|$ and $\check{X}=V q / \tilde{q}$. Since q is stable, q / \tilde{q} is inner and $\|V q / \tilde{q}\|=\|V\|$. Thus

$$
\begin{equation*}
\left\|F-\frac{P}{q}\right\|^{2}=\|V\|^{2} \tag{2.13}
\end{equation*}
$$

Note: this relation is only true if we use the L^{2} norm.
Let S be any polynomial of degree less than n. We have

$$
\left\langle\left. F-\frac{P}{q} \right\rvert\, \frac{S}{q}\right\rangle=\left\langle\left.\check{V} \frac{\tilde{q}}{q} \right\rvert\, \frac{S}{q}\right\rangle=\left\langle V \frac{q}{\tilde{q}} \left\lvert\, \frac{\tilde{S}}{\tilde{q}}\right.\right\rangle
$$

(the last equation is obtained by replacing x by \check{x}). The last scalar product is also $\langle V \mid \tilde{S} / q\rangle$. This is zero because $p / q \in H_{2}^{-}$if p is a polynomial, $\operatorname{deg} p<\operatorname{deg} q$.

Define $L_{F}(q)=P$ and $\psi_{F}(q)=\|V\|^{2}$. We shall sometimes write L_{G} and ψ_{G} instead of L_{F} and ψ_{F}. Equations (2.10) and (2.13) say now: $\|F-P / q\|$ is minimal if and only if $P=L_{F}(q)$ and $\psi_{F}(q)$ is minimal. Taking $S=P$ in (2.10) gives

$$
\begin{equation*}
\left\|F-\frac{P}{q}\right\|^{2}=\|F\|^{2}-\left\langle F \left\lvert\, \frac{P}{q}\right.\right\rangle \tag{2.14}
\end{equation*}
$$

Note. Let $F^{\prime}=\lambda F$, where λ is a positive, real number. Then $G^{\prime}=\lambda G, L_{F^{\prime}}(q)=\lambda L_{F}(q)$ and $\psi_{F^{\prime}}(q)=\lambda^{2} \psi_{F}(q)$. In the case $\lambda=1 /\|F\|$, we have $\left\|F^{\prime}\right\|=1$, this simplifies a bit (2.14). In fact, we have

$$
0 \leq \psi_{F^{\prime}}(q) \leq 1
$$

The first inequality is an equality if and only if $F=P / q$, the second is an equality if and only if $P=0$.

2.2.2 Matrix case

We consider here the factorisation $\mathcal{H}=Q^{-1} C$, where Q is inner, of McMillan degree n, and C is in $H_{\tilde{\sim}}$. According to lemma $9, Q^{-1} C$ is strictly proper stable, of McMillan degree $\leq n$, if and only if $\tilde{q} C$ and $\tilde{D} C$ are polynomials with entries of degree $<n$, assuming

$$
Q=\frac{D}{\tilde{q}} \quad Q^{-1}=\frac{\tilde{D}}{q}
$$

RR no 0123456789

Condition (2.10) becomes

$$
\begin{equation*}
\left\langle F-Q^{-1} C \mid Q^{-1} C^{\prime}\right\rangle=0 \tag{2.15}
\end{equation*}
$$

The equivalent of (2.11.a) is

$$
\begin{equation*}
G \tilde{D}=V q+R \tag{2.16.a}
\end{equation*}
$$

Let $S=R D / q$. The relation $D \tilde{D}=q \tilde{q}$ says

$$
\begin{equation*}
G \tilde{q}=V D+S \tag{2.16.b}
\end{equation*}
$$

Let $C=\tilde{R} / \tilde{q}$, then $\tilde{q} C=\tilde{R}$ is a polynomial, and $\tilde{D} C=\tilde{S}$; note that $S=G \tilde{q}-V D$ is in H^{2}, but $S=R D / q$ says that S is rational and stable, so that S is a polynomial. Obviously R and S have degree $<n$. Now equations (2.16) give a function $\mathcal{H}=Q^{-1} C=\tilde{S} / q$, which is rational, stable, strictly proper, of McMillan degree $\leq n$. It minimises $\left\|F-Q^{-1} C\right\|$: in fact, equation (2.16.a) gives

$$
\begin{equation*}
F-Q^{-1} C=Q^{-1} \check{V} \tag{2.17}
\end{equation*}
$$

so that the scalar product in (2.15) is

$$
\left\langle F-Q^{-1} C \mid Q^{-1} C^{\prime}\right\rangle=\left\langle Q^{-1} \check{V} \mid Q^{-1} C^{\prime}\right\rangle=\left\langle V Q \mid \check{C}^{\prime} Q\right\rangle=\left\langle V \mid \check{C}^{\prime}\right\rangle
$$

The last quantity is zero since $V \in H^{2}$ and $\check{C}_{2} \in H_{2}^{-}$.
The equivalent of (2.13), (2.14) is now, with $P=\tilde{S}, Q^{-1} C=P / q$:

$$
\left\|F-Q^{-1} C\right\|^{2}=\|F-P / q\|^{2}=\|V\|^{2}=\|F\|^{2}-\left\langle F \mid Q^{-1} C\right\rangle=\|F\|^{2}-\langle F \mid P / q\rangle
$$

Note: Equation (2.16.a) says that $G Q^{-1}=V+R / q$. But V is in H^{2} and R / q is in H_{2}^{-}so that these terms are orthogonal, hence

$$
\begin{equation*}
\|F\|^{2}=\|V\|^{2}+\|R / q\|^{2} \tag{2.18}
\end{equation*}
$$

The quantity $\|V\|^{2}$ will be denoted by $\psi_{F}(Q)$, and the quantity C by $L_{F}(Q)$.

2.3 Properties of ψ

2.3.1 Optimisation methods

The problem now is to find the minimum of ψ. In the scalar case, ψ is a function of q, where q is a stable polynomial. Let S be the set of stable polynomials. We shall see that S is an open subset of \mathbb{C}^{n}, which has compact closure. Thus, there exists q, in the closure of S, that minimises ψ. This q has the form $q=q_{1} q_{2}$, where q_{1} is stable and q_{2} has all its roots in \mathbb{T}. We shall show that ψ is defined for these polynomials, and that $\psi(q)=\psi\left(q_{1}\right)$. If q is a minimum of ψ, then q_{1} is also a minimum of ψ (at smaller order). We shall show that, in this case, the gradient of ψ points outwards (more about this will be explained later), and this gradient can only be zero if $\psi\left(q_{1}\right)=0$. Said otherwise, either $F=P / q$, where P / q has McMillan degree $<n$, or ψ has a minimum in S.

In the matrix case, we have to parameterise all inner functions Q of McMillan degree n. We shall give formulas of the form $Q=f(u, y)$. Here y is constraint to be in a set S_{u}. When we use the Schur formulas, it happens that S_{u} is independent of u, and it is much easier to check $y \in S_{u}$ than to check $q \in S$ in the scalar case. The set S_{u} has compact closure. The question is: what happens if $y=\lim y_{k}$ is in the boundary of S_{u}. It can happen that Q has a limit, and this limit can be of McMillan degree n, or of smaller degree; sometimes the limit does not exist. In the first case, there exists u^{\prime} such that $f\left(u, y_{k}\right)=f\left(u^{\prime}, y_{k}^{\prime}\right)$, and y_{k}^{\prime} has a limit in $S_{u^{\prime}}$. In the second case this is false. The conditioning of the formulas are in general bad in case y is near the boundary of S_{u}. For this reason, we try to use a "better" u whenever possible.

As in the scalar case, there exists Q that minimises ψ, and there exist infinitely many quantities u such that $Q=f(u, y)$ (in fact, almost every u can be chosen). However, for fixed u, it is not true that
$\psi\left(f(u, y)\right.$) has a minimum in S_{u} (consider for instance $f(u, y)=e^{i(u-y)}$, with the restriction $|y|<\pi$. Then the set of all $f(u, y)$ is \mathbb{T}, with $-e^{i u}$ removed). Assume that our algorithm finds a sequence Q_{k} such that $\psi\left(Q_{k}\right)$ is decreasing. It is possible, if u is fixed, that y_{k} has a limit, which is on the boundary of S_{u}, and that this limit is such that $Q=f(u, y)$ is not a minimum of ψ (consider the example above, with $\psi(Q)=|Q+1|^{2}$, the starting point is $-e^{i \epsilon}$, and the unreachable point on the boundary is $-e^{i \epsilon / 2}$). This means that we must use an algorithm that changes the value of u from time to time. We use an algorithm that, in the complex case, always finds a "good" value of u. As a consequence, we cannot assert that the limit of the sequence Q_{k} is a critical point of ψ.

One can design an algorithm that finds a minimum of ψ in the following way. We construct a sequence of points q_{k}, such that $q_{k+1}=q_{k}+t_{k} d_{k}$. We first define a direction d_{k} such that the function $f(t)=\psi\left(q_{k}+t d_{k}\right)$ is decreasing at $t=0$. This means that the derivative at $t=0$ is negative. If $\nabla \psi$ is the gradient of ψ, it means that the scalar product of $\nabla \psi$ and d_{k} is negative. This is true if for instance $d_{k}=-W \nabla \psi$, where W is a symmetric, definite positive matrix. There is at least one choice for W : the identity matrix. In the case where the Hessian of ψ is positive definite, a good choice is to take for W the inverse of the Hessian. In this case, we can take $t_{k}=1$: If the initial condition q_{0} is near enough to a local minimum of ψ, then this will converge to the local minimum. There are other methods, like BFGS, which construct a matrix W that has good properties.

Once the direction d_{k} is found, we are looking for t such that $f(t)=\psi\left(q_{k}+t d_{k}\right)$ is minimal. It can be shown that, in certain cases, it is not necessary to find the absolute minimum of f, a good approximation is enough. In general, we do not know under which conditions these algorithms work.

Consider what happens in the scalar case. If $q=\sum q_{i} z^{i}$, then $\nabla \psi$ will be the polynomial $\sum_{i=0}^{n-1} z^{i} \partial \psi / \partial q_{i}$. In the complex case, each q_{k} has the form $u_{k}+i v_{k}$. Then $\partial \psi / \partial q_{k}=\partial \psi / \partial u_{k}+i \partial \psi / \partial v_{k}$. This is a well defined polynomial. The function $f(t)$ is defined, provided that $q_{k}+t d_{k}$ is a stable polynomial. Note that the set of stable polynomials is not convex, so that the set of all t for which $f(t)$ is defined is not an interval. However, there exists $t_{0}>0$ such that the polynomial is stable for $0<t<t_{0}$, and such that, for $t_{1}>t_{0}$, there exists t_{2}, for which the polynomial is unstable and $t_{0}<t_{2}<t_{1}$. We have to find the minimum of f on $\left[0, t_{0}\right]$. This minimum may be $t=t_{0}$. We shall explain later what can be done in this case. Note that finding t_{0} is not obvious. Hence, we just look for an approximation of it. Another way to proceed is the following. It is possible to define ψ for all polynomials. Hence $f(t)$ is defined for all t. Moreover, the limit of f is $+\infty$ for $t=+\infty$. This means that f has a minimum, and we can compute it (what we do, in fact, is to find a local minimum). If the polynomial we find is stable, there is no problem. Otherwise, we can check if f has another local minimum. We can also pretend that the direction d_{k} is wrong. In this case, we can try $-\nabla \psi$ as a better direction.

The situation is much different in the matrix case. We must have $y_{k}+t d_{k} \in S_{u}$, and this condition is easy to check. This means that computing t_{0} is not a problem. However, on the boundary, the conditioning of ψ and its derivatives is very bad. For this reason, we always minimise f on an interval of the form $\left[0,(1-\epsilon) t_{0}\right]$, for some small ϵ. This has as side effect that q_{k} never reaches the boundary (and that we cannot be sure that the algorithm converges).

In practice this method works well: if we chose a random initial condition, then, in some cases, we reach the boundary, and the algorithm stops. But this is fast. Otherwise, we stay in the domain, and find a minimum. This may take a longer time. Hence the strategy: chose random initial conditions, until a local minimum is found. Instead of choosing random initial conditions, we can chose a condition for which ψ is small. If $\psi(Q)$ is smaller than $\psi\left(Q^{\prime}\right)$, for every Q^{\prime} of degree less than n, then we can never reach the boundary of the manifold (as in the scalar case, if we are on the boundary of the manifold, we have $\psi(Q)=\psi\left(Q^{\prime}\right)$, where Q^{\prime} is of degree $\left.<n\right)$. Note however that this does not mean that we cannot reach the boundary of the chart.

We shall also see that, if we take as starting point a point on the boundary, constructed from Q^{\prime} such that $\psi(Q)=\psi\left(Q^{\prime}\right)$, then $-\nabla \psi$ points into S_{u} (in a degenerate case, it might be tangent to the boundary), provided that Q^{\prime} is a local minimum of ψ at order $n^{\prime}<n$. This will be explained in the next chapter.

There is another method of finding a local minimum of ψ : we integrate the differential equation

$$
\begin{equation*}
\frac{d q}{d t}=-\nabla \psi(q(t)) \tag{2.19}
\end{equation*}
$$

The function $\psi(q(t))$ is decreasing. If q remains in a compact, then $q(t)$ is defined for every t, and $q(\infty)$ exists and is a critical point of ψ. This will be a local minimum, because other critical points are numerically unstable.

A general method for solving the equation $d y / d t=f(y, t)$ is the following. Let $t_{n}=t_{0}+n h$, where t_{0} is the initial value of t, and h is the step. We define $y_{r}=s_{r}(h)$ for $0 \leq r<k$, for some functions s_{i} (obviously $s_{0}=y_{0}$, the initial condition for y). For each n, we write

$$
\begin{equation*}
\sum_{i=0}^{k} \alpha_{i} y_{n+i} / h=\phi_{f}\left(t_{n} ; y_{n+k}, y_{n+k-1}, \ldots, y_{n} ; h\right) \tag{2.20}
\end{equation*}
$$

(for details, see [11]; we use a Gear method as described in [10]). The method is explicit in case ϕ_{f} does not depend on y_{n+k}, it is implicit otherwise. Implicit methods are more stable, but we have to solve a non-linear system. The simplest method is the Euler method, $y_{n+1}=y_{n}+h f\left(t_{n}, y_{n}\right)$. A well-known method is RK4 (Runge-Kutta of order four), it requires four evaluations of f at each step. In methods of type Adams/Gear, we consider the Lagrange interpolation polynomial of degree k whose value at t_{i} is $y_{i}(n \leq i \leq n+k)$ in order to find α_{i} and ϕ_{f}.

The local error is the difference $y_{n+k}-y\left(t_{n+k}\right)$, assuming $y_{i}=y\left(t_{i}\right)$ for $i<n+k$. In general, this is small if h is small. However, the global error (the difference between the exact value of $y(t)$ and the computed value) is not necessarily small if h is small (essentially because of rounding errors, their limit is not 0 for small h). What happens when $t \rightarrow \infty$ and $h \rightarrow 0$ is in general unknown. What we know is just that the limit of the execution time is ∞. What we desire is to compute the solution as fast as possible.

We do not explain here how the integrator computes the step size h. On figure 2.1, we plotted the distance between $y_{100(k+1)}$ and $y_{100 k}$ in a case where the integrator fails to find a minimum.

The idea is to take it as large as possible, keeping the local error small (say 10^{-5}), if we are far from the solution, and much smaller otherwise. The main idea here is that $q(t)$ will converge to q_{0}. For small t, we do not need much precision, what we need is just to go in the right direction. However, if we are near q_{0}, more precision is needed, for otherwise, we would circle around q_{0}.

In order to explain what happens near q_{0}, consider the following example. Assume that $q=(x, y)$, and $\psi(q)=\left(a x^{2}+b y^{2}\right) / 2$. Now, ψ has a minimum at the origin. If we use a method of order one, we get

$$
q\left(t_{0}+h\right)=\left(x_{0}-a x_{0} h, y_{0}-b y_{0} h\right)
$$

We must have $h<1 / a$, and $h<1 / b$. This gives a condition on h that is independent of the current point. Note that, in general, if we are far from the minimum, h should be large when $\nabla \psi$ is small (because if $h \nabla \psi$ is small, then $q(t+h)-q(t)$ is small, if it is too small, we have $q(t+h)=q(t)$ numerically). Now, if a is much smaller then b, it means that the y-part of q will converge, while the x-part will not converge.

This is a typical flaw in this method. In case q is far from the optimum, then the method works well, if q is near, it does not work. For this reason, we use a mixed method. Let $I_{K}(q)$ be the result of the integration scheme, with q as initial condition, after K steps. Then $I_{K}(q)$ is (an approximation to) $q(t)$, the solution of the differential equation, for some t. Let $N_{0}(q)=q-W^{-1} \nabla \psi(q)$, where W is the Hessian of ψ. Let $N(q)$ be defined as follows: we start with q, and replace it by $N_{0}(q)$, as many times as needed. If W is not definite positive, we return nothing. If the process does not converge after some iterations, we return nothing. If q is too far from the initial q, we return nothing. Otherwise, we return q.

Now the method is the following: replace q by $I_{K}(q)$, and consider $N(q)$. If $N(q)$ is defined, this is the end of the algorithm. Otherwise, we restart. This works, because $N(q)$ is defined when q is near a local minimum q_{0}, and the result is q_{0}. We shall discuss convergence of the Newton method later.

In chapter 4 , we shall give the code that computes ψ, its first derivative and the second derivative. These computations are done in double and quadruple precision. Quadruple precision is much more time consuming than double precision (by a factor of ten or so), but is needed for the following reasons.

Figure 2.1: In this example, the integrator has some difficulties, and uses a order-one method, $y_{k+1}=$ $h_{k} . f\left(y_{k}\right)$. The function f is nearly constant, and can see the value of the step h_{k}, by plotting the difference between $y_{100(k+1)}$ and $y_{100 k}$ for some values of k.

First, as shown in the example, it can happen that the integrator uses something like $q(t+h)=$ $q(t)+h \delta q$, with small h. If we are near a local minimum, we can ignore this, because Newton will help us. There are cases where we cannot apply the Newton method. This means that, from time to time, we use quadruple precision for this expression, so that every component of q will vary. There are other cases where $\nabla \psi$ is not precise in double precision. We can find, in some cases, two ways to compute $\nabla \psi$, a slow and precise one, and a fast, but less precise one. In some cases, the second method is faster using quadruple precision than the first one using double precision. Note that the integrator needs the Hessian of ψ, but there is in general no problem of precision (the documentation of the lsode program says that, if computing the Hessian costs too much, it suffices to compute the diagonal elements).

The situation is quite different for Newton. Recall that the Hessian at the minimum has to be definite positive. There are cases where one eigenvalue is near zero, and is negative, when computed in double precision, but positive when computed in quadruple precision. This not the general case, so that we compute first the Hessian in double precision, and if this fails with a small negative eigenvalue, we re-compute it in quadruple precision.

The main problem with the Newton algorithm is the convergence test. We pretend that we have found the minimum in case: $q_{k+1}-q_{k}$ is small, $\psi_{k+1}-\psi_{k}$ is small, and ψ_{k+1}^{\prime} is small. The question is in the definition of "small". In the matrix case, we know that $y \in S_{u}$ (recall that y is the equivalent of q and S_{u} does not depend on u). In the scalar case, q must be stable, and this gives a bound on the coefficients of q, which depends on the degree n. In the code, we say that $q_{k+1}-q_{k}$ is small if less than 10^{-14}, and large if greater than 10^{-8}. Moreover $0 \leq \psi \leq 1$. We say that $\psi_{k+1}-\psi_{k}$ is small if smaller than 10^{-13}. The big problem is with $\nabla \psi$ small. This is due to the fact that more operations (hence more rounding errors) are involved in computing $\nabla \psi$ than in computing ψ. This means that 10^{-8} can be considered a small value for $\nabla \psi$. In some cases, this is much too big. The trick is the following. We compare the norm of $\nabla \psi_{k}$, computed in quadruple precision, to the value of $\nabla \psi_{0}$, computed in double precision. Since the Newton method is quadratic, it is very easy to make the quotient small. This gives a method that works well in any case.

The integration/Newton method has an advantage over the QuasiNewton methods: it find $q(\infty)$ where $q(t)$ is the solution of the differential equation, instead of finding something that depends on how we chose the directions d_{k}, and how precise we are when we minimise in the direction d_{k}.

However, in the matrix case, we solve

$$
\begin{equation*}
\frac{d y}{d t}=-\nabla \psi(f(u, y(t))) \tag{2.21}
\end{equation*}
$$

Obviously y depends on u, but $Q=f(u, y)$ depends also on u. This has two consequences: a) it can happen that, for some u, the trajectory remains inside the manifold, while for some other u, it goes out. This is bad news; b) the time spent to integrate depends on u. In particular, for the example given above, one could chose u such that $a=b$, in other words, chose u such that the Hessian of ψ has a good conditioning. This is good news; however we have absolutely no idea of how to chose u in order to do this.

Choice of initial conditions. Let $C(q)$ be the set of all q^{\prime} such that the value at $t=\infty$ of the solution of the differential equation is q, when the initial condition is q^{\prime}. Let q_{0} be the minimum of ψ. Then any initial condition in $C\left(q_{0}\right)$ will work. We do not know q_{0}, neither $C\left(q_{0}\right)$. Let C be the union of all $C(q)$, where q is a local minimum of ψ. Points that are not in $C(q)$ are points for which the solution of the differential equation does not remain in the manifold, or the limit is a critical point of ψ that is not a local minimum. We can ignore these points: if q_{0} is a saddle point, q_{1} an initial condition for which $q(\infty)=q_{0}$, then rounding errors of the integrator process will modify q enough that the limit is another critical point.

The technique we use is the following. Let ψ_{0} be the minimum of ψ at order $<n$. In case $\psi(q)<\psi_{0}$, then $q \in C$, because, if for some $t, q(t)$ is on the boundary of the manifold, we have $\psi(q(t))<\psi(q)<\psi_{0}$. On the other hand, $q(t)=q_{1} q_{2}$, where q_{2} has all its roots on \mathbb{T}, so that $\psi(q(t))=\psi\left(q_{1}\right) \geq \psi_{0}$.

Let $q=q_{1} q_{2}$, and assume that q_{1} is the minimum of ψ at order $n-1$. We know that $q(t)$ is stable for small t, for almost every q_{2} having its roots on \mathbb{T}. Thus $q \in C$. The theory says: if F, the quantity we have to approximate, is near enough to a rational matrix of degree n, than ψ has a unique local minimum, which is the global minimum. In other words, starting with q gives us the minimum of ψ.

This is a beautiful theory, but the trouble is now: how to find q_{1}. At order $n-1, \psi$ may have more than one local minimum (there is absolutely no reason why F should be near a matrix of degree $n-1$). We can chose a local minimum, and hope. This is how we do it (essentially, because we do not know what else can be done in the non-scalar case).

Another approach is the following. We start with any initial condition at order n. We integrate. If we find a local minimum we stop. If we go out, we write $q=q_{1} q_{2}$, where q_{1} is stable, q_{2} has roots on \mathbb{T}. We use q_{1} as initial condition at order n_{1}. This gives a local minimum q_{1}^{\prime} at order n_{1}. We continue with $q_{1}^{\prime} q_{2}^{\prime}$. We shall see later that, for almost every q_{2}^{\prime}, this is a good initial condition.

2.3.2 Primality

The aim of this subsection is to show the following theorem.

Theorem 13

If Q is a local minimum of ψ_{F}, then Q is coprime to $L_{F}(Q)$ unless F is rational, of McMillan degree less than n.

Some assumptions have to be made on the norm we use, because the result is false for the infinity norm.

Lemma 17

Let q be a polynomial of degree n. There are at most $2 n$ points on \mathbb{T} such that $q(z)$ is real.
Proof. Let $z=\left(1-t^{2}+2 i t\right) /\left(1+t^{2}\right)$. If $z=e^{i \phi}$, then $t=\tan (\phi / 2)$. Clearly, $\left(1+t^{2}\right)^{n} \Im(q(z))$ is a polynomial of degree at most $2 n$ as a function of t.

Lemma 18

Let f be a rational function, that has no pole on \mathbb{T}, no zero on \mathbb{T}. Let k be the number of stable zeroes minus the number of stable poles, and m the absolute value of k. There exists m numbers x_{i} and y_{i}, such that $x_{1} \leq y_{1} \leq \ldots \leq x_{m} \leq y_{m} \leq x_{1}+2 \pi$, such that $f\left(e^{i x_{j}}\right)$ is real negative, and $f\left(e^{i y_{j}}\right)$ is real and positive.

Proof. Consider

$$
I(f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{f^{\prime}\left(e^{i \theta}\right) e^{i \theta}}{f\left(e^{i \theta}\right)} d \theta
$$

Then $I(z-\alpha)$ is zero if $|\alpha|>1$, it is one if $|\alpha|<1$. Since $I\left(f_{1} f_{2}\right)=I\left(f_{1}\right)+I\left(f_{2}\right)$, we have $I(f)=k$, the number of stable zeroes minus the number of stable roots.

Assume $f\left(e^{i \theta}\right)=r e^{i \phi}$ where ϕ is a continuous function. Near every point z_{0} on \mathbb{T}, for which $f\left(z_{0}\right)$ is not zero, we can write $f(z)=\exp g(z)$, and ϕ is the imaginary part of g, modulo 2π. Since the real part of $z f^{\prime}(z) / f(z)$ is the derivative of ϕ with respect to θ, we get

$$
I(f)=\frac{\phi(2 \pi)-\phi(0)}{2 \pi}
$$

Thus $\phi(2 \pi)=\phi(0)+2 k \pi$. Since the interval $[\phi(0), \phi(2 \pi)]$ is of length $2 k \pi$, it is possible to find $2|k|$ numbers of the form $j \pi$ (j integer) hence θ such that $\phi(\theta)$ is of this form.

Lemma 19

Let q be a stable polynomial of degree n. The best approximation in H^{∞} norm of $\tilde{q} /(z q)$ at degree $\leq n$ is zero.

Proof. Let's consider a function p / r. Replace f by \check{f}, so that all functions are analytic in \mathbb{U}. The distance is

$$
D=\sup _{z \in \mathbb{T}}\left|\frac{q}{\tilde{q}}-\frac{\tilde{p}}{\tilde{r}}\right|
$$

Define $N=(\tilde{p} \tilde{q}) /(\tilde{r} q)$. Since $|q / \tilde{q}|=1$ on \mathbb{T}, we have

$$
D=\sup _{z \in \mathbb{T}}|1-N|
$$

If $\tilde{p}=0$, then $D=1$. All we have to show is that this quantity is greater than one otherwise. It suffices to find $z \in \mathbb{T}$ such that the real part of $N(z)$ is negative.

The main assumptions we make is that r is stable, and that the degree of \tilde{p} is less than n, the degree of q. Assume first that \tilde{p} has no zero on \mathbb{T}. Then $I(N)$ is negative, so that there exists $z \in \mathbb{T}$ such that $N(z)$ is real and negative.

Assume now that \tilde{p} has k zeroes on \mathbb{T}. Write $\tilde{p}=p_{1} p_{2}$, where p_{2} has no zeroes on \mathbb{T}. Let $p_{1}=$ $\prod\left(z-a_{i}\right)$. Define $p_{3}=\prod\left(z-a_{i}(1+\epsilon)\right)$, where $\epsilon>0$. Let $N_{1}=\left(p_{3} p_{2} \tilde{q}\right) /(\tilde{r} q)$. Then $I\left(N_{1}\right)<-k$. Hence, we can chose $k+1$ quantities z_{i} for which N_{1} is real and negative, and $k+1$ quantities z_{i}^{\prime} such that N_{1} is real and positive. Consider what happens when ϵ is small. If one z_{i} is different from all a_{j}, then N / N_{1} has a limit, which is one, and $N\left(z_{i}\right)$ is real and negative.

Assume that the limit of z_{i} is a_{j}. Suppose that a_{j} is a root of multiplicity s of \tilde{p}. Write

$$
N_{1}=\left(z / a_{j}-1-\epsilon\right)^{s} N_{2}
$$

The limit for $\epsilon \rightarrow 0$ of N_{2} is some non-zero number. Thus, near a_{j}, N_{1} behaves like a polynomial of degree s. It is impossible that near a_{j}, N_{1} can be real $2 s+1$ times. Thus, it is impossible that the limit of $z_{i}, z_{i+1}, \ldots, z_{i+s+1}$ is a_{j} (because the limit of z_{u}^{\prime} would be a_{j} for $1 \leq j \leq s$). Hence, the number of z_{i} that has a_{j} as a limit is the degree of p_{1}. But the number of z_{i} exceeds the degree of p_{1}.

Lemma 20

Let \mathcal{H}_{1} and \mathcal{H}_{2} be two rational, strictly proper matrices of McMillan degree n_{1} and n_{2}. Then $\mathcal{H}_{1}+\mathcal{H}_{2}$ is of degree $\leq n_{1}+n_{2}$. Equality holds in case \mathcal{H}_{1} and \mathcal{H}_{2} have no common pole.

Proof. Let $\left(H_{i}, F_{i}, G_{i}\right)$ be a minimal realization of \mathcal{H}_{i}. Define

$$
H=\left(H_{1} H_{2}\right), \quad F=\left(\begin{array}{cc}
F_{1} & 0 \\
0 & F_{2}
\end{array}\right), \quad G=\binom{G_{1}}{G_{2}}
$$

Now, (H, F, G) is a realization of $\mathcal{H}_{1}+\mathcal{H}_{2}$. If $x=\binom{x_{1}}{x_{2}}$, and $F x=\lambda x$, the assumption that \mathcal{H}_{1} and \mathcal{H}_{2} have no common pole says that λ is not an eigenvalue of both F_{1} and F_{2}. So that, either $x_{1}=0$ and $F_{2} x_{2}=\lambda x_{2}$ or $x_{2}=0$ and $F_{1} x_{1}=\lambda x_{1}$. If $H x=0$, the observability of $\left(H_{i}, F_{i}\right)$ implies then $x_{1}=x_{2}=0$. In the same fashion, (F, G) is controllable.

Define

$$
\begin{equation*}
x_{v w \omega}=\frac{v w^{*}}{z-\omega}, \quad y_{v w \omega}=\frac{v w^{*}}{z-\omega}+\frac{\bar{v} \overline{w^{*}}}{z-\bar{\omega}} \tag{2.22}
\end{equation*}
$$

Lemma 21

\mathcal{H} has McMillan degree one if and only if it has the form $x_{v w \omega}$, where v and w are non-zero constant vectors, $\omega \in \mathbb{U}$. In case ω is not real, $y_{v w \omega}$ is of McMillan degree two.

Proof. Let

$$
Q=I-\left(1-\beta_{\omega}\right) v v^{*} \quad C=\frac{1-\bar{\omega}}{1-\omega} \frac{v w^{*}}{1-\bar{\omega} z}
$$

Then $Q^{-1} C=v w^{*} /(z-\omega)$ is of McMillan degree one. On the other hand, if \mathcal{H} is of degree one, it can be written as $Q^{-1} C$, where Q has the form above. If $Q=D / \tilde{q}$, then $\tilde{q} C$ and $\tilde{D} C$ are polynomials of degree <1, hence constant. The first condition says that $C=x /(1-\bar{\omega} z)$, for some constant x, the second that x must be $v w^{*}$.

Lemma 22

If \mathcal{H}_{0} is of degree less than n, we can write $Q=Q_{0} Q_{1}$ and $C=Q_{0} C_{1}$, where Q_{0} is of McMillan degree one and $Q_{0}(1)=I$. Moreover, $\psi(Q)=\psi\left(Q_{1}\right)$.

In the real case, the matrix Q_{0} is real. It can be of McMillan degree two, and in this case, it has two complex conjugate poles (it is of the form (1.8.b)).

In the scalar case, we have $\mathcal{H}_{0}=P / q$, where $q=q_{0} q_{1}, P=q_{0} P_{1}, q_{0}$ is of degree one (is irreducible in the real case).

Proof. The result is obvious in the scalar case. Consider now the non-scalar case. We know that \mathcal{H}_{0} can be factored as $\mathcal{H}_{0}=Q_{2}^{-1} C_{2}$, where Q_{2} and C_{2} are coprime. Thus $Q=Q_{3} Q_{2}$, where Q_{3} is of positive degree. We can use the Potapov decomposition (corollary to lemma 4) and write $Q_{3}=Q_{0} Q_{4}$, where Q_{0} is of degree one, or two in case Q_{3} is real and has no real poles. Take $Q_{1}=Q_{4} Q_{2}$. Then $Q=Q_{0} Q_{1}$, and $C=Q_{0} C_{1}$ for some C_{1}.

Let $C_{1}^{\prime}=L_{F}\left(Q_{1}\right)$. We have $\psi\left(Q_{1}\right) \leq\left\|F-Q_{1}^{-1} C_{1}\right\|^{2}=\psi(Q)$, and $\psi(Q) \leq\left\|F-\left(Q_{0} Q_{1}\right)^{-1}\left(Q_{0} C_{1}^{\prime}\right)\right\|^{2}=$ $\psi\left(Q_{1}\right)$, so that $\psi(Q)=\psi\left(Q_{1}\right)$.

From now on, we shall assume that Q is a local minimum of $\psi, C=L_{F}(Q), \mathcal{H}_{0}=Q^{-1} C, F^{\prime}=F-\mathcal{H}_{0}$, and we shall assume that Q is not coprime to C. Thus \mathcal{H}_{0} is of degree less than n, and $\mathcal{H}_{0}+x_{v w \omega}$ is of McMillan degree at most n. We consider the following set:

$$
\begin{equation*}
M=\left\{\mathcal{H}=x_{v w \omega}, \quad\left\|F^{\prime}\right\| \leq\left\|F^{\prime}-\mathcal{H}\right\|\right\} \tag{2.22}
\end{equation*}
$$

If Q is the global minimum of ψ, then evert $x_{v w \omega}$ is in M. If Q is only a local minimum, this is no longer true, and one part of the proof consists of showing that M has a lot of elements. In the real case, if Q_{0} is of McMillan degree two, we have to replace $x_{v w \omega}$ by $y_{v w \omega}$ in the definition of M.

The only interest of the following lemma is formula (2.24) that will be used later again.

Lemma 23

The theorem is true, if ψ is defined by the H^{2} norm.
Proof. Consider

$$
\begin{align*}
& G \tilde{D}_{1}=V_{1} q_{1}+R_{1} \tag{2.23.a}\\
& V_{1} \tilde{D}_{2}=V_{2} q_{2}+R_{2} \tag{2.23.b}
\end{align*}
$$

Assume $Q^{\prime}=Q_{2} Q_{1}, D^{\prime}=D_{2} D_{1}$ and $q^{\prime}=q_{2} q_{1}$. Then $G \tilde{D}^{\prime}=V q^{\prime}+R$, with $V=V_{2}$ and $R=R_{2} q_{1}+R_{1} \tilde{D}_{2}$, hence $C=C_{2}+Q_{2} C_{1}$. Equation (2.18) says

$$
\begin{equation*}
\psi\left(Q^{\prime}\right)=\psi\left(Q_{1}\right)-\left\|C_{2}\right\|^{2}=\psi\left(Q_{1}\right)-\left\|R_{2} / q_{2}\right\|^{2} \tag{2.24}
\end{equation*}
$$

If Q_{2} is near Q_{0}, then $\psi\left(Q^{\prime}\right) \geq \psi(Q)$ since Q^{\prime} is near Q. This gives $\psi\left(Q_{1}\right)-\left\|C_{2}\right\|^{2} \geq \psi\left(Q_{1}\right)$ hence $C_{2}=0$, and $R_{2}=0$. Now (2.23.b) says $V_{1}=V_{2} Q_{2}$. Theorem 28 says $V_{1}=0$, hence $F=Q_{1}^{-1} C_{1}$.

Lemma 24

M contains every element of the form $x_{v w \omega}$, where v is proportional to $Q_{1}^{-1}(\omega) u$, u is near u_{0}, ω is near ω_{0}, and w arbitrary.

In the real case, if Q_{0} is of McMillan degree two, M contains $y_{v^{\prime}} w \bar{\omega}$, where v^{\prime} is proportional to $Q_{1}^{-1}(\bar{\omega}) u^{\prime}, u^{\prime}$ is near some u_{0}^{\prime}, ω is near ω_{0}, and w arbitrary.

In the scalar case, the result is the same, but there is no constraint on v and w.

Proof. 1. Consider the scalar case first. We have $q=q_{0} q_{1}, \mathcal{H}_{0}=P_{1} / q_{1}$ for some P_{1}. Let $q_{0}=z-\omega_{0}$, $q=z-\omega$. If ω is near ω_{0}, then

$$
\mathcal{H}_{1}=x_{v w \omega}=\frac{P}{q}, \quad \mathcal{H}_{0}+\mathcal{H}_{1}=\frac{P^{\prime}}{q q_{1}}
$$

for some P and P^{\prime}. We have

$$
\left\|F^{\prime}\right\|^{2}=\psi\left(q_{0} q_{1}\right) \leq \psi\left(q q_{1}\right) \leq\left\|F-P^{\prime} /\left(q q_{1}\right)\right\|^{2}=\left\|F^{\prime}-\mathcal{H}_{1}\right\|^{2}
$$

Now \mathcal{H}_{1} is in M because it is of McMillan degree one.
2. Consider now the non-scalar case. Assume

$$
\begin{equation*}
Q_{2} Q_{1}=Q_{1}^{\prime} Q_{2}^{\prime} \tag{2.25}
\end{equation*}
$$

Let $Q^{\prime}=Q_{2} Q_{1}, C^{\prime}=Q_{2} C_{1}+Q_{1}^{\prime} C_{2}^{\prime}$. Then

$$
\begin{equation*}
Q^{\prime-1} C^{\prime}=Q_{1}^{-1} C_{1}+Q_{2}^{\prime-1} C_{2}^{\prime} \tag{2.26}
\end{equation*}
$$

Let $\mathcal{H}_{1}=Q_{2}^{\prime-1} C_{2}^{\prime}$. If Q_{2} is near Q_{0}, and \mathcal{H}_{1} has the good McMillan degree, then \mathcal{H}_{1} is in M.
3. The Potapov theorem says that

$$
\begin{equation*}
Q_{0}=I-\left(1-\beta_{\omega_{0}}\right) u_{0} u_{0}^{*} \tag{2.27.a}
\end{equation*}
$$

Take

$$
\begin{equation*}
Q_{2}=I-\left(1-\beta_{\omega}\right) u u^{*} \tag{2.27.b}
\end{equation*}
$$

Consider

$$
\begin{equation*}
Q_{2}^{\prime}=I-\left(1-\beta_{\omega}\right) v v^{*}, \quad C_{2}^{\prime}=\frac{1-\bar{\omega}}{1-\omega} \frac{v w^{*}}{1-\bar{\omega} z} \tag{2.28.a}
\end{equation*}
$$

Since $Q_{2}^{\prime-1} C_{2}^{\prime}=x_{v w \omega}$, it has McMillan degree one. Equation (2.25) is true provided that

$$
\begin{equation*}
v=\frac{Q_{1}^{-1}(\omega) u}{\left\|Q_{1}^{-1}(\omega) u\right\|} \tag{2.28.b}
\end{equation*}
$$

according to lemma 4.
4. Assume now that we are in the real case, and Q_{0} has McMillan degree two. Then

$$
\begin{equation*}
Q_{0}=\left[I-\left(1-\beta_{\omega_{0}}\right) u_{0} u_{0}^{*}\right]\left[I-\left(1-\beta_{\bar{\omega}_{0}}\right) u_{0}^{\prime} u_{0}^{* *}\right] \tag{2.29.a}
\end{equation*}
$$

Take

$$
\begin{equation*}
Q_{2}=\left[I-\left(1-\beta_{\omega}\right) u u^{*}\right]\left[I-\left(1-\beta_{\bar{\omega}}\right) u^{\prime} u^{*}\right] . \tag{2.29.b}
\end{equation*}
$$

If u and u^{\prime} are related by (1.8.c), then Q_{2} is real. Since u_{0} and u_{0}^{\prime} are related by a similar equation, if ω is near ω_{0}, and u is near u_{0}, then Q_{2} is near Q_{0}. Consider now

$$
\begin{equation*}
Q_{2}^{\prime}=\left[I-\left(1-\beta_{\bar{\omega}}\right) \overline{v v^{*}}\right]\left[I-\left(1-\beta_{\omega}\right) \overline{v^{\prime} v^{\prime *}}\right] \tag{2.29.c}
\end{equation*}
$$

Write this as $Q_{5} Q_{6}$, and Q_{2} as $Q_{3} Q_{4}$. Now (2.25) is $Q_{3} Q_{4} Q_{1}=Q_{1}^{\prime} Q_{5} Q_{6}$. Now $Q_{1}^{\prime} Q_{5}$ is inner provided that \bar{v}^{\prime} is parallel to $\left(Q_{4} Q_{1}\right)^{-1} u$ (cf. (2.28.b)). But the condition Q_{2} real says that u is parallel to $Q_{4}(\omega) \bar{u}^{\prime}$. If we take complex conjugates, and remember that Q_{1} is real, this gives

$$
\begin{equation*}
v^{\prime}=\frac{Q_{1}^{-1}(\bar{\omega}) u^{\prime}}{\left\|Q_{1}^{-1}(\bar{\omega}) u^{\prime}\right\|} \tag{2.30}
\end{equation*}
$$

We have now

$$
Q_{3} Q_{4} Q_{1} Q_{6}^{-1}=Q_{1}^{\prime} Q_{5}
$$

Since Q_{2} is real, we can replace the first two factors by $\bar{Q}_{3} \bar{Q}_{4}$. Now Q_{1}^{\prime} is inner, provided that \bar{v} is parallel to $\left(\overline{Q_{4}} Q_{1} Q_{6}^{-1}\right)^{-1}(\bar{\omega}) \bar{u}^{\prime}$. This condition simplifies to \bar{v} parallel to $Q_{6}(\bar{\omega}) v^{\prime}$, which is the condition that says that Q_{2}^{\prime} is real.

If we chose $C_{2}^{\prime}=Q_{5} C_{2}^{\prime \prime}$, we get $Q_{2}^{\prime-1} C_{2}^{\prime}=Q_{6}^{-1} C_{2}^{\prime \prime}$. As in the previous case, we can chose C_{2}^{\prime} such that this is $\bar{v}^{\prime} w^{*} /(z-\omega)$. If we take C_{2}^{\prime} plus its complex conjugate, we get a real result, namely $y_{\bar{v}^{\prime} w \omega}=y_{v^{\prime}} \overline{w \omega}$.

We make now some assumptions on $\|F\|$. One assumption we can make is that it is associated to a scalar product. For u near u_{0} and ω near ω_{0}, we have

$$
\left\|F^{\prime}\right\| \leq\left\|F^{\prime}-\frac{v w^{*}}{z-\omega}\right\|, \quad v=\frac{Q_{1}^{-1}(\omega) u}{\left\|Q_{1}^{-1}(\omega) u\right\|}
$$

This gives

$$
\begin{equation*}
\left\|F^{\prime}\right\| \leq\left\|F^{\prime}-\lambda \frac{v w^{*}}{z-\omega}\right\|, \quad \lambda \in \mathbb{C}, v=Q_{1}^{-1}(\omega) u \tag{*}
\end{equation*}
$$

This implies

$$
\begin{equation*}
\left\langle F^{\prime} \left\lvert\, \frac{v w^{*}}{z-\omega}\right.\right\rangle=0 \tag{**}
\end{equation*}
$$

Let E be the set of all $Q_{1}(\omega) x_{v w \omega}$ which are orthogonal to F^{\prime}, for w and ω fixed. This is a vector space and holds every $v w^{*} /(z-\omega)$ for u near u_{0}, hence every $u w^{*} /(z-\omega)$. Thus, if $\epsilon_{i j}$ is the matrix which has one at position (i, j) and zero elsewhere, we have $\left\langle F^{\prime} \mid \epsilon_{i j} /(z-\omega)\right\rangle=0$. In the case where Q_{0} is real, of McMillan two, we get $\left\langle F^{\prime} \mid \epsilon_{i j} /(z-\omega)+\epsilon_{i j} /(z-\bar{\omega})\right\rangle=0$.

Assume $F \in H_{2}^{-}$. We can write $\left\langle F^{\prime} \mid f \epsilon_{i j}\right\rangle=\left\langle X_{i j} \mid f\right\rangle_{2}$, for every $f \in H_{2}^{-}$, where $X_{i j}$ is some element of H_{2}^{-}, and $\langle u \mid v\rangle_{2}$ is the scalar product of H_{2}^{-}. We get $X_{i j}(/ \bar{\omega})=0$, for ω near ω_{0}. This implies that $X_{i j}$ is identically zero, so that $\left\langle F^{\prime} \mid f \epsilon_{i j}\right\rangle$ is zero whatever f, i and j, hence F^{\prime} is identically zero, and this proves the theorem. In the real case, if Q_{0} is of degree two, we have $\left\langle X_{i j} \mid y+\bar{y}\right\rangle=0$, if $y=(a+i b) /(z-\omega)$. Assume $\left\langle X_{i j} \mid 1 /(z-\omega)\right\rangle=u+i v$. Since $X_{i j}$ is real, we get $\Re(a+i b)(u+i v)=0$ whatever a and b, hence $u+i v=0$, and $F^{\prime}=0$.

There are other cases in which the theorem is true. Assume that F has coordinates $F_{i j}$ in the canonical basis. Define

$$
\begin{gathered}
F_{k}=\sum \gamma_{i j k} F_{i j} \\
\|F\|=\left[\left.\frac{1}{2 \pi} \int_{0}^{2 \pi} \right\rvert\, F_{k}\left(e^{i \theta}\right)^{p} d \theta\right]^{1 / p}
\end{gathered}
$$

We assume $F \in H_{p}^{-}$, this implies that $F_{i j}$ has a limit almost everywhere on \mathbb{T}, and this limit is in L^{p}. We assume that $\gamma_{i j k}$ is defined on \mathbb{T} and is in L^{∞}, so that F_{k} is defined almost everywhere on \mathbb{T}, and is in L^{p}. Moreover, we assume that if F_{k} is zero for each k, then $F_{i j}$ is zero, so that F itself is zero.

We have the equivalent of $(*)$ and $(* *)$: if for all λ we have $\|F-\lambda x\| \geq\|F\|$, then $I(F, x)=0$, where $I(f, x)$ is a linear function of x. In fact

$$
I(F, x)=\sum_{k} \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|F_{k}\left(e^{i \theta}\right)\right|^{p-2} \overline{F_{k}\left(e^{i \theta}\right)} x\left(e^{i \theta}\right) d \theta
$$

Note that, if $1 / p+1 / q=1, G_{k}=\left|F_{k}\right|^{p-2} \bar{F}_{k}$, then $G_{k} \in L^{q}$ and $I(F, x)$ is defined for $x \in L^{p}$. We have the same result as above: $I\left(F^{\prime}, \epsilon_{k} /(z-\omega)\right)=0$ if ω is near ω_{0}. This condition is

$$
\forall i, j \quad \sum_{k} \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|F_{k}\left(e^{i \theta}\right)\right|^{p-2} \overline{F_{k}\left(e^{i \theta}\right)} \gamma_{i j k}\left(e^{i \theta}\right) \frac{d \theta}{e^{i \theta}-\omega}=0 .
$$

If we apply lemma 1 , we find that $\sum\left|F_{k}\right|^{p-2} \bar{F}_{k} \gamma_{i j k}$ is analytic outside \mathbb{U}. Multiply this by $F_{i j}$ and add. Since $F_{i j}$ vanishes at infinity, we get a function that is analytic outside \mathbb{U}, and vanishes at infinity. But this function agrees on \mathbb{T}, almost everywhere, with the function $\sum\left|F_{k}\right|^{p-2} \overline{F_{k}} F_{k}=\sum\left|F_{k}\right|^{p}$. This function is real. Since it is the Poisson integral of its value on \mathbb{T}, it follows that it is analytic and real, hence is constant, hence zero. Thus $F_{k}^{\prime}=0$, and $F^{\prime}=0$, and the theorem is true in this case.

2.3.3 Scalar case of degree one

In this subsection, we consider the scalar case. For simplicity, we shall assume that we have one input, and one output. For this reason, we shall write g instead of G. We shall assume that $\|f\|=1$. We examine what happens if q is of degree one, say $q=z-a$. By definition, we have

$$
\psi(q)=1-\left(1-|a|^{2}\right)|g(a)|^{2} .
$$

If $g(z)=\sum g_{k} z^{k}$, the Cauchy-Schwarz inequality and the fact that g has unit norm say:

$$
\left|\sum a^{k} g_{k}\right|^{2} \leq \sum\left|a^{k}\right|^{2} .
$$

In the case $|a|<1$, we deduce:

$$
0 \leq \psi(a) \leq 1
$$

Obviously, if $|a|>1$, we have $\psi(a) \geq 1$.
From the definition, we can deduce all partial derivatives. Assume $a=u+i v$. Then

$$
\begin{gather*}
\frac{\partial \psi}{\partial u}=2 u|g|^{2}-2\left(1-|a|^{2}\right) \Re\left(g \bar{g}^{\prime}\right) \tag{2.31.1}\\
\frac{\partial \psi}{\partial v}=2 v|g|^{2}-2\left(1-|a|^{2}\right) \Im\left(g \bar{g}^{\prime}\right) \tag{2.31.2}\\
\frac{\partial^{2} \psi}{\partial u^{2}}=2|g|^{2}+8 u \Re\left(g \bar{g}^{\prime}\right)-2\left(1-|a|^{2}\right)\left[\left|g^{\prime}\right|^{2}+\Re\left(g \bar{g}^{\prime \prime}\right)\right] \tag{2.32.1}\\
\frac{\partial^{2} \psi}{\partial u \partial v}=4 u \Im\left(g \bar{g}^{\prime}\right)+4 v \Re\left(g \bar{g}^{\prime}\right)-2\left(1-|a|^{2}\right)\left[\Im\left(g \bar{g}^{\prime \prime}\right)\right] \tag{2.32.2}\\
\frac{\partial^{2} \psi}{\partial v^{2}}=2|g|^{2}+8 v \Im\left(g \bar{g}^{\prime}\right)-2\left(1-|a|^{2}\right)\left[\left|g^{\prime}\right|^{2}-\Re\left(g \bar{g}^{\prime \prime}\right)\right] . \tag{2.32.3}
\end{gather*}
$$

We shall write ψ^{\prime} instead of $\partial \psi / \partial u+i \partial \psi / \partial v$, and $\psi^{\prime \prime}$ will be the Hessian of ψ.
These formula simplify in the case $g(a)=0$. In fact, $\psi^{\prime}=0$ and $\psi^{\prime \prime}$ is the identity matrix times $-2\left(1-|a|^{2}\right)\left|g^{\prime}(a)\right|^{2}$. If a is a multiple root of g, then $\psi^{\prime}=\psi^{\prime \prime}=0$. The same happens if a is of module one. Otherwise, a is a critical point of ψ. This is a maximum if a is inside the disc, a minimum otherwise.

As a consequence, in the real case, ψ has at least one more local minimum than g has stable roots. In the complex case, this is not true. Note that, in any case, since $\psi(a)=1$ on the circle, and is less than 1 inside, there is a local minimum inside the disc.

Assume that a is of module one. In that case, ψ^{\prime} is $2 a|g(a)|^{2}$. This means that ψ^{\prime} is orthogonal to the unit circle and points outwards. This has as consequence that the solution of the differential equation (2.19) remains stable. The only problem that can happen is that the limit is a critical point that is not a minimum. We pretend that these are in general numerically unstable. We shall present here an example, in which the critical point is real. If the initial condition is real, then $q(t)$ will be real for every t, and, in this case, the algorithm fails to find a minimum. For this reason, if we are looking for a complex minimum, we never use a real initial condition.

Note that critical points are all a such that $g(a)=0$ or $\bar{a} g(a)=\left(1-|a|^{2}\right) g^{\prime}(a)$. Whether it is a minimum or not depends on $g^{\prime \prime}(a)$. In the last chapter of this report, we explain how to solve directly the equation $\bar{a} g(a)=\left(1-|a|^{2}\right) g^{\prime}(a)$.

Let's study completely the case where g is of degree one. For simplicity, we replace the condition $\|g\|=1$ by the condition g monic, hence $g(z)=z+\beta$. We assume g real, and consider $\psi(q)$, in the real and complex cases. Say $q=z-(u+i v)=z-a$. We have

$$
\begin{equation*}
\psi(u, v)=1+\beta^{2}-\left(1-u^{2}-v^{2}\right)\left[(u+\beta)^{2}+v^{2}\right] . \tag{2.33}
\end{equation*}
$$

We shall assume $\beta \neq 0, \beta \neq \pm 1$. In fact, if $\beta=0$, we have $\psi(a)=1-|a|^{2}+|a|^{4}$. In this case, every point with $|a|^{2}=1 / 2$ is an absolute minimum. In the real case, this gives two minima with the same value, in
the complex case, we are in a degenerate case. The case $\beta=1$ is special, because for $v=0$ and $u=-1$, ψ^{\prime} is zero, but ψ is monotonic near $u=-1$.

Let $A=1-u^{2}-v^{2}$ and $B=(u+\beta)^{2}+v^{2}$. Then the partial derivatives of ψ are

$$
\psi_{u}=-2(-B u+(u+\beta) A), \quad \psi_{v}=2(B-A) v
$$

Consider a point where the derivative of ψ is zero. In case $v \neq 0, \psi_{v}=0$ implies $A=B$, hence $\psi_{u}=0$ implies $A \beta=0$. Then we get $A=B=0$, which is absurd. This means that all critical points of ψ are real. These points are defined by

$$
(u+\beta)^{2} u=(u+\beta)\left(1-u^{2}\right)
$$

in other words

$$
\begin{equation*}
u=-\beta, \quad u=\frac{-\beta \pm \sqrt{\beta^{2}+8}}{4} . \tag{2.34}
\end{equation*}
$$

Note that, for the last two roots, we have $2 u^{2}+\beta u-1=0$. Hence, if $|\beta|<1$, we have three critical points in the interval $[-1,1]$, and otherwise a single one.

If we consider the second derivative, if $\psi_{u u}=(u+\beta)^{2}+4 u(u+\beta)-\left(1-u^{2}\right)$ and $\psi_{v v}=(u+\beta)^{2}-\left(1-u^{2}\right)$, then the second derivative of ψ in the real case is $2 \psi_{u u}$, while in the complex case it is

$$
\psi^{\prime \prime}=2\left(\begin{array}{cc}
\psi_{u u} & 0 \\
0 & \psi_{v v}
\end{array}\right)
$$

Note that if $u=-\beta$, we get $\psi^{\prime \prime}=-2\left(1-u^{2}\right) I$, and this is clearly a local maximum (assuming of course $-1<u<1$). Assume now $2 u^{2}+\beta u-1=0$. Then

$$
\psi^{\prime \prime}=2 \frac{1-u^{2}}{u^{2}}\left(\begin{array}{cc}
1+2 u^{2} & 0 \\
0 & 1-2 u^{2}
\end{array}\right)
$$

Since the product of the roots is $-1 / 2$, we have a positive and a negative root. Since $1-2 u^{2}=\beta u$, for one of the roots $1-2 u^{2}$ is positive, and for the other one, it is negative.

Hence, the situation is the following. If $|\beta|>1$, there is one critical point. This critical point is a minimum. If $|\beta|<1$, there are three critical points. The point $u=-\beta$ is a maximum, the point $1-2 u^{2}=\beta u$ with $\beta u>0$ is a minimum. The other point is a local minimum in the real case, a saddle point in the complex case.

Lemma 25

There are cases where g is real, ψ has a unique real critical point (which is a minimum), but this minimum is not a complex minimum.

What we shall do is consider $g(z)=z^{2}+a z+b$, and find the conditions on a and b. We shall see that this set of conditions is not empty, this will prove the lemma.

We have, for $q=z-u$,

$$
\begin{equation*}
\psi(q)=1+a^{2}+b^{2}-\left(1-u^{2}\right)\left(u^{2}+a u+b\right)^{2} \tag{2.35.a}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi^{\prime}(q)=2\left(u^{2}+a u+b\right)\left(3 u^{3}+2 a u^{2}+u b-2 u-a\right) \tag{2.35.b}
\end{equation*}
$$

We know that if q has a root in $[-1,1]$, then ψ has a maximum on $[-1,1]$. Hence, we are looking for the conditions under which the first factor of $(2.35 . b)$ has no root in $[-1,1]$, while the second factor has a single one.

Lemma 26

The polynomial $g(z)=z^{2}+a z+b$ has no root in $[-1,+1]$ if and only if $|b+1|>|a|$, and, if $|a| \leq 2$, then $b>a^{2} / 4$ or $b<-1$.

Figure 2.2: Set of points a and b such that $g=z^{2}+a z+b$ has no root on the interval $[-1,1]$. If b is between the two curves, there is such a root. If b is above the upper curve, the polynomial is positive on $[-1,1]$, if b is below the other one, the polynomial is negative.

Note that this condition becomes $b<f_{1}(a)$ or $b>f_{2}(a)$, for some functions f_{1} and f_{2}. These functions are plotted on figure 2.2.
Proof. The condition $|b+1| \leq|a|$ is $g(1) g(-1) \leq 0$. If it is true, then g has a root in $[-1,1]$ and a root outside. If it is false, then g has zero or two roots in $[-1,1]$. In the case $|a| \geq 2$, the relation $|b+1|>|a|$ implies $|b|>1$, so that g has a root α with $|\alpha|>1$. This means that g cannot have two roots in $[-1,1]$. Assume now $|a| \leq 2$. If $b<-1$, then g has also a root with $|\alpha|>1$; if $b>a^{2} / 4$ then g has no real roots; finally if $-1<b<a^{2} / 4, g$ has two real roots, the product is less than one in absolute value, thus one root lies in $[-1,1]$.

Let $h(u)=3 u^{3}+2 a u^{2}+u b-2 u-a$. Note that $h(1) h(-1)=a^{2}-(b+1)^{2}$. This means that, if g has no root in $[-1,1]$, then h has an odd number of roots in $[-1,1]$. Let c be a root of h. We have

$$
h(u)=(u-c)\left(3 u^{2}+(3 c+2 a) u+3 c^{2}+2 a c+b-2\right) .
$$

Assume $c=0$. Then $h(c)=0$ gives $a=0$. It is then obvious that ψ has a unique critical point in $[-1,1]$ if and only if $b>2$ or $b<-1$. Note that replacing a by $-a$ replaces c by $-c$, so that we may assume $c>0$. We have

$$
h(u)=3(u-c)\left(u^{2}+(c+2 a / 3) u+a /(3 c)\right)
$$

Let $d=a /(3 c)$. The last factor of h is

$$
f(u)=u^{2}+c(1+2 d) u+d
$$

We are looking for a condition on c and d for which this polynomial has no roots in $[-1,1]$.

Lemma 27

In case $0<c<1$, the polynomial $f(z)=z^{2}+c(1+2 d) z+d$ has no roots in $[-1,1]$ if and only if

$$
\begin{equation*}
\left(\frac{1-2 d}{1+2 d}\right)^{2}<1-2 c^{2} \tag{2.36.a}
\end{equation*}
$$

if $0 \leq d \leq 1$ and

$$
\begin{equation*}
\frac{1-2 c}{c-1}<\frac{1}{d} \tag{2.36.b}
\end{equation*}
$$

otherwise.

Figure 2.3: Coefficients c, d, for which ψ has a unique critical point. The two curves are defined by (2.36). If c (horizontally) is to the left of the curve, ψ has a unique real critical point.

This condition has the form $0<c<c_{1}(d)$, for some function $c_{1}(d)$, which is zero on $[-1,0]$ and non-zero elsewhere. See figure 2.3.
Proof. We just apply the previous lemma with $a=c(1+2 d)$ and $b=d$.
Note that the lemma says: $|b|>1$ and $|b+1|>|a|$ or $0 \leq b \leq 1$ and $b>a^{2} / 4$. Condition (2.36.a) is just $b>a^{2} / 4$.

Condition $|b+1|>|a|$ is $|d+1|>c|1+2 d|$. In case $d \geq 0$, it is $d(1-2 c) \geq c-1$, in case $d \leq-1$ it is $d(1-2 c) \leq c-1$. In both cases it is (2.36.b) because $c<1$. Note that $(1-2 c) /(c-1)>-1$, so that (2.36.b) excludes the case $-1 \leq d \leq 0$.

Note: in case $d<0$, we get $c \leq 1 / 2$, and in case $d>0$, we get $c \leq \sqrt{2} / 2$. This gives the strange condition: if ψ has a critical point \bar{c} with $|c|>\sqrt{2} / 2$, then ψ has at least another critical point.

Note also that if the conditions of the lemma are true, then g has no root in $[-1,1]$.
What we want to find is a critical point of ψ, which is the absolute real minimum, but is not a complex minimum.

Consider now what happens if $q=z-(u+i v)$ is complex. We have

$$
\begin{equation*}
\psi=1+a^{2}+b^{2}-\left(1-u^{2}-v^{2}\right)\left[\left(u^{2}+a u+b-v^{2}\right)^{2}+(2 u+a)^{2} v^{2}\right] . \tag{2.37}
\end{equation*}
$$

If we differentiate ψ with respect to v we get

$$
\psi_{v}^{\prime}=2 v A
$$

with

$$
A=\left(u^{2}+a u+b-v^{2}\right)^{2}+(2 u+a)^{2} v^{2}-\left(1-u^{2}-v^{2}\right)\left[(2 u+a)^{2}-2\left(u^{2}+a u+b-v^{2}\right)\right]
$$

The equation for the critical points is $A=0$ or $v=0$, together with the equation $\psi_{u}^{\prime}=0$. In the case $v=0$, this is equation (2.35.b):

$$
\left(u^{2}+a u+b\right)\left(3 u^{3}+2 a u^{2}+u b-2 u-a\right)=0
$$

Let $\psi_{1}(u)=\psi(u, 0)$. At a point where $v=0$, the second derivative is $\left(\begin{array}{cc}C & 0 \\ 0 & A\end{array}\right)$, where C is the second derivative of ψ_{1}. If u is a local minimum of ψ_{1}, then $C>0$. This means that, if $A>0$, then $(u, 0)$ is a local minimum of ψ, and if $A<0$, this is a saddle point.

Now, if $v=0$ we have

$$
A=\left(u^{2}+a u+b\right)^{2}-\left(1-u^{2}\right)\left[(2 u+a)^{2}-2\left(u^{2}+a u+b\right)\right]
$$

In case $\psi_{1}^{\prime}=0$, we have $u=c,\left(1-c^{2}\right)(2 c+a)=c\left(c^{2}+a c+b\right)$, hence

$$
A=\left(c^{2}+a c+b\right)\left(-3 c^{2}+b+2\right)
$$

The assumption is that g has constant sign on $[-1,1]$. The sign is that of $g(0)=b$. Hence the condition $A<0$ is $b\left(-3 c^{2}+b+2\right)<0$. Since we know $c \leq \sqrt{2} / 2$, we have $2-3 c^{2}>0$. Hence the condition is $3 c^{2}-2<b<0$.

Recall that

$$
3 c^{2}+6 d c^{2}+b-2-3 d=0
$$

The conditions are

$$
6 c^{2}(1+d)<4+3 d \quad 2+3 d<3 c^{2}(1+2 d)
$$

These conditions can be rewritten as

$$
\left(6 c^{2}-3\right)(1+d) \leq 1 \leq\left(6 c^{2}-3\right)(1+2 d)
$$

Since $c \leq \sqrt{2} / 2$, it implies $1+2 d \leq 1+d$, hence $d<0$. Hence (2.36) says $d<-1$, and $c \leq(d+1) /(2 d+1)$ (this is $(2.36 . b)$). This relation implies $1 \leq\left(6 c^{2}-3\right)(1+2 d)$ so that we are left with (see figure 2.4)

$$
c^{2} \geq \frac{4+3 d}{6+6 d} \quad c \leq \frac{d+1}{2 d+1} \quad d<-1
$$

Figure 2.4: Conditions on which ψ has a unique real minimum, which is a complex saddle point. See the text for the notations.

If we go back to parameters a and b, it is easy to see that the second equation is $b+1<|a|$. This says that g has two real roots, with different sign, outside $[-1,1]$. See figure 2.5. The other condition is

$$
a^{2}<12 b^{2} \frac{b+2}{(1+2 b)^{2}}
$$

Example: Take $a=-0.35, b=-1.46$. On figure 2.6, we show the value of $\psi(u, v)$ for $v=0$ and $v=0.42$. The real minimum is obtained for $c=1 / 10$.

Figure 2.5: Set of points a and b such that ψ_{G} has a unique real critical point, which is a saddle point, at degree one, for $G=z^{2}+a z+b$. Between the two straight lines, G is negative on $[-1,1]$.

Figure 2.6: Values of $\psi_{G}(q)$, for $q=z-(u+i v)$, as a function of u for $v=0$ and $v=0.42$. We have $G=z^{2}-0.35 z-1.46$.

Stable polynomials The problem, in the scalar case, is to minimise $\psi(q)$ for stable q. In the case of degree 2, if $q=u+v z+z^{2}$, and q has real coefficients, then the set of stable polynomials is a triangle. In the complex case, the result is the following.

Lemma 28

The polynomial $q=u+v z+z^{2}$ is stable if and only if

$$
\begin{equation*}
|u|^{2}+1>\left|\frac{v^{2}}{2}-2 u\right|+\left|\frac{v^{2}}{2}\right| \tag{2.38}
\end{equation*}
$$

and $|u| \leq 1$.
Proof. Write $u=a+i b, v=c+i d$. The resultant of q and \tilde{q} is

$$
R=\left(a^{2}+b^{2}-1\right)^{2}-\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)+2 a\left(c^{2}-d^{2}\right)+4 b c d-c^{2}-d^{2} .
$$

Note that $R=\left(|u|^{2}-1\right)^{2}-|u \bar{v}-v|^{2}$, and this leads to a factorisation of R. However, if

$$
R_{ \pm}=|u|^{2}+1-\left|\frac{v^{2}}{2}\right| \pm\left|\frac{v^{2}}{2}-2 u\right|
$$

then $R=R_{+} R_{-}$. Set $y=v^{2} / 2$. Then $R_{+}=|u|^{2}+1-|y|+|y-2 u|$. The triangular inequality $|y| \leq|y-2 u|+|2 u|$ implies that $\left|R_{+}\right| \geq(|u|-1)^{2}$, so that R_{+}vanishes only if $|u|=1$ and $|y|=|y-2 u|+|2 u|$. This last condition says that y / u is real and at least 2 . Now, these equations are equivalent to say that q has two roots α and β with $\alpha \bar{\beta}=1$.

Hence $R_{-}=0$ is the condition under which q has a root of modulus one. Let $q_{\lambda}=\lambda^{2} u+\lambda v+z^{2}$. If z is a root of q_{λ}, then z / λ is a root of q.

Define $f(\lambda)$ to be $R_{-}\left(\lambda^{2} u, \lambda v\right)$. If $w=\left|v^{2} / 2-2 u\right|+\left|v^{2} / 2\right|$, then $f(\lambda)=\lambda^{4}\left|u^{2}\right|-\lambda^{2} w+1=g\left(\lambda^{2}\right)$. The triangular inequality says that $|w| \geq|2 u|$, so that there are two real numbers a and b such that $g(a)=g(b)=0$. Note that $a b=1 /|u|^{2}$ and $a+b>0$. Hence a and b are positive. Then q has two roots, with modules $1 / \sqrt{a}$ and $1 / \sqrt{b}$. The condition q stable is now $a>1$ and $b>1$. In particular, 1 is not between a and b, hence $f(1)>0$. Obviously q stable implies $|u|<1$. On the other hand, if $|u|<1$, then $a b=1 /|u|^{2}$ says $a b>1$. If 1 is not between a and b, then $1<a<b$.

This lemma is not used in hyperion: it is much easier to factor q, and check the roots (we have explicit formulas in the case of degree 2).

Note: assume q real. If $u \geq v^{2} / 4$, the condition becomes $(u-1)^{2}>0$, hence $u \neq 1$. Otherwise, it is $(u+1)^{2}>v^{2}$. Since we have $-1 \leq u \leq 1$, the set defined by the lemma is the triangle defined by $u<1$, $v<u+1$ and $-v<u+1$ (see figure 2.7 on page 51).

2.3.4 Boundary conditions

Let's assume that we are in the scalar case. Hence, we can consider polynomials q which have roots outside \mathbb{U}.

One can show (see [2]) that there exists a C^{∞} function, defined for all polynomials q, that is equal to $\psi(q)$ for q stable. In the case where F has only a finite number of Fourier coefficients, this is obvious, because ψ is a polynomial function with respect to the entries of F and q.

Theorem 14

Let $\psi_{1}(q)$ be the minimum of $\|F-P / q\|^{2}$. It is possible to define a C^{∞} function ψ such that $\psi(q)=\psi_{1}(q)$, whenever q is stable. This function is uniquely defined as $\psi(q)=\psi\left(q_{1}\right)$ in the case where $q=q_{1} q_{2}, q_{1}$ is stable and q_{2} has all its roots on \mathbb{T}.

Proof. For the first claim, see [2]. In the case where F has only a finite number of Fourier coefficients, the result is obvious, since $\psi(q)$ is a polynomial function of q.

Assume now $q=q_{1} q_{2}$, where q_{1} is stable, and roots of q_{2} are outside \mathbb{U}. If P and S are polynomials, since q_{1} and q_{2} are coprime, we can write

$$
\frac{P}{q}=\frac{P_{1}}{q_{1}}+\frac{P_{2}}{q_{2}} \quad \frac{S}{q}=\frac{S_{1}}{q_{1}}+\frac{S_{2}}{q_{2}} .
$$

Then

$$
\left\langle\left. F-\frac{P}{q} \right\rvert\, \frac{S}{q}\right\rangle=\left\langle\left. F-\frac{P_{1}}{q_{1}} \right\rvert\, \frac{S_{1}}{q_{1}}\right\rangle-\left\langle\left.\frac{P_{2}}{q_{2}} \right\rvert\, \frac{S_{2}}{q_{2}}\right\rangle
$$

Since P / q is a minimum if and only if this vanishes for every S_{1} and S_{2}, it follows that P_{2} must be zero, and P_{1} must be $L\left(q_{1}\right)$. This means that $\psi_{1}(q)=\psi\left(q_{1}\right)$. We get $\psi(q)=\psi\left(q_{1}\right)$ by continuity.

Consider equations (2.23) in the scalar case.

$$
\begin{gather*}
G \tilde{q}_{1}=V_{1} q_{1}+R_{1} \\
V_{1} \tilde{q}_{2}=V_{2} q_{2}+R_{2} \\
\psi(q)=\psi\left(q_{1}\right)-\left\|R_{2} / q_{2}\right\|^{2} . \tag{2.39.a}
\end{gather*}
$$

The last equation was established under the condition that q_{2} is stable. Assume that all roots are outside \mathbb{U}. Let $q_{3}=\tilde{q}_{2}$. Then

$$
V_{2} \tilde{q}_{3}=V_{1} q_{3}-R_{2}
$$

This gives

$$
\begin{equation*}
\psi(q)=\psi\left(q_{1}\right)+\left\|R_{2} / \tilde{q}_{2}\right\|^{2} . \tag{2.39.b}
\end{equation*}
$$

Note that $\psi(q) \geq \psi_{1}(q)$: our algorithm does not chose the best numerator in this case. In fact, $\psi_{1}(q)$ is not C^{1} on the boundary. The difference between (2.39.a) and (2.39.b) can be explained in the following way. When we write $V_{1} \tilde{q}_{2}=V_{2} q_{2}+R_{2}$, we consider the division in H^{2}. But if q_{2} has its roots outside \mathbb{U}, then the remainder R_{2} is zero. In the case of (2.39.b), we consider the division of polynomials. Here we get a non-zero remainder.

In the special case where q_{2} is of degree one, say $q_{2}=z-\alpha$, we get

$$
\begin{equation*}
\psi(q)=\left\|V_{1}\right\|^{2}+\left(|\alpha|^{2}-1\right)\left|V_{1}(\alpha)\right|^{2} . \tag{2.40}
\end{equation*}
$$

This equation is valid, whether or not α is in \mathbb{U}. In the case where q_{2} is of degree two, and has two different roots, a similar formula can be written (see [2, lemma 4.5]).

Another question is the following. Assume that q has some roots on the boundary, and let $q^{\prime}=q-\epsilon \nabla \psi$. Then $\psi\left(q^{\prime}\right)<\psi(q)$ for small positive ϵ. The question is now: is q^{\prime} stable? The answer is true if q has one root on \mathbb{T}, but may be false otherwise. We consider here a simple example:

$$
g=z^{2}+t, \quad q=z^{2}+u z+v
$$

We have

$$
\psi=|v|^{2}+|\bar{u}-\bar{v} u|^{2}+\left|1+\bar{v} t-|v|^{2}-u(\bar{u}-\bar{v} u)\right|^{2} .
$$

Write $u=a+i b, v=c+i d$. If we assume that t is real, and define

$$
A_{1}=a-a c-b d, \quad A_{2}=-b-b c+a d
$$

then

$$
\psi=c^{2}+d^{2}+A_{1}^{2}+A_{2}^{2}+\left(1-c t-c^{2}-d^{2}-a A_{1}+b A_{2}\right)^{2}+\left(-d t-a A_{2}-b A_{1}\right)^{2}
$$

Let's compute the derivative of ψ, assuming that q has two roots of modulus one. This implies $|v|=1$ and $\bar{u}=\bar{v} u$. In other words, $A_{1}=A_{2}=0$, so that the derivative of $A_{1}^{2}+A_{2}^{2}$ is zero. We have

$$
\frac{1}{2} \frac{\partial \psi}{\partial a}=c t(b d-a(1-c))-d t(-a d-b(1-c))
$$

$$
\begin{gathered}
\frac{1}{2} \frac{\partial \psi}{\partial b}=c t(a d-b(1+c))-d t(a(1+c)+b d) \\
\frac{1}{2} \frac{\partial \psi}{\partial c}=c+c t\left(t-2 c+a^{2}-b^{2}\right)-d t(2 a b) \\
\frac{1}{2} \frac{\partial \psi}{\partial d}=d+c t(-2 d+2 a b)-d t\left(-t-a^{2}+b^{2}\right)
\end{gathered}
$$

We can simplify a bit these formulas. In effect, the coefficient of t in $\partial \psi / \partial a$ is $b d-a c+a\left(c^{2}+d^{2}\right)$. But $c^{2}+d^{2}=1$ and $a=a c+b d$. Hence we get

$$
\begin{gathered}
\frac{1}{2}\left(\frac{\partial \psi}{\partial a}+i \frac{\partial \psi}{\partial b}\right)=t u(\bar{v}-v) \\
\frac{1}{2}\left(\frac{\partial \psi}{\partial c}+i \frac{\partial \psi}{\partial d}\right)=v\left[1+t^{2}+t\left(u^{2}-v-\bar{v}\right)\right]
\end{gathered}
$$

The gradient of ψ is defined, if q has degree two, as

$$
\nabla \psi=\left(\frac{\partial \psi}{\partial a}+i \frac{\partial \psi}{\partial b}\right) z+\frac{\partial \psi}{\partial c}+i \frac{\partial \psi}{\partial d}
$$

Let

$$
q(\lambda)=q-\lambda \nabla \psi
$$

If we solve the differential equation $d q / d t=-\nabla \psi$, the solution for small t will be $q(t)$. So the question is: is $q(t)$ stable? (we write here $q(\lambda)$ because t appears in g in the example above). In the case where $\nabla \psi=A z+B$, the root of $q(\lambda)$ near α is

$$
\begin{gather*}
z=\alpha[1+\gamma \lambda+o(\lambda)] \\
\gamma=\frac{A \alpha+B}{\alpha(\alpha-\beta)}=\frac{A+B \bar{\alpha}}{\alpha-\beta}, \tag{2.41}
\end{gather*}
$$

where α is a root of $q(0)$. This root is stable if the real part of γ is negative.
Assume now that, for small positive $\lambda, q(\lambda)$ has two unstable roots. Now $\Re \gamma>0$. The same is true if we exchange α and β in (2.41). If we take the sum, and use $v=(\bar{\alpha}-\bar{\beta}) /(\beta-\alpha)$, we get $\Re B \bar{v}<0$.

For the example above, we get

$$
\Re\left[1+t^{2}+t\left(u^{2}-v-\bar{v}\right)\right]<0
$$

which is absurd, because $\left|u^{2}-v-\bar{v}\right| \leq 2$. Said otherwise, at least one root of $q(\lambda)$ is stable. However, some roots can be unstable. For instance, if $\alpha=1$ and $\beta=i$, we have

$$
\gamma=-t^{2}-6 t-1+i(t-1)^{2}
$$

Thus, the root near 1 is unstable if $t^{2}+6 t+1<0$. This happens if t is near -1 (note that, for $t=-1$, $\alpha=1$ is a root of g). In fact, the root is unstable if t is between the two roots of the equation $t^{2}+6 t+1=0$, namely $-3 \pm \sqrt{8}$.

Consider now the general case. With the notations of (2.40),

$$
\frac{\partial \psi}{\partial \alpha}=2 \alpha\left|V_{1}(\alpha)\right|^{2}
$$

Assume that all roots of q are in \mathbb{T}. Then V_{1} is a constant time G so that

$$
\begin{equation*}
\frac{\partial \psi}{\partial \alpha}=2 \alpha|G(\alpha)|^{2} \tag{2.42}
\end{equation*}
$$

This formula allows us to find the derivatives of ψ with respect to the coefficients of q. For simplicity, we consider only the case where q has two roots α and β. Let $u=-(\alpha+\beta)$ and $v=\alpha \beta$. Then

$$
\begin{gather*}
A=\frac{1}{2} \frac{\partial \psi}{\partial u}=\frac{|G(\alpha)|^{2}-|G(\beta)|^{2}}{\bar{\beta}-\bar{\alpha}} \tag{2.43.a}\\
B=\frac{1}{2} \frac{\partial \psi}{\partial v}=\frac{\alpha|G(\alpha)|^{2}-\beta|G(\beta)|^{2}}{\bar{\beta}-\bar{\alpha}} \tag{2.43.b}
\end{gather*}
$$

and (2.41) gives

$$
\gamma=\frac{|G(\alpha)|^{2}-|G(\beta)|^{2}+\left(\alpha|G(\alpha)|^{2}-\beta|G(\beta)|^{2}\right) \bar{\alpha}}{-|\beta-\alpha|^{2}}
$$

Let $A_{1}=|G(\alpha)|^{2}$ and $A_{2}=|G(\beta)|^{2}$. Then

$$
\gamma=\frac{-2 A_{1}+(1+\alpha \bar{\beta}) A_{2}}{|\beta-\alpha|^{2}}
$$

In the special case where $1+\alpha \bar{\beta}=0$, we have $\Re \gamma<0$ (we exclude the case where $G(\alpha)=0$, this is a degenerate case). The condition $1+\alpha \bar{\beta}=0$ is $\alpha=-\beta$. Thus, for $q=z^{2}-1, q(\lambda)$ is stable.

Let $x=\Re(1+\alpha \bar{\beta})$. We have $0 \leq x \leq 2$. The root near α is unstable if

$$
-2 A_{1}+x A_{2}>0
$$

Note that this condition is false if $A_{1}=A_{2}$. In particular, this is the case if q has two complex conjugate roots. The root near β is unstable if

$$
-2 A_{2}+x A_{1}>0
$$

If both roots are unstable, by addition, we get $x>2$, which is absurd.

Theorem 15

Consider $q(t)$, the solution of the differential equation

$$
\frac{d q}{d t}=-\nabla \psi(q(t))
$$

Assume that $q\left(t_{0}\right)=q_{1} q_{2}$ where q_{1} is stable and q_{2} has all its roots on \mathbb{T}. Assume that we are in a generic case.

If q_{2} is of degree one, and q_{1} is a critical point of ψ, then $q(t)$ is stable for small positive $t-t_{0}$. On the other hand, if $q(t)$ is stable for small negative $t-t_{0}$, then q_{2} is not a critical point of ψ.

Proof. 1. If $t-t_{0}$ is small, we can factor $q(t)=q_{1}(t) q_{2}(t)$, where $q_{1}(t)$ and $q_{2}(t)$ are continuous and $q_{1}\left(t_{0}\right)=q_{1}, q_{2}\left(t_{0}\right)=q_{2}$. The polynomial $q_{1}(t)$ will be stable for small $t-t_{0}$.

If $\lambda=t-t_{0}$, then $q(t)$ is near $q-\lambda \nabla \psi$, where $\nabla \psi$ is the gradient of ψ at $q\left(t_{0}\right)$.
2. Assume now that q_{1} is a critical point of ψ. Equation (2.39) says $\psi(q(t))=\psi\left(q_{1}\left(t_{0}\right)\right)+o\left(t-t_{0}\right)+f(t)$, where $f(t)$ is positive if $q_{2}(t)$ has all its roots out of \mathbb{U}, negative if $q_{2}(t)$ has all its roots in \mathbb{U}. The main trick now is that $\psi(t)$ is decreasing.

Let $\alpha(t)$ be a root of q_{2}. Since we are in a generic case, we may assume that $\alpha\left(t_{0}\right)$ is a root of multiplicity one. If this is not the case, it will in general happen that the two roots split, and we get a stable and an unstable root. [Consider the function $1-|\alpha(t)|^{2}$. This function is zero at $t=t_{0}$. We assume that its derivative is not zero. If this is not the case, in general we have an unstable root for $t<t_{0}$ and $t>t_{0}$ (consider $\left.\alpha(t)=1+i t\right)$.]

Thus, the assumption we make is just that $f(t)$ has a non-zero derivative at $t=t_{0}$, so is $f(t)=$ $A\left(t-t_{0}\right)+o\left(t-t_{0}\right)$, with $A \neq 0$. We have $A<0$ if q_{1} has only stable roots for $t>t_{0}, A>0$ if q_{2} has only unstable roots.
3. Assume now that q_{2} is stable for $t<t_{0}$. This gives $A>0$, and contradicts the fact that ψ is decreasing. This shows that q_{1} cannot be a critical point of ψ.
4. The same argument shows that q_{2} must have at least one stable root for $t>t_{0}$. The example above shows that it can have some unstable roots. Thus, let's assume that it is of degree one. Then it must be stable, at least generically. In fact, a straight-forward computation says that the root is

$$
\alpha(t)=\alpha+2\left(t-t_{0}\right)\left|V_{1}(\alpha)\right|^{2} \frac{n}{\left|q_{1}(\alpha)\right|^{2}}+o(t)
$$

where $\alpha=\alpha\left(t_{0}\right)$. Thus $q(t)$ is stable, provided that $V_{1}(\alpha) \neq 0$. If this condition fails, then q is a critical point of ψ.

What this theorem says is the following. Assume that q_{0} is stable. Consider the solution of the differential equation, and t_{0} such that $q(t)$ is stable for $t<t_{0}$, and not stable at t_{0}. If no such t_{0} exists, then the limit $q(\infty)$ is a critical point of ψ. Write $q\left(t_{0}\right)=q_{1} q_{2}$ where q_{1} is stable, and q_{2} is not. Then all roots of q_{2} are in \mathbb{U}. Thus, q_{1} is not a critical point of ψ. We can consider the differential equation with q_{1} as initial condition. We then find q_{1}^{\prime} such that $\psi\left(q_{1}^{\prime}\right)<\psi\left(q_{1}\right)$ (if we are lucky, q_{1}^{\prime} is just the solution of the differential equation at $t=\infty$). This q_{1}^{\prime} is a critical point of ψ (in the generic case, it is a local minimum, if we are lucky, it is the global minimum).

Let's take $q_{1}^{\prime} q_{2}$ as initial condition. What the theorem says now is that for small positive $t, q(t)$ will be stable. Our example shows that this may be false in the case where q_{2} has degree ≥ 2. Note that generically, only one root will be of modulus one (unless we are in the real case, and we have two complex conjugate roots). Hence, the algorithm will be: consider $q_{1}^{\prime}(z-\alpha)$ as initial condition. This will give $q_{1}^{\prime \prime}$. Then consider $q_{1}^{\prime \prime}(z-\beta)$, and iterate until we find a polynomial of degree n. This will come to an end, because ψ is strictly decreasing.

Note: the question is how to chose α. What we need is $V_{1}(\alpha) \neq 0$. This is always possible, because, if V_{1} is identically zero, then F, the quantity to approximate at degree n, is rational, of lesser degree. There is however a small problem: it can happen that we are looking for a real solution and V_{1} vanishes at ± 1.

Consider for instance $g(z)=t+z^{2}-z^{4}$, with $t=8$. Let's compute the critical points at order one. If $q=z-\alpha$ is a critical point, then α is a root of a polynomial of degree 9 . Note that g does not vanish in the interval $[-1,1]$, and this will exclude 4 values. It remains $\alpha=0$ and $5 \alpha^{4}-7 \alpha^{2}-6$. This last equation has a negative root in α^{2}, and $\alpha^{2}=2$. Thus, $q=z$ is the only critical root of ψ at order one. Now, we have $V_{1}=z\left(1-z^{2}\right)$, which vanishes at ± 1. (Note that if $g(z)=t+z\left(1-z^{2}\right) f(z), V_{1}$ vanishes at $\pm 1 ; z=0$ is a critical point if g is an even function, the simplest case is when $f(z)=z$, we adjust t such that $z=0$ is the unique critical point).

Thus, it is impossible to find the minimum at order 2 with the method explained above. Consider $q=z^{2}+u z+v$. Then

$$
\begin{gathered}
V=-z^{4} v+(-u+v u) z^{3}+\left(v-1+v^{2}+u^{2}-v u^{2}\right) z^{2}+\left(2 u-2 v^{2} u-u^{3}+v u^{3}\right) z+ \\
+t v+1-v^{2}+v-v^{3}-v u^{2}+3 v^{2} u^{2}-2 u^{2}+u^{4}-v u^{4}
\end{gathered}
$$

We have

$$
\begin{gathered}
\psi=2+t^{2}+\psi_{2} \\
\psi_{2}=\left(v^{2}-1\right)\left(t-v-v^{2}\right)^{2}+u^{2}(1-v) B \\
B=u^{6}-v u^{6}+6 v^{2} u^{4}-3 u^{4}-3 v u^{4}-11 v^{3} u^{2}-v^{2} u^{2}+9 v u^{2}+2 t v u^{2}+3 u^{2}+6 v^{4}+6 v^{3}-4 v^{2}-6 t v^{2}-4 t v-5 v-1
\end{gathered}
$$

If we ask Maple for the critical points of ψ, we get a list of 7 solutions.

- $u=0$, two values for v.
- $u=0$, three values for v.
- $v=1$, four values for u.
- $v= \pm \sqrt{-t}$, four values for u.
- $P_{4}(v)=0, u= \pm \sqrt{f(v)}$, where P_{4} is a polynomial of degree four.
- $P_{6}(v)=0, u= \pm \sqrt{f(v)}$, where P_{6} is a polynomial of degree six.
- $v=0, u= \pm 1$.

This gives a total of 35 solutions. Of course, what we want is q real and stable. In the special case $t=8$, Maple can factor P_{6}. The critical points are

- $u=0, v^{2}+v-8=0$; numerically, $v=-3.372281323$ and $v=2.372281323$.
- $u=0,3 v^{3}+2 v^{2}-10 v-1=0$, i.e. $v=-2.146944380, v=-.09835082394$ and $v=1.578628537$.
- $v=1,8 u^{4}-39 u^{2}-36=0$. This gives $u= \pm 2.380927653$ (and two complex roots).
- $v=i \sqrt{8}$, and u is a function of v.
- $v^{3}+3 v^{2}+6 v+14=0,2 u^{2}-4-4 v-v^{2}=0$. There is a unique real solution for v, namely $v=-2.698885490$. We get $u= \pm 0.4941866692$.
- $w^{3}-11 w^{2}+72 w-408=0, v=w / 5,15 u^{2}+9-6 w+w^{2}=0$. There is no real solution.
- $60 v^{4}-104 v^{3}+151 v^{2}-152 v+54=0, P(u)=0$. No real solution.
- $v=0, u= \pm 1$.

Thus, we have 11 real solutions, and only one stable solution, $u=0, v=-.09835082394$.
Note that in general, computer algebra systems are unable to solve $P(u, v)=Q(u, v)=0$. In our case, there are lots of solutions with $u=0$ (since g is even), and the solutions $v=0, u= \pm 1$. This helps a lot.

Intersection with the boundary Assume that $q(t)$ is the solution of the differential equation, $q\left(t_{1}\right)$ is stable and $q\left(t_{2}\right)$ is not. We want to find is t_{0}, defined such that $q\left(t_{0}\right)$ has a root on \mathbb{T}, all roots are in $\overline{\mathbb{U}}$. If $r(t)$ is the maximum of the modulus of the roots of $q(t)$, we want $r\left(t_{0}\right)=1$. We have t_{1} and t_{2} with $r\left(t_{1}\right)<1<r\left(t_{2}\right)$. Using dichotomy, we can find t_{3} and t_{4}, with $t_{4}-t_{3}$ small, and $r\left(t_{3}\right)<1<r\left(t_{4}\right)$. In practice, the best thing to do seems to factor q_{3}, find the root α with greatest modulus, consider $\beta=\alpha /|\alpha|$, and pretend that $q\left(t_{0}\right)=q\left(t_{3}\right)(z-\beta) /(z-\alpha)$.

We propose here an alternate solution: define

$$
q_{\lambda}=\lambda q_{3}+(1-\lambda) q_{4}
$$

Then $q\left(t_{0}\right)$ is q_{λ} for some $0 \leq \lambda \leq 1$, with a very good approximation $\left(q_{3}=q\left(t_{3}\right), q_{4}=q\left(t_{4}\right)\right)$. Note that $r(0)<1<r(1)$ if $r(\lambda)$ is now the largest modulus of the roots of q_{λ}, so that there exists a λ with $r(\lambda)=1$.

Let α be a root of q_{λ} with modulus one. Then

$$
\begin{equation*}
\lambda=\frac{q_{4}(\alpha)}{q_{4}(\alpha)-q_{3}(\alpha)} \tag{2.44}
\end{equation*}
$$

Consider the complex case first. For λ to be real, we need $q_{3}(\alpha) \overline{q_{4}(\alpha)}$ to be real. Assume $q_{3}=\sum a_{i} z^{i}$ and $q_{4}=\sum b_{i} z^{i}$. Of course, we have $a_{n}=b_{n}=1$. We get

$$
\begin{equation*}
\Im \sum_{i j} a_{i} \overline{b_{j}} \alpha^{i} \bar{\alpha}^{j}=0 \tag{2.45}
\end{equation*}
$$

Let $S_{k}=\sum_{i} a_{i} \bar{b}_{i+k}$. Then (2.45) becomes

$$
\Im\left[S_{0}+\sum_{k=1}^{n}\left(S_{k} \bar{\alpha}^{k}+S_{-k} \alpha^{k}\right)\right]=0 .
$$

If $S_{k}=A_{k}+i B_{k}$, this is

$$
\begin{equation*}
B_{0}+\sum_{k=1}^{n}\left(B_{k}+B_{-k}\right) \cos k \phi+\left(A_{-k}-A_{k}\right) \sin k \phi=0 \tag{2.46}
\end{equation*}
$$

with $\alpha=e^{i \phi}$. If $t=\tan \phi / 2$, we get, after multiplication by $\left(1+t^{2}\right)^{n}$, an equation of the form $P(t)=0$, where P is a polynomial of degree $2 n$, hence $2 n$ solutions. Note that, if P has degree less than $2 n$, then $t=\infty$ is a solution, this is $\alpha=-1$.

Consider as an example the case $n=1$. Write $q_{3}=z-\beta=z-r e^{i \psi}, q_{4}=z-\gamma=z-s e^{i \theta}$. With $A=s-r \cos (\psi-\theta), B=r \sin (\psi-\theta), C=r s \sin (\psi-\theta)$ and $\phi^{\prime}=\phi-\theta$, this becomes

$$
\begin{equation*}
A \sin \phi^{\prime}+B \cos \phi^{\prime}=C \tag{2.47}
\end{equation*}
$$

This equation does not always have a solution. We know that the condition is $A^{2}+B^{2} \geq C^{2}$ (in general, not all roots of P are real). If this equation has a solution, it can always be written as

$$
\cos \left(\phi^{\prime}-\phi_{0}\right)=\cos \phi_{1}
$$

so that $\phi=\theta+\phi_{0} \pm \phi_{1}$. Details are left to the reader. However, equation (2.47) just says that the line passing through the points β and γ intersects the unit circle. It is well known that, unless the line is tangent, it has zero or two intersection points. Assume that β in the disk, and γ is out of the disc (this is just: q_{3} stable, q_{4} not stable). In this case, the line does intersect the circle. In fact, the segment $[\beta, \gamma]$ intersects the circle at a unique point. The conditions: the line (resp. the segment) intersects the circle are equivalent to say that (2.44) gives a real value for λ (resp. a value with $0 \leq \lambda \leq 1$). In higher dimension, the geometry is not easy (remember equation (2.38)).

Consider now the real case. Here α may be real. In this case it has to be ± 1, and λ is automatically real. The condition $0 \leq \lambda \leq 1$ is then $q_{3}(\alpha) q_{4}(\alpha)<0$. But α can also be complex. It has then the form

$$
\alpha=-a \pm \sqrt{a^{2}-1}
$$

for some a with $-1 \leq a \leq 1$. Define a sequence of polynomials Q_{k} and R_{k} by $Q_{0}=0, R_{0}=1$ and

$$
\begin{equation*}
Q_{k+1}=R_{k} \quad R_{k+1}=-2 z R_{k}-Q_{k} . \tag{2.48}
\end{equation*}
$$

We have

$$
\left(-z \pm \sqrt{z^{2}-1}\right)^{k}=R_{k}+z Q_{k} \pm \sqrt{z^{2}-1} Q_{k} .
$$

Assume $q_{3}=\sum \alpha_{k} z^{k}, q_{4}=\sum \beta_{k} z^{k}$, and define

$$
\begin{array}{ll}
P_{1}=\sum \alpha_{k}\left(R_{k}+z Q_{k}\right), & P_{2}=\sum \alpha_{k} Q_{k}, \\
P_{3}=\sum \beta_{k}\left(R_{k}+z Q_{k}\right), & P_{3}=\sum \beta_{k} Q_{k} .
\end{array}
$$

Then

$$
\begin{aligned}
& q_{3}\left(-a \pm \sqrt{a^{2}-1}\right)=P_{1}(a) \pm \sqrt{a^{2}-1} P_{2}(a), \\
& q_{4}\left(-a \pm \sqrt{a^{2}-1}\right)=P_{3}(a) \pm \sqrt{a^{2}-1} P_{4}(a) .
\end{aligned}
$$

Now (2.44) becomes

$$
\lambda P_{1}(a)+(1-\lambda) P_{3}(a)=0, \quad \lambda P_{2}(a)+(1-\lambda) P_{4}(a)=0 .
$$

Figure 2.7: Two polynomials q_{3}, q_{4}, and the set of stable polynomials, which is in the triangle defined by $q_{0}=(z-1)^{2}, q_{1}=(z+1)^{2}$ and $q_{2}=z^{2}-1$. A polynomial $q=z^{2}+a z+b$ is defined by the point $x=a$ and $y=b$. The half lines that start at q_{3} and pass by q_{i} define three sectors out of the triangle.

If we eliminate λ, we get

$$
\begin{equation*}
P_{1}(a) P_{4}(a)-P_{2}(a) P_{3}(a)=0 \tag{2.49}
\end{equation*}
$$

A priori, this is an equation of degree $2 n$. In fact, it has only degree $n-1$. This is because it simplifies to

$$
\sum \alpha_{i} \beta_{j}\left(R_{i} Q_{j}-R_{j} Q_{i}\right)=0
$$

Note that, if $S_{i j}=R_{i} Q_{j}-R_{j} Q_{i}$, then equation (2.48) says $S_{i+1, j+1}=S_{i j}$, so that we get

$$
\begin{equation*}
\sum_{i k}\left(\alpha_{i} \beta_{i+k}-\alpha_{i+k} \beta_{i}\right) Q_{k}=0 \tag{2.50}
\end{equation*}
$$

This is of degree $n-1$. Note that each solution a gives two complex conjugate values α, thus $2 n-2$ solutions. If we add $\alpha= \pm 1$, we get $2 n$ solutions, as in the complex case.

In order to understand what happens, consider the case $n=2$. To each polynomial $q=z^{2}+u z+v$, we associate the point (u, v) in the plane. Let $q_{0}=(z-1)^{2}, q_{1}=(z+1)^{2}$ and $q_{2}=z^{2}-1$ (see figure 2.7).

These three polynomials define a triangle. A polynomial q_{3} is stable if and only if it is in the triangle. On the figure, we have shown the triangle, a stable polynomial q_{3}, an unstable one q_{4}, the line that joins them. The half lines that start at q_{3} and that pass through $q_{i}(0 \leq i \leq 2)$ define three sectors in the plane (shown as I, II and III).

Let's write $q_{3}=\alpha_{0}+\alpha_{1} z+z^{2}$ and $q_{4}=\beta_{0}+\beta_{1} z+z^{2}$. Consider (2.44) with $\alpha=1$. We assume q_{3} stable, so that, in particular $q_{3}(1)>0$. The condition $0 \leq \lambda \leq 1$ says $q_{4}(1)>0$, so that q_{4} is not in the triangle (in fact, the line $\left(q_{0} q_{2}\right)$ intersects the segment $\left.\left[q_{3} q_{4}\right]\right)$. Since q_{λ} has 1 as root, the other root is easy to find. It is stable if and only if

$$
\left|\alpha_{0}\left(\beta_{0}+1\right)-\beta_{0}\left(\alpha_{1}+1\right)\right| \leq\left|\beta_{0}+\beta_{1}-\alpha_{0}-\alpha_{1}\right|
$$

This condition (together with $\left.q_{4}(1)<0\right)$ says that q_{4} is not in the triangle, and is in the sector II.
On the other hand, the solution to (2.50) is

$$
2 a=\frac{\beta_{1}-\alpha_{1}}{\beta_{0}-\alpha_{0}}\left(1-\alpha_{0}\right)+\alpha_{1}, \quad 1-\lambda=\frac{1-\alpha_{0}}{\beta_{0}-\alpha_{0}} .
$$

Since q_{3} is stable, we have $\alpha_{0}<1$. Hence the condition $0 \leq \lambda \leq 1$ says $\beta_{0}>1$. It is easy to check that this condition, together with $-1 \leq a \leq 1$ says that q_{4} is not in the triangle, and is in the sector I. Geometrically, it is obvious that if q_{3} is in the triangle, and q_{4} is outside of the triangle, then the segment [q_{3}, q_{4}] intersects one and only one side of the triangle.

In dimension greater than two, things are more complicated. For instance, the set of stable polynomials is not convex. Thus, (2.44) can have more than one solution λ with $0 \leq \lambda \leq 1$.

2.3.5 Derivatives of ψ

We give here formulas in the scalar case for the derivative of ψ with respect to the coefficients of q. The complexity of these formulas will be given in the last chapter. We can also use automatic differentiation, see chapter 4. There is another technique we once used: let $q=\Pi\left(z-\alpha_{i}\right)$. We get $d \psi / d \alpha_{i}$ via (2.40). This works only if q has simple roots.

We write here f, g and p instead of F, G and P, assuming that everything is a scalar. In the case of a vector, nothing changes. In order to get the first derivative of ψ, we introduce the following quantities, obtained by division by q :

$$
\begin{equation*}
g z^{n-i}=U_{i} q+C_{i} \quad V z^{i}=W_{i} q+D_{i} \tag{2.51.a}
\end{equation*}
$$

These are needed for computing the second derivative.

$$
\begin{equation*}
U_{i} z^{j}=X_{i j} q+Z_{i j} \quad W_{i} z^{j}=Y_{i j} q+T_{i j} \tag{2.51.b}
\end{equation*}
$$

We shall use the relation

$$
\langle A \mid B C\rangle=\left\langle A \tilde{C} \mid B z^{n}\right\rangle
$$

if C is a polynomial of degree n.
We have, for $\operatorname{deg}(r)<1$,

$$
\begin{equation*}
\left\langle f-\frac{p}{q} \left\lvert\, \frac{r s}{q^{2}}\right.\right\rangle=\left\langle\left.\frac{\tilde{r}}{q} \right\rvert\, \frac{V s}{q}\right\rangle . \tag{2.52}
\end{equation*}
$$

In fact

$$
\left\langle f-\frac{p}{q} \left\lvert\, \frac{r s}{q^{2}}\right.\right\rangle=\left\langle\left.\check{V} \frac{\tilde{q}}{q} \right\rvert\, \frac{r s}{q^{2}}\right\rangle=\left\langle\left.\frac{z^{n-1}}{q} \right\rvert\, \frac{V r s}{q}\right\rangle=\left\langle\left.\frac{\tilde{r}}{q} \right\rvert\, \frac{V s}{q}\right\rangle
$$

We introduce the polynomial Y defined so that, for each D of degree $n-1$:

$$
\left\langle f \left\lvert\, \frac{D}{q}\right.\right\rangle=\langle\tilde{D} \mid Y\rangle
$$

Such an Y exists, because the left-hand side is a linear operator on polynomials of degree less than n. Note that if $Y=\sum y_{i} z^{i}$, then, by linearity, $y_{i}=\left\langle f \mid z^{n-i-1} / q\right\rangle=\left\langle f z^{i} \mid z^{n-1} / q\right\rangle$.

Write $q=\sum_{k}\left(q_{k}+i r_{k}\right) z^{k}$, where q_{k} and r_{k} are real coefficients. If ∂r is the partial derivative of r w.r.t. r_{k} or q_{k}, since $\psi=\langle f-p / q \mid f-p / q\rangle$ we have

$$
\partial \psi=2 \Re\left\langle f-\frac{p}{q} \left\lvert\, \frac{-\partial p}{q}+\frac{p \partial q}{q^{2}}\right.\right\rangle=2 \Re\left\langle f-\frac{p}{q} \left\lvert\, \frac{p \partial q}{q^{2}}\right.\right\rangle
$$

We applied relation (2.10) to ∂p. If we apply relation (2.52), this gives:

$$
\partial \psi=2 \Re\left\langle\left.\frac{\tilde{p}}{q} \right\rvert\, \frac{V \partial q}{q}\right\rangle
$$

If s and D are the quotient and remainder of the division of $V \partial q$ by q, we get

$$
\partial \psi=2 \Re\left\langle\left.\frac{\tilde{p}}{q} \right\rvert\, \frac{D}{q}+s\right\rangle=2 \Re\left\langle\left.\frac{\tilde{p}}{q} \right\rvert\, \frac{D}{q}\right\rangle=2 \Re\left\langle\left.\frac{\tilde{D}}{q} \right\rvert\, \frac{p}{q}\right\rangle=2 \Re\left\langle\left.\frac{\tilde{D}}{q} \right\rvert\, f\right\rangle=2 \Re\langle Y \mid D\rangle .
$$

Computing ∂q is obvious. We have hence:

$$
\begin{align*}
\frac{\partial \psi}{\partial q_{i}} & =2 \Re\left\langle D_{i} \mid Y\right\rangle \tag{2.53.a}\\
\frac{\partial \psi}{\partial r_{i}} & =2 \Im\left\langle D_{i} \mid Y\right\rangle \tag{2.53.b}
\end{align*}
$$

We can also use the relation $\psi=\|V\|^{2}$, so that $\partial \psi=2 \Re\langle V \mid \partial V\rangle$. Differentiating (2.11.a) gives:

$$
\begin{aligned}
g z^{n-i} & =\frac{\partial V}{\partial q_{i}} q+V z^{i}+\frac{\partial R}{\partial q_{i}} \\
-i g z^{n-i} & =\frac{\partial V}{\partial r_{i}} q+i V z^{i}+\frac{\partial R}{\partial r_{i}}
\end{aligned}
$$

Since derivatives of R are of degree less than n, we get

$$
\frac{\partial V}{\partial q_{i}}=U_{i}-W_{i} \quad \frac{\partial V}{\partial r_{i}}=-i\left(U_{i}+W_{i}\right)
$$

Hence:

$$
\begin{align*}
& \frac{\partial \psi}{\partial q_{i}}=2 \Re\left\langle V \mid U_{i}-W_{i}\right\rangle \tag{2.54.a}\\
& \frac{\partial \psi}{\partial r_{i}}=2 \Im\left\langle V \mid U_{i}+W_{i}\right\rangle . \tag{2.54.b}
\end{align*}
$$

Computing second derivatives is now obvious, by differentiation of (2.54). The derivatives of U_{i} and W_{i} are given by

$$
\begin{gathered}
\frac{\partial U_{i}}{\partial q_{j}}=-X_{i j} \\
\frac{\partial U_{i}}{\partial r_{j}}=-i X_{i j} \\
\frac{\partial W_{i}}{\partial q_{j}}=-X_{j i}-Y_{j i}-Y_{i j} \\
\frac{\partial W_{i}}{\partial r_{j}}=-i\left(X_{j i}+Y_{i j}+Y_{j i}\right)
\end{gathered}
$$

Hence:

$$
\begin{align*}
\frac{\partial^{2} \psi}{\partial q_{i} \partial q_{j}} & =2 \Re\left\langle U_{i}-W_{i} \mid U_{j}-W_{j}\right\rangle+2 \Re\left\langle V \mid Y_{i j}+Y_{j i}-X_{i j}-X_{j i}\right\rangle \tag{2.55.a}\\
\frac{\partial^{2} \psi}{\partial q_{i} \partial r_{j}} & =-2 \Im\left\langle U_{j}+W_{j} \mid U_{i}-W_{i}\right\rangle+2 \Im\left\langle V \mid-Y_{i j}-Y_{j i}+X_{i j}-X_{j i}\right\rangle \tag{2.55.b}\\
\frac{\partial^{2} \psi}{\partial r_{i} \partial r_{j}} & =2 \Re\left\langle U_{i}+W_{i} \mid U_{j}+W_{j}\right\rangle-2 \Re\left\langle V \mid Y_{i j}+Y_{j i}+X_{i j}+X_{j i}\right\rangle \tag{2.55.c}
\end{align*}
$$

2.3.6 Other formulas

Assume that q has n distinct roots, $q=\prod\left(z-\alpha_{i}\right)$. Equation (2.11.a) gives $R\left(\alpha_{i}\right)=G\left(\alpha_{i}\right) \tilde{q}\left(\alpha_{i}\right)$. Now $P / q=\sum \beta_{i} /\left(z-\alpha_{i}\right)$,

$$
\begin{equation*}
\left\langle F \left\lvert\, \frac{P}{q}\right.\right\rangle=\sum\left\langle F \left\lvert\, \frac{\beta_{i}}{z-\alpha_{i}}\right.\right\rangle=\sum \beta_{i} G\left(\alpha_{i}\right) . \tag{2.56}
\end{equation*}
$$

Question: what is the complexity of this algorithm compared to the complexity of using (2.11.a)? We may assume $\|F\|$ is pre-computed (it is independent of q). Let M be the number of coefficients of G, and $m \times p$ the dimension of G. In the scalar case, we can assume $m=p=1$. It will cost $M n$ multiplications to evaluate $G\left(\alpha_{i}\right)$. It will costs a_{n} multiplications to find β_{i} (use Lagrange interpolation to find the coefficients of R, and β_{i} is nothing else than the derivative at $z=\alpha_{i}$ of $\tilde{R}\left(z-\alpha_{i}\right) / q$. Computing these quantities is independent of $M)$. Finally n multiplications are required for computing $\beta_{i} G\left(\alpha_{i}\right)$.

This means that we can compute ψ using $n M+b_{n}$ multiplications, where b_{n} is a function of n only. There must surely exists an algorithm with the same complexity, that works even if q has multiple roots. Note that the complexity of (2.11.a) is $2 M n$, because multiplying G by \tilde{q}, and dividing this by q costs $n M$ multiplications. In fact, we gain because we exploit the relation between q and \tilde{q}. In the matrix case, the only relation between \tilde{D} and q is that the quotient is inner. Can we exploit it?

Consider

$$
\begin{equation*}
G=V_{1} q+R_{1} \quad R_{1} \tilde{D}=V_{2} q+R_{2} \tag{2.57}
\end{equation*}
$$

We have $R=R_{2}$, and $V=V_{1} \tilde{D}+V_{2}$. Note that computing $V_{1} \tilde{D}$ costs almost as many multiplications as $G \tilde{D}$. Hence the idea is to not compute V, but use (2.18) twice. In fact $\|F\|^{2}-\|V\|^{2}$ is the square of the norm of R / q, and $\left\|R_{1}\right\|^{2}-\left\|V_{2}\right\|^{2}$ is the square of the norm of R_{2} / q. Since $R=R_{2}$ we get

$$
\begin{equation*}
\psi=\|F\|^{2}-\left\|R_{1}\right\|^{2}+\left\|V_{2}\right\|^{2} \tag{2.58}
\end{equation*}
$$

The complexity for the general algorithm is $m p M(n+1)(p+1)$: it costs $m p^{2} M(n+1)$ to multiply G which is a $m \times p$ matrix of degree M by a \tilde{D}, which is a $p \times p$ matrix of degree n. It costs mpMn multiplications to divide $G \tilde{D}$ which is a $m \times p$ matrix of degree $M+n$ by the monic polynomial q. Finally, it costs $m p M$ multiplications to compute the norm of V.

For the new algorithm, we need $m p(M-n) n$ multiplications for computing $V_{1}, 2 n^{2} m p^{2}$ multiplications for computing $V_{2}, 2 n m p$ multiplications for computing the norms of R_{1} and V_{2}.

The complexity is now $\operatorname{mpn}(M+p n+2-n)$. The ratio between the two complexities is

$$
r=\frac{n}{M} \frac{M+2 p n+2-n}{(p+1)(n+1)}
$$

In the scalar case $(p=1)$, we can exploit the fact that $\tilde{D}=\tilde{q}$ is monic, so that we get

$$
r=\frac{n(M+2+n)}{M(2 n+1)}
$$

This is roughly $1 / 2$. In the general case, it is roughly $1 /(p+1)$, see the last chapter for details. Note: this trick does not work in the case of weighted approximation. The formulas established in the previous subsection are now invalid.

2.3.7 Weighted approximation

In this section, we study some properties of orthogonal polynomials. Classically, if we have a scalar product of the form

$$
\langle f \mid g\rangle=\int_{a}^{b} \overline{f(x)} g(x) h(x) d x
$$

(where h is a positive function) which is defined for all polynomials, there exists a unique sequence P_{n} of polynomials of degree n, which is orthonormal, and such that the leading coefficient of P_{n} is real and
positive. The main property of the scalar product is $\langle x P \mid Q\rangle=\langle P \mid x Q\rangle$, from which one can deduce two properties: there is a recurrence relation of the form

$$
P_{n+1}=\left(a_{n}+b_{n} x\right) P_{n}+c_{n} P_{n-1}
$$

and P_{n} has n real roots on the interval $[a, b]$. For more details, see [18].
In this section, we consider a scalar product of the form

$$
\begin{equation*}
\langle f \mid g\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} \overline{f\left(e^{i \theta}\right)} g\left(e^{i \theta}\right) h\left(e^{i \theta}\right) d \theta \tag{*}
\end{equation*}
$$

and show that there is a recurrence relation, and the roots of P_{n} satisfy some properties (see also [18]). We start with the recurrence relation, study it, and then show that it is associated to a scalar product. Finally, we explain how these polynomials can be used (see [13]).

Assume that Φ_{i} is defined by

$$
\begin{equation*}
\Phi_{i-1}=\frac{1}{z} \frac{\widetilde{\Phi_{i}}(0) \Phi_{i}-\Phi_{i}(0) \widetilde{\Phi_{i}}}{\sqrt{\left|\widetilde{\Phi_{i}}(0)\right|^{2}-\left|\Phi_{i}(0)\right|^{2}}} \tag{2.59}
\end{equation*}
$$

If Φ_{i} is a polynomial of degree i, then Φ_{i-1} is a polynomial of degree $i-1$, and its leading coefficient is

$$
\begin{equation*}
\kappa_{i-1}=\sqrt{\left|\widetilde{\Phi_{i}}(0)\right|^{2}-\left|\Phi_{i}(0)\right|^{2}} \tag{2.60}
\end{equation*}
$$

An alternate formula is

$$
\begin{equation*}
\widetilde{\widetilde{\Phi_{i-1}}(0)} \widetilde{\Phi_{i-1}}=\widetilde{\Phi_{i}}(0) \widetilde{\Phi_{i}}-\overline{\Phi_{i}(0)} \Phi_{i} . \tag{2.61}
\end{equation*}
$$

A consequence of (2.60) is

$$
\begin{equation*}
\kappa_{i}^{2}=\sum_{j=0}^{i}\left|\Phi_{j}(0)\right|^{2} \tag{2.62}
\end{equation*}
$$

A consequence of (2.59) is

$$
\begin{equation*}
\widetilde{\Phi_{i}}=\frac{1}{\kappa_{i}} \sum_{k=0}^{i} \overline{\Phi_{k}(0)} \Phi_{k} \tag{2.63}
\end{equation*}
$$

We shall see later the interest of these formulas. In particular, we shall prove the converse of the following theorem.

Theorem 16

If Φ_{i} is defined for $0 \leq i \leq n$, then Φ_{i} is stable.
Proof. The main assumption is that the quantity that appears in the square root of (2.59) is positive. Combining all equations gives

$$
\begin{equation*}
z \Phi_{i-1}=\frac{\kappa_{i}}{\kappa_{i-1}} \Phi_{i}-\frac{\Phi_{i}(0)}{\kappa_{i} \kappa_{i-1}} \sum_{k=0}^{i} \overline{\Phi_{k}(0)} \Phi_{k} \tag{2.64}
\end{equation*}
$$

Consider now the scalar product, defined for polynomials of degree $\leq n$, by $\left\langle\Phi_{i} \mid \Phi_{j}\right\rangle=\delta_{i j}$. Assume $j \leq i$. We have

$$
\left\langle z \Phi_{i-1} \mid z \Phi_{j-1}\right\rangle=A-B-C+D
$$

with

$$
A=\frac{\kappa_{i}}{\kappa_{i-1}} \frac{\kappa_{j}}{\kappa_{j-1}}\left\langle\Phi_{i} \mid \Phi_{j}\right\rangle=\frac{\kappa_{i} \kappa_{j}}{\kappa_{i-1} \kappa_{j-1}} \delta_{i j}
$$

RR no 0123456789

$$
B=\frac{\kappa_{i}}{\kappa_{i-1}} \frac{\Phi_{j}(0)}{\kappa_{j} \kappa_{j-1}}\left\langle\Phi_{i} \mid \sum_{k=0}^{j} \overline{\Phi_{k}(0)} \Phi_{k}\right\rangle .
$$

In case $j \leq i$, the last scalar product is $\overline{\Phi_{i}(0)} \delta_{i j}$, so that

$$
A-B=\frac{\kappa_{i}}{\kappa_{i-1}}\left(\frac{\kappa_{i}}{\kappa_{i-1}}-\frac{\left|\Phi_{i}(0)\right|^{2}}{\kappa_{i} \kappa_{i-1}}\right) \delta_{i j}=\delta_{i j} .
$$

We have

$$
\begin{gathered}
C=\frac{\overline{\Phi_{i}(0)}}{\kappa_{i} \kappa_{i-1}} C^{\prime} \quad D=\frac{\overline{\Phi_{i}(0)}}{\kappa_{i} \kappa_{i-1}} D^{\prime}, \\
C^{\prime}=\left\langle\sum_{k=0}^{i} \overline{\Phi_{k}(0)} \Phi_{k} \left\lvert\, \frac{\kappa_{j}}{\kappa_{j-1}} \Phi_{j}\right.\right\rangle=\frac{\kappa_{j}}{\kappa_{j-1}} \Phi_{j}(0) \\
D^{\prime}=\frac{\Phi_{j}(0)}{\kappa_{j} \kappa_{j-1}}\left\langle\sum_{k=0}^{i} \overline{\Phi_{k}(0)} \Phi_{k} \mid \sum_{k=0}^{j} \overline{\Phi_{k}(0)} \Phi_{k}\right\rangle=\frac{\Phi_{j}(0)}{\kappa_{j} \kappa_{j-1}} \sum_{k=0}^{j}\left|\Phi_{k}(0)\right|^{2}=\Phi_{j}(0) \frac{\kappa_{j}^{2}}{\kappa_{j} \kappa_{j-1}}=C^{\prime} .
\end{gathered}
$$

Hence $\left\langle z \Phi_{i-1} \mid z \Phi_{j-1}\right\rangle=\delta_{i j}$ if $j \leq i$. By symmetry, it is true for all i and j. From this, we deduce

$$
\begin{equation*}
\langle z A \mid z B\rangle=\langle A \mid B\rangle \tag{2.65}
\end{equation*}
$$

whenever A and B are polynomials of degree $<n$. Hence

$$
\|(z-\alpha) A\|^{2}=\|A\|^{2}\left(1+|\alpha|^{2}\right)-2 \Re(\alpha\langle z A \mid A\rangle)
$$

from which we get $|\langle z A \mid A\rangle|<\|A\|^{2}$ if $A \neq 0$.
Hence, if $\Phi_{i}=(z-\beta) A,\left\langle\Phi_{i} \mid A\right\rangle=0$ implies $\beta=\langle A \mid z A\rangle /\|A\|^{2}$, hence $|\beta|<1$ and Φ_{i} is stable.
Note: if Φ_{i} is a polynomial of degree exactly i, then we have a relation

$$
z \Phi_{n-1}=\sum_{i=0}^{n} a_{i n} \Phi_{i} .
$$

If Φ_{i} is orthogonal for a scalar product that satisfies $\langle z P \mid Q\rangle=\langle P \mid z Q\rangle$, then $a_{i n}=0$ unless $i=n, n-1$, $n-2$. On the other hand, if the scalar product satisfies (2.65), then coefficients $a_{i n}$ are defined by (2.64). The argument is as follows.

Assume that we have a scalar product defined for all polynomials that satisfies (2.65). There exists an orthonormal basis Φ_{i}, where Φ_{i} is of degree i (if we require that the leading coefficient of Φ_{i} is real and positive, this basis is unique). Define

$$
\begin{equation*}
K_{n}(z, a)=\sum_{i=0}^{n} \overline{\Phi_{i}(a)} \Phi_{i}(z) . \tag{2.66}
\end{equation*}
$$

Lemma 29

If p is a polynomial of degree $\leq n$, then $|p(a)| \leq\|p\| \sqrt{K_{n}(a, a)}$, and equality holds if and only if there exists a constant λ such that $p(z)=\lambda K_{n}(z, a)$.
Proof. Write $p=\sum \lambda_{i} \Phi_{i}$. Apply Cauchy-Schwarz to $p(a)=\sum \lambda_{i} \Phi_{i}(a)$, and use $\sum\left|\lambda_{i}\right|^{2}=\|p\|^{2}$.

Lemma 30

$$
\begin{equation*}
K_{n}(z, a)=(z \bar{a})^{n} K_{n}(1 / \bar{a}, 1 / \bar{z}) . \tag{2.67}
\end{equation*}
$$

Proof. Take p of degree $\leq n$. Let $r=\tilde{p}$. The main assumption on the scalar product is $\|p\|=\|r\|$. Apply the lemma for $p(a)$ and $r(1 / \bar{a})$. We get

$$
\begin{gathered}
|p(a)|^{2} \leq\|p\|^{2} K_{n}(a, a) \\
|p(a)|^{2} \leq\|p\|^{2}|a|^{2 n} K_{n}(1 / \bar{a}, 1 / \bar{a})
\end{gathered}
$$

Now, equality can hold in both cases. Hence

$$
\begin{equation*}
K_{n}(a, a)=|a|^{2 n} K_{n}(1 / \bar{a}, 1 / \bar{a}) \tag{*}
\end{equation*}
$$

Moreover, equality holds if $p=K_{n}(\cdot, a)$, so that r must be a multiple of $K_{n}(\cdot, 1 / \bar{a})$. This means

$$
z^{n} K_{n}(a, 1 / \bar{z})=\lambda K_{n}(z, 1 / \bar{a})
$$

(because $\left.K_{n}(a, b)=\overline{K_{n}(b, a)}\right)$. Replace a by $1 / \bar{a}$, and use $(*)$ to identify λ.

Corollary 6

$$
\begin{gathered}
K_{n}(z, a)=\sum_{i=0}^{n}(z \bar{a})^{n} \overline{\widetilde{\Phi_{n}}(a)} \widetilde{\Phi_{n}}(z) . \\
K_{n}(z, 0)=\overline{\widetilde{\Phi_{n}}(0)} \widetilde{\Phi_{n}}(z) .
\end{gathered}
$$

Moreover, equations (2.59) and (2.61) hold.
Proof. Replace in the right-hand side of (2.67) the value of K_{n} obtained from (2.66). This gives the first relation. Evaluate at $a=0$, this gives the second one. Evaluate this at $n=i, n=i-1$, take the difference. This gives (2.61) hence (2.59).

In what follows, we consider the scalar product

$$
\begin{equation*}
\langle f \mid g\rangle_{h}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \overline{f\left(e^{i \theta}\right)} g\left(e^{i \theta}\right) \frac{d \theta}{\left|h\left(e^{i \theta}\right)\right|^{2}} \tag{2.68}
\end{equation*}
$$

We shall make the assumption that h is continuous and non-zero on \mathbb{T} (later on that h is a polynomial), so that the scalar product is defined whenever f and g are in H^{2}. In particular, there exists an orthonormal basis Φ_{i}, denoted by $\Phi_{i}(h)$, that satisfies equation (2.59).

Lemma 31

Let q be a stable polynomial of degree n. There exists a sequence of polynomials Φ_{i}, that satisfy the recurrence relation (2.59) and $\Phi_{n}=q$.

This is the converse of Theorem 16.
Proof. Assume first that the leading coefficient of q is real and positive. We pretend that q is orthogonal to each polynomial p of degree $<n$ for the scalar product $\langle f \mid g\rangle_{q}$, this is trivial to check. This implies $\Phi_{n}(q)=q$ and the sequence $\Phi_{i}(q)$ satisfies the requirements. If we multiply q by an element of \mathbb{T}, the value of Φ_{n-1} is unchanged.

Note that $\Phi_{i+n}(q)=z^{i} q$. Hence, it is possible to compute every Φ_{i}. In the general case, assume that K_{n} has a limit K_{∞} when $n \rightarrow \infty$. Then

$$
\begin{equation*}
\left\langle K_{\infty}(z, a) \mid f\right\rangle=f(a) \tag{*}
\end{equation*}
$$

whenever everything is defined. Moreover, there exists a function D such that

$$
K_{\infty}(z, a)=\frac{1}{\overline{D(a)} D(z)} \frac{1}{1-\bar{a} z}
$$

(see [18, Formula 12.3.17] for details).
In the special case under consideration, we have

$$
K_{\infty}(z, a)=K_{n-1}(z, a)+\frac{\overline{q(a)} q(z)}{1-\bar{a} z}
$$

In fact

$$
K_{\infty}(z, a)=\frac{\overline{\tilde{q}(a)} \tilde{q}(z)}{1-\bar{a} z}
$$

(because of the next lemma). Quantities K that satisfy relation (*) are called reproducing kernels, and are studied in the next chapter.

Lemma 32

We have

$$
\begin{equation*}
K_{n-1}(z, a)=\frac{\overline{\Phi_{n}(a)} \widetilde{\Phi_{n}}(z)-\overline{\Phi_{n}(a)} \Phi_{n}(z)}{1-\bar{a} z} \tag{2.69}
\end{equation*}
$$

Proof. Let T be the numerator of the right-hand side of (2.69), and $S=T /(1-\bar{a} z)$. It is obvious that S is a polynomial of degree at most n. The leading coefficient of S is the complex conjugate of

$$
\frac{\Phi_{n}(a) \widetilde{\Phi_{n}}(0)-\widetilde{\Phi_{n}}(a) \Phi_{n}(0)}{a}
$$

which is $\kappa_{n-1} \Phi_{n-1}(a)$ according to (2.59). According to (2.66), this is the complex conjugate of the leading coefficient of K_{n-1}.

Let p be a polynomial of degree $<n$. Write $r=(p(z)-p(a)) /(z-a)$ so that $p=(z-a) r+p(a)$. Now $\langle S \mid p\rangle=\langle T \mid r z\rangle+\langle S \mid p(a)\rangle$. Since $r z$ is of degree $<n$, it is orthogonal to Φ_{n}. It is also orthogonal to $\widetilde{\Phi_{n}}$ because $\left\langle\widetilde{\Phi_{n}} \mid r z\right\rangle=\left\langle\widetilde{r} \mid \Phi_{n}\right\rangle$, and \tilde{r} is of degree $n-1$. Hence $\langle S \mid p\rangle=p(a)\langle S \mid 1\rangle=C_{a} p(a)$, where C_{a} depends only on a.

By definition, $\left\langle K_{n} \mid p\right\rangle=p(a)$ whenever p has degree less than n. Hence $K_{n}(z, a)=C_{a} S(z, a)$. Comparing leading coefficients gives $C_{a}=1$.

Theorem 17

Assume w stable, of degree k. For each n, there exists a number $\alpha_{n}>1$, such that if q is of degree n, and has roots less than α_{n} in module, then the recurrence relations (2.59) are satisfied for $k \leq i \leq n+k$ with $\Phi_{n+k}=q w$.

Proof. 1. Let's define $\Phi_{i}(q)$ to be the polynomial of degree i defined by the recurrence relation (2.59) with $\Phi_{n}(q)=q$ for $n=\operatorname{deg}(q)$. This agrees with the previous definition in case q is stable.
2. Assume $q=q_{1} q_{2}$, where q_{i} has degree n_{i}. Suppose that q_{1} is stable and q_{2} has its roots on \mathbb{T}. The previous theorem says that $\Phi_{i}\left(q_{1}\right)$ is defined. Since $q_{2}=q_{2}(0) \widetilde{q_{2}}$, equation (2.59) says $\Phi_{i+n_{2}}\left(q_{1} q_{2}\right)=$ $q_{2} \Phi_{i}\left(q_{1}\right)$. Hence $\Phi_{i}\left(q_{1} q_{2}\right)$ exists for $i \geq n_{2}$. Note that $\Phi_{n_{2}}\left(q_{1} q_{2}\right)$ is a constant times q_{2}. Trying to apply (2.59) to it will fail.
3. Let λ be a real number. Define $q_{\lambda}(z)=\lambda^{n} q(z / \lambda)$. Let

$$
\kappa_{i}(q, \lambda)=\left|\widetilde{\Phi_{i}}\left(w q_{\lambda}\right)(0)\right|^{2}-\left|\Phi_{i}\left(w q_{\lambda}\right)(0)\right|^{2}
$$

Polynomials $\Phi_{i}\left(w q_{\lambda}\right)$ are defined if $\kappa_{i}(q, \lambda)$ is real and positive. For fixed q, this is a continuous function of λ. Assume that q has all its roots in $\overline{\mathbb{U}}$. Then $\kappa_{i}(q, 1)>0$ for $i>k$, because w is stable. Hence $\kappa_{i}(q, \lambda)>0$ if $\lambda \leq \lambda_{0}$ for some $\lambda_{0}>1$. The conclusion follows now from the compactness of $\overline{\mathbb{U}}$.

Approximation of type $(n-s, n)$ Let $\langle f \mid g\rangle_{q}$ be the scalar product defined by (2.68), Φ_{i} the orthogonal polynomials associated to this scalar product. Equation (2.10) is

$$
\langle F q-P \mid S\rangle_{q}=0
$$

Let $\left(e_{1}, \ldots, e_{m}\right)$ be a basis of \mathbb{C}^{m}. We can write $P=\sum_{i j} \lambda_{i j} \Phi_{j} e_{i}$. The condition is, for each Φ_{k}, e_{l},

$$
\begin{equation*}
\left\langle F q-\sum \lambda_{i j} \Phi_{j} e_{i} \mid \Phi_{k} e_{l}\right\rangle_{q}=0 \tag{*}
\end{equation*}
$$

Hence

$$
\left\langle F q \mid \Phi_{j} e_{i}\right\rangle_{q}=\overline{\lambda_{i j}}
$$

and

$$
\begin{equation*}
P=\sum_{i=1}^{m} \sum_{j=0}^{n-1}\left\langle\left.\frac{\Phi_{j} e_{i}}{q} \right\rvert\, F\right\rangle \Phi_{j} e_{i} . \tag{2.70.a}
\end{equation*}
$$

Assume that we want to minimise $\|F-P / q\|$ with $\operatorname{deg}(P)<n-s$. The minimum P_{0} is like P above, but the sum is for $j=0$ to $j=n-s-1$.

$$
\begin{equation*}
P_{0}=\sum_{i=1}^{m} \sum_{j=0}^{n-s-1}\left\langle\left.\frac{\Phi_{j} e_{i}}{q} \right\rvert\, F\right\rangle \Phi_{j} e_{i} \tag{2.70.b}
\end{equation*}
$$

If we apply (2.14) to P and P_{0} we get

$$
\left\|F-P_{0} / q\right\|^{2}=\|F-P / q\|+\left\langle F \mid\left(P-P_{0}\right) / q\right\rangle
$$

hence

$$
\begin{equation*}
\left\|F-\frac{P_{0}}{q}\right\|^{2}=\|V\|^{2}+\sum_{i=1}^{m} \sum_{j=n-s}^{n-1}\left|\left\langle\left.\frac{\Phi_{j} e_{i}}{q} \right\rvert\, F\right\rangle\right|^{2} \tag{2.70.c}
\end{equation*}
$$

Weighted approximation Assume that we want to approximate $\|F-P / q\|_{w}$, where the scalar product is defined by (2.68). We consider here only the case where w is a polynomial. Assume that w is stable, of degree k. Let $F_{w}=F / w$. Then $\|F-P / q\|_{w}=\left\|F_{w}-P /(q w)\right\|$. We want $\operatorname{deg}(P)<\operatorname{deg}(q w)-k$. Applying equations (2.70) gives

$$
\begin{equation*}
\left\langle\Phi_{i} \mid \Phi_{j}\right\rangle_{q w}=\delta_{i j} \tag{2.71.1}
\end{equation*}
$$

(this equation is equivalent to $\Phi_{n+k}=q w$, together with (2.59)),

$$
\begin{equation*}
G z^{k} \tilde{q}=V q w+R \tag{2.71.2}
\end{equation*}
$$

(note that $\left.G_{w}=G z^{k} / \tilde{w}\right)$,

$$
\begin{equation*}
\psi_{w}(q)=\|V\|^{2}+\sum_{i=1}^{m} \sum_{j=n}^{n+k-1}\left|\left\langle\left.\frac{\Phi_{j} e_{i}}{q} \right\rvert\, F\right\rangle_{w}\right|^{2} \tag{2.71.3}
\end{equation*}
$$

and

$$
\begin{equation*}
P=\tilde{R}-\sum_{i=1}^{m} \sum_{j=n}^{n+k-1}\left\langle\left.\frac{\Phi_{j} e_{i}}{q} \right\rvert\, F\right\rangle_{w} \Phi_{j} e_{i} \tag{2.71.4}
\end{equation*}
$$

Theorem 17 says that polynomials Φ_{j} that appear in (2.71.3) and (2.71.4) are defined even if q is unstable, but its roots are not too big. In other words, ψ_{w} is still C^{∞} on the boundary of the set of stable polynomials. In fact, if $q=q_{1} q_{2}$, where q_{1} is stable, and q_{2} has roots on \mathbb{T}, if Φ_{i}^{\prime} is the orthogonal polynomial defined for the scalar product $\langle\cdot \mid \cdot\rangle_{w q_{1}}$, we have $\Phi_{m+i}^{\prime}=q_{2} \Phi_{i}\left(m\right.$ is the degree of $\left.q_{1}\right)$ so that equations (2.71) say $\psi_{w}\left(q_{1} q_{2}\right)=\psi_{w}\left(q_{1}\right)$ and $L_{w}(q) / q=L_{w}\left(q_{1}\right) / q_{1}$.

Note: assume that we have any scalar product. If we can compute $\left\langle z^{i} / q \mid z^{j} / q\right\rangle$, it is easy to find polynomials Φ_{i} such that

$$
\begin{equation*}
\left\langle\left.\frac{\Phi_{i}}{q} \right\rvert\, \frac{\Phi_{j}}{q}\right\rangle=\delta_{i j} \tag{2.72}
\end{equation*}
$$

Then (2.70.a) is still true, and

$$
\begin{equation*}
\frac{P}{q}=\sum_{i} \sum_{j}\left\langle\left.\frac{\Phi_{j} e_{i}}{q} \right\rvert\, F\right\rangle \frac{\Phi_{j} e_{i}}{q} \tag{2.73}
\end{equation*}
$$

We have

$$
\begin{equation*}
\|F-P / q\|^{2}=\|F\|^{2}-\sum_{i=1}^{m} \sum_{j=0}^{n-1}\left|\left\langle\left.\frac{\Phi_{j} e_{i}}{q} \right\rvert\, F\right\rangle\right|^{2} \tag{2.74}
\end{equation*}
$$

We can compute this quantity provided that we can compute a scalar product of the form $\left\langle F \mid z^{i} / q\right\rangle$.

2.4 Continuous time systems

Consider the equations

$$
\begin{equation*}
x_{k+1}=F x_{k}+G u_{k}, \quad y_{k}=H x_{k} \tag{2.75}
\end{equation*}
$$

Define

$$
\begin{equation*}
\mathcal{H}=H(z I-F)^{-1} G \tag{2.76}
\end{equation*}
$$

The matrix \mathcal{H} is called the transfer function of the discrete time system (2.75). If we define $X=$ $\sum_{k=0}^{\infty} x_{k} / z^{k+1}$, and likewise for U and Y, we get

$$
Y=\mathcal{H} U+\sum_{k=0}^{\infty} H F^{k} x_{0} / z^{k+1}
$$

If $x_{0}=0$, then $Y=\mathcal{H} U$. But if F is stable, the contribution of the additional term to y_{k} is small for large k. This means that, if we wait long enough, we can measure \mathcal{H} with great precision.

Consider now

$$
\begin{equation*}
\frac{d x}{d t}=F x+G u, \quad y=H x \tag{2.77}
\end{equation*}
$$

We have

$$
\begin{equation*}
y(t)=\int_{0}^{t} H e^{(t-s) F} G u(s) d s+H e^{t F} x(0) \tag{2.78}
\end{equation*}
$$

Assume that F is stable. This means here that the eigenvalues of F satisfy $\Re z<0$. It implies that the second term is small if t is large. Consider now $u=e^{i \omega t} u_{0}$. Let $\mathcal{H}(i \omega)=A e^{i \phi}$. Then

$$
\begin{equation*}
y(t)=e^{i(\omega t+\phi)} A u_{0} \tag{2.79}
\end{equation*}
$$

Assume now \mathcal{H} real. This means $\mathcal{H}(-i \omega)=A e^{-i \phi}$. Replace in (2.79) ω by $-\omega$, and add. We get

$$
\begin{equation*}
u=\cos (\omega t) u_{0} \Longrightarrow y=\cos (\omega t+\phi) A u_{0} \tag{2.80}
\end{equation*}
$$

Of course, these equations are valid only if $x(0)=0$. In the case where F is stable, they are valid, if we neglect the transitory term.

What we can say is the following. Assume that equations (2.77) describe a physical stable system, and that (H, F, G) is canonical. Then we can measure $\mathcal{H}(i \omega)$ for some values of ω. Of course, the equations are only approximations, that are in general false if ω is too big. On the other hand, if ω is too small, we have to wait a long time before we can find something (at least $2 \pi / \omega$). One part of the Hyperion software solves this problem. Given some measurements, it returns a function \mathcal{H} which is stable, and approximates the measurements; this is called the completion algorithm. However, this \mathcal{H} is not rational.

It has a priori a big McMillan degree. The second part of HYPERION is the rational approximation: find a rational matrix of given McMillan degree that approaches at best the result of the previous part of the software. This report explains how to do rational approximation.

One difficulty however, is that the rational approximation algorithm works only for functions that are stable in the discrete case. The remainder of this chapter explains how to deal with this problem. The idea is the following

1. We start with a device with transfer function $\mathcal{H}_{0}^{\prime} \in \Sigma_{c n}$. We measure it and obtain \mathcal{H}^{\prime}.
2. We consider the discrete time equivalent \mathcal{H} of $\mathcal{H}^{\prime}: \mathcal{H}=\sigma_{n}^{-1}\left(\mathcal{H}^{\prime}\right)$.
3. We consider the completion \mathcal{H}_{1} of $\mathcal{H}: \mathcal{H}_{1}=c_{k}(\mathcal{H})$.
4. We compute the rational approximation \mathcal{H}_{2} of $\mathcal{H}_{1}: \mathcal{H}_{2}=a_{n}\left(\mathcal{H}_{1}\right)$.
5. We convert \mathcal{H}_{2} to a continuous time system: $\mathcal{H}_{2}^{\prime}=\sigma_{n}\left(\mathcal{H}_{2}\right)$.

Let's start with some definitions. If U is a simply connected region of the complex plane (but not the plane itself), it is conformally equivalent to \mathbb{U} (see [17, 14.8]). For instance, if \mathbb{P} is the half plane, the set of complex numbers s such that $\Re(s)<0$, it is conformally equivalent to the disk. This gives one possibility for σ_{n}. More generally, it allows us to define the Hardy space of U. This definition is not unique. For instance, in the case of the half plane, there are are two natural possibilities.

We shall define $H(\mathbb{P})$ and $\bar{H}(\mathbb{P})$ to be the set of analytic functions in \mathbb{P} and outside \mathbb{P}, that have a limit (in fact a non-tangential limit) almost everywhere on the imaginary axis such that

$$
\begin{equation*}
c \int_{-\infty}^{\infty} \frac{|f(i \omega)|^{2}}{1+\omega^{2}} d \omega \tag{2.81}
\end{equation*}
$$

is finite (we could omit the denominator, this gives the alternate Hardy space of the half plane). Note that the constant function one is in the Hardy space. We can chose c such that the quantity (2.81) is 1 for this function. It happens that a function of $H(\mathbb{P})$ is uniquely defined by its value on the imaginary axis. If we define the norm of f to be the square root of the quantity (2.81), then $H(\mathbb{P})$ is a Hilbert space, as well as $\overline{H(\mathbb{P})}$, and the mapping $f(z) \rightarrow f(-z)$ is an isometry between these two spaces.

If U is a set, we define $\Sigma(U)$ to be $\overline{H(U)}$. We shall use this notation only in the case where the set U is the disk or the half plane. It is a subset of the functions analytic outside U. We define also $\Sigma^{\prime}(U)$ to be the functions that vanish at infinity.

If U is any set, we define $\Sigma_{n}(U)$ to be the set of rational functions of McMillan degree n which are analytic outside U (more precisely, which have poles in U). We define $\Sigma_{n}^{\prime}(U)$ to be the functions of $\Sigma_{n}(U)$ which are strictly proper (vanish at infinity). Moreover

$$
\begin{align*}
\Sigma_{d n}=\Sigma_{n}(\mathbb{U}) & \Sigma_{c n}=\Sigma_{n}(\mathbb{P}) \tag{2.82.a}\\
\Sigma_{d}=\Sigma(\mathbb{U}) & \Sigma_{c}=\Sigma(\mathbb{P}) \tag{2.82.b}
\end{align*}
$$

Note that $\Sigma_{c n}$ is a subset of Σ_{c} (of course, $\Sigma_{d n}$ is a subset of Σ_{d}).
In the algorithm proposed above, we assume that \mathcal{H}_{0}^{\prime}, the transfer function of the device to approximate is in $\Sigma_{c n}$. This means that it is rational, of McMillan degree n. The first requirement we make is that the result \mathcal{H}_{2}^{\prime} is also in $\Sigma_{\text {cn }}$. The second requirement is that \mathcal{H}_{2}^{\prime} should be near \mathcal{H}_{0}^{\prime}. This means that the functions $\sigma_{n}^{-1}, c_{k}, a_{n}$ and σ_{n} has to satisfy some properties. Let's discuss them.

We first start with a_{n} and c_{k}. The function c_{k} is the completion algorithm. It satisfies the following properties: it takes as argument some measurements of the transfer function and returns a stable transfer function. Since only a finite number of measurements can be made, it takes as input K numbers and returns an infinite number of Fourier coefficients, and hence is not well-defined. To solve the problem, we shall assume that the measurements are done on a whole interval $[a, b]$ (numerically, we interpolate the finite number of data by cubic splines). The function c_{k} depends on the interval $[a, b]$, and on the norm
of the function outside the interval $[a, b]$. This means that the user has to guess this. We shall assume that, if the device to approximate is rational, of McMillan degree n, if the interval $[a, b]$ is big enough, if enough measurements are made in the interval, and if k is well chosen, then $c_{k}(\mathcal{H})$ is near \mathcal{H}_{0}.

The function a_{n} is the rational approximation algorithm:

$$
a_{n}: \Sigma_{d} \quad \rightarrow \quad \Sigma_{d N}
$$

It can be defined as the best rational approximation of McMillan degree N (for the H^{2} norm) of its argument. We shall make the assumption that, if \mathcal{H}_{k} converges in some sense to \mathcal{H}, which is rational, of McMillan degree n then $a_{n}\left(\mathcal{H}_{k}\right)$ converges in the H^{∞} norm to \mathcal{H} (note that if a sequence of rational functions f_{k} of degree N converge to a rational function of degree N, it converges in the H^{∞} norm, because everything under consideration is in a finite dimensional space; this is true if, for instance, the convergence of f_{k} implies that $f_{k}\left(z_{j}\right)$ converges for an infinite number of values of z_{j}).

In short, we shall assume that, if the device to approximate is rational, of McMillan degree N, if the interval $[a, b]$ is big enough, if enough measurements are made in the interval, and if k is well chosen, then $a_{n}\left(c_{k}(\mathcal{H})\right)$ is near \mathcal{H}_{0}, the discrete-time equivalent of \mathcal{H}_{0}^{\prime}.

The question is now: how to chose σ_{n} and σ_{n}^{-1}. Note first that σ_{n}^{-1} maps a function defined on an interval $\left[\omega_{1}, \omega_{2}\right]$ into a function defined on $\left[\theta_{1}, \theta_{2}\right]$. For simplicity, we may assume that $\left[\theta_{1}, \theta_{2}\right]$ is $[-\pi / 2, \pi / 2]$ (this makes the code of c_{k} easier). This is OK if the measurement interval is fixed, but is inadequate if we let $-\omega_{1}=\omega_{2} \rightarrow \infty$. In this latter case, we can chose $\tan \left(2 \theta_{i}\right)=\omega_{i}$.

Consider a generic system with n poles, and apply σ_{n}^{-1}, then the completion algorithm. If the rational approximation gives N poles, applying σ_{n} must give n poles. This will imply $N \geq n$ (in general every element of $\Sigma_{c n}$ must be in the image of σ_{n}). The question is: can we have $N>n$? The answer is, yes, of course, provided that we add additional conditions on c_{k} and a_{n}. An example is the following. Let σ_{n} be as below (i.e. MacMillan degree preserving). We consider $\sigma_{n}^{\prime-1}(f)=\sigma_{n}^{-1}(f) / z$. The completion algorithm takes a function, multiplies it by z, applies c_{k}, and multiplies the result by $1 / z$. The rational approximation takes its argument, multiplies it by z, calls a_{n}, and divides the result by z. Now, σ takes its argument, multiplies it by z, and calls σ_{n}. What is wrong here? The trouble is that the modified a_{n} can only be used in this case (otherwise, it is non-continuous, or non McMillan degree preserving). Moreover, the computations are exactly the same as for a McMillan degree preserving σ_{n}.

We shall from now on assume that σ_{n} is McMillan degree preserving. In fact, we shall moreover assume that it is linear, so that

$$
\begin{equation*}
\sigma_{n}\left(\sum \frac{a_{i}}{z-\alpha_{i}}\right)=\sum a_{i} \sigma_{n}\left(\frac{1}{z-\alpha_{i}}\right) \tag{2.83.a}
\end{equation*}
$$

This gives a function σ such that

$$
\begin{equation*}
\sigma\left(\frac{a}{1-z \alpha}\right)=\frac{a b}{z-\beta} . \tag{2.83.b}
\end{equation*}
$$

Since every $a /(z-\alpha)$ can be the result of the rational approximation, we get a function $\beta=\phi(\alpha)$ defined on \mathbb{U}, with values in \mathbb{P}. On the other hand, σ_{n}^{-1} maps $a b /(z-\beta)$ onto some $a /(z-\alpha)$, this gives a function $\alpha=\psi(\beta)$, defined on \mathbb{P}, with values in \mathbb{U}. Moreover

$$
\begin{equation*}
\forall \beta \in \mathbb{P} \quad \phi(\psi(\beta))=\beta \tag{2.84}
\end{equation*}
$$

We assume that ϕ and ψ are continuous. The open mapping theorem says that the image of ψ is open. The continuity of ϕ and ψ, together with equation (2.76) says that the image of ψ is closed (with respect to the topology induced on $\mathbb{U})$. Thus, ψ is surjective. Hence ϕ and ψ are bijections.

The result of this discussion is: a good σ_{n} is such that its action on the poles is well defined, and is a bijection between the set of discrete-time stable poles and the set of continuous-time stable poles.

Let's define three spaces, X_{0}, X_{1}, X_{2}, formed of bijections $\mathbb{P} \rightarrow \mathbb{P}, \mathbb{U} \rightarrow \mathbb{U}$ and $\mathbb{U} \rightarrow \mathbb{P}$. Now ϕ is in X_{2}. Note that X_{1} contains a lots of functions, for instance the mapping $z \rightarrow \bar{z}$. If we assume that $\phi_{1} \in X_{1}$ is rational, it has to be an inner function, hence a Blaschke product, with a single pole. The Schwarz lemma shows that if ϕ_{1} is analytic, then it has to be rational (in the proof of the next theorem, point 2 is nothing else than the Schwarz lemma).

Theorem 18

The sets X_{0} and X_{1} are groups. If we restrict elements to be analytic, then the spaces X_{i} are manifolds of dimension three. Each X_{i} is formed of functions ϕ_{i} of the form

$$
\begin{gather*}
\phi_{0}(z)=\frac{a z+i b}{i c z+d}, \quad \exists \lambda, \lambda a, \lambda b, \lambda c, \lambda d \text { real }, \Re \phi_{0}(-1)<0, \tag{2.85.a}\\
\phi_{1}(z)=c \frac{z-\alpha}{1-\bar{\alpha} z}, \quad|c|<1,|\alpha|<1, \tag{2.85.b}\\
\phi_{2}(z)=\lambda \frac{z e^{-i \psi_{1}}-e^{i \psi_{1}}}{z e^{-i \psi_{2}}+e^{i \psi_{2}}}, \quad \lambda \text { real }, \Re \phi_{2}(0)<0 . \tag{2.85.c}
\end{gather*}
$$

Proof. 1. The first claim is obvious. It remains true if every function is assumed analytic.
2. Let ϕ be an element of X_{1}. Let c be an element of \mathbb{U} such that $\bar{c} \phi^{\prime}(0)$ is real and positive (note that ϕ^{\prime} is never zero), and $\alpha=-\bar{c} \phi(0)$. Let

$$
\phi_{1}(z)=\frac{\bar{c} \phi(z)+\alpha}{1+\overline{c \alpha} \phi(z)}
$$

We have

$$
\phi(z)=c \frac{\phi_{1}(z)-\alpha}{1-\bar{\alpha} \phi_{1}(z)}
$$

These formulas show that ϕ_{1} is an element of X_{1}. If we show that $\phi_{1}(z)=z$, then ϕ has the form (2.85.b). Note that elements of the form (2.85.b) map \mathbb{U} into itself, and are obviously bijective.

By construction, we have $\phi_{1}(0)=0$. Because

$$
\phi_{1}^{\prime}(0)=\frac{\bar{c}}{1-|\alpha|^{2}} \phi^{\prime}(0)
$$

the quantity $\phi_{1}^{\prime}(0)$ is real positive.
Let now $\psi(z)=\phi_{1}(z) / z$. This function is analytic in \mathbb{U}. If $\psi(z)=\sum a_{k} z^{k}$, we have

$$
\sum\left|a_{k}\right|^{2} r^{2 k}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\psi\left(r e^{i \theta}\right)\right|^{2} d \theta
$$

if $0<r<1$. Since ϕ_{1} maps \mathbb{U} into itself, the last term is at most $1 / r^{2}$. Taking the limit for $r=1$ gives $\sum\left|a_{k}\right|^{2} \leq 1$ (this is just the maximum modulus principle). In particular, we get $\left|a_{0}\right| \leq 1$. But $a_{0}=\phi_{1}^{\prime}(0)$. If ϕ_{2} is the inverse mapping of ϕ_{1}, it satisfies the same condition, $\left|\phi_{2}^{\prime}(0)\right| \leq 1$. But the chain rule says $\phi_{1}^{\prime}(0) \phi_{2}^{\prime}(0)=1$. Thus $\left|\phi_{1}^{\prime}(0)\right|=1$. Since $\left|a_{0}\right|=1$, the condition $\sum\left|a_{k}\right|^{2} \leq 1$ says $a_{k}=0$ for $k>0$, so that ϕ is constant. Since we assumed that a_{0} is real and positive, we have $a_{0}=1, \psi(z)=1$ and $\phi_{1}(z)=z$.
3. Let

$$
\phi_{3}(z)=\frac{z-1}{z+1}
$$

It is obvious to check that this is an element of X_{2}. If ϕ_{2} is any element of $X_{2}, \phi_{3}^{-1} \circ \phi_{2} \in X_{1}$. If this has the form (2.85.b) then

$$
\phi_{2}(z)=C \frac{z-A}{z+B}
$$

with

$$
A=\frac{c \alpha+1}{c+\bar{\alpha}}, \quad B=\frac{1-c \alpha}{c-\bar{\alpha}}, \quad C=\frac{c+\bar{\alpha}}{c-\bar{\alpha}}
$$

Note that $|A|=|B|=1, C^{2} A / B=|(1+c \alpha) /(1-c \alpha)|^{2}>0$, and $A C / B=-1 / \phi_{3}(c \alpha)$, hence $\Re(A C / B)>$ 0 . If $A=e^{2 i \psi_{1}}$ and $B=e^{2 i \psi_{2}}$, then for $\lambda=C e^{i \psi_{2}-i \psi_{1}}$ we get (2.85.c). The condition $C^{2} A / B>0$ is $\lambda^{2}>0$, so that λ is real.
4. If $\phi_{0} \in X_{0}$, then $\phi_{3}^{-1} \circ \phi_{0} \circ \phi_{3} \in X_{1}$, from which it is easy to deduce (2.85.a). Note that this can also be written as

$$
\phi_{0}(z)=\frac{z-i \beta+i \lambda c}{i c(z-i \beta)+\lambda}
$$

where β, λ and c are real, and λ is positive.

Theorem 19
Let $\phi=(a z+b) /(c z+d)$ with $a d-b c \neq 0$. Let V be an open subset of the plane, and $U=\phi(V)$. Define

$$
\begin{equation*}
\mathcal{H}_{1}(z)=\mathcal{H}\left(\frac{a z+b}{c z+d}\right) \quad \mathcal{H}_{2}(z)=\frac{1}{c z+d} \mathcal{H}\left(\frac{a z+b}{c z+d}\right) . \tag{2.86}
\end{equation*}
$$

Define σ_{ϕ} and σ_{ϕ}^{\prime} by $\sigma_{\phi}(\mathcal{H})=\mathcal{H}_{1}$ and $\sigma_{\phi}^{\prime}(\mathcal{H})=\mathcal{H}_{2}$.
Assume that ∞ is neither in V nor U (this means that there is no λ such that $|z| \geq \lambda$ implies $z \in V$). Then σ_{ϕ} is a bijection from $\Sigma_{n}(U)$ into $\Sigma_{n}(V)$ and σ_{ϕ}^{\prime} is a bijection from $\Sigma_{n}^{\prime}(U)$ into $\Sigma_{n}^{\prime}(V)$.

Proof. Consider a minimal realization of \mathcal{H}

$$
\begin{equation*}
\mathcal{H}=H(z I-F)^{-1} G+J \tag{2.87.a}
\end{equation*}
$$

Assume that \mathcal{H} is in $\Sigma_{n}(U)$ or $\Sigma_{n}^{\prime}(U)$. Then F is of size n, and its eigenvalues are in U. Since $a / c=\phi(\infty)$ is not in $\phi(V)$, it implies that a / c is not an eigenvalue of F, so that $a I-c F$ is an invertible matrix.

Define

$$
F^{\prime}=(-b I+d F)(a I-c F)^{-1}
$$

then

$$
\begin{gather*}
\mathcal{H}_{1}=\sigma_{\phi}(\mathcal{H})=(a d-b c) H(a I-c F)^{-2}\left(z I-F^{\prime}\right)^{-1} G+c H(a I-c F)^{-1} G+J \tag{2.87.b}\\
\mathcal{H}_{2}=\sigma_{\phi}^{\prime}(\mathcal{H})=H(a I-c F)^{-1}\left(z I-F^{\prime}\right)^{-1} G \tag{2.87.c}
\end{gather*}
$$

In fact, to the quantity \mathcal{H}_{2} defined above, we have to add the term $J /(c z+d)$. If $J \neq 0$, the McMillan degree of \mathcal{H}_{2} is in general not the same as the McMillan degree of \mathcal{H}. When we consider σ_{ϕ}^{\prime}, we assume that its argument is in Σ^{\prime}, i.e. that $J=0$.

Assume $F^{\prime} x=\lambda x$, with $x \neq 0$. In other words, x is an eigenvector of F^{\prime}, with eigenvalue λ. Then $(d+\lambda c) F x=(\lambda a+b) x$. Since $d+\lambda c$ and $\lambda a+b$ cannot vanish simultaneously, we have $d+\lambda c \neq 0$. Let $\mu=\phi(\lambda)$. Then x is an eigenvector of F, with eigenvalue μ.

Let $y=(a I-c F)^{-i} x$. Then $y=(a-c \mu)^{-i} x$, so that y is also an eigenvector of F. If $H y=0$, then $y=0$, hence $x=0$. Said otherwise, if $H_{i}=H(a I-c F)^{-i}$, then the pair $\left(H_{i}, F^{\prime}\right)$ is observable. Since $\left(F^{\prime}, G\right)$ is reachable (the transpose of F and F^{\prime} having the same eigenvalues and eigenvectors), it follows that \mathcal{H}_{1} and \mathcal{H}_{2} have McMillan degree n. There poles are in $\sigma(U)$, hence V.

Thus, σ_{ϕ} and σ_{ϕ}^{\prime} map an element of $\Sigma_{n}(U)$ or $\Sigma_{n}^{\prime}(U)$ onto an element of $\Sigma_{n}(V)$ or $\Sigma_{n}^{\prime}(V)$. Note that

$$
\begin{equation*}
\sigma_{\phi_{1} \circ \phi_{2}}=\sigma_{\phi_{2}} \circ \sigma_{\phi_{1}} \tag{2.88}
\end{equation*}
$$

The reason why σ_{ϕ} is bijective is that, if λ is an eigenvalue of F^{\prime}, then $\phi(\lambda) \neq \infty$. Since $\infty \notin U$, this explains the surjectivity of σ_{ϕ}.

One question is now: is σ_{ϕ} an isometry? Note that, if in ϕ, we multiply a, b, c and d by λ, this does not change the function ϕ, but multiplies σ_{ϕ}^{\prime} by $1 / \lambda$. We can always divide by $\sqrt{a d-b c}$, but this defines σ_{ϕ}^{\prime} only up to a sign. Moreover, in the real case, $a d-b c$ could be negative.

Lemma 33

Assume that $\phi \in X_{1}$, and $|a d-b c|=1$. Then σ_{ϕ}^{\prime} is an isometry from $\Sigma_{d n}^{\prime}$ into itself.

Proof. If we apply the previous theorem with $U=\mathbb{U}$, we get the first result, namely that σ_{ϕ}^{\prime} is a bijection from $\Sigma_{d n}^{\prime}$ into itself. According to (2.85.b) we have

$$
\mathcal{H}_{2}=\frac{\lambda}{1-z \bar{\alpha}} \mathcal{H}\left(c \frac{z-\alpha}{1-\bar{\alpha} z}\right)
$$

where $|\lambda|^{2}=1-|\alpha|^{2}$. We have

$$
\begin{equation*}
\left\|\mathcal{H}_{2}\right\|^{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{1-|\alpha|^{2}}{\left|1-e^{i \theta} \bar{\alpha}\right|^{2}}\left|\mathcal{H}\left(c \frac{e^{i \theta}-\alpha}{1-\bar{\alpha} e^{i \theta}}\right)\right|^{2} d \theta \tag{2.89}
\end{equation*}
$$

Let $e^{i t}=\phi\left(e^{i \theta}\right)$, so that $e^{i t} d t=\phi^{\prime}\left(e^{i \theta}\right) e^{i \theta} d \theta$. This is

$$
c \frac{e^{i \theta}-\alpha}{1-\bar{\alpha} e^{i \theta}} d t=c \frac{1-|\alpha|^{2}}{\left(1-e^{i \theta} \bar{\alpha}\right)^{2}} e^{i \theta} d \theta
$$

and simplifies to

$$
d t=\frac{1-|\alpha|^{2}}{\left|1-e^{i \theta} \bar{\alpha}\right|^{2}} d \theta
$$

If we make this change of variables in (2.89), we get $\left\|\mathcal{H}_{2}\right\|=\|\mathcal{H}\|$.
Assume now that $\phi \in X_{2}$. Now σ_{ϕ} maps $\Sigma_{c n}$ into $\Sigma_{d n}$. We can ask the same question. Consider

$$
\begin{align*}
\phi_{0}(z) & =\frac{1-z}{1+z} \tag{2.90}\\
\phi(z) & =\frac{z-1}{1+z} \tag{2.91}
\end{align*}
$$

Since every element of X_{2} is the composition of this ϕ and an element of X_{1}, according to (2.88), it suffices to answer the question for this ϕ. In fact, we consider:

$$
\begin{equation*}
\mathcal{H}^{\prime}(s)=\frac{1}{1-s} \mathcal{H}\left(\frac{1+s}{1-s}\right), \quad \mathcal{H}(z)=\frac{2}{z+1} \mathcal{H}^{\prime}\left(\frac{z-1}{z+1}\right) \tag{2.92}
\end{equation*}
$$

This is the equation $\mathcal{H}=\sigma_{n}^{-1}\left(\mathcal{H}^{\prime}\right), \mathcal{H}_{2}^{\prime}=\sigma_{n}\left(\mathcal{H}_{2}\right)$ considered in the introduction of this section, and used by default in hyperion. Note that the input to the rational approximation algorithm is not \mathcal{H} (an element of H_{2}^{-}, but $G=\mathcal{H}(1 / z) / x$. This gives

$$
G(z)=\frac{2}{z+1} \mathcal{H}^{\prime}\left(\phi_{0}(z)\right)
$$

Note that, if $z=e^{i \theta}$, then $\phi_{0}(z)=i \omega$, with $1 / \omega=\tan (\theta / 2)$. A change of variable in the integral that gives the norm of \mathcal{H} gives

$$
\begin{equation*}
\|\mathcal{H}\|^{2}=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left|\mathcal{H}^{\prime}(i \omega)\right|^{2} d \omega \tag{2.93}
\end{equation*}
$$

As said above, we can define $H(\mathbb{P})$ to be the set of all functions \mathcal{H}^{\prime} analytic in the half plane for which the previous integral converges. Thus σ_{ϕ}^{\prime} is an isometry.

Note that \mathcal{H}^{\prime} has to be strictly proper. One way of solving the problem is just the following: we take \mathcal{H}^{\prime}, subtract it constant term J (the value at infinity), convert it, consider its rational approximation, convert it back to a continuous time system, and then add the constant term J.

There is another solution: we can use σ_{ϕ} instead of σ_{ϕ}^{\prime}. Then

$$
\begin{equation*}
\mathcal{H}^{\prime}(s)=\mathcal{H}\left(\frac{1+s}{1-s}\right), \quad \mathcal{H}(z)=\mathcal{H}^{\prime}\left(\frac{z-1}{z+1}\right) \tag{2.94}
\end{equation*}
$$

We have now

$$
\begin{equation*}
\|\mathcal{H}\|^{2}=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left|\mathcal{H}^{\prime}(i \omega)\right|^{2} \frac{d \omega}{1+\omega^{2}} \tag{2.95}
\end{equation*}
$$

If we adjust the constant c in (2.81), we get an isometry. Note that \mathcal{H} is not strictly proper. If \mathcal{H} is defined by (2.87.a), the value at infinity of \mathcal{H}^{\prime} is

$$
J-H(I+F)^{-1} G
$$

What we do is now the following: we convert \mathcal{H}^{\prime} to a discrete time system, remove the constant term, approximate this, add the constant term, and convert back to a continuous time system. This mechanism is only partly implemented in HYPERION.

Chapter 3

The Schur algorithm

3.1 Schur functions

In this chapter, we study the set of inner matrices of given McMillan degree. The main section is section 3.5 where we shall show how to construct a matrix B of degree $n+k$ given a matrix A of degree n.

In this short section, we analyse the scalar case. We know that the mapping $\left(c, \omega_{1}, \ldots, \omega_{n}\right) \rightarrow$ $c \prod\left(z-\omega_{i}\right) /\left(1-z \overline{\omega_{i}}\right)$ maps an element of \mathbb{T} and n elements of \mathbb{U} onto an inner function of degree n. The main trouble is that this function has no well-defined inverse.

If we consider polynomials instead of inner functions, the remedy is obvious: take as parameters the coefficients of the polynomials instead of the roots. If q is a polynomial, we define $s(q)$ to be $q(0)$ and $S(q)=(q-q(0)) / z$. Let $q_{0}=q$, and $q_{k+1}=S\left(q_{k}\right)$. Then $q=\sum s\left(q_{k}\right) z^{k}$.

The generalisation of this is the following. We define

$$
S(f)=\frac{1}{z} \frac{f(z)-f(0)}{1-\overline{f(0)} f(z)} .
$$

Define $f_{0}=f, f_{k+1}=S\left(f_{k}\right)$. The quantities $f_{k}(0)$ are called the Schur parameters of f.
Recall that a rational function, analytic in \mathbb{U}, is called inner if $f(\mathbb{T}) \subset \mathbb{T}$. We call it a Schur function if $f(\mathbb{T}) \subset \overline{\mathbb{U}}$. Hence inner functions are just special Schur functions. Note that the maximum modulus principle says that, if f is a Schur function, then $f(\mathbb{U}) \subset \overline{\mathbb{U}}$. Recall that equation (1.5) says that, if $|a|<1$, then $(z-a) /(1-\bar{a} z)$ is in \mathbb{T} (resp. \mathbb{U}) if and only if z is in \mathbb{T} (resp. \mathbb{U}).

Lemma 34
Assume $h=\frac{z g+f}{1+z \bar{f} g}$. In the case $|f| \leq 1$ and $|z|=1$, we have $h \in \mathbb{T}$ (resp. $h \in \mathbb{U}$) if and only if $g \in \mathbb{T}$ (resp. $g \in \mathbb{U}$).
Proof. Let $a=-\bar{z} f$. Then $|h|=(g-a) /(1-g \bar{a})$.
Consider now

$$
\begin{equation*}
C=\frac{A-\bar{y}}{1-A y}=\frac{(1-z \bar{\omega})(1-\omega)}{(z-\omega)(1-\bar{\omega})} \frac{B-\bar{y}}{1-B y}, \quad \bar{y}=B(\omega) . \tag{*}
\end{equation*}
$$

Lemma 35

Assume f rational, and $|f(0)|<1$. Then f is a Schur function (resp. an inner function) if and only if $S(f)$ is a Schur function (resp. an inner function).

Moreover, if f is inner, of McMillan degree n, then $S(f)$ is inner, of McMillan degree n - 1. In (*), if one of A, B, C is inner and rational, then the others are inner and rational. If A has degree n, then C has degree n, and B has degree $n+1$.

Proof. Let $g=S(f)$. We have

$$
f=\frac{z g+f(0)}{1+z g \overline{f(0)}} .
$$

If g is a Schur function, then $1+z g \overline{f(0)}$ does not vanish on $\overline{\mathbb{U}}$ so that f is analytic in \mathbb{U}. On the other hand, if f is a Schur function, then g is analytic in \mathbb{U}. The previous lemma gives the first part of the proof.

The same argument shows that A is inner if and only if C is inner. Assume $A=c q / \tilde{q}$. Then

$$
C=c \frac{q-\overline{c y} \tilde{q}}{\tilde{q}-c q y} .
$$

Hence A and C have the same McMillan degree.
Assume now $g=c q / \tilde{q}, q$ polynomial, $c \in \mathbb{T}$. Then

$$
f=c \frac{z q+\bar{c} a \tilde{q}}{\tilde{q}+z c q \bar{a}}, \quad a=f(0) .
$$

Since $\tilde{q}+z c q \bar{A}$ does not vanish on $\overline{\mathbb{U}}$, it follows that f is of degree $n+1$ in case g is of degree n. Evaluating at ω instead of at 0 , shows that B is inner, and has degree $n+1$ if A has degree n.

Thus, if f is inner and rational, its Schur parameters are $s_{0}, s_{1}, \ldots, s_{n}$, with $\left|s_{n}\right|=1$ and $\left|s_{i}\right|<1$ for $0 \leq i<n$ (the maximum modulus principle says that, if f is a Schur function, and $|f(0)|=1$, then f is constant). Instead of using $S(f)$, we shall use the transformation (*), that gives A from B. Take

$$
\begin{equation*}
\beta_{\omega}(z)=\frac{(z-\omega)(1-\bar{\omega})}{(1-z \bar{\omega})(1-\omega)} . \tag{3.1}
\end{equation*}
$$

Note that β_{ω} is a Blaschke product of degree one such that $\beta_{\omega}(1)=1$. Now, equation $(*)$ is just

$$
\frac{B-\bar{y}}{1-B y}=\beta_{\omega} \frac{A-\bar{y}}{1-A y} .
$$

Expressing B gives

$$
\begin{equation*}
B=\frac{\left(\beta-|y|^{2}\right) A+(1-\beta) \bar{y}}{1-\beta|y|^{2}-(1-\beta) y A} . \tag{3.2}
\end{equation*}
$$

Note that $\beta(1)=1$ implies $A(1)=B(1)$.
In the matrix case, we shall extend relation (3.2) as

$$
\begin{equation*}
B=T_{\Theta}(A)=\left(\Theta_{11} A+\Theta_{12}\right)\left(\Theta_{21} A+\Theta_{22}\right)^{-1} . \tag{3.3}
\end{equation*}
$$

One possibility for Θ is

$$
\Theta=\left(\begin{array}{cc}
\Theta_{11} & \Theta_{12} \tag{3.4}\\
\Theta_{21} & \Theta_{22}
\end{array}\right)=\left(\begin{array}{cc}
\frac{\beta-|y|^{2}}{1-|y|^{2}} & \frac{(1-\beta) \bar{y}}{1-|y|^{2}} \\
\frac{(\beta-1) y}{1-|y|^{2}} & \frac{1-\beta|y|^{2}}{1-|y|^{2}}
\end{array}\right)=I-\frac{1-\beta}{1-|y|^{2}}\left(\begin{array}{cc}
1 & -\bar{y} \\
y & -\bar{y} y
\end{array}\right) .
$$

3.2 The Schur algorithm

The formula we use is a bit more general than (3.4). We use a vector y, a vector u and a number ω. We assume $\|u\|=1,\|y\|<1$ and $|\omega|<1$. The matrix Θ is

$$
\Theta=\left(\begin{array}{ll}
\Theta_{11} & \Theta_{12} \tag{3.5}\\
\Theta_{21} & \Theta_{22}
\end{array}\right)=I-\frac{1-\beta_{\omega}}{1-\|y\|^{2}}\left(\begin{array}{ll}
u u^{*} & -u y^{*} \\
y u^{*} & -y y^{*}
\end{array}\right) .
$$

We shall introduce

$$
\begin{equation*}
b=(z-\omega)(1-\bar{\omega}), \quad \tilde{b}=(1-z \bar{\omega})(1-\omega), \quad \alpha=\frac{1-\beta_{\omega}}{1-\|y\|^{2}} \tag{3.6}
\end{equation*}
$$

Note that $\beta_{\omega}=b / \tilde{b}$, and that α is the factor that appears in (3.5).

3.2.1 Direct formulas

Introduce the vector $v=A^{*} u-y$. Then

$$
B=T_{\Theta}(A)=\left(A-\alpha u v^{*}\right)\left(I-\alpha y v^{*}\right)^{-1}
$$

Using relations like $\left(u v^{*}\right)\left(y v^{*}\right)=\left(v^{*} y\right)\left(u v^{*}\right)$ we get

$$
\begin{gather*}
B=\left(A-\alpha u v^{*}\right)\left(I+\frac{\alpha y v^{*}}{1-\alpha v^{*} y}\right)=A+\frac{\alpha(A y-u) v^{*}}{1-\alpha v^{*} y} \tag{3.7.a}\\
B=\frac{A\left(1-\alpha\|y\|^{2}\right)+\alpha\left[A y u^{*} A-u^{*} A y A+u y^{*}-A y y^{*}-u u^{*} A\right]}{1+\alpha\|y\|^{2}-\alpha u^{*} A y} \tag{3.7.b}
\end{gather*}
$$

If A is inner and rational, we can write

$$
\begin{equation*}
A=\frac{D_{A}}{\tilde{q}_{A}}, \quad A^{-1}=\frac{\tilde{D}_{A}}{q_{A}}, \quad \operatorname{det} A=\epsilon_{A} \frac{q_{A}}{\tilde{q}_{A}} \tag{3.8}
\end{equation*}
$$

Now formulas (3.7) can be written as

$$
\begin{equation*}
B=\frac{D_{B}}{\tilde{q}_{B}}, \quad B^{-1}=\frac{\tilde{D}_{B}}{q_{B}}, \quad \operatorname{det} B=\epsilon_{A} \frac{q_{B}}{\frac{q_{B}}{\tilde{q}_{B}}} \tag{3.9}
\end{equation*}
$$

with

$$
\begin{gather*}
\tilde{q}_{B}=\left(\tilde{b}-b\|y\|^{2}\right) \tilde{q}_{A}-(\tilde{b}-b) u^{*} D_{A} y \tag{3.10.a}\\
D_{B}=\left(\tilde{b}-b\|y\|^{2}\right) D_{A}+(\tilde{b}-b)\left[\frac{D_{A} y u^{*} D_{A}-u^{*} D_{A} y D_{A}}{\tilde{q}_{A}}+\tilde{q}_{A} u y^{*}-D_{A} y y^{*}-u u^{*} D_{A}\right] \tag{3.10.b}\\
q_{B}=\left(b-\tilde{b}\|y\|^{2}\right) q_{A}+(\tilde{b}-b) y^{*} \tilde{D}_{A} u \tag{3.10.c}\\
\tilde{D}_{B}=\left(b-\tilde{b}\|y\|^{2}\right) \tilde{D}_{A}+(\tilde{b}-b)\left[\tilde{D}_{A} u u^{*}+y y^{*} \tilde{D}_{A}-y u^{*} q_{A}\right]+\frac{b-\tilde{b}}{q_{A}}\left[\tilde{D}_{A} u y^{*} \tilde{D}_{A}-y^{*} \tilde{D}_{A} u \tilde{D}_{A}\right] . \tag{3.10.d}
\end{gather*}
$$

The fact that B has the desired form is a simple computation, the same is true for the formulas that give the inverse of B. Now, (3.7.a) and $\operatorname{det}\left(I+X Y^{*}\right)=1+Y^{*} X$ give

$$
\begin{gathered}
\operatorname{det} B=\operatorname{det} A \frac{1-\alpha v^{*} A^{-1} u}{1-\alpha v^{*} y}, \\
1-\alpha v^{*} y=\frac{\tilde{q}_{B}}{\tilde{b}\left(1-\|y\|^{2}\right) \tilde{q}_{A}}, \quad 1-\alpha v^{*} A^{-1} u=\frac{q_{B}}{\tilde{b}\left(1-\|y\|^{2}\right) q_{A}} .
\end{gathered}
$$

This shows the formula for $\operatorname{det} B$.
We know that, if $a=u^{*} A y$, then $|a| \leq\|y\|$. Since β and y are in \mathbb{U}, relation (1.5) says that $(1-\beta)\|y\| /\left(1-\beta\|y\|^{2}\right)$ is also in \mathbb{U}, hence $t=(1-\beta) a /\left(1-\beta\|y\|^{2}\right) \in \mathbb{U}$. Since $1-\alpha v^{*} y=(1-$ $\left.\beta\|y\|^{2}\right)(1-t) /\left(1-\|y\|^{2}\right)$, this cannot vanish for $z \in \mathbb{U}$. Thus q_{B} is a stable polynomial.

3.2.2 Inverse formulas

Assume that B satisfies (3.9) and $B=T_{\Theta}(A)$. An easy computation says that equations (3.8) are satisfied if

$$
\begin{gather*}
q_{A}=\left(\tilde{b}-b\|y\|^{2}\right) q_{B}-(\tilde{b}-b) y^{*} \tilde{D}_{B} u, \tag{3.11.a}\\
\tilde{q}_{A}=\left(b-\tilde{b}\|y\|^{2}\right) \tilde{q}_{B}+(\tilde{b}-b) u^{*} D_{B} y, \tag{3.11.b}\\
D_{A}=\left(b-\tilde{b}\|y\|^{2}\right) D_{B}+(\tilde{b}-b)\left[\frac{u^{*} D_{B} y D_{B}}{\tilde{q}_{B}}-\frac{D_{B} y u^{*} D_{B}}{\tilde{q}_{B}}+D_{B} y y^{*}+u u^{*} D_{B}-\tilde{q}_{B} u y^{*}\right], \tag{3.11.c}\\
\tilde{D}_{A}=\left(\tilde{b}-b\|y\|^{2}\right) \tilde{D}_{B}+(b-\tilde{b})\left[\frac{y^{*} \tilde{D}_{B} u \tilde{D}_{B}}{q_{B}}-\frac{\tilde{D}_{B} u y^{*} \tilde{D}_{B}}{q_{B}}+\tilde{D}_{B} u u^{*}+y y^{*} \tilde{D}_{B}-q_{B} y u^{*}\right] . \tag{3.11.d}
\end{gather*}
$$

3.2.3 Properties of the Schur algorithm

Lemma 36

Assume A inner, $B=T_{\Theta}(A)$. Then D_{B} and \tilde{D}_{B} are polynomial matrices. In the same fashion, if B is inner, then D_{A} and \tilde{D}_{A} are polynomial matrices.

Proof. Let $Y=\tilde{D}_{A} u y^{*} \tilde{D}_{A}-y^{*} \tilde{D}_{A} u \tilde{D}_{A}$. Let $D_{i j}$ and $Y_{i j}$ the entries of \tilde{D}_{A} and Y. Then

$$
Y_{i j}=\sum_{I, J} u_{J} \overline{y_{I}}\left(D_{i J} D_{I j}-D_{I J} D_{i j}\right)
$$

In other words, $Y_{i j}$ is a linear combination of the minors of order 2 of \tilde{D}_{A}. These are multiple of q_{A}, hence \tilde{D}_{B} is a polynomial. In the same fashion, D_{B} is a polynomial.

In the case $p=1$, we have $Y=0$. In the case $p=2$, we have

$$
Y=\left(u y^{*}-y^{*} u\right) \operatorname{det} \tilde{D}_{A}
$$

In the special case $\epsilon_{A}=1$, we have $\operatorname{det} \tilde{D}_{A}=q_{A} \tilde{q}_{A}, Y / q_{A}=\tilde{q}_{A}\left(u y^{*}-y^{*} u\right)$.

Theorem 20

If A is inner of McMillan degree n, then $B=T_{\Theta}(A)$ is inner, of McMillan degree $n+1$ and $B(\omega)^{*} u=y$.
Proof. Note that

$$
B^{*} u-y=\frac{v}{1-\bar{\alpha} y^{*} v}\left[1+\bar{\alpha}\left(\|y\|^{2}-1\right)\right]
$$

and that $\beta \tilde{D}_{B}$ vanishes at $z=\omega$, so that $\alpha(\omega)=1 /\left(1-\|y\|^{2}\right)$. Hence $B(\omega)^{*} u=y$.
Since \tilde{D}_{B} is a polynomial matrix, and q_{B} is a stable polynomial, it follows from (3.9) that B is inner. Since q_{B} and \tilde{D}_{B} are of degree $n+1$, the McMillan degree of B must be $n+1$.

Theorem 21

Assume that the property " B is inner and $B(\omega)^{*} u=y$ " implies that $A=T_{\Theta}^{-1}(B)$ is inner. Then, if B is of degree $n+1$, A is of degree n, and $(z-\omega)(1-z \bar{\omega})$ divides each terms of the right-hand side of (3.10).
Proof. Assume A inner. Then $A=D / \tilde{q}, A^{-1}=\tilde{D} / q$ and $\operatorname{det} A=c_{1} q / \tilde{q}$, where c_{1} is some constant. Now, $\operatorname{det} A=c_{2} q_{A} / \tilde{q}_{A}$. Since q and \tilde{q} are coprime, there exists a polynomial r such that

$$
q_{A}=r q \quad \tilde{q}_{A}=c_{3} r \tilde{q}
$$

for some constant c_{3}. Since ω is a zero of \tilde{q}_{A}, but not of $\tilde{q}, z-\omega$ divides r, and $r=c_{4}(z-\omega)(1-\bar{\omega})$ for some polynomial c_{4}. Now, A has McMillan degree $n-\operatorname{deg}\left(c_{4}\right)$, so that B has McMillan degree $n+1-\operatorname{deg}\left(c_{4}\right)$, and c_{4} is constant.

Our objective now is to show the assumption of the theorem, namely to show that the condition $B(\omega)^{*} u=y$ is sufficient for $A=T_{\Theta}^{-1}(B)$ to be inner. We know that is is necessary. Obviously, it suffices to show that $(z-\omega)(1-z \bar{\omega})$ divides each terms of the left-hand side of (3.10). The non-trivial point is to show that it divides D_{A}. This is rather easy to show directly in case $z-\omega$ is coprime to q_{B}, but not so in the general case.

3.3 Reproducing kernel Hilbert spaces

Definition 4

A reproducing kernel Hilbert space is a Hilbert space H formed of functions f which are analytic in some set Ω with values in \mathbb{C}^{p}, together with a $p \times p$ matrix function $K(z, \omega)$, called the kernel, such that, for every $\omega \in \Omega$, every $c \in \mathbb{C}^{p}, K(\cdot, \omega) c$ is in H, and

$$
\begin{equation*}
\langle K(\cdot, \omega) c \mid f\rangle=c^{*} f(\omega) \tag{3.12}
\end{equation*}
$$

Note that the mapping $f \rightarrow c^{*} f(\omega)$ is continuous. On the other hand, if this mapping is continuous, there exists a (unique) element $K_{\omega, c} \in H$ such that

$$
\left\langle K_{\omega, c} \mid f\right\rangle=c^{*} f(\omega)
$$

Obviously, $K_{\omega, c}$ is a linear function of c, so that there exists a function K such that $K_{\omega, c}(z)=K(z, \omega) c$, so that H is a reproducing kernel Hilbert space.

As a consequence, if H is a finite dimensional space, there exists always a reproducing kernel. For instance, if H contains all polynomials of degree at most n, and Φ_{i} is a polynomial of degree i, such that the set of all Φ_{i} is an orthonormal basis, then formula (2.66) gives the kernel.

The typical example of a space of infinite dimension is H^{2}, where $K(z, \omega)=1 /(1-z \bar{\omega})$, because (3.12) is just the Cauchy formula. On the other hand, if H^{\prime} is a subset of H, which is a Hilbert space for the same inner product (in particular H^{\prime} must be closed), then H^{\prime} is also a reproducing kernel Hilbert space. We shall see that, if Q is inner, and H^{\prime} the orthogonal of $Q H^{2}$, then the kernel is

$$
\begin{equation*}
K_{Q}(z, \omega)=\frac{I-Q(z) Q(\omega)^{*}}{1-z \bar{\omega}} \tag{3.13}
\end{equation*}
$$

A consequence of (3.12), replacing f by $K(\cdot, \mu) d$ is

$$
\begin{equation*}
\left\langle K(\cdot, \omega) c_{1} \mid K(\cdot, \mu) c_{2}\right\rangle=c_{1}^{*} K(\omega, \mu) c_{2} \tag{3.14}
\end{equation*}
$$

From this we deduce

$$
\begin{equation*}
\left\|\sum_{i=1}^{n} K\left(\cdot, \omega_{i}\right) c_{i}\right\|^{2}=\sum_{i j} c_{i}^{*} K\left(\omega_{i}, \omega_{j}\right) c_{j} \tag{3.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\|K(\cdot, \omega) c\|^{2}=c^{*} K(\omega, \omega) c \tag{3.16}
\end{equation*}
$$

Theorem 22

If Q is inner and rational, then $H(Q)$, the orthogonal of $Q H^{2}$, is the reproducing kernel Hilbert space associated to K_{Q}. Its dimension is the McMillan degree of Q. This space is the linear span of elements of the form $K_{Q}(\cdot, \omega) c$, where $c \in \mathbb{C}^{p}$ and $\omega \in \Omega$, where Ω is an infinite subset of \mathbb{U}.

We prove here only the first claim, namely that $H(Q)$ is a reproducing kernel Hilbert space.
Proof. Since Q is inner, we have $\langle Q x \mid Q y\rangle=\langle x \mid y\rangle$ whenever x and y are in H^{2}. Now, the Cauchy formula says that $Q x$ is orthogonal to $K_{Q}(\cdot, \omega) c$, whatever c and ω, if x is in H^{2}. From this we deduce (3.12).

Corollary 7

If Q is inner and rational, then, for $\omega \in \overline{\mathbb{U}}$ we have $\left\|Q(\omega)^{*} u\right\| \leq\|u\|$. If Q is not constant, for any $\omega \in \mathbb{U}$, for almost all u, we have $\left\|Q(\omega)^{*} u\right\|<\|u\|$.

Note that this is the same as corollary 3 .
Proof. Since Q is inner, we have $Q(z) Q(z)^{*}=I$ whenever $|z|=1$, so that $\left\|Q(\omega)^{*} u\right\|=\|u\|$ if $|\omega|=1$. Assume now $|\omega|<1$. We have

$$
\left(1-|\omega|^{2}\right)\left\|K_{Q}(\cdot, \omega) u\right\|^{2}=\|u\|^{2}-\left\|Q(\omega)^{*} u\right\|^{2} .
$$

Let $T=Q(\omega) Q(\omega)^{*}$. We have $T=T^{*}$ and $0 \leq u^{*} T u \leq\|u\|^{2}$. There exists an orthonormal basis $\left(e_{i}\right)_{i}$ such that $T e_{i}=\lambda_{i} e_{i}$, and $0 \leq \lambda_{i} \leq 1$. If, for at least one j, we have $\lambda_{j}<1$, then $u^{*} T u<\|u\|^{2}$ whenever u is not orthogonal to e_{j}. Hence, for almost every u, we have $\left\|Q(\omega)^{*} u\right\|<\|u\|$.

On the other hand, if $\lambda_{i}=1$ for every i, we have $\left\|Q(\omega)^{*} u\right\|=\|u\|$ for each u, and $\left\|K_{Q}(\cdot, \omega) u\right\|=0$. This means $I=Q(z) Q(\omega)^{*}$, and Q is constant.

Note: if $\left\|Q(\omega)^{*} u\right\|=\|u\|$, then $K_{Q}(\cdot, \omega) u=0$, hence for every $\mu,\left\|Q(\mu)^{*} u\right\|=\|u\|$.

Definition 5

A positive function P is a function $P(z, \omega)$, defined for z and ω in Ω, with values in $\mathbb{C}^{p \times p}$, such that, for every $\omega \in \Omega, P(\cdot, \omega)$ is analytic in Ω, and $\sum_{i j} c_{i}^{*} P\left(\omega_{i}, \omega_{j}\right) c_{j} \geq 0$, whenever $\omega_{i} \in \Omega$ and $c_{i} \in \mathbb{C}^{p}$.

Theorem 23

A reproducing kernel is a positive function. If P is a positive function on Ω, there exists a unique reproducing kernel Hilbert space with reproducing kernel P.

Proof. 1. If K is a reproducing kernel, then equation (3.15) says that K is a positive function.
2. Assume now that P is a positive function. Consider two vectors c_{1} and c_{2}, two elements z and ω in Ω. We have

$$
\begin{equation*}
c_{1}^{*} P(z, z) c_{1}+c_{2}^{*} P(\omega, \omega) c_{2}+c_{1}^{*} P(z, \omega) c_{2}+c_{2}^{*} P(\omega, z) c_{1} \geq 0 \tag{3.17}
\end{equation*}
$$

The first two terms in this expression are real, and $c_{1}^{*} P(z, \omega) c_{2}+c_{2}^{*} P(z, \omega)^{*} c_{1}$ is also real. Taking the difference,

$$
c_{2}^{*}\left[P(\omega, z)-P(z, \omega)^{*}\right] c_{1}
$$

is real. Since this is true for every c_{1} and c_{2}, the terms in brackets must be zero, hence $P(z, \omega)^{*}=P(\omega, z)$.
3. Let H_{0} be the set of finite sums $x=\sum_{i} P\left(\cdot, \omega_{i}\right) c_{i}$, with $\omega_{i} \in \Omega$ and $c_{i} \in \mathbb{C}^{p}$. Each element of H_{0} is analytic in Ω.

If $y=\sum_{j} P\left(\cdot, \omega_{j}^{\prime}\right) c_{j}^{\prime}$, we define

$$
\begin{equation*}
f(x, y)=\sum_{i j} c_{i}^{*} P\left(\omega_{i}, \omega_{j}^{\prime}\right) c_{j}^{\prime} \tag{3.18}
\end{equation*}
$$

We have $f(x, y)=\overline{f(y, x)}$, and $f(x, \lambda y)=\lambda f(x, y)$ whenever λ is a complex number.
Note that the representation $y=\sum_{i} P\left(\cdot, \omega_{j}^{\prime}\right) c_{j}^{\prime}$ may not be unique. Nevertheless, $f(x, y)$ depends only on y since $f(x, y)=\sum_{i} c_{i}^{*} y\left(\omega_{i}\right)$. In the same fashion, f depends only on x, not on the particular choice of c_{i} and ω_{i}.
4. Define $\langle x \mid y\rangle_{P}=f(x, y)$ and $\|x\|_{P}=\sqrt{\langle x \mid x\rangle_{P}}$. This is a scalar product on H_{0}. In fact, we know $\langle x \mid x\rangle_{P} \geq 0$ for every x. Assume $\langle x \mid x\rangle_{P}=0$. Then, for every vector u, every complex λ, we have $\|x+\lambda u\|_{P}^{2} \geq 0$, and this implies $\langle x \mid u\rangle_{P}=0$. Take $u=P(\cdot, \omega) c$. We get $c^{*} x(\omega)=0$, hence $x=0$.
5. Let H be the completion of H_{0}. Consider an element f of H, which is the limit of some sequence f_{n} of elements of H_{0}. Note that f_{n} is a Cauchy sequence, so that, for every ϵ, there exists N such that, if $n \geq N$ and $m \geq N,\left\|f_{n}-f_{m}\right\|_{P} \leq \epsilon$. For every x we have

$$
\left|\left\langle x \mid f_{n}-f_{m}\right\rangle_{P}\right| \leq \epsilon\|x\|_{P}
$$

Let C be any compact subset of Ω. Take $x=P(\cdot, \omega) c$. Since $P(\omega, \omega)$ is continuous, there exists M such that $\|x\|_{P} \leq M$, if $\omega \in C$. Hence

$$
\left|c^{*} f_{n}(\omega)-c^{*} f_{m}(\omega)\right| \leq \epsilon M
$$

This shows that $c^{*} f_{n}$ converges uniformly on every compact subset of Ω. The limit F_{c} is an analytic function. Moreover,

$$
\langle P(\cdot, \omega) c \mid f\rangle_{P}=F_{c}(\omega)
$$

This equation shows that there exists an analytic function F such that $F_{c}=c^{*} F$,

$$
\langle P(\cdot, \omega) c \mid f\rangle_{P}=c^{*} F(\omega)
$$

If we identify now f and F, H is a Hilbert space of analytic functions on Ω that satisfies the required conditions.
6. Unicity. If H^{\prime} is a reproducing kernel Hilbert space with kernel P, it is obvious that it contains H_{0}, hence H. Moreover, if f is an element of H^{\prime} orthogonal to every element of H, it is orthogonal to every $P(\cdot, \omega) c$, hence $c^{*} f(\omega)=0$, and $f=0$, so that $H=H^{\prime}$.

In what follows, we shall use the following result: Assume that H is a finite dimensional vector space, which is the linear span of all $P(\cdot, \omega) c$. Assume that $\langle x \mid y\rangle$ is a hermitian form that satisfies equation (3.14) with K replaced by P. Then $\langle x \mid y\rangle$ is a scalar product on H.

3.4 J-inner functions

3.4.1 Introduction

In what follows, J will be a signature matrix, a matrix such that $J^{2}=I$ and $J=J^{*}$. Define $J_{+}=$ $(J+I) / 2, J_{-}=(J-I) / 2$. We have $J_{+}^{2}=J_{+}, J_{-}^{2}=-J_{-}, J_{+} J_{-}=J_{-} J_{+}=0, J_{+}^{*}=J_{+}, J_{-}^{*}=J_{-}$.

These relations say that \mathbb{C}^{p} is the direct, orthogonal sum of the kernels of the orthogonal projectors J_{+}and $-J_{-}$. Said otherwise, there exists a matrix A with $A^{-1}=A^{*}$ and $J=A\left(\begin{array}{cc}I & 0 \\ 0 & -I\end{array}\right) A^{*}$. We could, without loss of generality, assume that A is the identity matrix. Define

$$
\begin{equation*}
\langle x \mid y\rangle_{J}=\langle x \mid J y\rangle=\langle J x \mid y\rangle \tag{3.19}
\end{equation*}
$$

If $A x$ has components x_{1} and x_{2}, we get $\langle x \mid x\rangle_{J}=x_{1}^{2}-x_{2}^{2}$. Unless J is the identity matrix, $\langle x \mid y\rangle_{J}$ defines a Hermitian form which is not positive definite.

Definition 6

A matrix A is called J-unitary in case $J=A J A^{*}$, it is called J-contractive in case $J-A J A^{*}$ is positive, semi-definite.

By definition, if A is J-unitary, then

$$
\begin{equation*}
\langle A x \mid A y\rangle_{J}=\langle x \mid y\rangle_{J} \tag{3.20}
\end{equation*}
$$

We shall consider in what follows matrices Θ that are J-unitary on \mathbb{T}. If $\Theta \in H^{\infty}, x$ and y are in H^{2}, then the previous relation is true, for the H^{2} scalar product. A J-inner matrix will satisfy this condition, plus some others. These additional conditions are justified as follows. Introduce first

$$
\begin{equation*}
K_{\Theta}(z, \nu)=\frac{J-\Theta(z) J \Theta(\nu)^{*}}{1-z \bar{\nu}} \tag{3.21}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{\Sigma}(z, \nu)=\frac{I-\Sigma(z) \Sigma(\nu)^{*}}{1-z \bar{\nu}} \tag{3.22}
\end{equation*}
$$

If Σ is defined by the equivalent formulas

$$
\begin{equation*}
\Sigma=\left(J_{+}-\Theta J_{-}\right)^{-1}\left(\Theta J_{+}-J_{-}\right)=\left(J_{+} \Theta+J_{-}\right)\left(J_{+}+J_{-} \Theta\right)^{-1}, \tag{3.23.a}
\end{equation*}
$$

then Θ can be obtained from

$$
\begin{equation*}
\Theta=\left(J_{+} \Sigma+J_{-}\right)\left(J_{+}+J_{-} \Sigma\right)^{-1}=\left(J_{+}-\Sigma J_{-}\right)^{-1}\left(\Sigma J_{+}-J_{-}\right) . \tag{3.23.b}
\end{equation*}
$$

In the case

$$
J=\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right), \quad \Theta=\left(\begin{array}{ll}
\Theta_{11} & \Theta_{12} \\
\Theta_{21} & \Theta_{22}
\end{array}\right)
$$

we have

$$
\Sigma=\left(\begin{array}{cc}
\Theta_{11}-\Theta_{12} \Theta_{22}^{-1} \Theta_{21} & -\Theta_{12} \Theta_{22}^{-1} \\
\Theta_{22}^{-1} \Theta_{21} & \Theta_{22}^{-1}
\end{array}\right)
$$

so that Σ is defined if Θ_{22} is invertible. Let $F(z)=J_{+}-\Theta(z) J_{-}$. Then

$$
\begin{equation*}
K_{\Theta}(z, \omega)=F(z) K_{\Sigma}(z, \omega) F(\omega)^{*} . \tag{3.24}
\end{equation*}
$$

Assume Θ rational. If Θ is J-unitary on \mathbb{T}, then Σ is unitary on \mathbb{T}. If Σ is inner, then K_{Σ}, hence K_{Θ} are positive functions. On the other hand, if Θ is J-contractive on \mathbb{U} (this is a weaker condition), then Σ will be bounded, hence inner, and K_{Θ} will be a positive function. Note that, if $\Theta\binom{0}{x}=\binom{y}{0}$, the condition $\langle\Theta u \mid \Theta u\rangle_{J}=\langle u \mid u\rangle_{J}$ gives $-\|x\|^{2}=\|y\|^{2}$, hence $x=y=0$. Thus, if Θ is J-unitary on \mathbb{T}, Θ_{22} is invertible on \mathbb{T}, so that Σ is always defined.

Definition 7

We say that Θ is J-inner if it is in H^{∞}, is J-unitary almost everywhere on \mathbb{T}, and K_{Θ} is a positive function.

We introduce now two vector spaces

$$
\begin{align*}
H(\Theta) & =\left\{\sum_{i} K_{\Theta}\left(z, \nu_{i}\right) c_{i}, c_{i} \in \mathbb{C}^{p}, \nu_{i} \in \Omega\right\} \tag{3.25.a}\\
H_{\Theta} & =\left\{x \in H^{2}, \forall y \in H^{2},\langle x \mid J \Theta y\rangle=0\right\} . \tag{3.25.b}
\end{align*}
$$

3.4.2 Basic properties

Lemma 37

If Θ is rational and J-unitary on \mathbb{T}, then $H(\Theta)$ has finite dimension.
Proof. Since Θ is J-unitary on \mathbb{T} we have

$$
\begin{equation*}
J-\Theta(1 / \bar{\omega}) J \Theta(\omega)^{*}=0 \tag{3.26}
\end{equation*}
$$

whenever ω is in \mathbb{T}, but since Θ is rational, this is true almost everywhere, and we get

$$
\begin{equation*}
\Theta(\omega)^{-1}=J \Theta(1 / \bar{\omega})^{*} J . \tag{3.27}
\end{equation*}
$$

From this, we deduce

$$
\begin{equation*}
K_{\Theta}(z, \omega) J \Theta(\mu) / \mu=\frac{\Theta(z)-\Theta(\mu)}{z-\mu} \quad \mu=1 / \bar{\omega} . \tag{3.28}
\end{equation*}
$$

Write $\Theta=N / q$, where q is a polynomial of degree $\leq n, N$ a matrix of polynomials of degree $\leq n$. Let

$$
P(z, \mu)=\frac{N(z) q(\mu)-N(\mu) q(z)}{z-\mu} .
$$

This is a polynomial of degree $<n$, hence can be written as

$$
P(z, \mu)=\sum_{i=0}^{n-1} z^{i} P_{i}(\mu)
$$

hence

$$
\begin{equation*}
K_{\Theta}(z, \omega) J \Theta(\mu) q(\mu) / \mu=\sum_{i=0}^{n-1} \frac{z^{i}}{q(z)} P_{i}(\mu) \tag{3.29}
\end{equation*}
$$

Let Ω be an open set, and ν_{1}, \ldots, ν_{m} be the points of Ω on which $\Theta(1 / \bar{\nu})$ is not defined, or not invertible. For any x in $H(\Theta)$, we can write

$$
x=\sum_{i} K_{\Theta}\left(z, \omega_{i}\right) c_{i}+\sum_{j=1}^{m} K_{\Theta}\left(z, \nu_{j}\right) d_{j}
$$

for some constant vectors c_{i}, d_{j}, and elements $\omega_{i} \in \Omega$, with $\omega_{i} \neq \nu_{j}$. Let $\mu_{i}=1 / \bar{\omega}_{i}, e_{i}=\mu_{i} \Theta\left(\mu_{i}\right)^{-1} J c_{i} / q\left(\mu_{i}\right)$, so that (3.29) gives

$$
x=\sum_{i=0}^{n-1} \frac{z^{i}}{q(z)}\left(\sum_{j} P_{i}\left(\mu_{j}\right) e_{j}\right)+\sum_{j=1}^{m} K_{\Theta}\left(z, \nu_{j}\right) d_{j}
$$

This shows that $H(\Theta)$ is included in a finite dimensional space.
The dimension of this space is a priori $(n+m) p$, but we shall see later that is it is less than that. This lemma has a converse.

Lemma 38

If the space $H(\Theta)$ is a finite dimensional vector space then Θ is rational and J-unitary on \mathbb{T}.
Proof. Consider a set of generators of $H(\Theta)$, of the form $K_{\Theta}\left(z, \omega_{i}\right) c_{i}$. Take ω in \mathbb{U}, different from all ω_{i}, for which Θ is defined. There exists some matrices M_{i} (depending on ω alone) such that

$$
\begin{equation*}
K_{\Theta}(z, \omega)=\sum_{i=1}^{n} K_{\Theta}\left(z, \omega_{i}\right) M_{i} \tag{3.30}
\end{equation*}
$$

This is equivalent to

$$
\begin{equation*}
J\left(\frac{I}{1-z \bar{\omega}}-\sum_{i} \frac{M_{i}}{1-z \bar{\omega}_{i}}\right)=\Theta(z) J\left(\frac{\Theta(\omega)^{*}}{1-z \bar{\omega}}-\sum_{i} \frac{\Theta\left(\omega_{i}\right)^{*} M_{i}}{1-z \bar{\omega}_{i}}\right) \tag{3.31}
\end{equation*}
$$

Write this as $J A=\Theta(z) J B$. Note that A and B are rational, so that $\operatorname{det} A$ is a rational function. By construction, it has a singularity at $z=1 / \bar{\omega}$, so that $\operatorname{det} A$ is not identically zero, $\operatorname{det} B$ is not identically zero, hence $\Theta=J A B^{-1} J$ is rational.

Multiply relation (3.31) by $1-z \bar{\omega}$, and take the limit $z \rightarrow 1 / \bar{\omega}$. If Θ is analytic at $z=1 / \bar{\omega}$ we get

$$
\begin{equation*}
J-\Theta(1 / \bar{\omega}) J \Theta(\omega)^{*}=0 \tag{3.32}
\end{equation*}
$$

Since Θ is rational, this relation is true whenever it is defined, hence almost everywhere.
From now on, we shall assume $\Theta \in H^{\infty}$. Now $K_{\Theta}(z, \omega)$ is defined for $z, \omega \in \mathbb{U}$. The set Ω that appears in the definition of $H(\Theta)$ will be \mathbb{U}. We also assume ΘJ-unitary on \mathbb{T}. If x and y are in H^{2}, then $J \Theta x$ and $\Theta J y$ are in H^{2} and

$$
\begin{equation*}
\langle J \Theta x \mid \Theta J y\rangle=\langle x \mid y\rangle . \tag{3.33}
\end{equation*}
$$

This can also be written as

$$
\langle\Theta x \mid \Theta y\rangle_{J}=\langle x \mid y\rangle_{J}
$$

Let c be a constant vector, $\omega \in \mathbb{U}$. Applying the Cauchy formula twice gives

$$
\begin{equation*}
\left\langle K_{\Theta}(z, \omega) c \mid J \Theta x\right\rangle=\left\langle\left.\frac{c}{1-z \bar{\omega}} \right\rvert\, \Theta x\right\rangle-\left\langle\left.\frac{\Theta(\omega)^{*} c}{1-z \bar{\omega}} \right\rvert\, x\right\rangle=0 \tag{3.34}
\end{equation*}
$$

Thus, if c_{1} and c_{2} are constant vectors, ω and μ are in \mathbb{U}, we obtain a relation similar to (3.14):

$$
\begin{equation*}
\left\langle K_{\Theta}(z, \omega) c_{1} \mid J K_{\Theta}(z, \mu) c_{2}\right\rangle=c_{1}^{*} K_{\Theta}(\omega, \mu) c_{2} \tag{3.35}
\end{equation*}
$$

Lemma 39

If Θ is rational and J-inner, then $H(\Theta)=H_{\Theta}$.
Proof. Since $\Theta \in H^{\infty}$, the space H_{Θ} is well defined. Equation (3.34) says that it contains $H(\Theta)$. The note after theorem 23 tells us that $\langle x \mid y\rangle_{J}$ is a scalar product on $H(\Theta)$ (recall that K_{Θ} is a positive function, and $H(\Theta)$ is of finite dimension). Let $\left(e_{i}\right)_{i}$ be an orthonormal basis of $H(\Theta)$ for this scalar product. Take $x \in H_{\Theta}$ and write

$$
\begin{equation*}
x=\sum_{i=1}^{n}\left\langle e_{i} \mid x\right\rangle_{J} e_{i}+y \tag{3.36}
\end{equation*}
$$

Now $e_{i} \in H(\Theta)$ implies $y \in H_{\Theta}$, hence $\left\langle J y \mid \Theta(z) J \Theta(\omega)^{*} c /(1-z \bar{\omega})\right\rangle=0$. Since e_{i} is an orthonormal basis of $H(\Theta),\left\langle e_{i} \mid y\right\rangle_{J}=0$, hence $\langle t \mid y\rangle_{J}=0$ whenever $t \in H(\Theta)$, hence $\left\langle J y \mid K_{\Theta}(z, \omega) c\right\rangle=0$. Thus

$$
\left\langle J y \left\lvert\, K_{\Theta}(z, \omega) c-\frac{\Theta J \Theta(\omega) c}{1-z \bar{\omega}}\right.\right\rangle=0
$$

By definition of K_{Θ}, this is $\langle J y \mid J c /(1-z \bar{\omega})\rangle=0$, and the Cauchy formula says that $c^{*} y(\omega)=0$. Thus $y=0$ and $x \in H(\Theta)$.

Theorem 24

If Θ is J-inner and rational, then $H(\Theta)$ is left shift invariant and finite dimensional.
Proof. Take x in H^{2}.

$$
\left\langle\left.\frac{K_{\Theta}(z, \omega)-K_{\Theta}(0, \omega)}{z} c \right\rvert\, J \Theta x\right\rangle=\left\langle K_{\Theta}(z, \omega) c \mid z J \Theta x\right\rangle-\left\langle K_{\Theta}(0, \omega) c \mid z J \Theta x\right\rangle
$$

Both terms are zero, so that $R_{0}\left(K_{\Theta}\right)$ is in H_{Θ}, hence in $H(\Theta)$.

3.4.3 J-inner functions and left shift invariant spaces

Assume Θ rational and J-inner. The previous theorem says that $H(\Theta)$ is left shift invariant and finite dimensional, and theorem 10 describes these spaces; in this section, we show that it gives a characterisation of Θ.

We know that $H(\Theta)$ is the set of elements of the form $A(I-z C)^{-1} v, v \in \mathbb{C}^{n}$, where (A, C) is an observable pair.

Fix $\omega \in \Omega$ and $c \in \mathbb{C}^{n}$. Chose v such that

$$
K_{\Theta}(z, \omega) c=A(I-z C)^{-1} v
$$

Take $w \in \mathbb{C}^{n}$ and let $y=A(I-z C)^{-1} w$. Now (3.35) says

$$
\begin{equation*}
\left\langle K_{\Theta}(z, \omega) c \mid J y\right\rangle=c^{*} y(\omega) \tag{3.37}
\end{equation*}
$$

Define

$$
\begin{equation*}
P=\sum_{k=0}^{\infty} C^{* k} A^{*} J A C^{k} \tag{3.38}
\end{equation*}
$$

Lemma 40

P is a positive definite matrix.
Proof. Note that elements of $H(\Theta)$ are analytic in \mathbb{U}, and have no singularity on \mathbb{T}. This means that eigenvalues of C are in \mathbb{U}, and the series that defines P is convergent. If we replace in (3.37) $K_{\Theta}(z, \omega) c$ by $A(I-z C)^{-1} v$ and expand, we get $v^{*} P w=c^{*} y(\omega)$ hence

$$
\begin{equation*}
P v=\left(I-\bar{\omega} C^{*}\right)^{-1} A^{*} c, \tag{3.39}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{\Theta}(z, \omega)=A(I-z C)^{-1} P^{-1}\left(I-\bar{\omega} C^{*}\right)^{-1} A^{*} \tag{3.40}
\end{equation*}
$$

The matrix P is invertible, because, if $P w=0$, then $c^{*} y(\omega)=0$ whatever c and ω, so that y is identically zero, and $w=0$. Now, since any vector d can be written as $\sum_{i}\left(I-\bar{\omega}_{i} C^{*}\right)^{-1} A^{*} c_{i}$, we get

$$
\begin{equation*}
\sum_{i j} c_{i}^{*} K_{\Theta}\left(\omega_{i}, \omega_{j}\right) c_{j}=d^{*} P d \tag{3.41}
\end{equation*}
$$

Now $d^{*} P d \geq 0$ because K_{Θ} is positive.

Lemma 41

If (A, C) is an observable pair, and eigenvalues of C are in \mathbb{U}, then the equation

$$
\begin{equation*}
A^{*} J A=P-C^{*} P C \tag{3.42}
\end{equation*}
$$

has a unique solution P. If $J=J^{*}$ then $P=P^{*}$. If J is positive definite, so is P. Moreover, P satisfies equation (3.38).

Proof. Let P be a solution. If $T_{k}=\sum_{i \leq k} C^{* i} A^{*} J A C^{i}$, then $T_{k}=P-C^{* k+1} P C^{k+1}$. Hence T_{k} converges to P, hence (3.38). Since (3.42) is a set of n^{2} linear equations in n^{2} variables, it has a unique solution, provided that the associated homogeneous system has only $P=0$ as solution. But, if $J=0$, we have $T_{k}=0$, hence $P=0$.

Thus, if J is positive definite, we get $x^{*} P x \geq 0$ for each vector x. In the case where this is zero, we get $A C^{i} x=0$ for each i, so that the observability of (A, C) tells us $x=0$.

Note: take

$$
J=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad A=\left(\begin{array}{cc}
\tan \phi \tan \theta & 1 / \cos \phi \\
\tan \theta / \cos \phi & \tan \phi
\end{array}\right), \quad C=\left(\begin{array}{cc}
0 & 0 \\
1 / \cos \phi & 0
\end{array}\right)
$$

Then $A^{*} J A=I-C^{*} C$. Hence P can be positive, even though $A^{*} J A$ is not positive.
From the relation

$$
K_{\Theta}(z, a)=\frac{J-\Theta(z) J \Theta(a)^{*}}{1-z \bar{a}}
$$

we get

$$
\Theta(z)=\left[I-(1-z \bar{a}) K_{\Theta}(z, a) J\right] \Theta(a)
$$

in the case $|a|=1$, because $\Theta(a)$ is J-unitary. Hence

$$
\begin{gather*}
\Theta(z)=\left[I-(1-z \bar{a}) A(I-z C)^{-1} P^{-1}\left(I-\bar{a} C^{*}\right)^{-1} A^{*} J\right] \Theta(a) \tag{3.43.a}\\
a \in \mathbb{T}, \Theta(a) \text { is J-unitary. } \tag{3.43.b}
\end{gather*}
$$

Theorem 25

If Θ is J-inner and rational, there exists an observable pair (A, C), where the eigenvalues of C are in \mathbb{U}. such that the matrix P defined by (3.42) is positive definite, and Θ is defined by (3.43), K_{Θ} by (3.40). On the other hand, given an observable pair (A, C), if the matrix P defined by (3.42) is positive definite, then the matrix Θ defined by (3.43) is J-inner. The McMillan degree of Θ is the dimension of $H(\Theta)$, the size of the matrix C.

Note that this completes the proof of theorem 22
Proof. 1. Note that the condition $a \in \mathbb{T}$ implies that both members of (3.43.a) evaluate to $\Theta(a)$ in case $z=a$. The non-trivial part of the theorem is to prove that Θ satisfies (3.43). Everything else is a straightforward computation.
2. Assume that (3.43) is satisfied. Let's compute K_{Θ}. Write

$$
X(z)=(1-z \bar{a}) A(I-z C)^{-1} P^{-1}\left(I-\bar{a} C^{*}\right)^{-1} A^{*}
$$

Then

$$
K_{\Theta}(z, \omega)=\frac{X(z)+X(\omega)^{*}-X(z) J X(\omega)^{*}}{1-z \bar{\omega}}
$$

Write $Y(z)=(I-z C)^{-1} P^{-1}\left(I-\bar{a} C^{*}\right)^{-1}$. Then

$$
K_{\Theta}(z, \omega)=\frac{(1-z \bar{a})(1-\bar{\omega} a)}{1-z \bar{\omega}} A^{*} Y(z)\left[\frac{Y^{-1}(z)}{1-\bar{\omega} a}+\frac{Y^{-1}(\omega)^{*}}{1-z \bar{a}}-A^{*} J A\right] Y(\omega)^{*} A^{*}
$$

If we use equation (3.42), the term in brackets becomes $\lambda\left(I-\bar{a} C^{*}\right) P(I-a C)$, where $\lambda=(1-z \bar{\omega}) /(1-$ $z \bar{a})(1-\bar{\omega} a)$ is the inverse of the factor that appears in K_{Θ}. Thus, K_{Θ} has the form (3.40).
3. Since P is positive definite, K_{Θ} is a positive function. Since the eigenvalues of C are in \mathbb{U}, the function Θ is analytic in \mathbb{U}. Since K_{Θ} is defined on \mathbb{T}, the definition (3.21) of K_{Θ} says that Θ is J-unitary on \mathbb{T}. Hence Θ is J-inner.
4. Let's now compute the McMillan degree of Θ. We may assume $a=1$, and ignore the factor $\Theta(a)$. Applying (3.27) gives

$$
\begin{equation*}
\Theta(z)^{-1}=I-(z-1) A(I-C)^{-1} P^{-1}\left(z I-C^{*}\right)^{-1} A^{*} J . \tag{3.44}
\end{equation*}
$$

Write $B=P^{-1}\left(I-C^{*}\right)^{-1} A^{*}$. Using the relation $(z-1)(z I-F)^{-1}=I+(F-I)(z I-F)^{-1}$ gives

$$
\begin{equation*}
\Theta(z)^{-1}=I-B^{*} A^{*} J-B^{*}\left(C^{*}-I\right)\left(z I-C^{*}\right)^{-1} A^{*} J \tag{3.45}
\end{equation*}
$$

This equation has the form $\Theta^{-1}=H(z I-F)^{-1} G+K$, it is a proper, stable, rational transfer function. We know that, if the realization is minimal, the McMillan degree of Θ^{-1}, which is the same as the McMillan degree of Θ, is the dimension of the matrix F, which is C^{*} in the equation above, and the dimension of the matrix is, because of the observability of (A, C), the dimension of $H(\Theta)$.
5. Let's show that the realization (3.45) is minimal. Since (A, C) is observable, it is clearly reachable. Let's show that it is observable. We consider x such that $C^{*} x=\lambda x$ and $B^{*}\left(C^{*}-I\right) x=0$, and we want to show that x is zero. Notice first that these equations give $B^{*}(1-\lambda) x=0$, and, since $\lambda \neq 1$, $B^{*} x=0$. Let $y=(I-C)^{-1} P^{-1} x$. Then $x=P(I-C) y, A y=0$, and $C^{*} x=\lambda x$. Now, equation (3.42) says $P y=C^{*} P C y$. Applying this relation twice gives $x=\left(C^{*}-I\right) P C y$ and $C^{*} x=\left(C^{*}-I\right) P y$. Now $C^{*} x=\lambda x$ and the invertibility of $\left(C^{*}-I\right) P$ gives $y=\lambda C y$. Hence, if $\lambda=0$, we have $y=0$; otherwise y is an eigenvector of C, but $A y=0$ and the observability of (A, C) says now $y=0$. Thus $x=0$.

The next lemma will play a role in the proof of the Potapov theorem.

Lemma 42

If u is a non-zero vector such that $u^{*} \Theta(\omega)=0$ for some $\omega \in \mathbb{U}$, then $u^{*} J u>0$.
Proof. The assumption on u implies $u^{*} K_{\Theta}(\omega, \omega) u=u^{*} J u /\left(1-|\omega|^{2}\right) \geq 0$. If $u^{*} K_{\Theta}(\omega, \omega) u=0$, then $\left(I-\bar{\omega} C^{*}\right)^{-1} A^{*} u=0$, because P is positive definite. This implies $A^{*} u=0$, and $u^{*} \Theta(z)=u^{*} \Theta(\omega)=0$. Since this is true for every z, taking $z=1$ gives $u=0$, because $\Theta(1)$ is invertible.

3.4.4 The theorem of Potapov

What we are trying to show here is that every J-inner rational function is the product of J-inner functions of degree one. The next lemma says that the product of two J-inner matrices is J-inner, and gives a converse.

Lemma 43

If Θ_{1} and Θ_{2} are two J-inner matrices, then the product $\Theta_{1} \Theta_{2}$ is J-inner, and the McMillan degree is the sum of the McMillan degrees of Θ_{1} and Θ_{2}. On the other hand, if Θ and Θ_{1} are J-inner and rational, then $\Theta_{1}^{-1} \Theta$ is J-inner if it is analytic in \mathbb{U}.

Proof. 1. If $\Theta=\Theta_{1} \Theta_{2}$ we have

$$
\begin{equation*}
K_{\Theta}(z, \omega)=K_{\Theta_{1}}(z, \omega)+\Theta_{1}(z) K_{\Theta_{2}}(z, \omega) \Theta_{1}(\omega)^{*} \tag{3.46}
\end{equation*}
$$

If each Θ_{i} is J-unitary on \mathbb{T}, so is the product. Moreover, if $K_{\Theta_{i}}$ are positive functions, then K_{Θ} is a positive function. This shows the first claim.
2. We assume now that Θ and Θ_{1} are J-inner, and Θ_{2} is analytic in \mathbb{U}. Then Θ_{2} is J-unitary on \mathbb{T}. We have to show that $K_{\Theta_{2}}$ is a positive function.
3. We have $H\left(\Theta_{1}\right) \subset H(\Theta)$. This is because, if $y \in H\left(\Theta_{1}\right)$, $J y$ is orthogonal to every $\Theta_{1} t\left(t \in H^{2}\right)$, hence to every $\Theta_{1} \Theta_{2} t$. Thus $y \in H_{\Theta}$, and $y \in H(\Theta)$.
4. Let $x_{\omega c}=\Theta_{1}(z) K_{\Theta_{2}}(z, \omega) \Theta_{1}(\omega)^{*} c$. Let $x_{1}=K_{\Theta}(z, \omega) c$ and $x_{2}=K_{\Theta_{1}}(z, \omega) c$. Then $x_{1} \in H(\Theta)$ and $x_{2} \in H(\Theta)$ so that $x_{\omega c}=x_{1}-x_{2} \in H(\Theta)$. Let $t=J K_{\Theta}\left(z, \omega^{\prime}\right) c^{\prime}$. Then $\left\langle J t \mid x_{\omega c}\right\rangle=\left\langle J t \mid x_{1}-x_{2}\right\rangle=$ $c^{\prime *} x_{\omega c}\left(\omega^{\prime}\right)$.

Now, $x_{\omega c} \in \Theta_{1} H^{2}$, hence is orthogonal to $J K_{\Theta_{1}}\left(z, \omega^{\prime}\right) c^{\prime}$. Thus

$$
\left\langle x_{\omega c} \mid x_{\omega^{\prime} c^{\prime}}\right\rangle_{J}=c^{*} x_{\omega^{\prime} c^{\prime}}(\omega)
$$

Hence, if $y=\sum \Theta_{1}(z) K_{\Theta_{2}}\left(z, \omega_{i}\right) \Theta_{1}\left(\omega_{i}\right)^{*} c_{i}$ we have

$$
\begin{equation*}
\langle y \mid J y\rangle=\sum_{i j} c_{i}^{*} \Theta_{1}\left(\omega_{i}\right) K_{\Theta_{2}}\left(\omega_{i}, \omega_{j}\right) \Theta_{1}\left(\omega_{j}\right)^{*} c_{j} \tag{3.47}
\end{equation*}
$$

5. Since $y \in H(\Theta)$, we have $\langle y \mid y\rangle_{J} \geq 0$. Take some numbers ω_{i} such that $\Theta_{1}\left(\omega_{i}\right)$ is invertible, and $d_{i}=\Theta_{1}\left(\omega_{i}\right)^{*} c_{i}$. Now (3.47) says

$$
\sum d_{i}^{*} K_{\Theta_{2}}\left(\omega_{i}, \omega_{j}\right) d_{i} \geq 0
$$

This is true, by continuity, even if $\Theta\left(\omega_{i}\right)$ is not invertible.
6. Every element of $H(\Theta)$ can be written as $x+\Theta_{1} y$, where $x \in H\left(\Theta_{1}\right)$ and $y \in H\left(\Theta_{2}\right)$. Such a decomposition is obviously unique (if x is in $H\left(\Theta_{1}\right)$ and $\Theta_{1} H^{2}$, then x is zero). We showed that x and $J y$ are orthogonal. Thus the dimension of $H(\Theta)$ is the sum of the dimensions of $H\left(\Theta_{1}\right)$ and $H\left(\Theta_{2}\right)$.

The question is now: what are the J-inner matrices of degree one? In equation (3.43), C is a 1×1 matrix, hence a scalar. Write $C=\bar{\gamma}$. Equation (3.42) says now

$$
P=\frac{A^{*} J A}{1-|\gamma|^{2}}
$$

Equation (3.43), with $a=1$ and $\Theta(1)=I$, gives now

$$
\Theta=I+\frac{(z-1)\left(1-|\gamma|^{2}\right)}{(1-z \bar{\gamma})(1-\gamma)} \frac{A A^{*} J}{A^{*} J A}
$$

This can be written as

$$
\begin{equation*}
\Theta=I-\left(1-\beta_{\gamma}\right) \frac{A A^{*} J}{A^{*} J A} \tag{3.48}
\end{equation*}
$$

Recall that β_{γ} is the normalised Blaschke product of degree one with root γ. We have two equivalent formulas for K_{Θ}.

$$
\begin{align*}
K_{\Theta}(z, \omega) & =\frac{1-|\gamma|^{2}}{(1-z \bar{\gamma})(1-\bar{\omega} \gamma)} \frac{A A^{*}}{A^{*} J A} \tag{3.49.a}\\
K_{\Theta}(z, \omega) & =\frac{1-\beta_{\gamma}(z) \overline{\beta_{\gamma}(\omega)}}{1-z \bar{\omega}} \frac{A A^{*}}{A^{*} J A} \tag{3.49.b}
\end{align*}
$$

In the case where $J=\left(\begin{array}{cc}I & 0 \\ 0 & -I\end{array}\right)$, we can write $A=\binom{u}{v}$, and the condition $A^{*} J A>0$ (which is equivalent to $P>0)$ is $\|y\|<\|u\|$. Multiplying A by a scalar constant does not change Θ, so that we can always assume $\|u\|=1$. Thus, Θ has the form (3.5).

Assume now

$$
\begin{align*}
& \Theta_{1}=I-\left(1-\beta_{\omega}\right) u u^{*} J /\left(u^{*} J u\right) \tag{3.50.1}\\
& \Theta_{2}=I-\left(1-\beta_{\omega^{\prime}}\right) v v^{*} J /\left(v^{*} J v\right) \tag{3.50.2}
\end{align*}
$$

Lemma 44
If Θ is J-inner, $u^{*} J \Theta(\omega)=0$, then $\Theta_{1}^{-1} \Theta$ is J-inner.
Proof. Apply the previous two lemmas. The first one says that $u^{*} J u>0$, so that Θ_{1} is J-inner. Since $\Theta_{1}^{-1}=I-\left(1-1 / \beta_{\omega}\right) u u^{*} J /\left(u^{*} J u\right)$, the matrix $\Theta_{1}^{-1} \Theta$ is analytic in \mathbb{U}. The second lemma says that it is J-inner.

Now, the hard point is the following: under which condition is the product $\Theta_{1} \Theta_{2}$ real. Introduce the following quantities

$$
\begin{equation*}
U=\frac{u u^{*} J}{u^{*} J u}, \quad V=\frac{v v^{*} J}{v^{*} J v}, \quad \omega=a+i b, \quad c=\frac{2 b}{1-a^{2}-b^{2}} \tag{3.51}
\end{equation*}
$$

Lemma 45

In the case ω is not real, the product $\Theta_{1} \Theta_{2}$ is real if and only if $\omega^{\prime}=\bar{\omega}$, and

$$
\begin{gather*}
\Im[U+V]=0 \tag{3.52.a}\\
\Im[i c(U-V)-2 U V]=0 . \tag{3.52.b}
\end{gather*}
$$

Proof. Since the determinant of $\Theta_{1} \Theta_{2}$ is $\beta_{\omega} \beta_{\omega^{\prime}}$, the condition $\omega^{\prime}=\bar{\omega}$ is necessary. We have a second condition, which is now

$$
\Im\left[\frac{-U}{1-\beta_{\bar{\omega}}}+\frac{-V}{1-\beta_{\omega}}+U V\right]=0
$$

We have

$$
\begin{equation*}
\frac{1}{1-\beta_{\omega}}=1-\frac{i c}{2}+\frac{|1-\omega|^{2}}{(1-z)\left(1-|\omega|^{2}\right)}-\frac{2-\omega-\bar{\omega}}{2\left(1-|\omega|^{2}\right)}, \tag{3.53}
\end{equation*}
$$

from which we deduce (3.52.a), then (3.52.b).

Lemma 46

If $\omega^{\prime}=\bar{\omega}$, the two conditions v proportional to $J \Theta_{1}(\bar{\omega})^{*} J \bar{u}$ and u proportional to $\Theta_{2}(\omega) \bar{v}$ are equivalent.
Proof. Note that $1 /\left(1-\beta_{\omega}(\bar{\omega})\right)=1-i c$. The first condition is now

$$
v=\lambda_{v}\left(1+i c-\frac{u u^{*} J}{u^{*} J u}\right) \bar{u}
$$

Define

$$
\begin{equation*}
\lambda=\frac{u^{*} J \bar{u}}{u^{*} J u} \tag{3.54}
\end{equation*}
$$

We have now

$$
\begin{equation*}
v=\lambda_{v}[(1+i c) \bar{u}-\lambda u] . \tag{3.55.a}
\end{equation*}
$$

This gives

$$
v^{*} J v=\left|\lambda_{v}\right|^{2}\left(1+c^{2}-|\lambda|^{2}\right) u^{*} J u
$$

and

$$
\mu=\frac{v^{*} J \bar{v}}{v^{*} J v}=-\frac{\overline{\lambda \lambda}_{v}}{\lambda_{v}}
$$

Now, we can deduce u from (3.55.a) and get

$$
\begin{equation*}
u=\lambda_{u}[(1+i c) \bar{v}-\mu v] \tag{3.55.b}
\end{equation*}
$$

with $1 / \lambda_{u}=\lambda_{v}\left(1+c^{2}-|\lambda|^{2}\right)$. If u has this form, it is now obvious that u is proportional to $\Theta_{2}(\omega) \bar{v}$.
Note: Assume that Θ is real and $u^{*} J \Theta(\omega)=0$. Then $\bar{u}^{*} J \Theta(\bar{\omega})=0$. Let $\Theta=\Theta_{1} \Theta^{\prime}$. We know that Θ^{\prime} is J-inner. The condition of the lemma is $v^{*} J \Theta^{\prime}(\bar{\omega})=0$. We know that this condition implies $v^{*} J v>0$. It says that $\Theta_{2}^{-1} \Theta^{\prime}$ is J-inner. In the case where J is the identity matrix, the equation $v^{*} J v>0$ holds in any case, because $|\lambda| \leq 1, c>0$ (because ω is not real), hence $1+c^{2}-|\lambda|^{2}>0$.

Lemma 47

Conditions (3.52) and (3.55) are equivalent.
Proof. 0. If (3.55) is true, then an easy check gives (3.52). Hence we shall assume that (3.52) is true.

1. Assume that w is real and orthogonal to u. Then $w^{*} U=0$, and (3.52) implies $w^{*} V=0$, hence $w^{*} v=0$ (recall that c is non-zero). Assume now that w is orthogonal to u and \bar{u}. Then $w+\bar{w}$ and $i(w-\bar{w})$ are real and orthogonal to u, hence to v. In other words, v is a linear combination of u and \bar{u}.
2. Introduce $U_{0}=\bar{u} u^{*} J / u^{*} J u$. If

$$
\begin{equation*}
v=\alpha u+\beta \bar{u} \tag{3.56}
\end{equation*}
$$

we get

$$
\begin{equation*}
V=\frac{|\alpha|^{2} U+\alpha \bar{\beta} U_{0}+\beta \bar{\alpha} U_{0}+|\beta|^{2} \bar{U}}{|\alpha|^{2}+|\beta|^{2}+\bar{\alpha} \beta \lambda+\alpha \overline{\beta \lambda}} \tag{3.57}
\end{equation*}
$$

so that (3.52.a) becomes

$$
\begin{equation*}
\left(2|\alpha|^{2}+\bar{\alpha} \beta \lambda+\alpha \overline{\beta \lambda}\right)(U-\bar{U})=0 \tag{3.58}
\end{equation*}
$$

3. Assume that u and \bar{u} are linearly dependent. Then $u=\gamma \bar{u}$ for some γ. Since $|\gamma|=1$, we can write $\gamma=e^{2 i \phi}$ and $u e^{-i \phi}$ is real. Hence U is real. But v is proportional to u, so that $V=U$. Now equations (3.52) are satisfied. From now on, we shall assume that u and \bar{u} are linearly independent. Then $U \neq \bar{U}$. Now, if $\alpha=0, v$ is proportional to \bar{u} so that $V=\bar{U}, U+V$ and $i c(U-V)$ are real. Hence (3.52) is equivalent to $\Im U V=0$. But

$$
U \bar{U}=\lambda \frac{u \bar{u}^{*} J}{u^{*} J u} .
$$

If $\lambda \neq 0$, this cannot be real (it would give a linear dependency relation). Note that $\lambda=0$ implies $\alpha=0$.
4. From now on, we assume $U \neq \bar{U}, \alpha \neq 0$ and $\lambda \neq 0$. Write $t=-\lambda / \alpha, \gamma=\beta t$. Now (3.58) says $\gamma+\bar{\gamma}=2$, so that $\gamma=1+i d$ for some real d. We have now

$$
\begin{align*}
& V=\frac{|\lambda|^{2} U+\left(1+d^{2}\right) \bar{U}-2 \Re\left[\lambda(1-i d) \overline{U_{0}}\right]}{1+d^{2}-|\lambda|^{2}} \tag{3.59.a}\\
& U V=\frac{i d}{1+d^{2}-|\lambda|^{2}}\left[-|\lambda|^{2} U+\lambda(1-i d) \overline{U_{0}}\right] \tag{3.59.b}
\end{align*}
$$

Now (3.52.b) says

$$
\frac{2(c-d)}{1+d^{2}-|\lambda|^{2}} \Re\left[\lambda(1-i d) \overline{U_{0}}-|\lambda|^{2} U\right]=0 .
$$

If we multiply this equation by $u^{*} J$ we get $c=d$ or

$$
\lambda\left(1-i d-|\lambda|^{2}\right) \bar{u}^{*}+|\lambda|^{2} i d u^{*}=0
$$

Now, since $\lambda \neq 0$, this gives a linear relation between u and \bar{u} (unless $d=0, \lambda=1$, case where V is undefined). Hence $c=d$.

Corollary 8

Assume that Θ is a J-inner rational matrix. Then $\operatorname{det} \Theta=\epsilon q / \tilde{q}$ for some stable polynomial q. If Θ is not constant, then q is not constant. Assume that $q(\omega)=0$.

There exists a matrix Θ_{1} such that Θ_{1} and $\Theta_{1}^{-1} \Theta$ are J-inner, Θ_{1} has McMillan degree one, and $\operatorname{det} \Theta_{1}=\beta_{\omega}$. Assume that Θ and J are real. The same result is true, for some real Θ_{1} if ω is real; if ω is not real, we can find Θ_{1} real, of McMillan degree two, and $\operatorname{det} \Theta_{1}=\beta_{\omega} \beta_{\bar{\omega}}$, with $\Theta_{1}^{-1} \Theta J$-inner.

Proof. Equation (3.27) says that $\operatorname{det} \Theta(z)$ is in \mathbb{T} if $z \in \mathbb{T}$, so that it is inner, and has the form $\epsilon \tilde{q} / q$ for some stable q. If the determinant is constant, equation (3.45) says that Θ is constant.

Assume now that $q(\omega)=0$. Then $\Theta(\omega)$ is not invertible. There exists u such that $u^{*} \Theta(\omega)=0$. The result is now obvious from lemma 44. Note that if Θ and J are real, if ω is also real, we can chose u real, so that Θ_{1} will be real. Assume ω not real. Then if v is defined by (3.55.a), the matrix $\Theta_{1} \Theta_{2}$ (defined by (3.50)) is real, and $\left(\Theta_{1} \Theta_{2}\right)^{-1} \Theta$ is J-unitary.

Theorem 26 (Potapov)

Let Θ be a J-inner rational matrix. Its determinant has the form $\epsilon q / \tilde{q}$, where q is stable and monic. Write it as $q(\Theta)$.

If $q=q_{1} q_{2} \cdots q_{n}, \alpha_{i} \in \mathbb{T}, A_{i}$ is J-unitary and constant $(0 \leq i \leq n+1)$, there exits $n J$-inner matrices Θ_{i} such that

$$
\begin{equation*}
\Theta=A_{0} \Theta_{1} \Theta_{2} \cdots \Theta_{n} A_{n+1} \tag{3.60}
\end{equation*}
$$

and $\Theta_{i}\left(\alpha_{i}\right)=A_{i}, q\left(\Theta_{i}\right)=q_{i}$. Among the $n+2$ matrices $A_{i}, n+1$ can be chosen arbitrary, the last one is defined by the previous equation.

If $q_{i}, A_{i}, \alpha_{i}, \Theta$ and J are real, then Θ_{i} can be chosen real.
Proof. 1. Assume first that q_{i} is irreducible (in the complex case, it is of degree one, in the real case, it is of degree one or two). Assume that

$$
\begin{equation*}
\Theta=\Theta_{1} \Theta_{2} \cdots \Theta_{k} X \tag{3.61.a}
\end{equation*}
$$

where Θ_{i} is J-inner, $q\left(\Theta_{i}\right)=q_{i}$, and X is J-inner. Then $q(X)=q_{k+1} \cdots q_{n}$. The corollary says that we can obtain a similar formula with $k+1$ instead of k provided that $k<n$. It says that X is constant if $k=n$. Thus, by induction, we obtain (3.60).
2. Assume that q_{i} is any polynomial. Let's factor it. Since the product $A B$ of two J inner matrices is J-inner and $q(A B)=q(A) q(B)$, we obtain (3.60) in this case also. Note that, if q_{i} is constant, its associated matrix is the identity matrix.
3. We have

$$
\begin{equation*}
\Theta=B_{1}^{-1}\left(B_{1} \Theta_{1} B_{2}^{-1}\right)\left(B_{2} \Theta_{2} B_{3}^{-1}\right) \cdots\left(B_{n} \Theta_{n} B_{n+1}^{-1}\right)\left(B_{n+1} X\right) \tag{3.61.b}
\end{equation*}
$$

If we want $B_{i} \Theta_{i}\left(\alpha_{i}\right) B_{i+1}^{-1}=A_{i}$, we can write

$$
B_{i+1}=A_{i}^{-1} B_{i} \Theta_{i}\left(\alpha_{i}\right) \text { or } B_{i}=A_{i} B_{i+1} \Theta_{i}\left(\alpha_{i}\right)^{-1}
$$

Assume that $A_{0}, A_{1}, \ldots, A_{k-1}, A_{k+1}, \ldots, A_{n+1}$ are fixed. Then we take $B_{1}=A_{0}^{-1}$, and use the first relation to determine B_{2}, B_{3}, up to B_{k}. After that, we determine $B_{n+1}=A_{n+1} X^{-1}$, and use the second relation to get B_{n}, B_{n-1}, down to B_{k+1}. All these matrices are obviously J-unitary.

3.5 The Schur algorithm

In this section, unless stated otherwise, are matrices will be rational, A and B will be of size $p \times p$, while Θ has size $2 p \times 2 p$ and partitioned as

$$
\Theta=\left(\begin{array}{ll}
\Theta_{11} & \Theta_{12} \tag{3.62}\\
\Theta_{21} & \Theta_{22}
\end{array}\right)
$$

The matrix J will be of size $2 p \times 2 p, J=\left(\begin{array}{cc}I & 0 \\ 0 & -I\end{array}\right)$.
The Schur formulas (3.3)

$$
B=T_{\Theta}(A)=\left(\Theta_{11} A+\Theta_{12}\right)\left(\Theta_{21} A+\Theta_{22}\right)^{-1}
$$

are written as

$$
\begin{align*}
& V=\Theta_{11} A+\Theta_{12}, \quad U=\Theta_{21} A+\Theta_{22}, \quad U^{\prime}=\Theta_{11}-B \Theta_{21}, \quad V^{\prime}=B \Theta_{22}-\Theta_{12} \tag{3.63}\\
& T_{\Theta}(A)=V U^{-1} \quad \tag{3.64}\\
& T_{\Theta}^{-1}(B)=U^{\prime-1} V^{\prime}
\end{align*}
$$

Let $\tau_{B}=(I-B)$. If $D_{B}(\Theta)$ is the matrix U^{\prime} above, then the previous formulas can be written as

$$
\begin{equation*}
\tau_{B} \Theta=D_{B}(\Theta) \tau_{A} \Leftrightarrow B=T_{\Theta}(A) \tag{3.65}
\end{equation*}
$$

Introduce the following kernels:

$$
\begin{equation*}
K_{B}(z, \nu)=\frac{I-B(z) B(\nu)^{*}}{1-\bar{z} \nu}, \quad K_{\Theta}(z, \nu)=\frac{J-\Theta(z) J \Theta(\nu)^{*}}{1-z \bar{\nu}} \tag{3.66}
\end{equation*}
$$

If K_{A} is defined like K_{B}, then (3.63) and (3.64) say

$$
\begin{equation*}
U^{\prime} K_{A} U^{\prime *}=K_{B}-\tau_{B} K_{\Theta} \tau_{B}^{*} \tag{3.67}
\end{equation*}
$$

Introduce also

$$
\begin{equation*}
K_{A}^{*}(z, \nu)=\frac{I-A(z)^{*} A(\nu)}{1-\bar{z} \nu}, \quad K_{\Theta}^{*}(z, \nu)=\frac{J-\Theta(z)^{*} J \Theta(\nu)}{1-\bar{z} \nu} \tag{3.68}
\end{equation*}
$$

An easy computation says that $B=T_{\Theta}(A)$ is equivalent to

$$
\begin{gather*}
X(\mu, \nu)=\frac{U(\mu)^{*} U(\nu)-V(\mu)^{*} V(\nu)}{1-\bar{\mu} \nu}=\left(\begin{array}{ll}
A(\mu)^{*} & I
\end{array}\right) K_{\Theta}^{*}(\mu, \nu)\binom{A(\nu)}{I}+K_{A}^{*}(\mu, \nu) . \tag{3.69.a}\\
Y(\mu, \nu)=\frac{U^{\prime}(\mu) U^{\prime}(\nu)^{*}-V^{\prime}(\mu) V^{\prime}(\nu)^{*}}{1-\mu \bar{\nu}}=K_{B}(\mu, \nu)-\left(\begin{array}{ll}
I & -B(\mu)) K_{\Theta}(\mu, \nu
\end{array}\right)\binom{I}{-B(\nu)^{*}} . \tag{3.69.b}
\end{gather*}
$$

Note that (3.69.b) is nothing else than (3.67).

Lemma 48

Assume that Θ is J-inner. If A is inner, X is positive, then $V U^{-1}$ is inner. If B is inner, Y is positive, then $U^{\prime-1} V^{\prime}$ is inner.

Proof. The proof is the same for both claims. Consider the quantity

$$
\begin{equation*}
c^{*}\left[U(\mu)^{*} U(\nu)-V(\mu)^{*} V(\nu)\right] c . \tag{*}
\end{equation*}
$$

If Θ is J-inner and A is inner, this quantity is zero if $\mu=\nu \in \mathbb{T}$.
We assume now that this quantity is ≥ 0 whenever $\mu=\nu \in \mathbb{U}$. This is weaker than just saying that X is positive. Hence

$$
\begin{equation*}
\|U(\mu) c\| \geq\|V(\mu) c\| \tag{3.70}
\end{equation*}
$$

Recall that

$$
\Theta(\mu)\binom{A(\mu) c}{c}=\binom{U(\mu) c}{V(\mu) c} .
$$

If $U(\mu) c=0$, then $V(\mu) c=0$ by (3.70). The previous equation then says that $\Theta(\mu)$ is not invertible. Since $\Theta(\mu)$ has not a constant zero determinant (it is invertible for $\mu \in \mathbb{T}$), we deduce that the determinant of U is not identically zero, so that $B=T_{\Theta}(A)$ is defined for almost every μ. But equation (3.70) can be written as

$$
\|B(\mu) c\| \leq\|c\| .
$$

This says that B is bounded. Since B is rational, it cannot have a pole in \mathbb{U} (nor can it have a pole on \mathbb{T}). Hence B is in H^{2}.

If we assume that Θ is J-inner, then the conditions $A A^{*}=I$ and $B B^{*}=I$ are equivalent. What this lemma says is just that, if some kernels are positive, then matrices A or B are analytic in \mathbb{U}. The easy case is to show that if A is inner then B is inner. We already know this, and X is positive. The non trivial point is the reverse: under which condition is T_{Θ}^{-1} inner.

Theorem 27

Assume ΘJ-inner, $B=T_{\Theta}(A)$. The following conditions are equivalent

- A is inner
- B is inner and $\tau_{B} x \in H(B)$ whenever $x \in H(\Theta)$.

Moreover, the McMillan degree of B is the sum of the McMillan degrees of A and Θ.
Proof. 1. Assume first that B is inner, and $\tau_{B} x \in H(B)$ whenever $x \in H(\Theta)$. Note that, if $x=\binom{x_{1}}{x_{2}}$, then $\tau_{B} x=x_{1}-B x_{2}$. This is orthogonal to $B x_{2}$, since it is in $H(B)$. But $\left\langle B x_{2} \mid B x_{2}\right\rangle=\left\langle x_{2} \mid x_{2}\right\rangle$, so that

$$
\begin{equation*}
\left\|\tau_{B} x\right\|^{2}=\left\|x_{1}\right\|^{2}-\left\|x_{2}\right\|^{2}=\|x\|_{J}^{2} . \tag{3.71}
\end{equation*}
$$

Remember that $\|x\|_{J}$ is the norm in $H(\Theta)$.
2. Let τ be the mapping from $H(\Theta)$ into $H(B)$ that associates $\tau_{B} x$ to x. This is an isometry, according to (3.71). Let τ^{*} be its dual map. If x and y are in $H(B)$ we have

$$
\begin{equation*}
\left\langle\tau \tau^{*} x \mid \tau \tau^{*} y\right\rangle=\left\langle\tau^{*} x \mid \tau^{*} y\right\rangle_{J}=\left\langle\tau \tau^{*} x \mid y\right\rangle . \tag{2.72.a}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\left\langle\tau \tau^{*} x \mid\left(I-\tau \tau^{*}\right) y\right\rangle=0, \tag{3.72.b}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle x \mid\left(I-\tau \tau^{*}\right) x\right\rangle=\left\|\left(I-\tau \tau^{*} x\right)\right\|^{2} \geq 0 . \tag{3.72.c}
\end{equation*}
$$

Equation (3.72.b) says that the images of $\tau \tau^{*}$ and $I-\tau \tau^{*}$ are direct and orthogonal. In particular

$$
\begin{equation*}
H(B)=\operatorname{Im} \tau \tau^{*} \oplus \operatorname{Im}\left(I-\tau \tau^{*}\right) \tag{3.73}
\end{equation*}
$$

Since all our spaces are finite dimensional, the injectivity of τ implies that τ^{*} is surjective, so that τ and $\tau \tau^{*}$ have the same image. We pretend that

$$
\begin{equation*}
H(B)=\tau_{B} H(\Theta) \oplus D_{B}(\Theta) \cdot H(A) \tag{3.74}
\end{equation*}
$$

3. Take now $x=K_{B}(\cdot, \nu) c_{1}$ and $y \in H(\Theta)$. The properties of K_{B} and K_{Θ} say

$$
\langle x \mid \tau y\rangle=\left\langle K_{B}(\cdot, \nu) c_{1} \mid \tau_{B} y\right\rangle=c_{1}^{*} \tau_{B}(\nu) y(\nu)=\left\langle K_{\Theta}(\cdot, \nu) \tau_{B}(\nu)^{*} c_{1} \mid y\right\rangle_{J},
$$

hence

$$
\tau^{*} K_{B}(\cdot, \nu) c_{1}=K_{\Theta}(\cdot, \nu) \tau_{B}(\nu)^{*} c_{1}
$$

Now equation (3.67) gives

$$
\begin{equation*}
\left(I-\tau \tau^{*}\right) x=U^{\prime}(z) K_{A}(z, \nu) U^{\prime}(\nu)^{*} c_{1} \tag{3.75}
\end{equation*}
$$

Let y be this quantity. It is in $H(\Theta)$, so that $\langle x \mid y\rangle=c_{1}^{*} y(\nu)$. Now (3.72.c) gives

$$
c_{1}^{*} U^{\prime}(\nu) K_{A}(\nu, \nu) U^{\prime}(\nu)^{*} c_{1} \geq 0
$$

4. This condition says that A is inner. Since U^{\prime} is almost everywhere invertible, equation (3.75) says that $\operatorname{Im}\left(I-\tau \tau^{*}\right)=U^{\prime} H(A)$, hence (3.74).

From (3.74), we get: the dimension of $H(B)$ is the sum of the dimensions of $H(\Theta)$ and $H(A)$, thus the McMillan degree of B is the sum of the McMillan degrees of A and Θ.
5. We use induction to show the converse, namely that if A is inner, then $B=T_{\Theta}(A)$ is inner (we already know this) and τ maps $H(\Theta)$ into $H(B)$. There is nothing to show if Θ has McMillan degree zero, because K_{Θ} is zero, and $H(\Theta)$ has dimension zero.

Otherwise, we can always write $\Theta=\Theta_{1} \Theta_{2}$, where Θ_{1} has the form (3.5) and Θ_{2} has smaller degree than Θ. Let $C=T_{\Theta_{2}}(A)$ and $B=T_{\Theta_{1}}(C)$. An easy computation says that $B=T_{\Theta}(A)$.

According to (3.46) we have

$$
K_{\Theta}(z, \omega)=K_{\Theta_{1}}(z, \omega)+\Theta_{1}(z) K_{\Theta_{2}}(z, \omega) \Theta_{1}(\omega)^{*}
$$

Now (3.65) gives

$$
\begin{equation*}
\tau_{B}(z) K_{\Theta}(z, \omega)=\tau_{B}(z) K_{\Theta_{1}}(z, \omega)+D_{B}\left(\Theta_{1}\right) \tau_{C}(z) K_{\Theta_{2}}(z, \omega) \Theta_{1}(\omega)^{*} \tag{3.76}
\end{equation*}
$$

By induction

$$
\tau_{C} K_{\Theta_{2}} \Theta_{1}(\omega)^{*} \in H(C)
$$

The proof is complete if we show

$$
\begin{equation*}
H(B)=\tau_{B} H\left(\Theta_{1}\right) \oplus D_{B}\left(\Theta_{1}\right) H(C) \tag{3.77}
\end{equation*}
$$

If we compare with (3.74), it is enough to show that $\tau_{B} x \in H(B)$, whenever $x \in H\left(\Theta_{1}\right)$ (i.e. prove the claim in the case of dimension one). But $H\left(\Theta_{1}\right)$ has dimension one, and $\tau_{B} x$ is

$$
\lambda \frac{u-B(z) y}{1-z \bar{\omega}}
$$

for some complex λ, and

$$
\left\langle\left.\frac{u-B(z) y}{1-z \bar{\omega}} \right\rvert\, B f\right\rangle=\left(u^{*} B(\omega)-y^{*}\right) f(\omega)
$$

Now, this is zero, according to Theorem 20.

We shall demonstrate three lemmas, in order to prove the next theorem, that was used in the previous chapter.

Lemma 49

Assume $|\alpha|<1$. The mapping $\omega \rightarrow \beta_{\omega}(\alpha)$ is a bijection from \mathbb{U} to itself, and its inverse is a C^{∞} function.
Proof. We have $x=\beta_{\omega}(\alpha)$ if and only if

$$
\begin{equation*}
\frac{1-x \alpha}{1-x}|\omega|^{2}-\omega-\alpha \bar{\omega}+\frac{\alpha-x}{1-x}=0, \quad \omega \neq 1 \tag{3.78}
\end{equation*}
$$

RR no 0123456789

Introduce $\gamma=(x-\alpha) /(1-x)$ and $X=(1+\alpha+\gamma)|\omega|^{2}-\omega-\alpha \bar{\omega}-\gamma$. The previous equation is $X=0$. Note that $x \in \mathbb{U}$ if and only if $\Re(1+x) /(1-x)>0$. Let $A=(\gamma-\bar{\gamma} \alpha) /\left(1-|\alpha|^{2}\right)$. Then

$$
\begin{equation*}
A=\frac{x-|x|^{2}-\alpha+\alpha|x|^{2}+|\alpha|^{2}-|\alpha|^{2} x}{(1-x)(1-\bar{x})\left(1-|\alpha|^{2}\right)} \tag{3.79}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\Re(A+1 / 2)=\frac{\left(1-|x|^{2}\right)(1-\alpha)(1-\bar{\alpha})}{2(1-x)(1-\bar{x})\left(1-|\alpha|^{2}\right)}=\frac{1}{2} \Re \frac{1+x}{1-x} / \Re \frac{1+\alpha}{1-\alpha} \tag{3.80}
\end{equation*}
$$

Since $|\alpha|<1$, we have $x \in \mathbb{U}$ if and only if $\Re(A+1 / 2)>0$. Now

$$
\begin{equation*}
X-\alpha \bar{X}=\left(1-|\alpha|^{2}\right)\left[(A+1)|\omega|^{2}-A-\omega\right] \tag{3.81}
\end{equation*}
$$

Since $|\alpha| \neq 1$, we have $X=0$ if and only if $X-\alpha \bar{X}=0$, hence $x=\beta_{\omega}(\alpha)$ is equivalent to

$$
\begin{equation*}
(A+1)|\omega|^{2}=A+\omega \quad \omega \neq 1 \tag{3.82}
\end{equation*}
$$

If we write $\omega=u+i v$, it is easy to check that the previous equation has two solutions in ω, namely $\omega=1$ and $\omega=-A /(\bar{A}+1)$. Moreover, for the second solution, we have $\omega \in \mathbb{U}$ if and only if $\Re A>-1 / 2$.

Lemma 50

If Q_{0} is inner, of McMillan degree $n>0$, there exists Q near Q_{0}, Θ and A such that $Q=T_{\Theta}(A)$. We can chose A such that there exists $\alpha \in \mathbb{U}$, such that $A(\alpha)$ is invertible, $Q(\alpha)$ is not invertible.

Proof. We can write $Q_{0}=T_{\Theta_{0}}(A)$, where Θ_{0} is defined by u, ω_{0}, and y, and ω_{0} is real. Let Q be defined as $T_{\Theta}(A)$, where Θ is defined by y, ω and u. If ω is near ω_{0}, then Q is near Q_{0}.

Take ω real. The Schur formulas give

$$
\begin{equation*}
q=(1-\omega)\left[q_{A}\left(z-\omega-(1-z \omega)\|y\|^{2}\right)+y^{*} \tilde{D}_{A} u(1-z \omega-z+\omega)\right] \tag{3.83}
\end{equation*}
$$

We want to find α such that $q_{A}(\alpha)$ is not zero, and $q(\alpha)$ is zero. Since q is of degree n and q_{A} of degree $n-1$, this is possible, unless every root of q_{A} is a root of q, said otherwise, q divides q_{A}^{n}. Now, the remainder R of the division of q_{A}^{n} by q is a rational function of ω, because of equation (3.83). If this is not identically zero, we can chose ω arbitrarily near to ω_{0} for which this condition is true.

Finally, $q /(1-\omega)$ has a limit as $\omega \rightarrow 1$, and this limit has 1 as a root, which is not a root of q_{A}. Hence R is not identically zero.

Lemma 51

If $Q=T_{\Theta}(A), V_{0} \in H^{2}, V_{0} Q^{-1} \in H^{2}, v=A^{-1}(\alpha) u-y$, then $V_{0}(\alpha) v=0$, provided that $A(\alpha)$ is invertible, and $Q(\alpha)$ is not invertible.

Proof. If $V_{0}=V Q$, the Schur formulas say

$$
\begin{equation*}
(\tilde{b}-b) \frac{q_{A}}{\tilde{q}_{A}} V_{0}\left(A^{-1} u-y\right)\left(u^{*}-y^{*} A^{-1}\right) D_{A}=\left(V A-V_{0}\right) q \tag{3.84}
\end{equation*}
$$

Evaluate this at $z=\alpha$. One assumption is $q(\alpha)=0$, so that this is zero. We also assume that $\alpha \in \mathbb{U}$, so that \tilde{q}_{A} is not zero at $z=\alpha$. The second assumption is that $q_{A}(\alpha) \neq 0$. Hence D_{A} is invertible, because $D_{A} \tilde{D}_{A}=q_{A} \tilde{q}_{A}$. We get $(\tilde{b}-b) V_{0}\left(A^{-1} u-y\right)\left(u^{*}-y^{*} A^{-1}\right)=0$. It is easy to check that $\tilde{b}-b$ and $u^{*}-y^{*} A^{-1}$ cannot be zero when evaluated at $z=\alpha$.

Theorem 28

Let Q_{0} be an inner matrix of McMillan degree $n>0$ and V_{0} a matrix with entries in H^{2} such that, whenever Q is near Q_{0}, then $V_{0} Q^{-1}$ has entries in H^{2}. Then $V_{0}=0$.

Proof. Chose Q_{1} near $Q_{0}, u_{0}, y_{0}, \omega_{0}$ such that $Q_{1}=T_{\Theta_{0}}(A)$, where Θ_{0} is defined by $\left(u_{0}, y_{0}, \omega_{0}\right)$, and α_{0} such that A is invertible at α_{0} and Q_{1} is not. Let $v_{0}=A^{-1}\left(\alpha_{0}\right) u_{0}-y_{0}$.

Chose v near v_{0}, and α near α_{0}, and $q_{A}(\alpha) \neq 0$. Let $y=A^{-1}(\alpha) u_{0}-v$. Consider $Q=T_{\Theta}(A)$, where Θ is defined by u_{0}, y and ω. Now α is a root of q provided that

$$
\begin{equation*}
\beta_{\omega}(\alpha)=\frac{\|y\|^{2}-y^{*} A^{-1}(\alpha) u_{0}}{1-y^{*} A^{-1}(\alpha) u_{0}} \tag{3.85}
\end{equation*}
$$

We know that the right hand side of this is near the same quantity with indices 0 on y and α, which is zero, because $Q_{1}\left(\alpha_{0}\right)$ is not invertible. One of the previous lemmas says now that there exists ω near ω_{0} for which this equation is true.

Finally, we know that Q is near Q_{1}, hence near Q_{0}, and we can apply the last lemma, which says $V_{0}(\alpha) v=0$. Since this is true for almost all α near α_{0}, and all v near v_{0}, it follows that V_{0} is identically zero.

3.6 The manifold of inner functions

Let \mathcal{I}_{n}^{p} be the set of rational inner matrices of degree n and size p. This is a C^{∞} manifold, see for instance [1]. We consider also the set $\mathcal{I}_{n}^{p}(1)$ formed of matrices Q such that $Q(1)=I$.

3.6.1 Case of dimension one

Let S_{n} be the set of monic stable polynomials. Any inner function is of the form $c q / \tilde{q}$, where $q \in S_{n}$ and $c \in U$. This gives us three ways to parameterise inner functions, namely, by c and the coefficients of q, or by the Schur parameters (see introduction of this Chapter), or by specialising the algorithm described below to the case $n=1$.

Let $\mathcal{I}_{n 0}$ be the set of inner functions of the form q / \tilde{q}. Topologically, S_{n} and $\mathcal{I}_{n 0}$ are equivalent. Let's first state the following lemma:

Lemma 52

S_{n} is an open subset of \mathbb{C}^{n}, its closure is the (compact) set of polynomials with roots in $\overline{\mathbb{U}}$.
Note that, if $q=\sum q_{i} z^{i}$, and $q_{n}=1$ we can consider q as an element of \mathbb{C}^{n}, namely the vector with coordinates $\left(q_{0}, q_{1}, \ldots, q_{n-1}\right)$, which has norm $\|q\|_{1}=\sqrt{\sum_{i=0}^{n-1}\left|q_{i}\right|^{2}}$. Since $\left\|q-q^{\prime}\right\|_{1}=\left\|q-q^{\prime}\right\|$, the topology of S_{n} is the same, whether we consider S_{n} as a subset of \mathbb{C}^{n} or a subset of H^{2} (of course, S_{n} is not open in H^{2}). The lemma is just an application of a more general result that says that the roots of q are continuous functions of the coefficients of q.

Theorem 29
The mapping $q \rightarrow q / \tilde{q}$ is continuous, with continuous inverse, from S_{n} onto $\mathcal{I}_{n 0}$.
Proof. A little computation show that, if p and q are in S_{n}, we have

$$
\left\|\frac{p}{\tilde{p}}-\frac{q}{\tilde{q}}\right\|^{2}=2 \Re\left\langle\frac{p}{\tilde{p}} \left\lvert\, \frac{(p-q)(\tilde{p}-\tilde{q})}{\tilde{p} \tilde{q}}\right.\right\rangle
$$

This is essentially because

$$
\left\langle\left.\frac{p}{\tilde{p}} \right\rvert\, \frac{p}{\tilde{q}}\right\rangle=\left\langle\left.\frac{p}{\tilde{p}} \right\rvert\, \frac{q}{\tilde{p}}\right\rangle=1 .
$$

There exists a polynomial X_{p}, such that, for every polynomial A of degree at most $2 n$ we have

$$
\left\langle\frac{p}{\tilde{p}} \left\lvert\, \frac{A}{\tilde{p}^{2}}\right.\right\rangle=\left\langle X_{p} \mid A\right\rangle
$$

Moreover, there exists $X_{p q}$ such that

$$
\left\langle\frac{p}{\tilde{p}} \left\lvert\, \frac{A}{\tilde{p}^{2}}\right.\right\rangle-\left\langle\frac{p}{\tilde{p}} \left\lvert\, \frac{A}{\tilde{p} \tilde{q}}\right.\right\rangle=\left\langle X_{p q} \mid A\right\rangle
$$

and this is bounded by $\left\|X_{p q}\right\|\|A\|$. Since $X_{p q}$ is a continuous function of q at $q=p$, and vanishes for $q=p$, it is small for q near p. Take now $A=(p-q)(\tilde{p}-\tilde{q})$. We have $\|A\|=\|p-q\|^{2}$. Hence

$$
\left\|\frac{p}{\tilde{p}}-\frac{q}{\tilde{q}}\right\|^{2} \leq 2\left\|X_{p}\right\|\|p-q\|^{2}+o\left(\|p-q\|^{2}\right)
$$

This shows that the mapping $p \rightarrow p / \tilde{p}$ is continuous.
The converse is not so easy. Assume that q_{k} is a sequence of elements of S_{n} such that q_{k} / \tilde{q}_{k} converges to p / \tilde{p}. We want to show that q_{k} converges to p. Since q_{k} is the closure of S_{n} which is compact, it is enough to show that, if q_{k} converges, the limit is p. However, if the limit is q, and q is stable, we know that q_{k} / \tilde{q}_{k} converges to q / \tilde{q}, hence $p=q$. But if q is not stable, we do know nothing. Hence the following argument.

Let α be a root of p, of multiplicity n_{α}. Let

$$
g_{i}=\frac{i!z^{i}}{(1-z \bar{\alpha})^{i+1}}
$$

The Cauchy formula says that $\left\langle g_{i} \mid f\right\rangle$ is the i-th derivative of f at α. This is a continuous function of f. Assume $f=s / \tilde{s}$. It is easy to show by induction on i that we have

$$
f^{(i)}=\sum_{j=0}^{i} a_{j} \frac{s^{(j)}}{\tilde{s}^{i+1-j}}
$$

for some quantities a_{i}, which are polynomial functions of s and \tilde{s}, and the derivatives of \tilde{s}. Moreover $a_{i}=1$. If we take $s=p$, and evaluate at α, we get zero if $i<n_{\alpha}$. Hence

$$
\lim _{k \rightarrow \infty} \sum_{j=0}^{i} a_{j k}(\alpha) \frac{q_{k}^{(j)}(\alpha)}{\tilde{q}_{k}^{i+1-j}(\alpha)}=0
$$

By induction, $\lim _{k} q_{k}^{(i)}(\alpha)=0$. This is true because quantities $a_{j k}(\alpha)$ have a limit, $\tilde{q}_{k}(\alpha)$ has a non-zero limit, and $a_{i}=1$.

Now $\lim _{k} q_{k}^{(i)}(\alpha)=q^{(i)}(\alpha)=0$, so that $(z-\alpha)^{n_{\alpha}}$ divides q. Hence p divides q. Since p and q have the same degree we get $p=q$.

It is now interesting to analyse the boundary of S_{n}. Obviously, q is in the boundary of S_{n} if q is the product of $q_{1} \in S_{k}$ and q_{2}, where the roots of q_{2} are in \mathbb{T}. Hence, this boundary is the union of objects homeomorphic to $\mathbb{C}^{n-k} \times \mathbb{T}^{k}, 1 \leq k \leq n$. If we consider only real polynomials, the situation is a bit more complex: we may have two roots, which are complex conjugate. Hence the boundary is the union of quantities homeomorphic to $S_{n-k-2 p} \times I_{k} \times I^{p}$. Here I_{k} is the set of polynomials of degree k with roots in \mathbb{U}, this is ± 1, so that it is a finite set of $k+1$ elements. Moreover I is the set of polynomials with two complex conjugate roots of modulus one, hence the set of polynomials of the form $z^{2}-a z+1$, $|a|<2$. It is homeomorphic to \mathbb{R}. Thus, the boundary of S_{n} is the union of copies of $\mathbb{R}^{k} 0 \leq k<n$.

For instance, if $n=2$, the boundary is $3 \mathbb{R}^{0}+3 \mathbb{R}^{1}$ (recall that S_{2} is the triangle defined by $u<1$, $v<u+1$ and $-v<u+1$). If $n=3$, the boundary is $4 \mathbb{R}^{0}+5 \mathbb{R}^{1}+3 \mathbb{R}^{2}$. In fact, if $q=z^{3}+a z^{2}+b z+c$, then q is stable if

$$
\begin{gathered}
S_{1}(a, b, c)=1+a+b+c>0 \\
S_{2}(a, b, c)=1-a+b-c>0 \\
S_{3}(a, b, c)=1+a c-b-c^{2}>0
\end{gathered}
$$

Note that $S_{1}=0$ and $S_{2}=0$ are planes. In the decomposition $\partial S_{3}=4 \mathbb{R}^{0}+5 \mathbb{R}^{1}+3 \mathbb{R}^{2}$, the three quantities \mathbb{R}^{2} are parts of the surfaces $S_{i}=0$, the four quantities $4 \mathbb{R}^{0}$ are the polynomials $z^{3} \pm 1$, $(z \pm 1)^{3}$, and the fives quantities \mathbb{R}^{1} are the intersections $S_{i} \cup S_{j}$. These are pieces of straight lines. In fact, the intersection of S_{1} and S_{2} is the set of polynomials of the form $\left(z^{2}-1\right)(z+a)$, while the intersection of S_{1} and S_{3} is the set of polynomials of the form $(z-c)(z-1)^{2}$ or of the form $(z-1)\left(z^{2}+(1-a) z+1\right)$.

The non trivial point in this decomposition is how these piece are glued together (recall that the boundary of S_{n} is compact).

3.6.2 The case of dimension 2

Let Q be a 2×2 inner matrix. It can be written as $Q=D / \tilde{q}$, where D is a matrix of polynomials, and q is a stable polynomial. Consider

$$
D=\left(\begin{array}{ll}
a & b \tag{3.86}\\
c & d
\end{array}\right)
$$

Since $D \tilde{D}=q \tilde{q}$, we get

$$
\begin{align*}
& a \tilde{a}+b \tilde{b}=q \tilde{q} \tag{3.87.a}\\
& a \tilde{c}+b \tilde{d}=0 \tag{3.87.b}\\
& c \tilde{a}+d \tilde{b}=0 \tag{3.87.c}\\
& c \tilde{c}+d \tilde{d}=q \tilde{q} \tag{3.87.d}
\end{align*}
$$

If we merge these equations, we get $a \tilde{a}=d \tilde{d}$ and $b \tilde{b}=c \tilde{c}$. Let μ be a root of a. Write

$$
\begin{aligned}
& a=a_{1}(z-\mu)^{n}(1-z \bar{\mu})^{m} \\
& b=b_{1}(z-\mu)^{\alpha}(1-z \bar{\mu})^{\beta} \\
& c=c_{1}(z-\mu)^{\gamma}(1-z \bar{\mu})^{\delta} \\
& d=d_{1}(z-\mu)^{p}(1-z \bar{\mu})^{s}
\end{aligned}
$$

where a_{1}, b_{1}, c_{1} and d_{1} are coprime to $(z-\mu)(1-z \bar{\mu})$. We get $a_{1} \tilde{a}_{1}=d_{1} \tilde{d}_{1}$, and $b_{1} \tilde{b}_{1}=c_{1} \tilde{c}_{1}$. Now, equation (3.87.c) says $c_{1} \tilde{a}_{1}+d_{1} \tilde{b}_{1}=0$. We have also (comparing multiplicities of μ and $\bar{\mu}$)

$$
\begin{equation*}
n+m=p+s, \quad \alpha+\beta=\gamma+\delta, \quad m+\gamma=\beta+p, \quad n+\delta=\alpha+s \tag{3.88}
\end{equation*}
$$

Write $A=\min (n, s), B=\min (n, p), C=\min (\alpha, \delta), D=\min (\beta, \gamma)$. Let $n=A+n_{1}, s=A+s_{1}$, and define $n_{1}, p_{1}, \alpha_{1}, \beta_{1}, \gamma_{1}, \delta_{1}$ accordingly. Now, equation (3.88) holds with indices 1 everywhere.

Now, $n_{1} s_{1}=0$ and $m_{1} p_{1}=0$. From $n_{1}+m_{1}=p_{1}+s_{1}$, we get: $n_{1}=p_{1}=0$ and $m_{1}=s_{1}$, or $m_{1}=s_{1}=0, p_{1}=n_{1}$. The relation $\alpha_{1}+\beta_{1}=\gamma_{1}+\delta_{1}$ gives a similar condition. If we add the other conditions of (3.88), we get

$$
n_{1}=p_{1}=\alpha_{1}=\gamma_{1} \quad m_{1}=s_{1}=\beta_{1}=\delta_{1}
$$

Moreover, one of these quantities is zero. Thus, if

$$
\begin{equation*}
X=(z-\mu)^{A}(1-z \bar{\mu})^{B}, \quad Y=(z-\mu)^{C}(1-z \bar{\mu})^{D}, \quad Z=(z-\mu)^{n_{1}}(1-z \bar{\mu})^{m_{1}} \tag{3.89}
\end{equation*}
$$

we have

$$
D=\left(\begin{array}{cc}
a_{1} X Z & b_{1} Y Z \\
c_{1} \tilde{Y} Z & d_{1} \tilde{X} Z
\end{array}\right)
$$

If we do this for all roots, we get a similar relation, where a_{1}, b_{1}, c_{1} and d_{1} are constant. We can put a_{1} in X and b_{1} in Y. Now $a_{1} \tilde{a}_{1}=d_{1} \tilde{d}_{1}$ says $\left|d_{1}\right|=1$, and (3.87.c) says $c_{1}=-d_{1}$. Hence

$$
Q=\frac{Z}{\tilde{q}}\left(\begin{array}{cc}
X & Y \\
-\lambda \tilde{Y} & \lambda \tilde{X}
\end{array}\right)
$$

Write $Z=A B$, where A is stable, and the roots of B are not in \mathbb{U}. Since we have $Z \tilde{Z}(X \tilde{X}+Y \tilde{Y})=q \tilde{q}$, the roots of \tilde{B} are in fact in \mathbb{U} (i.e. Z has no roots on \mathbb{T}). Moreover A divides q and B divides \tilde{q}. Write $\tilde{q}=\tilde{q}_{1} B, q_{2}=q_{1} A$. If $X_{1}=X A \tilde{A}$ and $Y_{1}=Y A \tilde{A}$, we get

$$
Q=\frac{1}{\tilde{q}_{2}}\left(\begin{array}{cc}
X_{1} & Y_{1} \tag{3.90}\\
-\lambda \tilde{Y}_{1} & \lambda \tilde{X}_{1}
\end{array}\right)
$$

Note: if Q has McMillan degree n, we can write (3.86), (3.87) with polynomials of degree n (without the implicit condition that \tilde{q} is coprime to the elements in D). We know that $\operatorname{det} Q=\epsilon q / \tilde{q}$. This gives $a d-b c=\epsilon q \tilde{q}$, hence $a \tilde{a} d-\tilde{a} b c=\tilde{a} \epsilon q \tilde{q}$. From (3.87.c) we get $(a \tilde{a}+b \tilde{b}) d=\tilde{a} \epsilon q \tilde{q}$. Now (3.87.a) gives $d=\epsilon \tilde{a}$.

Let's write (3.90) as

$$
Q=\frac{1}{\tilde{q}}\left(\begin{array}{cc}
p_{1} & p_{2} \tag{3.91.a}\\
-\lambda \tilde{p}_{2} & \lambda \tilde{p}_{1}
\end{array}\right)
$$

We have

$$
\begin{equation*}
\tilde{p}_{1} p_{1}+\tilde{p}_{2} p_{2}=\tilde{q} q \tag{3.91.b}
\end{equation*}
$$

This gives another way of parameterising inner matrices of size 2 . The first implementation of the algorithm was done by M. Cardelli in the scalar case and in the case $p=2$ using this parameterisation (cf. [4]), but the the algorithm did not work well in the matrix case, because it is uneasy and numerically unstable to find q and its derivative as a function from p_{1} and p_{2} as defined by (3.91.b). The Schur algorithm was implemented using Ψ lab by P. Fulcheri [8] in the real case. A complete study in the general case can be found in [9].

Let μ be such that $\mu \tilde{q}(1)=1$. If $q^{\prime}=\bar{\mu} q, p_{1}^{\prime}=\mu p_{1}, p_{2}^{\prime}=\mu p_{2}$ and $\lambda^{\prime}=\lambda \mu / \bar{\mu}$, then equations (3.91) hold with primes everywhere. This means that we can assume $q(1)=\tilde{q}(1)=1$. Assume now that $Q(1)$ is the identity matrix. Then $p_{1}(1)=1$ and $p_{2}(1)=0$, so that

$$
\begin{equation*}
p_{1}=(1-z) p_{4}+1, \quad p_{2}=(1-z) p_{3} \tag{3.91.c}
\end{equation*}
$$

for some polynomials p_{2} and p_{4} of degree $<n$. Note that (3.91.b) implies, for $|z|=1$,

$$
\left|p_{1}(z)\right|^{2}+\left|p_{2}(z)\right|^{2}=|q(z)|^{2}
$$

Since q has no roots on \mathbb{T}, this means that p_{1} and p_{2} cannot have a common root on \mathbb{T}. If this condition is satisfied, then $X=p_{1} \tilde{p}_{1}+p_{2} \tilde{p}_{2}$ can be factored as

$$
X=\prod \frac{\left(z-\alpha_{i}\right)\left(1-\bar{\alpha}_{i} z\right)}{\left(1-\alpha_{i}\right)\left(1-\bar{\alpha}_{i}\right)}, \quad\left|\alpha_{i}\right|<1
$$

If $q=\prod\left(z-\alpha_{i}\right) /\left(1-\alpha_{i}\right)$, then q is stable and (3.91.b) holds.

Theorem 30

The set $\mathcal{I}_{n}^{2}(1)$ of inner matrices Q of size 2×2, of McMillan degree n with $Q(1)=I$ is topologically equivalent to the set of polynomials $\left(p_{3}, p_{4}\right)$ of degree $<n$, such that p_{1} and p_{2} have no common root on \mathbb{T}.

Let's study in details the case $n=1$. Define $\mathcal{I}_{n}^{\prime p}$ to be the set of all inner matrices of McMillan degree of size p, having degree at most n, and $\mathcal{I}_{n}^{\prime p}(1)$ be the quotient of this set by the equivalence relation: Q and Q^{\prime} are equivalent if their quotient is a constant matrix. We have to minimise ψ over this set.

In the case $p=2$, and $n=1$, the polynomials p_{3} and p_{4} are constant. In the case where p_{3} is not zero, then p_{3} and p_{4} are coprime. Otherwise, p_{2} is zero, and the condition becomes $\Re p_{4} \neq-1 / 2$. Thus, in the real case, $\mathcal{I}_{1}^{2}(1)$ is equivalent to the plane minus a point, i.e. $\mathbb{T} \times \mathbb{R}$. In the complex case, we have to remove a real line, so that the manifold is $\mathbb{T}_{2} \times \mathbb{R}^{2}\left(\mathbb{T}_{2}\right.$ is the sphere in $\left.\mathbb{R}^{3}\right)$. Let's study the boundary of this manifold.

For simplicity, introduce $p_{5}=p_{4}+1 / 2$. Then equation (3.91) becomes

$$
D=I+(1-z)\left(\begin{array}{cc}
p_{5}-1 / 2 & p_{3} \tag{3.92}\\
\bar{p}_{3} & -\bar{p}_{5}-1 / 2
\end{array}\right)
$$

Let $p_{5}=u+i v, \alpha=1 / 4-u^{2}-v^{2}-i v-\left|p_{3}\right|^{2}$. Then (3.91.b) says

$$
\begin{equation*}
q \tilde{q}=\alpha z^{2}+(1-\alpha-\bar{\alpha}) z+\bar{\alpha} \tag{3.93}
\end{equation*}
$$

The roots of $q \tilde{q}$ are

$$
\begin{equation*}
z=\frac{-1+2 u^{\prime} \pm \sqrt{1-4 u^{\prime}-4 v^{\prime 2}}}{2 \alpha} \tag{3.94}
\end{equation*}
$$

if $\alpha=u^{\prime}+i v^{\prime}$. Note that if $1-4 u^{\prime}-4 v^{\prime 2} \leq 0$, both roots are in \mathbb{T}. Otherwise, $2 u^{\prime}-1<0$, and the root with a plus sign is in \mathbb{U}. Thus, the root of q is

$$
\begin{equation*}
\mu=\frac{-1 / 4-\left|p_{5}\right|^{2}-\left|p_{3}\right|^{2}+\sqrt{\left(\Re p_{5}\right)^{2}+\left|p_{3}\right|^{2}}}{1 / 4-\left|p_{5}\right|^{2}-\left|p_{3}\right|^{2}-i \Im p_{5}} \tag{3.95.a}
\end{equation*}
$$

We can also write this as

$$
\begin{equation*}
\frac{1}{1-\mu}=\frac{1}{2}+\sqrt{\left(\Re p_{5}\right)^{2}+\left|p_{3}\right|^{2}}-i \Im p_{5} \tag{3.95.b}
\end{equation*}
$$

If the square root is zero, then the real part of this expression is $1 / 2$, so that $|\mu|=1$; otherwise it is $>1 / 2$, hence $|\mu|<1$.

Let v be a real number. Define θ by $2 v=\tan (\theta / 2)$. Then, if p_{5} is near $i v$, and p_{3} is near zero, the root of (3.95) is near $-e^{i \theta}$. This gives $q=\left(z+e^{i \theta}\right) /\left(1+e^{i \theta}\right)$. An easy computation says that Q is now near the identity matrix.

Note: Assume $p_{3}=0$. Equation (3.91) says that $q=p_{1}$ or $q=\tilde{p}_{1}$. Which one depends on the sign of the real part of p_{5}. We have

$$
Q=\left(\begin{array}{cc}
\beta_{\mu} & 0 \tag{3.96}\\
0 & 1
\end{array}\right), \Re p_{5}>0, \quad Q=\left(\begin{array}{cc}
1 & 0 \\
0 & \beta_{\mu}
\end{array}\right), \Re p_{5}<0
$$

Consider now what happens at infinity. We fix $\left(p_{3}, p_{5}\right)$, and consider $p_{3}^{\prime}=\lambda p_{3}, p_{5}^{\prime}=\lambda p_{5}$, where $\lambda \rightarrow \infty$. Let μ^{\prime} be the solution of (3.95.b) for these values, and define μ by

$$
\begin{equation*}
\frac{1}{1-\mu}=\sqrt{\left(\Re p_{5}\right)^{2}+\left|p_{3}\right|^{2}}-i \Im p_{5} \tag{3.97}
\end{equation*}
$$

Then $1 /\left(1-\mu^{\prime}\right)-1 / 2=\lambda /(1-\mu)$, so that the limit of μ^{\prime} is 1 . We have

$$
Q=\frac{1-\bar{\mu}^{\prime}}{1-z \bar{\mu}^{\prime}}+\frac{1-z}{1-z \bar{\mu}^{\prime}}\left(\begin{array}{cc}
\left(1-\bar{\mu}^{\prime}\right)\left(p_{5}^{\prime}-1 / 2\right) & \left(1-\bar{\mu}^{\prime}\right) p_{3}^{\prime} \\
\left(1-\bar{\mu}^{\prime}\right) \bar{p}_{3}^{\prime} & \left(1-\bar{\mu}^{\prime}\right)\left(-1 / 2-\bar{p}_{5}^{\prime}\right)
\end{array}\right) .
$$

This has a limit

$$
Q_{0}=\left(\begin{array}{cc}
(1-\bar{\mu}) p_{5} & (1-\bar{\mu}) p_{3} \tag{3.98}\\
(1-\bar{\mu}) \bar{p}_{3} & -(1-\bar{\mu}) \bar{p}_{5}
\end{array}\right) .
$$

This is an unitary matrix. In fact, we can always normalise p_{3} and p_{5} as

$$
p_{5}=\cos \theta e^{i \phi} \quad p_{3}=\sin \theta e^{i \psi}
$$

Now, μ is in \mathbb{T}, hence is $e^{i t}$, and (3.96) says

$$
\begin{equation*}
\cos t=\sqrt{\cos ^{2} \theta \cos ^{2} \phi+\sin ^{2} \theta}, \quad \sin t=\cos \theta \sin \phi \tag{3.99.a}
\end{equation*}
$$

and we get

$$
Q_{0}=\left(\begin{array}{cc}
\cos \theta e^{i(\psi-t)} & \sin \theta e^{i(\psi-t)} \tag{3.99.b}\\
\sin \theta e^{i(-\psi-t)} & -\cos \theta e^{i(-\phi-t)}
\end{array}\right)
$$

Note that Q_{0} is not an arbitrary unitary matrix. In the real case, have $\sin \phi=0$, hence $\sin t=0$. Since $\cos t>0$, we get $t=0$. This implies that the determinant of Q_{0} is -1 . The converse is obvious: any orthogonal matrix of determinant -1 , can be written in the form (3.99.b) with $\phi=\psi=t=0$, and (3.99.a) holds.

In the complex case, the situation is a bit different: the set of unitary matrices is of dimension 4, and we have only three parameters. Note the special case where $\sin \theta=0$. We can assume $\theta=0$, so that we get $t=\phi$ if $\cos \phi>0, t=\pi-\phi$ otherwise, hence one of

$$
Q_{0}=\left(\begin{array}{cc}
1 & 0 \\
0 & -e^{-2 i \phi}
\end{array}\right), \quad Q_{0}=\left(\begin{array}{cc}
-e^{2 i \phi} & 0 \\
0 & 1
\end{array}\right)
$$

Note that the case $\cos \phi=0$ is excluded. If we take the limit, we get the identity matrix in every case.
Now the structure of the manifold is a follows: in the real case, $\mathcal{I}_{1}^{2}(1)$ with its boundary is just a plane. However $\mathcal{I}_{n}^{\prime p}$ is this manifold where all unitary matrices are identified. Thus, ∞ and the point $p_{3}=0, p_{5}=0$, have to be identified. In the complex case, we have to identify ∞ and the real line $p_{3}=0$, $\Re p_{5}=0$ (by construction, $\mathcal{I}_{1}^{2}(1)$ is just a part of $\mathcal{I}_{n}^{\prime p}$).

One can wonder how this parameterisation is connected to the Schur algorithm. Equations (3.10) are

$$
\begin{gather*}
\tilde{q}=\tilde{b}-b\|y\|^{2}-(\tilde{b}-b) u^{*} y \tag{3.100.a}\\
D=\tilde{b}-b\|y\|^{2}+(\tilde{b}-b)\left[y u^{*}-u^{*} y+u y^{*}-y y^{*}-u u^{*}\right] . \tag{3.100.b}
\end{gather*}
$$

Divide everything by $(1-\omega)(1-\bar{\omega})\left(1-\|y\|^{2}\right)$ so as to obtain $q(1)=1$. Introduce

$$
\begin{equation*}
\beta=\frac{1-|\omega|^{2}}{(1-\omega)(1-\bar{\omega})}, \quad \gamma=\frac{\bar{\omega}}{1-\bar{\omega}}, \quad T=\|y\|^{2}+y u^{*}-u^{*} y+u y^{*}-y y^{*}-u u^{*} \tag{3.101}
\end{equation*}
$$

Then

$$
D=I+(1-z)\left(\gamma+\beta \frac{T}{1-\|y\|^{2}}\right)
$$

Write now $y=\binom{a}{b}, u=\binom{c}{d}$. Then

$$
\frac{T}{1-\|y\|^{2}}=\left(\begin{array}{cc}
p_{4} & p_{3} \tag{3.102}\\
\bar{p}_{3} & 1-\overline{p_{4}}
\end{array}\right), \quad p_{3}=\frac{(a-c)(\bar{d}-\bar{b})}{1-|a|^{2}-|b|^{2}} \quad p_{4}=\frac{c(\bar{a}-\bar{c})+b(\bar{b}-\bar{d})}{1-|a|^{2}-|b|^{2}} .
$$

Define $p_{3}^{\prime}=\beta p_{3}, p_{4}^{\prime}=\beta p_{4}+\gamma$. The relation $\gamma+\bar{\gamma}=\beta-1$ says

$$
D=I+(1-z)\left(\begin{array}{cc}
p_{4}^{\prime} & p_{3}^{\prime} \tag{3.103}\\
\overline{p_{3}^{\prime}} & 1-\overline{p_{4}^{\prime}}
\end{array}\right) .
$$

We have shown on figure 3.1 this mapping. We have chosen $\omega=0, c=1$, and $d=0$, so that

$$
\begin{equation*}
p_{3}=\frac{(1-a) \bar{b}}{1-|a|^{2}-|b|^{2}} \quad p_{4}=\frac{\bar{a}-1+|b|^{2}}{1-|a|^{2}-|b|^{2}} \tag{3.104}
\end{equation*}
$$

Getting the inverse mapping is not trivial. Consider first

$$
\begin{gathered}
a^{\prime}=\bar{c} a+\bar{d} b \quad b^{\prime}=-d a+b c \\
p_{3}^{\prime \prime}=-\bar{c} \bar{d}\left(p_{4}+\bar{p}_{4}+1\right)-\bar{d}^{2} \bar{p}_{3}+\bar{c}^{2} \bar{p}_{3}
\end{gathered}
$$

Figure 3.1: Expression of Q as a function of the Schur parameters. If Q is defined by equation (3.100), (3.101) and (3.102), we plotted the values of p_{3} and p_{4}, for $\omega=0, u=(1,0)^{t}$; on each curve $\|y\|$ is constant, and is $i / 10$ for $1 \leq i \leq 9$. The point $(0,0)$ is unreachable; the line $(0, y)$ for $y>0$ is unreachable in this chart.

$$
p_{4}^{\prime \prime}=c \bar{c} p_{4}+c \bar{d} \bar{p}_{3}+\bar{c} p_{3}-d \bar{d}-d \bar{d} \bar{p}_{4}
$$

In fact, since $\|u\|=1$, there exists a unitary matrix A such that $A u=\binom{1}{0}$. What we do is multiply y by A, and replace Q by $A Q A^{*}$. This gives (compare with (3.104)):

$$
p_{3}^{\prime \prime}=\frac{\left(1-a^{\prime}\right) \bar{b}^{\prime}}{1-\left|a^{\prime}\right|^{2}-\left|b^{\prime}\right|^{2}} \quad p_{4}^{\prime \prime}=\frac{\bar{a}^{\prime}-1+\left|b^{\prime}\right|^{2}}{1-\left|a^{\prime}\right|^{2}-\left|b^{\prime}\right|^{2}}
$$

Now the inverse mapping is defined as follows: we have p_{2}^{\prime} and p_{4}^{\prime}. We deduce p_{3} and p_{4} from $p_{3}^{\prime}=\beta p_{3}$, $p_{4}^{\prime}=\beta p_{4}+\gamma$. We compute $p_{3}^{\prime \prime}$ and $p_{4}^{\prime \prime}$, thus a^{\prime} and b^{\prime}, and then get a and b.

All we have to do now is express (a, b) as a function of $\left(p_{3}, p_{4}\right)$ in case (3.104) is true. Let $x=p_{3}$ and $y=p_{4}+1 / 2, a^{\prime}=a /(1-2 \bar{y}), b^{\prime}=b /(2 \bar{x})$. The magic is that $a^{\prime}=b^{\prime}$. If $T=1 / a^{\prime}$, we have a second relation

$$
\begin{equation*}
|T|^{2}=2 T-1+2 y+2 \bar{y}+4|x|^{2}+4|y|^{2} \tag{3.105}
\end{equation*}
$$

The solutions are

$$
T=1-2 i v \pm \sqrt{|x|^{2}+u^{2}}, \quad y=u+i v
$$

We deduce

$$
\begin{equation*}
\frac{1}{|a|^{2}+|b|^{2}}=1+4 \frac{ \pm \sqrt{|x|^{2}+u^{2}}-u}{(1+2 u)^{2}+4 v^{2}+4|x|^{2}} \tag{3.106}
\end{equation*}
$$

In order for $|a|^{2}+|b|^{2}<1$, we have to chose the plus sign.

$$
a=\frac{2\left(\bar{p}_{4}+1\right)}{T}, \quad b=\frac{2 \bar{p}_{3}}{T}, \quad T=1-2 i \Im p_{4}+\sqrt{\left|p_{3}\right|^{2}+\Re\left(p_{4}+1 / 2\right)^{2}} .
$$

Figure 3.2: Inverse mapping of the previous figure. We use the same chart and show the value of y, which is in the unit circle. On each curve, p_{4} is constant, and p_{3} varies.

We shown the result on figure 3.2. Note the dissymmetry between the curves on the left and the curves on the right. On each curve, p_{4} is fixed. For (3.106), if y is large, we have

$$
\frac{1}{|a|^{2}+|b|^{2}}-1=\frac{2}{|u|}, u<0, \quad \frac{1}{|a|^{2}+|b|^{2}}-1=\frac{x^{2}}{u^{3}}, u>0 .
$$

Note also that if $x=0, u>0$, we have $|a|^{2}+|b|^{2}=1$. This means that our application is not a bijection: With a and b we obtain every $\left(p_{3}, p_{5}\right)$, except those for which $p_{3}=0$, and $\Re p_{5}>0$. The matrix Q we cannot obtain are those defined by (3.96). In fact, since $Q(\omega)^{*} u=y$, we cannot obtain the matrices Q such that $Q(\omega)^{*} u$ have unit norm.

3.6.3 General case

Let's introduce some notations. The set \mathcal{B}_{p} denotes the set of vectors y of size p with $\|y\|<1$. Given Q, u_{i} and ω_{i}, we can define $Q^{(n)}=Q$, and $Q^{(k)}=T_{\Theta_{k}}\left(Q^{(k-1)}\right)$, provided that $y_{k}=Q^{(k)}\left(\omega_{k}\right)^{*} u_{k},\left\|y_{k}\right\|<1$, and Θ_{k} is defined by ω_{k}, u_{k} and y_{k}.

Let $\mathcal{V}_{(\mathbf{w}, \mathbf{u})}$ be the set of all inner matrices Q for which this is possible $\left(\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{p}\right)\right.$, and $\left.\mathbf{w}=\left(\omega_{1}, \ldots, \omega_{n}\right)\right)$, and $\varphi_{(\mathbf{w}, \mathbf{u})}$ be the list $\left(y_{1}, \ldots, y_{n}\right)$. This is an element of \mathcal{B}_{p}^{n}. If Θ_{i} is defined by $\left(\omega_{i}, u_{i}, y_{i}\right)$ and $\Theta=\Theta_{1} \Theta_{2} \ldots \Theta_{n}$, then

$$
y=\varphi_{(\mathbf{w}, \mathbf{u})}(Q) \Longleftrightarrow T_{\Theta}(I)=Q
$$

Lemma 53

The family (\mathcal{V}, φ) defines a C^{∞} atlas on $\mathcal{I}_{n}^{p}(1)$ which is compatible with its natural structure of embedded submanifold of $H_{2}^{p \times p}$.

For the proof of this lemma, see [9].

Theorem 31

Assume $\left|\omega_{i}\right|<1,\left\|u_{i}\right\|=1$ and $\left\|y_{i}\right\| \leq 1$. Define $q^{(i)}$ and $D^{(i)}$ via formulas (3.10). This is possible under the assumption that no $\tilde{q}^{(i)}$ is identically zero. This condition is the same as $u_{k}^{*} Q^{(k-1)} y_{k}-1$ not identically zero.

Then $q^{(i)}$ and $D^{(i)}$ are polynomials of degree $\leq i, q^{(i)}$ has degree i. The matrix $Q=D^{(n)} / \tilde{q}^{(n)}$ is inner, its McMillan degree is n, minus the number of k such that $\left\|y_{k}\right\|=1$, minus the number of points $\xi \in \mathbb{T}$ such that $y_{k}=Q^{(k-1)}(\xi)^{*} u_{k}$. There exists a neighbourhood \mathcal{W} of \mathbf{y} such that $\varphi_{(\mathbf{w}, \mathbf{u})}^{-1}$ extents smoothly to \mathcal{W}.
Proof. The important point here is that the coefficients of $D^{(k)}$ and $q^{(k)}$ are polynomial functions of y_{i}. This explains that φ^{-1} can be computed for every y. Moreover, $D^{(k)} \tilde{D}^{(k)}=q^{(k)} \tilde{q}^{(k)}$, and the roots of $q^{(k)}$ are in $\overline{\mathbb{U}}$. Thus $Q^{(k)}$ is inner, provided that it is defined, i.e. that $\tilde{q}^{(k)}$ is not identically zero.

The proof is by induction on k. Assume first that $\left\|y_{k}\right\|<1$. Then we are in the case studied above, and $Q^{(k)}$ is inner, its McMillan degree is one more than the McMillan degree of $Q^{(k-1)}$. Note that the equation $y_{k}=Q^{(k-1)}(\xi)^{*} u_{k}$ has no solution $\xi \in \mathbb{T}$, since $Q^{(k-1)}(\xi)^{*}$ is unitary, $\left\|u_{k}\right\|=1,\left\|y_{k}\right\|<1$.

Assume now $\left\|y_{k}\right\|=1$. Then

$$
\begin{align*}
\tilde{q}_{B} & =(1-z)\left(1-|\omega|^{2}\right)\left(\tilde{q}_{A}-u^{*} D_{A} y\right) \\
\tilde{q}_{B} & =(1-z)\left(1-|\omega|^{2}\right) \tilde{q}_{A}\left(1-u^{*} A y\right) \tag{3.107.a}
\end{align*}
$$

Let's now compute the roots of $\tilde{q}_{B} /(z-1)$ in $\overline{\mathbb{U}}$. If ξ is such a root, then $u^{*} A(\xi) y=1$. Write $u^{*} A(\xi)=\lambda y^{*}+w^{*}$, where w is orthogonal to y. Then $\lambda=1$, because $\|y\|=1$. But $\left\|u^{*} A(\xi)\right\| \leq 1$, so that $w=0$, and $y^{*}=u^{*} A(\xi)$. This is $A(\xi)^{*} u=y$, and implies $u^{*} A(\xi) y=1$. Since $\left|u^{*} A(\xi) y\right| \leq 1$ on $\overline{\mathbb{U}}$, if equality holds on a point of \mathbb{U}, then equality holds everywhere (maximum modulus principle).

This means that either \tilde{q}_{B} is identically zero, or does not vanish on \mathbb{U}. We exclude the first case. Thus, $\tilde{q}_{B}(0) \neq 0$, and this says that q_{B} has degree n.

Now,

$$
\begin{align*}
D_{B}= & (1-z)\left(1-|\omega|^{2}\right)\left[D_{A}+\frac{D_{A} y u^{*} D_{A}-u^{*} D_{A} y D_{A}}{\tilde{q}_{A}}+\tilde{q}_{A} u y^{*}-D_{A} y y^{*}-u u^{*} D_{A}\right] \\
D_{B} & =(1-z)\left(1-|\omega|^{2}\right) q_{A}\left[A+A y u^{*} A-u^{*} A y A+u y^{*}-A y y^{*}-u u^{*} A\right] \tag{3.107.b}
\end{align*}
$$

This is zero if $z=1$, or if $y^{*}=u^{*} A(\xi)$. Thus in the quotient D_{B} / \tilde{q}_{B}, we can simplify by a factor T, which is $(z-1) \prod\left(z-\xi_{i}\right)$, where ξ_{i} is defined by $u^{*} A\left(\xi_{i}\right) y=1$. Then we obtain a stable polynomial q.

Lemma 54

Assume that Q is inner, of McMillan degree $d<n$. There exists a unitary matrix \mathcal{U}, and quantities $(\mathbf{w}, \mathbf{u}, \mathbf{y})$, such that $\mathcal{U} Q$ has the form of the previous theorem.

Proof. Consider $n-d$ elements u_{i}, y_{i} and ω_{i}. Let's assume that $\left\|y_{i}\right\|=1$, and $y_{i} \neq u_{i}$. Let's apply the Schur algorithm, at order n. Equations (3.107) say that the first matrix we obtain is constant, and is

$$
\begin{equation*}
\mathcal{U}_{1}=I-\frac{\left(y_{1}-u_{1}\right)\left(y_{1}^{*}-u_{1}^{*}\right)}{1-u_{1}^{*} y_{1}} \tag{3.108}
\end{equation*}
$$

The d-th matrix is also constant and unitary. Let \mathcal{U} be this matrix. Assume that Q is obtained via the Schur algorithm with parameters $\omega_{i+n-d}, u_{i+n-d}^{\prime}$ and y_{i+n-d}. Define $u_{i+n-d}=\mathcal{U} u_{i+n-d}^{\prime}$. Since Q is of degree d, we have $\left\|y_{i}\right\|<1$ for $i>n-d$. The key relation is that the Schur algorithm satisfies

$$
\begin{equation*}
S_{(\omega, \mathcal{U} u)}(\mathcal{U} A, y)=\mathcal{U} S_{(\omega, u)}(A, y) \tag{3.109}
\end{equation*}
$$

provided that \mathcal{U} is unitary and constant. This relation shows that the n-matrix we obtain is $\mathcal{U} Q$.

Lemma 55

Assume that $y_{i}(t)$ are C^{∞} functions of $t, 0 \leq t \leq 1$. Assume that for $t>0,\left\|y_{i}\right\|<1$, and for $t=1$, $\left\|y_{i}\right\| \leq 1$. The Schur algorithm applied to $\left(\omega_{i}, u_{i}, y_{i}(t)\right)$ gives an inner matrix $Q(t)$. This matrix is of degree n in case $\left\|y_{i}(0)\right\|<1$, of degree $<n$, if $\tilde{q}^{(n)}(0)$ is not identically zero, and anything can happen otherwise.

The only thing we have to show is the behaviour when \tilde{q} vanishes identically. Consider the scalar case first. Here we have

$$
\begin{aligned}
\tilde{q}_{B} & =\left(\tilde{b}-b\|y\|^{2}\right) \tilde{q}_{A}-(\tilde{b}-b) u^{*} D_{A} y \\
D_{B} & =\left(b-\tilde{b}\|y\|^{2}\right) D_{A}+(\tilde{b}-b) \tilde{q}_{A} u y^{*} .
\end{aligned}
$$

A little computation shows that

$$
\begin{equation*}
\frac{\beta}{B u^{*}-y^{*}}=\frac{1}{A u^{*}-y^{*}}-\frac{(1-\beta) y}{1-\|y\|^{2}} . \tag{3.110}
\end{equation*}
$$

Now if $\lim \|y\|=1$, the limit of the last term is ∞, so that the limit of $B^{*} u-y^{*}$ is zero. Note that the condition \tilde{q}_{B} is identically zero at $t=0$ says that $u y^{*}-A=0$, so that A must be constant. In this case the limit of $1 /\left(A u^{*}-y^{*}\right)$ is also infinity. Since $1-\beta$ takes an infinite number of values, the quantity $\beta /\left(B u^{*}-y^{*}\right)$ is infinite for almost every value of z, so that B is still constant.

Now, in the case $p \geq 2$, anything can happen: Q has no limit, Q has a limit of degree n, Q has a limit of degree $<n$. It suffices in fact to consider the case $p=2$. We can assume $n=1$, and everything real. Consider the case $u=\binom{1}{0}, y=\binom{y_{1}}{y_{2}}$ and $\omega=0$. Then

$$
\begin{equation*}
\tilde{q}_{B}=1-z\left(y_{1}^{2}+y_{2}^{2}\right)-(1-z) y_{1} . \tag{3.111}
\end{equation*}
$$

Let z_{0} be the root of \tilde{q}. Let

$$
\mathcal{U}=\left(\begin{array}{cc}
y_{1} & y_{2} \\
y_{2} & 1-y_{1}-1 / z_{0}
\end{array}\right)
$$

Then

$$
\begin{equation*}
B=\frac{\left(1-y_{1}\right)(1-z) \mathcal{U}+z\left(1-y_{1}^{2}-y_{2}^{2}\right) I}{\left(1-y_{1}\right)(1-z)+z\left(1-y_{1}^{2}-y_{2}^{2}\right)} . \tag{3.112.a}
\end{equation*}
$$

This can be written as

$$
\begin{equation*}
B=\frac{z_{0}(1-z) \mathcal{U}+z\left(z_{0}-1\right)}{z_{0}-z} . \tag{3.112.b}
\end{equation*}
$$

Assume now that the limit of y_{1} is not one. Then (3.112.a) says that the limit of B is the identity matrix. Assume now that the limit of y_{1} is one. We have shown on figure 3.3 the sets $\left(y_{1}, y_{2}\right)$ that give z_{0} as a root of q_{B}. On can see that, if y has u as limit, but if this limit is not tangential, then the limit of the root is $z_{0}=1$. Otherwise, any value value outside $[-1,1]$ can be the limit.

In fact, if z_{0} has a limit, then \mathcal{U} has a limit, and B has a limit. If $z_{0} \neq 1$, this limit has McMillan degree n, otherwise, it is constant (note that $z_{0}=\infty$ is valid, this gives $q=0$). We have

$$
1-1 / z_{0}=\frac{1-y_{1}^{2}-y_{2}^{2}}{1-y_{1}} .
$$

Assume that $y_{2}(t) \sim \alpha t^{n}$, and $y_{1}(t) \sim 1-\beta t^{m}$. The previous quantity is approximatively

$$
\frac{2 \beta t^{m}-\beta^{2} t^{2 m}-\alpha^{2} t^{2 n}}{\beta t^{m}}
$$

We must have $2 n \geq m$, so that we get the asymptotic result:

$$
2-\beta t^{m}-\alpha^{2} t^{2 n-m} / \beta
$$

Figure 3.3: Roots of (3.111). To each $\left(y_{1}, y_{2}\right)$ we can associate a root z. If z is fixed, we get this root if $\left(y_{1}, y_{2}\right)$ is on a circle, symmetric w.r.t. the x-axis, and that passes through $(1,0)$. We have shown these circle for $z=-2, z=\infty$ and $z=-2$. The outer circle is the unit circle $(z=1)$.

Now the case that causes trouble is when all derivatives of y_{1} and y_{2} are zero. An example is given by

$$
y_{1}(t)=1-\frac{\sin (1 / t)^{2}+1}{2} e^{-1 / t^{2}} . \quad y_{2}(t)=e^{-1 / t^{2}}
$$

Here

$$
\frac{1-y_{1}^{2}-y_{2}^{2}}{1-y_{1}}=\frac{2 \sin (1 / t)^{2}}{1+2 \sin (1 / t)^{2}}
$$

and this has no limit.

3.6.4 Minimisation of ψ

Let $\psi_{F}^{n}(Q)$ be the function defined in the previous chapter. It is the minimum of $\left\|F-Q^{-1} C\right\|^{2}$, where $Q^{-1} C$ is rational, strictly, proper, stable, of McMillan degree n. For simplicity, we shall omit the subscript F. Define

$$
\begin{equation*}
\psi_{(\mathbf{w}, \mathbf{u})}^{n}(\mathbf{y})=\psi^{n}\left(\varphi_{(\mathbf{w}, \mathbf{u})}^{-1}(\mathbf{y})\right) \tag{3.113}
\end{equation*}
$$

In fact, if \mathbf{y} is as above, we let y be the vector with same components as \mathbf{y}. This is an element of $\mathbb{C}^{n p}$. What φ^{-1} computes is not Q, but the numerator and denominator. Let x be the vector whose entries are the coefficients of \tilde{D} and q. Then $x \in \mathbb{C}^{k}$, with $k=(n+1)\left(p^{2}+1\right)$. Write $x=X(y)$, and $\psi^{n}(Q)=\Psi(x)$. Hence

$$
\begin{equation*}
\psi_{(\mathbf{w}, \mathbf{u})}^{n}(y)=\psi(X(y)) . \tag{3.114}
\end{equation*}
$$

What we do is integrate the differential equation

$$
\begin{equation*}
\frac{d y}{d t}=-\nabla \psi_{(\mathbf{w}, \mathbf{u})}^{n}(y) . \tag{3.115}
\end{equation*}
$$

In fact, if A is a function of $\left(a_{1}, \ldots, a_{m}\right)$ with components $\left(A_{1}, \ldots, A_{p}\right)$, then ∇A is the matrix whose (i, j) component is $\partial A_{i} / \partial a_{j}$. The chain rule says $\nabla(A \circ B)=\nabla A \nabla B$. Note that $\nabla \Psi$ is a $1 \times n p$ vector while $d y / d t$ in (3.115) is a $n p \times 1$ vector. It is of course possible to identify these vectors. The important point is that $\nabla \psi$ is not a tangent vector on the manifold: it is just a linear form. If we use a chart, then we can define $\nabla \Psi$, and identify this to a tangent vector. In any case, we get

$$
\begin{gather*}
\frac{d x}{d t}=-\nabla X \nabla X^{t} \nabla \Psi \tag{3.116.a}\\
\frac{d \psi}{d t}=-(\nabla \Psi \nabla X)(\nabla \Psi \nabla X)^{t} \tag{3.116.b}
\end{gather*}
$$

Lemma 56

The function $\psi(t)$ is either constant or decreasing. If it is constant, then Q is a critical point of ψ^{n}, and y is a critical point of $\psi_{(\mathbf{w}, \mathbf{u})}^{n}$. Otherwise, the solution of the differential equation (3.116.a) depends not only on the initial condition Q, but also on u and ω.

Note that the equation $\nabla \Psi \nabla X=0$ does not imply $\nabla \Psi=0$. This is because the mapping X is not surjective (there are much more parameters in x, i.e. in D and q then in y). What we say is just that if x^{\prime} is near to x, and if x^{\prime} defines an inner matrix, then $\Psi\left(x^{\prime}\right)-\Psi(x)=o\left(x^{\prime}-x\right)$. This is $\nabla \psi^{n}=0$.

Assume now that one component of y satisfies $\left\|y_{i}\right\|=1$. Assume moreover that we are in a generic case, i.e. that the matrix Q_{0} we obtain is of McMillan degree $n-1$. Assume that this is a critical point of ψ^{n-1}. Let h be a vector, and consider what happens if we replace y by $y+t h$. If $Q_{0}=Q_{1} \ldots Q_{n-1} A$ is a Potapov factorisation of Q_{0}, and if Q_{0} has only simple roots, then any matrix Q_{0}^{\prime} near Q_{0} can be factored as as $Q_{0}^{\prime}=Q_{1}^{\prime} \ldots Q_{n-1}^{\prime} A^{\prime}$, where Q_{i}^{\prime} is near Q_{i}. This is because the interpolation condition $u_{1}^{*} Q_{0}\left(\omega_{1}\right)=0$, gives $u_{1}^{\prime *} Q_{0}^{\prime}\left(\omega_{1}^{\prime}\right)=0$. There exists, for small t, a unique pole ω_{1}^{\prime} of Q_{0}^{\prime} near ω_{1}, and since this pole is simple, the set of vectors u with $u_{1}^{* *} Q_{0}^{\prime}\left(\omega_{1}^{\prime}\right)=0$ has dimension one. If we chose in this space a vector with unit norm, such that the phase of the k-th component is the same as the phase of the k-component of u_{1} (for some k), then u_{1}^{\prime} is near u_{1}.

Now, if Q_{t} is the result of the Schur algorithm for $y+t h$, what we get is a matrix A^{\prime} near A, and if we chose h such that $\|y+t h\|<1$, the matrix A^{\prime} will be of McMillan degree one.

Consider now equations (2.23) and (2.24). If $Q(t)=Q_{0}(t) Q_{1}(t)$, where $Q_{0}(0)=0$, and $Q_{1}(0)=A$ is constant, these equations say $\psi(t)=\psi\left(Q_{0}\right)-\left\|R_{2} / q_{2}\right\|^{2}+o(t)$. Recall that Q_{0} is a critical point of ψ. Note that $R_{2}(0)=0$. Assume that y_{k} is of norm one. In the case where $h_{k}=0$, then $\psi(Q(t))-\psi(Q(0))=o(t)$, because $Q_{1}(t)$ is very near to a constant. The same is true if we chose h such that $h_{i}=0$ for $i \neq k$, and h_{k} orthogonal to y_{k}. If however h_{k} is proportional to y_{k}, say $h_{k}=-y_{k}$, then generically, the derivative of $\left\|R_{2} / q_{2}\right\|$ is not zero (compare with (2.40): the condition is $V_{1}(\alpha) \neq 0$, here it is a bit more complicated). As a conclusion, $\nabla \psi$ is parallel to y_{k}. We can compare this with the scalar case.

Theorem 32

Assume that the solution of (3.115) is such that $r(t)=\max \left\|y_{i}(t)\right\|$ satisfies $r(t)<1$ for $t<t_{0}$ and $r\left(t_{0}\right)=1$. Then $Q=\varphi^{-1}(y)$ is not a local minimum of ψ.

Assume that, for $t=0, r(0)=1$, but only one vector y_{i} is of norm one. Then generically, $r(t)<1$ for t positive and small.

Of course, all problems that happen in the scalar case can happen in the matrix case. We are interested in the second claim of the theorem. We assume that Q is inner, of McMillan degree $n-1$ with Schur parameters $\left(\omega_{i}, u_{i}, y_{i}\right), i=2, \ldots, n$. We consider y_{1} and u_{1} be two vectors of norm one, $y_{1} \neq u_{1}$, $\omega_{1} \in \mathbb{U}$. Let \mathcal{U} be the matrix defined by (3.108). Let $\mathbf{y}^{\prime}=\left(y_{1}, \ldots, y_{n}\right), \mathbf{u}=\left(u_{1}, \mathcal{U} u_{2}, \ldots, \mathcal{U} u_{n}\right)$ and $\mathbf{w}^{\prime}=\left(\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right)$. This gives us a starting condition. What we need is $u_{1}^{*} y_{1} \neq 1$. In the complex case, we can chose u_{1} such that all components but the first one is zero, the first one being 1 , and y_{1} such that all components are zero, the first one being $e^{2 i m \pi / k}$, for $0<k<m$. In the real case, the same can be done if $p>1$: we put the sine and cosine of $2 m \pi / k$ into the first two components of y. But if $p=1$, we have no choice: we must have $u= \pm 1$ and $y=-u$. According to (3.5), multiplying u and y by an element of \mathbb{T} does not change anything: in other words, there is only one possible initial condition.

We do not know the exact conditions on which $r^{\prime}(0)<0$. Because the equations are badly conditioned if $\|y\|=1$, we do not use the quantities defined above, but change them a little bit. In some cases, we have $r^{\prime}(0)>0$. This worries us a little bit, but in all our test cases r remains less than one.

We explained above that $\|y\|$ should be small. This means that, from time to time we chose a better chart. This is impossible for $t=0$ (of course, we assume that we have a good chart for the matrix that is of degree $n-1$, but the chart for the degree n is never good in the sense given above). The reason why we want y to be small is the following: assume that $n=1$. Then on the boundary Q is constant and $\psi=1$. If we are near a minimum, then ψ^{\prime} is small. If we are near a minimum and near the boundary, then $\psi^{\prime \prime}$ has to be huge somewhere.

Assume that ω is fixed. We are interested in finding y with smallest norm, with $y=Q(\omega)^{*} u$.

Consider first the case $p=2$. Assume that $Q(\omega)^{*}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. We may consider $u=\binom{\cos \theta}{\sin \theta e^{i \phi}}$, since multiplying u by a constant number of modulus one does not change the norm of y. The square of the norm of y is now $A \sin ^{2} \theta+B \sin \theta \cos \theta+C \cos ^{2} \theta$ where

$$
A=|a|^{2}+|c|^{2}, \quad C=|b|^{2}+|d|^{2}, \quad B=2 \Re\left(\bar{a} b e^{i \phi}+\bar{c} d e^{i \phi}\right)
$$

We have

$$
\|y\|^{2}=\frac{A+C+(C-A) \cos 2 \theta+B \sin 2 \theta}{2}
$$

This expression is minimal or maximal if $\tan 2 \theta=B /(C-A)$. Define $\Delta=\sqrt{(A-C)^{2}+B^{2}}$. Then $\cos 2 \theta=(C-A) / \Delta$. Then $\|y\|^{2}=(A+C) / 2 \pm \Delta / 2$. The minimum is found if we take a minus sign, and if we maximise B. In fact, we chose $e^{i \phi}$ in such a way that $\bar{a} b e^{i \phi}+\bar{c} d e^{i \phi}$ is real: if $w=\bar{a} b+\bar{c} d$, we take $e^{i \phi}=-\bar{w} /|w|$. This gives $B<0$, so that we have $\sin \theta=\sqrt{(1-(C-A) / \Delta) / 2}$ and $\cos \theta=$ $\sqrt{(1+(C-A) / \Delta) / 2}$, where both square roots are positive.

In the general case, we are looking for u such that $Q(\omega)^{*} u$ is small. Let $B=Q(\omega)^{*}$, and $C=B^{*} B$. If $y=Q(\omega)^{*} u$, then $u^{*} C u=\|y\|^{2}$. There exists an orthonormal basis e_{i} such that $C e_{i}=\lambda_{i} e_{i}$. If $\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n}$, then $\|y\|^{2} \geq \lambda_{1}$, and equality holds if $u=e_{1}$. Thus, we have to find the eigenvector of C with smallest eigenvalue. Since $\lambda_{n} \leq 1$, if $D=I-B^{*} B$, we have to find the eigenvector of D with largest eigenvalue. This can be found via following iteration $u_{k+1}=D u_{k} /\left\|D u_{k}\right\|$. Unless we start with an eigenvector, this will converge to the desired result. If ϵ_{i} is the i-th base vector, we start with ϵ_{i}, unless this is an eigenvector of D. In case every base vector is an eigenvector of D, then D is diagonal, and it is obvious to find u.

Note that if ω is not well chosen, this may produce bad values for y. In the complex case, we can chose for ω a pole of Q, i.e. a zero of q. The same can be done in the real case, provided that q has a real zero. If this is not the case, we chose a lot of values of ω (in fact, we chose $\omega=i / 8$, where $-8<i<8$).

Chapter 4

Automatic differentiation

In this chapter we give the $\mathrm{C}++$ code that is used to implement the formulas defined in the previous chapter. In the scalar case the code is rather easy, but we have different equivalent formulas. Only one implementation will be given. Others are studied in the next chapter, where we give the complexity of different variants. In the matrix case, the situation is quite more complicated. We shall discuss here what is automatic differentiation, why we use it, how we use it, and why we do not use generic software.

4.1 Introduction

In the multivariate case, the big problem is to implement the Schur formulas, and the derivatives of them. A general problem, when optimising a function f, is to compute the derivatives of f, and, maybe, the second derivatives. A good approximation of the derivative of f, in the direction d, is obtained by finite differences, namely $[f(x+h d)-f(x)] / h$. We have to chose h small, so that this is a good approximation of f^{\prime}, but not too small, otherwise we have too many rounding errors. In general, using divided differences again for the Hessian gives very bad results.

In the case where f is defined by simple formulas, the best thing to do is implement the equations that give f^{\prime}. In general, this is slower than finite differences, but gives f^{\prime} with a good precision. Obtaining the exact code of f^{\prime} can be done by hand, using a computer algebra system like Maple, or using an automatic differentiator. In general, the hand-written code is more efficient, but could be wrong (there could be an error in the formula that gives f^{\prime}, or an error in the translation of the formula into a C program). Since a good optimiser manages to minimise f, even if f^{\prime} is not precise, such errors may remain undetected for a long time (we once found that the sign of the Hessian was wrong; after correction, the program run much faster). Both computer algebra systems and automatic differentiators can compute the derivative of simple expressions, they have both their advantages and their limits.

In our case, we have to implement the Schur formulas. A first attempt was done by P. Fulcheri, using the Scilab program (see [8]). What we have to compute is a function that depends on $\left(u_{i}, \omega_{i}, y_{i}\right)$, and find the derivatives with respect to y_{i}. In the case $n=3$, the code has the following structure

$$
\begin{align*}
Q_{1} & =f\left(y_{1}, I, p_{1}\right) \tag{4.1.1}\\
Q_{2} & =f\left(y_{2}, Q_{1}, p_{2}\right) \tag{4.1.2}\\
Q_{3} & =f\left(y_{3}, Q_{2}, p_{3}\right), \tag{4.1.3}
\end{align*}
$$

where $p_{i}=\left(u_{i}, \omega_{i}\right)$, and I is the identity matrix. If we differentiate these functions, and denote by f_{i} the derivative of f with respect to the i-th argument, we get

$$
\begin{equation*}
\frac{\partial Q_{i}}{\partial y_{j}}=0 \quad(j>i) \tag{4.2.1}
\end{equation*}
$$

$$
\begin{gather*}
\frac{\partial Q_{i}}{\partial y_{j}}=f_{1}\left(y_{i}, Q_{i-1}, p_{i}\right) \quad(j=i) \tag{4.2.2}\\
\frac{\partial Q_{i}}{\partial y_{j}}=f_{2}\left(y_{i}, Q_{i-1}, p_{i}\right) \frac{\partial Q_{i-1}}{\partial y_{j}} \quad(j<i) \tag{4.2.3}
\end{gather*}
$$

If we differentiate again, we get

$$
\begin{equation*}
\frac{\partial^{2} Q_{i}}{\partial y_{j} \partial y_{k}}=f_{22}\left(y_{i}, Q_{i-1}, p_{i}\right) \frac{\partial Q_{i-1}}{\partial y_{j}} \frac{\partial Q_{i-1}}{\partial y_{j}}+f_{2}\left(y_{i}, Q_{i-1}, p_{i}\right) \frac{\partial^{2} Q_{i-1}}{\partial y_{j} \partial y_{k}} \tag{4.3}
\end{equation*}
$$

in the case $k<i$ and $j<i$, zero in the case $j>i$ or $k>i$, and a different formula otherwise. Note that y_{i} is a vector, so that the formula for $j=i$ is a bit more complicated than given above. This is in particular the case for the second derivative (this explains why we did not give here the formula).

In the first implementation, the objective was to show that the Schur algorithm can be applied to real cases. No attempt was made to get an efficient code. In particular, some subexpressions where computed more than once. In the case of the Hessian, all first derivatives were recomputed wherever needed. If we look closely at the Schur formulas,

$$
\begin{gather*}
q_{B}=\left(b-\tilde{b}\|y\|^{2}\right) q_{A}+(\tilde{b}-b) y^{*} \tilde{D}_{A} u \tag{4.4.1}\\
\tilde{D}_{B}=\left(b-\tilde{b}\|y\|^{2}\right) \tilde{D}_{A}+(\tilde{b}-b)\left[\tilde{D}_{A} u u^{*}+y y^{*} \tilde{D}_{A}-y^{*} u q_{A}\right]+\frac{b-\tilde{b}}{q_{A}}\left[\tilde{D}_{A} u y^{*} \tilde{D}_{A}-y^{*} \tilde{D}_{A} u \tilde{D}_{A}\right] \tag{4.4.2}
\end{gather*}
$$

we see that $y^{*} \tilde{D}_{A} u$ is shared. Now, $x_{1}=y^{*} \tilde{D}_{A}$ and $x_{2}=\tilde{D}_{A} u$ appear also in the formulas, as subexpressions. We can compute x_{1} and x_{2}, and deduce $y^{*} \tilde{D}_{A} u$ from one of them. Using one or the other is irrelevant. What we do is use x_{1}, and compute $\tilde{D}_{A} u u^{*}$ by multiplying \tilde{D}_{A} by $u u^{*}$; we do this because the second factor is constant. Note that constant means that it has zero as derivative; but, since it is independent of y, it can be precomputed (note however that the cost of $u u^{*}$ is small compared to the other formulas, so that this is a small optimisation).

As a conclusion, it appears that we have to split our big formulas into a set of smaller ones, and store in memory every result, and never compute twice the same quantity. The main objection against differentiation in reverse mode is memory usage. It happens that, in this case, even in direct mode, we have to store a lot of things: memory usage is the same in reverse mode, and in optimised direct mode. The main advantage of reverse mode is its speed: this is why we adopted it. In the next chapter, we give the complexity in both direct and reverse mode.

There are systems like Odyssée (see $[16,6]$) that take as input a Fortran program, and return another Fortran program that computes the derivative of the code. The list of all these systems can be found on Internet ${ }^{1}$. Other systems, like Adolc, do the same with C programs. There are also some computer algebra systems that offer automatic differentiation modules, but none of these systems is really adapted to our needs. This is the main reason why we wrote a small automatic differentiator.

4.2 Straight line programs

A straight line program is a basic and simplified model of a computer program. What we exclude explicitly is input/output routines, transfer of control, and calls to other programs. Given these constraints, one gets a nice theory, that can be applied to no real program. It is always possible to relax these constraints. The main difficulty however is that, if the code is defined by: replace x by $f_{p}(x)$ until x converges with precision ϵ, the differentiated code computes x^{\prime} which is, in general, a very bad approximation to the derivative of the fixed point of f_{p} (if x_{p} is the fixed point of f_{p}, there are conditions under which x_{p} is unique and is differentiable with respect to p). In our case, we have only explicitly loops (associated to matrix or polynomial products). For this reason, our differentiator is very small.

[^0]
4.2.1 Definition

A straight line program is the basic model for computer programs. It is given by

- n input variables x_{1}, \ldots, x_{n},
- m output variables y_{1}, \ldots, y_{m},
- p local variables z_{1}, \ldots, z_{p},
- q function calls F_{1}, \ldots, F_{q}.

Let $N=n+m+p, w=\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}, z_{1}, \ldots, z_{p}\right)$. This is called the state vector. Each function call has the form $\left(f, t_{0}, t_{1}, \ldots, t_{k}\right)$ where f is a function from \mathbb{R}^{k} to \mathbb{R}, and each t_{i} is the index of a variable, an integer between 1 and N. To the function call F we associate a function

$$
\begin{aligned}
\check{f}: \mathbb{R}^{N} & \rightarrow \mathbb{R}^{N} \\
w & \rightarrow w^{\prime}
\end{aligned}
$$

defined by

$$
\begin{align*}
w_{i}^{\prime} & =w_{i} \quad\left(i \neq t_{0}\right) \\
w_{t_{0}}^{\prime} & =f\left(w_{t_{1}}, \ldots, w_{t_{k}}\right) . \tag{4.5.a}
\end{align*}
$$

If there is no confusion, we just write f instead of \check{f}.
We consider also

$$
\begin{align*}
f_{0}: \mathbb{R}^{n} & \rightarrow \mathbb{R}^{N} \\
\left(x_{1}, \ldots, x_{n}\right) & \rightarrow\left(x_{1}, \ldots, x_{n}, 0, \ldots, 0\right) \tag{4.5.b}
\end{align*}
$$

and

$$
\begin{align*}
f_{q+1}: \mathbb{R}^{N} & \rightarrow \mathbb{R}^{m} \\
\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}, z_{1}, \ldots, z_{p}\right) & \rightarrow\left(y_{1}, \ldots, y_{m}\right) . \tag{4.5.c}
\end{align*}
$$

The function computed by the SLP is

$$
\begin{align*}
\mathbb{R}^{n} & \rightarrow \mathbb{R}^{m} \\
f & =f_{q+1} \circ f_{q} \circ \cdots \circ f_{1} \circ f_{0} . \tag{4.6}
\end{align*}
$$

4.2.2 Rational SLP

An SLP is called rational if it computes a rational function. In fact, we may assume that each f_{i} is a rational function. We can decompose f_{i} into elementary (binary) operations, hence get one of the following forms: $y=a, y=-a, y=1 / a, y=-1 / a, y=a+b, y=a-b, y=a b, y=-a b, y=a / b$, $y=-a / b$. We allow also ternary operations of the form $y=a+b c$. Hence the general form is

$$
\begin{equation*}
y=a \pm b c, \quad y= \pm a / b, \tag{4.7}
\end{equation*}
$$

where a, b, c are variables or constants. In fact, the case $y=a+b c$ will only be used in the case where a is y. Moreover, $y=y+x$ will be written as $y+=x$ (in the same fashion, $y=y-x$ will be written as $y-=x)$. This is standard C notation, and is very useful for differentiation in reverse mode.

Example: If A, B and C are $n \times n$ matrices, the SLP formed by the n^{2} instructions $C_{i j}=0$ and the n^{3} instructions $C_{i j}+=A_{i k} B_{k j}$ computes the matrix product $C=A B$.

4.2.3 Differentiation in direct mode

Let ∇g be the gradient of g, the matrix with entries $\partial g_{i} / \partial x_{j}$ if g is a function of $\left(x_{1}, \ldots, x_{n}\right)$ with components $\left(g_{1}, \ldots, g_{p}\right)$. The chain rule says

$$
\begin{equation*}
\nabla f=\nabla f_{q+1} \nabla f_{q} \cdots \nabla f_{1} \nabla f_{0} \tag{4.8}
\end{equation*}
$$

Differentiating equations (4.5) gives a new set of function calls, hence a new SLP. It has $2 n$ inputs variables $\left(x_{1}, \ldots, x_{n}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right), 2 m$ output variables $\left(y_{1}, \ldots, y_{m}, y_{1}^{\prime}, \ldots, y_{m}^{\prime}\right), 2 p$ local variables $\left(z_{1}, \ldots, z_{p}, z_{1}^{\prime}, \ldots, z_{p}^{\prime}\right)$ and $2 q$ function calls $G_{1}, \ldots, G_{2 q}$, described below.

According to the previous definition, the state vector of the new SLP is $\left(x, x^{\prime}, y, y^{\prime}, z, z^{\prime}\right)$. We prefer changing the order of variables and use $W=\left(x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right)$ instead. In particular we have $G_{2 i}=F_{i}$. Moreover, the equivalent of (4.5.b) and (4.5.c) is now

$$
\begin{align*}
g_{0}: \mathbb{R}^{2 n} & \rightarrow \mathbb{R}^{2 N} \\
\left(x, x^{\prime}\right) & \rightarrow\left(x, 0,0, x^{\prime}, 0,0\right) \tag{4.9.b}
\end{align*}
$$

and

$$
\begin{align*}
g_{2 q+1}: \mathbb{R}^{2 N} & \rightarrow \mathbb{R}^{2 m} \\
\left(x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right) & \rightarrow\left(y, y^{\prime}\right) \tag{4.9.c}
\end{align*}
$$

Finally, $G_{2 i-1}$ is the derivative of f_{i}. The equivalent of (4.5.a) is

$$
\begin{align*}
w_{i}^{\prime} & =w_{i} \quad\left(i \neq t_{0}+N\right) \\
w_{t_{0}+N}^{\prime} & =\sum_{i} \frac{\partial f}{\partial x_{i}}\left(w_{t_{1}}, \ldots, w_{t_{k}}\right) w_{t_{i}+N} \tag{4.9.a}
\end{align*}
$$

Theorem 33

The SLP defined by equations (4.9) computes a function $\left(x, x^{\prime}\right) \rightarrow\left(y, y^{\prime}\right)$, where $y=f(x)$ and $y^{\prime}=$ $\nabla f(x) \cdot x^{\prime}$ (the derivative of f at x in the direction x^{\prime}). If T multiplications are required for computing f, then at most $3 T$ multiplications are required for this SLP.

Note: In the case of division, $y=a / b$, the derivative is $y^{\prime}=a^{\prime} / b-a b^{\prime} / b^{2}$. Instead of computing y^{\prime}, then y, we compute y, and then y^{\prime} with the formula $y^{\prime}=\left(a^{\prime}-b^{\prime} y\right) / b$. This needs one less division.

4.2.4 Reverse mode

Transposing Equation (4.8) gives

$$
\begin{equation*}
\nabla f^{t}=\nabla f_{0}^{t} \nabla f_{1}^{t} \cdots \nabla f_{q}^{t} \nabla f_{q+1}^{t} \tag{4.10}
\end{equation*}
$$

Hence, we get a new SLP, that takes x and y^{\prime} as input, and computes $y=f(x)$ and $x^{\prime}=\nabla f^{t}(x) . y^{\prime}$. In the special case where f is a scalar function (one output), we can take $y^{\prime}=1$, and this gives the derivative of f at x.

The important point to notice is that the product in (4.10) is done from right to left, i.e. in the reverse order of original computation. Assume that $i<j, f_{i}$ and f_{j} depend on a, but a is modified by some call $f_{k}(i<k<j)$. In direct mode, nothing special happens, but in reverse mode, we call f_{i}, then f_{k}, then f_{j}. We compute derivatives of f_{j}, then f_{k}, and finally f_{i}. At this moment, the value of a is wrong. We have to reset the old value. A good moment is when we compute the derivative of f_{k}. The old value can be found on the stack, if we push it before evaluating f_{k}. In some cases, it is possible to get the old value from the new one. The typical case is when we compute a sum $\sum_{i} f\left(x_{i}\right)$. In the code of the loop, we increment i. In reverse mode we decrement i; note that, in this case, the order of evaluation is irrelevant (in the case $g \tilde{q}=V q+R$, the order of the loop in the product $g \tilde{q}$ is irrelevant, the order in
the division loop is imposed). In general, the total memory used in reverse mode can be large, because of this. There are techniques that reduce memory usage, trading time against space, in other words, we recompute some quantities instead of saving them. In HYPERION, this is not needed.

We assume here that the code has been modified in such a way as no variable is set more than once. We construct here an SLP that computes the derivative. As in the direct case, we consider variables x^{\prime}, y^{\prime} and z^{\prime} with the same size as x, y and z, and we still define $W=\left(x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right)$. The SLP will have $n+m$ input variables $x, y^{\prime}, n+m$ output variables y, x^{\prime} and $2 p$ local variables $\left(z, z^{\prime}\right)$. It has a certain number of function calls.

By definition of the input and output variables, the equivalent of (4.5.b) and (4.5.c) is

$$
\begin{align*}
g_{0}: \mathbb{R}^{n+m} & \rightarrow \mathbb{R}^{2 N} \\
\left(x, y^{\prime}\right) & \rightarrow\left(x, 0,0,0, y^{\prime}, 0\right) \tag{4.11.1}
\end{align*}
$$

and

$$
\begin{align*}
g_{l}: \mathbb{R}^{2 N} & \rightarrow \mathbb{R}^{n+m} \\
\left(x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right) & \rightarrow\left(y, x^{\prime}\right) \tag{4.11.2}
\end{align*}
$$

The first q function calls are

$$
\begin{equation*}
G_{i}=F_{i} \quad(1 \leq i \leq q) \tag{4.11.3}
\end{equation*}
$$

There are some additional function calls. For each i, for $q, q-1$, down to 1 , if the function f associated to f_{i} has k input variables, we have $k+1$ function calls $G_{i j}$. Each function call has the form

$$
\begin{gather*}
W_{t_{j}+N}^{\prime}=\left(1-\delta_{t_{0} t_{j}}\right) W_{t_{j}+N}+\frac{\partial f}{\partial x_{j}}(W) \cdot W_{t_{0}+N} \tag{4.11.4}\\
W_{i}^{\prime}=W_{i} \text { if } i \notin\left\{t_{0}+N, t_{1}+N, \ldots, t_{k}+N\right\} \tag{4.11.5}
\end{gather*}
$$

If we compose, we get

$$
\begin{equation*}
W^{\prime}=G_{i, 0} G_{i, 1} G_{i, 2} \cdots G_{i, k}(W) \tag{4.11.6}
\end{equation*}
$$

We added a function call $G_{i 0}$ that corresponds to $j=0$, the output of f. The partial derivative of f with respect to this variable is zero, so that (4.11.4) gives $W_{t_{0}+N}^{\prime}=0$. Note: in most of the cases, this equation is useless, and will be omitted (it is useless in case $W_{t_{0}+N}^{\prime}=0$ is not used).

Assume first that t_{0} is not an input variable. Then $\delta_{t_{0} t_{j}}$ is zero, so that (4.11.4) just increments $W_{t_{j}+N}^{\prime}$ by the partial derivative of f, with respect to x_{j}, multiplied by $W_{t_{0}+N}$. On the other hand, in the case where t_{0} is an input variable, if $t_{0}=t_{j}$, equation (4.11.4) just means: replace $W_{t_{0}+N}^{\prime}$ by the partial derivative of f, multiplied by $W_{t_{0}+N}$. It can happen that t_{0} is used more than once as an input variable. Then we replace $W_{t_{0}+N}$ by the sum of all partial derivatives, multiplied by $W_{t_{0}+N}$. In these cases, we do not replace $W_{t_{0}+N}$ by zero at the end. Note: one difficulty when trying to differentiate a function call, like call $f(x, y, z)$ in Fortran, is that we do not know which variables are input variables, and in the case of arrays, which part of the array is an input.

Example: the derivative, in reverse mode of $y=a b$ is $a^{\prime}+=b y^{\prime}, b^{\prime}+=a y^{\prime}$ and $y^{\prime}=0$. The derivative of $y+=a b$ is $a^{\prime}+=b y^{\prime}, b^{\prime}+=a y^{\prime}$. (We assume here that a, b and y are three different variables).

Note: the derivative of $y=a / b$ is a priori $a^{\prime}+=y^{\prime} / b, b^{\prime}-=a y^{\prime} / b^{2}, y^{\prime}=0$. We can write this as $t=y^{\prime} / b, a^{\prime}+=t, b^{\prime}-=y t$. Hence one additional multiplication and one additional division are required. An additional variable t is used. In the code, it will be tmp.

Theorem 34

The SLP defined by equations (4.11) takes as input (x, y^{\prime}) and computes $y=f(x)$ and $x^{\prime}=\nabla f^{t}(x) \cdot y^{\prime}$. If T multiplications are required for computing f, then this SLP uses $3 T$ multiplications.

This theorem was first stated in [14] as: if $f\left(x_{1}, \ldots, x_{n}\right)$ is a polynomial function of n variables, and can be computed in time T, then f and all its partial derivatives can be computed in times less than $3 T$. This remains true in the case of division (see results at the end of the next chapter; the ratio is bit larger than 3 , because we recompute some quantities, instead of saving them).

Caveat: In the case where a variable is modified more than once in the original code, you can either use the same technique, storing what is necessary (this costs memory) or recomputing it (this costs time). Note that, in the code of the matrix multiplication $C=A B$ given above, we can pretend that $C_{i j}$ is only modified once.

4.2.5 Complex numbers

Nothing special happens in direct mode if we replace real numbers by complex numbers. However, in reverse mode, if $y=a b, b$ is constant, then the mapping $a \rightarrow y$ is linear. Its matrix is the matrix $\left(\begin{array}{cc}u & -v \\ v & u\end{array}\right)$, in case $b=u+i v$. If we transpose this matrix, we obtain the matrix of the multiplication by the complex conjugate of b. This means that the code of the derivative contains functions calls that do not appear in the initial code. There is another technique, in which the derivative of the product $a b$ does not involve complex conjugates. These appear nevertheless, when a couple of real numbers is transformed into a complex number.

In the following table we give the derivatives in reverse mode of some usual cases. Here $R(z)$ and $I(z)$ are the real and imaginary parts of z, while $C(a, b)$ is the function that computes $a+i b$.

$$
\begin{array}{rl}
y=C(a, b) & a^{\prime}+=R\left(y^{\prime}\right), b^{\prime}+=I\left(y^{\prime}\right), y^{\prime}=0 \\
a=R(y) & y^{\prime}+=C\left(a^{\prime}, 0\right), a^{\prime}=0 \\
b=I(y) & y^{\prime}+=C\left(0, b^{\prime}\right), b^{\prime}=0 \\
y=\bar{z} & z^{\prime}+=\overline{y^{\prime}}, y^{\prime}=0 \\
y=a+b & a^{\prime}+=y^{\prime}, b^{\prime}+=y, y^{\prime}=0 \\
y=a b & a^{\prime}+=\bar{b} y^{\prime}, b^{\prime}+=\bar{a} y^{\prime}, y^{\prime}=0 \\
y=\bar{a} b & a^{\prime}+=b \bar{y}^{\prime}, b^{\prime}+=a y^{\prime}, y^{\prime}=0 \\
y+=|a|^{2} & a^{\prime}+=2 a \Re\left(y^{\prime}\right) \\
y=a / b & t=a / b, t^{\prime}=y^{\prime} / \bar{b}, a^{\prime}+=t^{\prime}, b^{\prime}-=\bar{t} t^{\prime}, y^{\prime}=0 \tag{4.12.10}
\end{array}
$$

4.2.6 Matrices

Nothing special happens here, essentially because we shall replace operations on matrices by operations on the entries of the matrices. It is however noteworthy to see that, in reverse mode, the derivative of the matrix product $Y+=A B$ is

$$
\begin{equation*}
A^{\prime}+=Y^{\prime} B^{*} \quad B^{\prime}+=A^{*} Y^{\prime} \tag{4.13}
\end{equation*}
$$

Recall that A^{*} is the transpose conjugate of A.

4.2.7 The case of polynomials

One can notice that, if $t_{n m}(X)$ is the remainder by z^{n+1} of the quotient of X by z^{m}, then the derivative in reverse mode of the polynomial product $Y+=A B$, where A has degree n and B has degree m, is

$$
\begin{equation*}
A^{\prime}+=t_{n m}\left(\tilde{B} Y^{\prime}\right) \quad B^{\prime}+=t_{m n}\left(\tilde{A} Y^{\prime}\right) \tag{4.14}
\end{equation*}
$$

This relation is not used (essentially because $\tilde{B} Y^{\prime}$ contains useless terms).
The case of division of polynomials is interesting. We leave it as an exercise to the reader to show that the following pseudo C code

```
void division(A,q,B,R)
{
    for(i=0;i<=n+m;i++)
            R[i] = A[i];
    for(i=0;i<=m;i++) {
        t = R[n+m-i] / q[n];
            B[m-i] = t;
            for(j=0;j<n;j++)
                R[m-i+j] -= t*q[j];
    }
}
```

computes in B and R the quotient and the remainder of the division of A by q, assuming that q is of degree n, and B of degree m (i.e. A is of degree $n+m$). The exact C code can be found later, by instantiation of the algorithm shown later in this chapter. Differentiating in reverse mode gives something like

```
void division_prime(...)
{
    for(i=m;i>=0;i--) {
            t = B[m-i];
            t' = B'[m-i];
            for(j=0;j<n;j++) {
                    t' = q[j]+ R'[m-i+j]; /* H */
                    q'[j] -= t*R'[m-i+j]; /* H */
            }
            B'[m-i] = t';
            t' = t'/q[n]; /* H */
            R'[n+m-i] -= t';
            q'[n] -= t*t'; /* H */
    }
}
```

In the complex case, we have to replace the factors of t ' and R ' $[m-i+j]$ by their complex conjugates in the lines with the comment ' H '. For the exact code, see table 4.12.

If we differentiate $A=B q+R$ in direct mode, we get

$$
\delta A-B \delta q=q \delta B+\delta R
$$

This means that δB and δR are the quotients and remainder in the division by q of $\delta A-B \delta q$.
If we differentiate in reverse mode, strange things happen. Assume $A=\sum a_{k} z^{k} B=\sum b_{k} z^{k}$ and $q=z-\beta$. Define c_{i} by $c_{0}=$ and $c_{i+1}=b_{i}$. Then

$$
c_{i}=\sum_{k} a_{i+k} \beta^{k} .
$$

If we differentiate, we obtain

$$
d a_{i+k}=\beta^{k} d c_{i}, \quad d \beta=\sum k a_{i+k} \beta^{k-1} d c_{i}
$$

The first equation can be written as

$$
d A=\frac{d R+z d B}{1-z \beta}+o\left(z^{n}\right)
$$

where the notation $o\left(z^{n}\right)$ means that $d A$ is the truncation to n terms of the long division of the numerator by the denominator.

If we denote by $A^{(k)}(\beta)$ the derivative, evaluated at β of the quotient of A by z^{k}, then

$$
d \beta=\sum A^{(k)}(\beta) d c_{k}
$$

There is no general and simple formula for $d q$. However $d A$ is defined by

$$
\tilde{q} d A \bmod d_{A}=\tilde{q} d R \bmod d_{A}+z^{n} d B
$$

In this expression, $\tilde{q} d A \bmod d_{A}$ is the truncation of the product $\tilde{d} A$ with as many terms as A.
Note that the situation is easier in the case of matrix inversion: the derivative in direct mode of $Y=X^{-1}$ is $\delta Y=-Y \delta X Y$, and the derivative in reverse mode is $d X=-Y^{*} d Y Y^{*}$.

4.3 The WEB system

Assume that we have a function f. For instance $y=f(x)$, where $z=(x+1)^{2}$ and $y=(z+2)^{2}$. Our differentiator generates the code of the function and its derivative. In the reverse mode of differentiation, we have to generate the following

```
z = (x+1)*(x+1); /* (E1) */
y = (z+2)*(z+2); /* (E2) */
dz = 2*(z+2)*dy; /* (E3) */
dx = 2*(x+1)*dz; /* (E4) */
```

The differentiator handles the first assignment $z=(x+1)^{2}$, then the second $y=(z+2)^{2}$, and generates the four lines $\left(E_{i}\right)$ in the order $\left(E_{1}\right),\left(E_{4}\right),\left(E_{2}\right)$ and $\left(E_{3}\right)$, and we have to put them in the right order. There are three possible strategies:

- reordering done by the differentiator,
- reordering done by the C code,
- reordering done by an external program.

In general, automatic differentiators do the re-ordering. This means that they have to memorise the whole code. Reordering can also be done by the C program, as shown here (push and pop are macros that push and pop a value on a stack).

```
push(0);
z = (x+1)*(x+1); /* (E1) */
push(1);
y = (z+2)*(z+2); /* (E2) */
push(2);
for(;;) {
    switch(pop()) {
        case 1:
dx = 2*(x+1)*dz; /* (E4) */
        break;
        case 2:
dz = 2*(z+2)*dy; /* (E3) */
            break;
        default:
            goto done;
    }
}
done:;
```

Note that in this example, the differentiator still has to memorise the whole code. However, this is the easiest way to handle the case of wild transfer of control. We do not know the loss of performance of such a scheme for a real program. See for instance [7]; in this test case the overhead of memory management (execution stack and data stack) is so great that comparison with other methods is uneasy.

We have chosen the last solution. The external program is called ctangle, which is a part of the CWEB system. The description of CWEB can be found for instance in [12, 15]. Note that the WEB system was designed by Knuth for $\mathrm{T}_{\mathrm{E}} \mathrm{X}$, and the hyperion software is entirely written in WEB. The only feature we use here is the macro expansion system: the differentiator generates some macros (called sections), and tangle re-arranges the code. An associated program, weave, pretty prints the source code, expanding all $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ macros.

This is the code of our function, in WEB format.

```
@ This is the code of the function $f$, defined by equation \ref{the-equation}.
@u double f (double x)
{
    double y,z;
    @<First part of f@>
    @<Second part of f@>
    return y;
}
```

And this is now the code of the derivative.

```
@ This is the code of the derivative of $f$ in reverse mode.
@u double fprime (double x,double dy)
{
    double y,dx,z,dz;
    @<First part of f@>
    @<Second part of f@>
    @<Second part of derivative of f@>
    @<First part of derivative of f@>
    return y;
}
```

Our differentiator generates now, for the part $z=(x+1)^{2}$:

```
@ @<First part of f@>=
    z = (x+1)*(x+1);
@ @<First part of derivative of f@>=
    dx = 2*(x+1)*dz;
    dz = 0;
```

and for the part $y=(z+2)^{2}$:

```
@ @<Second part of f@>=
    y = (z+2)*(z+2);
@ @<Second part of derivative of f@>=
    dz = 2*(z+2)*dy;
    dy = 0;
```

If we put these sections together, tangle gives us the following C code. (note the \#line commands and the //:N comments: they are very useful for debugging; we removed them in the code of fprime).
//1:

```
#line 2 "toto.web"
double f(double x)
{
double y,z;
//3:
#line 18 "toto.web"
#line 19 "toto.web"
z= (x+1)*(x+1);
//:3
#line 5 "toto.web"
//5:
#line 23 "toto.web"
#line 24 "toto.web"
y= (z+2)*(z+2);
//:5
#line 6 "toto.web"
return y;
}
//:1
//2:
double fprime(double x,double dy)
{
double y,dx,z,dz;
z= (x+1)*(x+1);
y= (z+2)*(z+2);
dz= 2*(z+2)*dy;
dy= 0;//:6
dx=2*(x+1)*dz;
dz= 0;
return y;
}
```


4.4 Naming scheme

A very important point in automatic differentiation is the naming scheme that will be used. We have to give a name to functions, variables, and sections. If the name of the section that computes $z=(x+1)^{2}$ is 'First part of f ', then we must generate automatically the name associated to the derivative of the section. Getting 'First part of derivative of f ' is not trivial. For this reason, we shall use 'First part of f, diff' instead, i.e. we add the mode name, as defined in table 4.1. We have four modes, because we compute ψ, ψ^{\prime} and $\psi^{\prime \prime}$, and the derivative of ψ has to be computed twice (see later). The name 'diff' is for differentiation in reverse mode, the name 'delta' for differentiation in direct mode.

Table 4.1: Table of modes

	mode name	variable prefix	name
0	direct	(no prefix)	x
1	diff	d	$d x$
2	delta	delta_	δx
3	delta diff	delta_d	$\delta d x$

Table 4.2: Table of precisions

C type	precision name	precision	suffix
double	double	8 bytes	D
SLD	SLD	20 bytes	S
complex	complex	16 bytes	C
SLD_complex	SLD complex	40 bytes	SC

The derivative of a variable x cannot be called x^{\prime}, because this is an illegal name in C. For this reason, we add a prefix, and use $d x$. When we differentiate in direct mode, we add another prefix, and use δx. Finally, if we differentiate twice, we add a double prefix $\delta d x$. Of course, δ is not a valid letter in C , so that the real name will be delta_dx.

Consider the simple equation:

$$
\begin{equation*}
c+=a b . \tag{4.15.a}
\end{equation*}
$$

The derivative in reverse mode is

$$
\begin{equation*}
a^{\prime}+=b c^{\prime}, \quad b^{\prime}+=a c^{\prime} . \tag{4.15.b}
\end{equation*}
$$

Differentiating again gives

$$
\begin{equation*}
c^{\prime \prime}+=b a^{\prime \prime}, \quad a^{\prime}+=c^{\prime} b^{\prime \prime}, \quad b^{\prime}+=c^{\prime} a^{\prime \prime}, \quad c^{\prime \prime}+=a b^{\prime \prime} . \tag{4.15.c}
\end{equation*}
$$

No naming scheme is applied here, so that we have two different variables with the same name a^{\prime} (and the same for b^{\prime}). In fact, one a^{\prime} is $\partial a / \partial x_{i}$, and the other is $\partial a / \partial x_{j}$ if we compute row i, column j of the Hessian. Note that the Hessian is computed by differentiating in direct mode the code of ψ^{\prime}, which is computed by differentiating in reverse mode the code of ψ. Differentiating (4.15.b) in direct mode gives

$$
\begin{equation*}
a^{\prime \prime}+=b^{\prime} c^{\prime}+b c^{\prime \prime}, \quad b^{\prime \prime}+=a^{\prime} c^{\prime}+a c^{\prime \prime} \tag{4.15.d}
\end{equation*}
$$

If we use the naming scheme shown above, we get

$$
\begin{gather*}
d a+=b d c, \quad d b+=a d c \tag{4.15.e}\\
\delta d a+=\delta b d c+b \delta d c, \quad \delta d b+=\delta a d c+a \delta d c \tag{4.15.f}\\
\delta c+=\delta a b+a \delta b \tag{4.15.g}
\end{gather*}
$$

There is no more ambiguity in these equations.
For some reasons, computation in double precision is not precise enough. This means that we need quadruple precision. Moreover, we want our algorithms to work in the real and complex case. This means that each formula is implemented four times. In table 4.2, we give for each precision its name (this name will be added to section names), the suffix to add to the functions we generate or call, and also to the name of some global variables, and the the number of bytes of memory used by each type. Each entry in this table is in one of the Lisp arrays precision_names, prec_types, types-vector.

4.5 Web interface

From now on, we shall give the source of the code of the differentiator, and everything else that is needed. The code uses a number of global variables that are not shown here (for instance the tables shown before are implemented as some vectors). We have also some variables, at-start, at-equal and at-semi that contain the quantities @<, @>= and @>@;

Each piece of code we generate exists for each mode, each precision. In general, each section has the form: @<some title, current mode, current precision @>. The next function generates a section definition, it takes the current mode and precision from global variables. The show-usage function prints a dot on the terminal after every ten calls.

```
(defun :decl-sec (T comm)
    (show-usage)
    (print "@ " comm)
    (print at-start T (vref mode_names mode) (vref precision_names prec) at-equal)
```

The same, without comments.

```
(defun decl-sec (T)
    (show-usage)
    (print "@ @<" T (vref mode_names mode) (vref precision_names prec)
            at-equal))
```

This one is when we use a section.

```
(defun use-sec (T)
    (print at-start T (vref mode_names mode) (vref precision_names prec)
    at-semi))
```

These two functions are used in case the section is mode-independent (depend only on the current precision).

```
(defun decl-sec0 (T prec)
    (show-usage)
    (print "@ @<" T (vref precision_names prec) at-equal))
(defun use-sec0 (T prec)
    (print at-start T (vref precision_names prec) at-semi))
```

Case where the name is independent of the precision. We add a dot at the end of the name, because it is not possible to have two sections A and B such that A is a prefix of B.

```
(defun decl-sec1 (T mode)
    (show-usage)
    (print "@ @<" T (vref mode_names mode) "." at-equal))
(defun use-sec1 (T mode)
    (print at-start T (vref mode_names mode) "." at-semi))
```

According to (4.12.6), in the complex case, the first equation of (4.15.f) is

$$
\begin{equation*}
\delta d a+=\overline{\delta b} d c+\bar{b} \delta d c \tag{4.16.a}
\end{equation*}
$$

We replace this by

$$
\begin{equation*}
\delta d a+=\overline{\delta b} d c, \quad \delta d a+=\bar{b} \delta d c \tag{4.16.b}
\end{equation*}
$$

Let $f(x, y, z)$ be the function (or macro) that replaces z by $z+\bar{x} y$. Then we have

$$
\begin{equation*}
f(\delta b, d c, \delta d a), \quad f(b, \delta d c, \delta d a) \tag{4.16.c}
\end{equation*}
$$

The C code we generate is:

Table 4.3: Operator table

opcode	arguments	meaning	num	db
$\mathbf{+}$	(a, b, c)	$c+=a b$	0,1	15
-	(a, b, c)	$c-=a b$	1,0	15
$\mathbf{-}^{+}$	(a, b, c)	$c+=\bar{a} b$	2,3	15
$\mathbf{-}$	(a, b, c)	$c-=\bar{a} b$	3,2	15
$/$	(a, b, c)	$c=a / b$	4	15
$\mathbf{-}$	(a, b, c)	$c=a / \bar{b}$	5	15
$=$	(a, b)	$b=a$	6	
$1 *$	(a, b)	$b+=\|a\|^{2}$	7,12	16
$2 *$	(a, b, c)	$c+=2 \Re(\bar{a} b), c$ real	8,13	17
$3 *$	(a, b, c)	$c+=2 a b, b$ real	9,14	18
++	(a, b, c)	$c=a+b$	10	
--	(a, b, c)	$c=a-b$	11	

```
c_add_mult_conj_mac(delta_b,dc,delta_da);
c_add_mult_conj_mac(b,delta_dc,delta_da);
```

In C++, this becomes

```
delta_da.add_mul_conj(delta_b,dc);
delta_da.add_mul_conj(b,delta_dc);
```

Instead of using a C macro, we can use a Lisp macro, or a Web macro. It happens that every function call generated by the differentiator has this form (maybe with two arguments). The complete list (using the C names) is given in table 4.4. As seen in the previous case, we can use a C++ method, instead of a function call.

Each function in this table is identified by its row and column index. The column index is the current precision. The row index is specified by Table 4.3. In this one, 'opcode' is a 1 or 2 character opcode that identifies the function. We show the arguments of the function, the meaning, and a number. For instance, the function f above has opcode _+. Its number is two. There is a second number, 3 , that corresponds to the same operation, with $+=$ and $-=$ exchanged (this is needed in order to implement equation (2.58)). Last column was only used for debugging.

4.6 Parsing arguments

What we have to differentiate is

$$
\begin{equation*}
G \tilde{D}=V q+R, \quad \psi=\|V\|^{2} \tag{4.17}
\end{equation*}
$$

or the modified version of it

$$
\begin{gather*}
G=V_{1} q+R_{1} \quad R_{1} \tilde{D}=V_{2} q+R_{2} \tag{4.18.a}\\
\psi=\|F\|^{2}-\left\|R_{1}\right\|^{2}+\left\|V_{2}\right\|^{2} \tag{4.18.b}
\end{gather*}
$$

and the Schur formulas (4.4) on page 102.
The operations that are used in these formulas are addition, multiplication and division of matrices. We also need the tilde operator. Note that an expression like \tilde{x} appears in four cases

- In (4.4), \tilde{D}_{A} and \tilde{D}_{B} are just funny names, no tilde operation is required.
- We have $\underset{\sim}{b}=(z-\omega)(1-\bar{\omega})$ and $\tilde{b}=(1-z \bar{\omega})(1-\omega)$. These quantities are constant. We could just say that \tilde{b} is another funny name. As explained below, \tilde{b} is not used in the code. [Note: constant means independent of y, not of z.]

Table 4.4: Operators

double	SLD	complex	SLD complex
double_add_mul	SLD_add_mul	c_add_mult_mac	SLD_add_mul_c
double_sub_mul	SLD_sub_mul	c_sub_mult_mac	SLD_sub_mul_c
double_add_mul	SLD_add_mul	c_add_mult_conj_mac	SLD_add_mult_conj
double_sub_mul	SLD_sub_mul	c_sub_mult_conj_mac	SLD_sub_mult_conj
double_div	SLD_div	c_div_mac	SLD_cmplx_div
double_div	SLD_div	c_div_conj_mac	SLD_div_conj
double_set	SLD_copy	double_set	SLD_cmplx_copy
double_square	SLD_square	cmplx_square	SLD_cmplx_square
double_2times	SLD_2times	cmplx_2times	SLD_cmplx_2times
double_2times	SLD_2times	cmplx_2times_r	SLD_cmplx_2times_r
double_add_mac	SLD_add	cmplx_add_mac	SLD_cmplx_add
double_sub_mac	SLD_sub	cmplx_sub_mac	SLD_cmplx_sub
double_square_neg	SLD_square_neg	cmplx_square_neg	SLD_cmplx_square_neg
double_2times_neg	SLD_2times_neg	cmplx_2times_neg	SLD_cmplx_2times_neg
double_2times_neg	SLD_2times_neg	cmplx_2times_r_neg	SLD_cmplx_2times_r_neg

- In the scalar case, we have $D=q$. Thus, we have to compute \tilde{q}. We do not use automatic differentiation in the scalar case.
- Lemma 36 shows that the division in (4.4) is exact. In the case $p=2$, we have $Y / q_{A}=\tilde{q}_{A}\left(u y^{*}-y^{*} u\right)$. Thus, we have to compute the product of the scalar \tilde{q} by the matrix $u y^{*}-y^{*} u$.

Since b is a polynomial of degree one, it has the form $b_{0}+b_{1} z$, so that $\tilde{b}=\bar{b}_{1}+\bar{b}_{0} z$. Let $b_{2}=b-\tilde{b}$ and $b_{4}=b-\tilde{b}\|y\|^{2}$. Computing b_{2} and b_{4} is done using a special piece of code (see section 4.11.7). Note that b and \tilde{b} are used only through b_{2} and b_{4} (we shall see later that the array B holds b_{0} and b_{1} at locations 0 and 1 , the coefficients of b_{2} at location 2 and 3 , the coefficients of b_{4} at locations 4 and $5,\|y\|^{2}$ at location 6 , and $y^{*} u$ at location 7 ; this explains the names b_{2} and b_{4}).

Now, a careful examination shows that the only operations that are needed are those define in table 4.5, namely

- $c+=\|a\|^{2}$. This operation is called ψ, because it is only used to compute ψ. We take advantage of the fact that $d \psi=1$ when we differentiate this in reverse mode.
- $c+=a b$, where a is a scalar and b a matrix. This appears in $y^{*} D u D$, where the scalar is $y^{*} D u$ and the matrix is D.
- $c+=\tilde{a} b$, where a is a scalar and b a matrix (with $a=q, b=u y^{*}-y^{*} u$).
- $c=a / b$. This operation replaces a by the remainder of the Euclidean division of a by b, and puts the quotient in c. There are three divisions, in one case we use the remainder, otherwise the quotient.
- $c+=a \tilde{b}$ or $c+=\tilde{a} b$. It happens that \tilde{a} and \tilde{b} are independent of z, so that only $c+=a b^{*}$ and $c+=a^{*} b$ are needed.
- $c+=a b$. Here and in the previous case, a and b are matrices or vectors (we exclude the case: scalar times matrix). Moreover, c has the same size and degree as the product $a b$.
- The same with $-=$ instead of $+=$.
- Initialisation (in general to zero, but the initial value of ψ is $\|G\|^{2}$, i.e. one). This operation is not in the table.

Note that (4.4.1) is

$$
q_{B}=b_{4} q_{A}-b_{2} y^{*} D_{A} u
$$

using the notations b_{2} and b_{4} defined above. We compute first $y_{D}=y^{*} D$, then $E=y_{D} u$ (we explained in the introduction why we compute it this way, and not the other way). We initialise q_{B} to zero, add $b_{4} q_{A}$ and subtract $b_{2} E$. The first computation is done by

$$
\begin{equation*}
\operatorname{diff}\left([y, T], D, y_{D}\right) \tag{4.19.a}
\end{equation*}
$$

and the last by

$$
\begin{equation*}
\operatorname{diff}\left(\left[b_{2},-\right], E, q_{A}\right) \tag{4.19.b}
\end{equation*}
$$

Here 'diff' is our differentiator. It takes four arguments, the last being the name of the section to generate (not indicated here). The third argument is a name. The first two arguments are a bit special: they consists of lists of 4 or more elements: name of a variable, first dimension, second dimension, degree. We have some flags: in (4.19.a) we have a flag that says that we use y^{*}, and in (4.19.b) a flag that says that subtraction should be used instead of addition. In table 4.17 on page 162 , the first row is equation (4.19.a), while equation (4.19.b) is 'new $\mathrm{q}, 2^{\prime}$ (the quantity $b_{4} q_{A}$ is computed by 'new $\mathrm{q}, 1$ '). The parser puts the flags into global variables. The next function clears these globals.

```
(defun :initialise-diff ()
    (setq :transpose-a ())
    (setq :transpose-b ())
    (setq :neg-a ())
    (setq :invert-b ())
    (setq :compute-psi ())
    (setq :constant-flag 0)
    (setq :the-case 0))
```

This is the differentiator. The code is very simple, because split into two parts. The first part checks that the operation is well-defined and finds what to do (function :check-mat-prod). The second part (:print-code) differentiates the code, essentially by replacing in a table every name by its value.

As said above, the first arguments x and y are lists that contain at least four elements. These will be put into two tables : param_a and : param_b, remaining stuff will be in global variables. The third $\operatorname{argument} z$ is a name. We put it in :param_c. The first part will fill completely this vector and return it as a list. Thus the result of the function is a valid argument to itself.

```
(defun differentiate (x y z title)
    (let (res)
        (vset :param_c 0 (catenate z))
        (setq res (:check-mat-prod x y))
        (print "@ Code of \\verb!" x "! and \\verb!" y "!")
        (print "into \\verb!" res "!.")
        (:print-code :the-case title (vref :patterns-name :the-case))
        res))
```

Each element A and B is a list of 4 mandatory parameters, and some optional flags. The mandatory parameters are: the name of the variable, put in A_{0}, the first and second dimensions (put in A_{1} and A_{2}), and the degree put in A_{3}.

This is the start of the function check-mat-prod: fetch mandatory parameters, and put them into global variables. For simplicity of use, if y is a list that represents a variable, and T is the 'transpose' flag, we accept $[y, T]$ (a list of two elements) as argument to the function (see equation (4.19.a)). This explains the test if (consp (car x)).

```
(defun :check-mat-prod (x y)
    (:initialise-diff)
    (if (consp (car x)) (setq x (append (car x) (cdr x))))
```

```
(if (consp (car y)) (setq y (append (car y) (cdr y))))
(vset :param_a 0 (catenate (car x)))
(setq x (cdr x))
(vset :param_a 1 (catenate (car x)))
(setq x (cdr x))
(vset :param_a 2 (catenate (car x)))
(setq x (cdr x))
(vset :param_a 3 (catenate (car x)))
(setq x (cdr x))
(vset :param_b 0 (catenate (car y)))
(setq y (cdr y))
(vset :param_b 1 (catenate (car y)))
(setq y (cdr y))
(vset :param_b 2 (catenate (car y)))
(setq y (cdr y))
(vset :param_b 3 (catenate (car y)))
(setq y (cdr y))
```

Second part of check-mat-prod: fetch optional parameters.

```
(when (and (consp x) (equal (catenate (car x)) "transpose"))
    (setq :transpose-a true x (cdr x)))
(when (and (consp x) (equal (catenate (car x)) "neg"))
    (setq :neg-a true x (cdr x)))
(when (and (consp x) (equal (catenate (car x)) "constant"))
    (setq :constant-flag 1 x (cdr x)))
(when (and (consp y) (equal (catenate (car y)) "transpose"))
    (setq :transpose-b true y (cdr y)))
(when (and (consp y) (equal (catenate (car y)) "div"))
    (setq :invert-b true y (cdr y)))
(when (and (consp y) (equal (catenate (car y)) "psi"))
    (setq :compute-psi true y (cdr y)))
(when (and (consp y) (equal (catenate (car y)) "constant"))
    (setq :constant-flag (+ 2 :constant-flag) y (cdr y)))
```

Last part of check-mat-prod: check and construct the result.

```
(:construct-deg)
(:construct-result)
(list (vref :param_c 0)(vref :param_c 1)(vref :param_c 2)(vref :param_c 3)))
```

The flags are used in the following way: first, we put in constant-flag an integer: 0 means that A and B are variable, 1 means that A is constant, 2 means that B is constant, and 3 means that A and B are constant (this happens rarely). Other flags (transpose, div, psi) are denoted by T, D and ψ in Table 4.5. These define the operation to be applied, which is characterised by a pattern name (and a pattern number). If neg-a is true, then $+=$ should be replaced by $-=$.

In the case D, we assume that a is a matrix of polynomials or a polynomial, and b a polynomial. We compute $a=b q+r$, by Euclidean division, where the quotient q is put in c, and the remainder in a. In the case ψ, we compute $\psi+=\|a\|^{2}$, where ψ is a real number. In all other cases, the operation is $c+=f(a, b)$, or $c-=f(a, b)$. The minus sign is chosen if the flag N appears in A. After the type of the operation is fetched, we compute the size and dimension of the result, and check that the operation is valid: if we multiply matrix a by matrix b, then the second dimension of a must be the first dimension of b. Exception: we allow the product of a scalar by a square matrix. The next function computes the size of the result (and the degree in the case ψ), and fills the variable the-case, which is the pattern to apply. Note: we cannot compute $u y^{*}-y^{*} u$ (scalar plus matrix); we explain later how this can be done.

```
77 (defun :construct-result ()
78 (let ((dim1a (vref :param_a 1))
```

Table 4.5: How flags determine the operation

Flags for A	flags for B	operation	pattern	comments		
none	ψ	$c+=\\|a\\|^{2}$	ψ	name and dimensions of B ignored		
none	none	$c+=a b$	S	if a is scalar, b a square matrix		
T	none	$c+=\tilde{a} b$	$S T$	if a is scalar, b a square matrix		
none	D	$c=a / b$	D	b must be a scalar		
none	T	$c+=a \tilde{b}$	T_{b}	a and b are vectors		
T	none	$c+=\tilde{a} b$	T_{a}			
none	none	$c+=a b$	N			

```
    (dim2a (vref :param_a 2))
            (dim1b (vref :param_b 1))
            (dim2b (vref :param_b 2)))
(vset :param_c 1 dim1a) ; values OK for pattern N
(vset :param_c 2 dim2b)
(cond (:compute-psi
            (vset :param_c 1 "1")
            (vset :param_c 2 "1")
            (vset :param_c 3 "0")
            (setq :the-case 5))
            ((and (equal dim1a "1") (equal dim2a "1") (equal dim1b dim2b))
                    (vset :param_c 1 dim1b)
                    (setq :the-case (if :transpose-a 4 3)))
            (:invert-b
                (vset :param_c 2 dim2a)
                    (setq :the-case 6))
            (:transpose-b
                    (if (or (not (equal dim2b "1"))(not (equal dim2a "1")))
                        (error 'diff "bad transpose" ()))
                (vset :param_c 1 dim1a)
                (vset :param_c 2 dim1b)
                (setq :the-case 2))
                (:transpose-a
                    (if (not (equal dim1a dim1b))
                    (error 'diff "bad" "dim"))
                    (vset :param_c 1 dim2a)
                    (setq :the-case 1))
            (true
                    (if (not (equal dim2a dim1b))
                    (error 'diff "bad" "dim"))
                    (setq :the-case 0)))))
```

The next function computes the degree of the result. It is called before the preceding function, and does not compute the degree in the case of ψ. Moreover, in the case $c=a / b$ (Euclidean division of a by $b)$, it checks that b is a scalar, of non-zero degree.

```
(defun :construct-deg ()
    (let ((dega (vref :param_a 3)) (degb (vref :param_b 3)))
        (if :invert-b
            (progn
                (when (or (not (equal (vref :param_b 1) "1"))
                        (not (equal (vref :param_b 2) "1"))
                        (equal degb "O"))
```

```
117 (error 'diff "illegal parameters" 0))
118 (vset :param_c 3 (:deg-sub dega degb)))
119 (vset :param_c 3 (:deg-add dega degb)))))
```

In some cases, it is important to know that the result has zero degree. Hence the following function thats computes the sum of two degrees.

```
(defun :deg-add (a b)
    (cond ((equal a "O") b)
            ((equal b "O") a)
    (true (catenate a "+" b))))
```

In the case of division, the degree of the result (the quotient) is $n-m$, and we know that $m>0$. This function gives p in case n has the form $p+m$ (typical use: we compute the remainder of $g d$ by q where d and q have the same degree).

```
(defun :deg-sub (a b)
    (let ((test true))
        (let ((i (strlen a)) (j (strlen b)) k)
            (setq k (- i j))
            (if (and (> k 0) (= (sref a (1- k)) #/+) (substring-eq a k b 0 j))
                            (substring a 0 (1- k))
                (catenate a "-" b)))))
```


4.7 The patterns

The only function to explain now is print-code. This function takes a pattern, instantiates it, and prints the result. We start with the list of patterns.

If we look at table 4.5, we see that we have three kinds of operations. The case D is a bit special, since it takes two arguments a and b, computes the quotient and remainder of the Euclidean division of a by b, puts the quotient in c, and the remainder in a. It is the only operation that modifies its input parameter (thus, if we use (4.18.a), we have to copy G somewhere). Other differences with the general case will be explained later. The case ψ is also special, because it computes ψ, the result of the function. Since $d \psi=1$, we could simplify the code (this is not yet done). In fact, the main difference with the general case is that it takes only one argument.

Consider a general pattern, for instance T_{b}. We compute $C=A \tilde{B}$, where A and B are vectors of polynomials. Let $A_{i j}$ and $B_{i j}$ be the coefficient of z^{j} of entry i of A or B. Let $C_{i j k}$ be the coefficient of z^{k} of entry (i, j) of C (if A has size n_{a} and B has size n_{b}, then C is an $n_{a} \times n_{b}$ matrix). Equation $C=A \tilde{B}$ can be written as

$$
C_{k l w}=\sum_{i+j=w} \bar{B}_{l, m-j} A_{k i}
$$

We can write this as a sequence of assignments: $C_{k l w}=0$, followed by

$$
\begin{equation*}
\forall i, j, k, l \quad C_{k l, i+j}+=\bar{B}_{l, m-j} A_{k i} . \tag{4.20}
\end{equation*}
$$

This equation is translated into the first five rows of the pattern for T_{b}. For instance, the first line is $\mathrm{k}<1 \mathrm{a}$. This line just says that $0 \leq k<n_{a}$, where n_{a} is the number of rows of A. The third line $\mathrm{i}<=3 \mathrm{a}$ says $0 \leq i \leq d_{a}$, where d_{a} is the degree of A. Thus the first four lines of the pattern give the range of the variables that are quantified in equation (4.20). The body of (4.20) itself is coded as _+ bt a c. This is a short-hand for

$$
c+=\overline{b t} a .
$$

Here $a, b t$ and c are abbreviations for $A_{k i}, B_{l, m-j}$ and $C_{k l, i+j}$, see table 4.13 on page 126.
If we differentiate equation (4.20), in direct mode, reverse mode, or twice, we get something like $\forall i, j, k, l, E$, where E is a list of assignments, and i, j, k, and l take the same values as before. For this

Table 4.6: The patterns for N

$\mathrm{k}<1 \mathrm{a}$
$\mathrm{w}<2 \mathrm{a}$
$l<2 \mathrm{~b}$
$\mathrm{i}<=3 \mathrm{a}$
$\mathrm{j}<=3 \mathrm{~b}$
+a b c
+ delta_a b delta_c
+ a delta_b delta_c
$\mathbf{-}^{+}$b dc da
$\mathbf{-}^{+}$a dc db
$\mathbf{-}^{+}$delta_b dc delta_da
$\mathbf{-}^{+} \mathrm{b}$ delta_dc delta_da
$\mathbf{-}^{+}$delta_a dc delta_db
$\mathbf{-}^{+} \mathrm{a}$ delta_dc delta_db

Table 4.7: The patterns for T_{a}

$\begin{aligned} & \mathrm{k}<2 \mathrm{a} \\ & \mathrm{w}<1 \mathrm{a} \\ & \mathrm{l}<2 \mathrm{~b} \\ & \mathrm{i}<=3 \mathrm{a} \\ & \mathrm{j}<=3 \mathrm{~b} \end{aligned}$
_+ at b ct
_+ delta_at b delta_ct _+ at delta_b delta_ct
$\begin{aligned} & ++ \text { dct b dat } \\ & + \text { at dct db } \end{aligned}$
$\begin{aligned} & \text {-+ dct delta_b delta_dat } \\ & \text {-+ delta_dct b delta_dat } \\ & \text { + delta_at dct delta_db } \\ & + \text { at delta_dct delta_db } \end{aligned}$

Table 4.8: The patterns for T_{b}

Table 4.9: The patterns for S

$l<1 \mathrm{~b} * 2 \mathrm{~b}$	
$\mathrm{i}<=3 \mathrm{a}$	
$\mathrm{j}<=3 \mathrm{~b}$	
Other lines like N	

Table 4.10: The patterns for $S T$

$\begin{aligned} & 1<1 b * 2 b \\ & i<=3 a \\ & j<=3 b \\ & \hline \end{aligned}$
_+ at b c
_+ delta_at b delta_c _+ at delta_b delta_c
$\begin{aligned} & \text { _+ }^{\mathrm{dc}} \mathrm{~b} \text { dat } \\ & +\mathrm{at} \mathrm{dc} \mathrm{db} \end{aligned}$
$\begin{aligned} & \text {-+ dc delta_b delta_dat } \\ & \text {-+ delta_dc b delta_dat } \\ & \text { + delta_at dc delta_db } \\ & \text { + at delta_dc delta_db } \end{aligned}$

Table 4.11: The patterns for ψ

$\mathrm{k}<1 \mathrm{a} * 2 \mathrm{a}$
$\mathrm{i}<=3 \mathrm{a}$
$1 *$ a cp
$2 *$ delta_a a delta_cp
$3 *$ a dcp da
$3 *$ delta_a dcp delta_da
$3 *$ a delta_dcp delta_da

Table 4.12: The patterns for D

	k < 1a * 2a
	```for(i=0;i<=, degc, ;i++) / a1 b1 tmp = tmp c2 for(j=0;j<, degb, ;j++) - tmp b2 a2```
	```for(i=0;i<=, degc, ;i++) = c2 tmp = delta_a1 delta_tmp - tmp delta_b1 delta_tmp / delta_tmp b1 delta_tmp = delta_tmp delta_c2 for(j=0;j<, degb,;j++) { - delta_tmp b2 delta_a2 - tmp delta_b2 delta_a2 }```
	```for(i=, degc, ;i>=0;i--) = c2 tmp = dc2 dtmp for(j=0;j<, degb, ;j++) { _- b2 da2 dtmp _- tmp da2 db2 } = dtmp dc2 _/ dtmp b1 dtmp ++ dtmp da1 da1 _- tmp dtmp db1```
	```for(i=, degc, ;i>=0;i--) = c2 tmp = dc2 dtmp = delta_c2 delta_tmp = delta_dc2 delta_dtmp for(j=0;j<, degb, ;j++) { _- delta_b2 da2 delta_dtmp _- b2 delta_da2 delta_dtmp _- delta_tmp da2 delta_db2 _- tmp delta_da2 delta_db2 } = delta_dtmp delta_dc2 _/ dtmp b1 dtmp _- delta_b1 dtmp delta_dtmp _/ delta_dtmp b1 delta_dtmp ++ delta_dtmp delta_da1 delta_da1 _- delta_tmp dtmp delta_db1```

reason, the pattern is split into five parts C_{i}. There is a Lisp file that contains a list of 7 patterns, one for each row of table 4.5. These are shown in the tables 4.6 to 4.12 . Each pattern is formed by 5 chunks of lines. In the Lisp file, each chunk is a list, with a name (for instance, pat-N-head, pat-N-code, etc.) and a pattern is a list of 5 lists. Chunk C_{0} is the header (describing the loops), chunk C_{i} is the code for the i th mode of derivation (direct, delta, diff, delta-diff).

The next function takes as argument the content of the whole Lisp file and interprets it.

```
(defun read-patterns1 (l)
    (let (x)
        (setq :patterns (makevector 7 ()))
        (setq :patterns-name (makevector 7 ()))
        (for (i O 1 6)
            (setq x (car l) l (cdr l))
                    (vset :patterns i (:read-one-pattern x i)))
        1))
```

If the chunk has more than one instruction, curly braces are added. In the special case of division, the opening brace is added after the first 'for' instruction (braces after the second 'for' are explicit, see table 4.12). The constants open-brace and close-brace contain these braces.

This is the code that adds braces around a chunk.

```
139 (defun :add-a-brace (1)
140 (if (not (cdr l))
141 l
142 (if (and (consp (car l)) (stringp (car (car l)))
143 (substring-eq (caar l) 0 "for" 0 3))
144 (cons (car l) (cons open-brace (append1 (cdr l) close-brace)))
145 (cons open-brace (append1 l close-brace)))))
```

This function converts the list of 5 lists, into a single list, and adds 'nil' markers between chunks. It also adds a brace wherever needed.

```
(defun :add-braces (l)
    (let (LL a b c d e)
        (setq LL (list ())) ; chunk separator
        (setq a (car l)
            b (:add-a-brace (cadr l))
            c (:add-a-brace (caddr l))
            d (:add-a-brace (cadddr l))
            e (:add-a-brace (car (cddddr l))))
        (append a LL b LL c LL d LL e LL)))
```

The next function reads a single pattern. The first element is the name of the pattern, stored in the table.

```
(defun :read-one-pattern (l i)
    (let (res)
        (setq l (:add-braces l))
        (vset :patterns-name i (car l))
        (setq l (cdr l))
        (while (car l)
                (setp p (makevector 5 ()))
                (newl res p)
                (:fetch-for-pattern (car l) p)
                (setq l (cdr l)))
            (while l
                (setq p (makevector 5 ()))
                (vset p 1 0)
```

```
168 (newl res p)
169 (:fetch-normal-pattern (car l) p)
170 (setq l (cdr l)))
171 (nreverse res)))
```

Each line in a pattern is translated into a vector of size 5. The meaning of these fields depend on whether this is chunk C_{0}, or chunk C_{i}. The first chunk C_{0} encodes the 'for' loops. For instance, if we compute the product $C=A B$, where A, B and C are matrices of polynomials, $A_{i j k}$ is the coefficient of z^{k} in row i, column j of A, we compute

$$
\begin{equation*}
C_{k l, i+j}=\sum_{w, i, j} A_{k w i} B_{w l j} \tag{4.21}
\end{equation*}
$$

for all k and l. This gives five loops. If A has degree n, then i is between 0 and n. If the first dimension is N, then k ranges between 0 and $N-1$. On the other hand, matrices are stored as in Fortran. Hence, if A is an $n \times m$ matrix, $\sum_{i=0}^{n m-1} A_{i}^{2}$ is the square of the norm of A (see table 4.11).

This example shows that we need up to five index variables. The variable n is reserved for the McMillan degree of the result. The variable m is the degree of G. The variable p is the dimension of the space (i.e. the dimension of D). For this reason, our index variables are called i, j, k, l and w. For some strange reason, they are ordered as kwlij. This piece of code puts the value on the property list of the symbol.

```
172 (putprop 'k 0 ':idx-val)
173 (putprop 'w 1 ':idx-val)
174 (putprop 'l 2 ':idx-val)
175 (putprop 'i 3 ':idx-val)
176 (putprop 'j 4 ':idx-val)
```

A loop that prints as

$$
\text { for }(i=0 ; i<n * m ; i++)
$$

may be input as $\mathrm{i}<1 \mathrm{a} * 2 \mathrm{~b}$ (note the spaces) and is internally coded as a list of five quantities p_{i}. Field p_{2} holds $<$ or $<=$, and the field p_{0} is 16 and 17 respectively ($<$ is used when the upper bound is a dimension, and $<=$ is used when the upper bound is a degree. This could be deduced automatically from the expression). Fields p_{4}, p_{3} and p_{1} encode the quantities i, n and m.

Quantities n, m that appear in the 'for' loop are dimensions and degrees. For each variable A, B, C of (4.21), we define $n_{a}, m_{a}, d_{a}, n_{b}, m_{b}$, etc., to be the first dimension, second dimension and degree. In the input, we shall use 1a, 2a, 3a instead. This is because the vector :param_a contains at location i $(1 \leq i \leq 3)$ this information. To each variable, we associate a value, formed of the index of the name, and the dimension.

```
177 (putprop '1a '(0 . 1) ':dblx-val)
178 (putprop '2a '(0 . 2) ':dblx-val)
179 (putprop '3a '(0 . 3) ':dblx-val)
180 (putprop '1b '(1 . 1) ':dblx-val)
181 (putprop '2b '(1 . 2) ':dblx-val)
182 (putprop '3b '(1 . 3) ':dblx-val)
183 (putprop '1c '(2 . 1) ':dblx-val)
184 (putprop '2c '(2 . 2) ':dblx-val)
185 (putprop '3c '(2 . 3) ':dblx-val)
```

This is the magic function, it splits the string into a list of symbols.

```
186 (defun :str-to-list (s)
187 (read-from-string (catenate "(" s ")")))
```

A 'for' loop is given in the pattern list as $i<1 a * 2 b$ or $j<=3 c$. The next function parses the given string. In the second case, the value of m is one, it is encoded by the integer 1 , instead of a dotted pair.

```
(defun :fetch-for-pattern (s p)
    (let ((aux (:str-to-list s)))
        (vset p 4 (getprop (car aux) ':idx-val))
        (setq aux (cdr aux))
        (vset p 2 (car aux))
        (if (eq (car aux) '<=)
            (vset p 0 17)
            (vset p 0 16))
        (setq aux (cdr aux))
        (vset p 3 (getprop (car aux) ':dblx-val))
        (setq aux (cddr aux))
        (if aux
            (vset p 1 (getprop (car aux) ':dblx-val))
            (vset p 1 1))))
```

Consider again the product $C=A B$. Assume now that A is a zero-degree matrix, while B is a vector. Instead of

$$
C_{k l, i+j}=\sum_{w, i, j} A_{k w i} B_{w l j}
$$

we have now

$$
\begin{equation*}
C_{k j}=\sum_{w, j} A_{k w} B_{w j} \tag{4.22}
\end{equation*}
$$

where $A_{k w}$ is entry (k, w) of $A, B_{w j}$ is the coefficient of z^{j} in entry w of B. In this example, A, B and C are objects with two indices. We get (4.22) from (4.21) by removing useless indices. Index i is useless because A has degree zero, index l is useless because the second dimension of B is one.

In general, a loop is useless if it is executed only once. Hence for ($i=0 ; i<=0 ; i++$) \{body\} can be replaced by $\mathrm{i}=0\{$ body $\}$, and we can remove i from the body, if we wish so. What we have to do is find all useless loops and their associated index (because this index is also useless). In the case of $i<1 a * 2 b$ the loop is useless if $A_{1} B_{2}$ is one; in the case of $\mathrm{j}<=3 \mathrm{c}$, this is true if C_{3} is zero. The next function checks whether a value n or m is zero or one. Here val is an integer, str the string that represents this number, and i the expression to test.

```
(defun :is-index01 (i val str)
    (if (eq i 1)
        (eq val 1)
        (equal (:dbl-index-val i) str)))
(dmd :dbl-index-val (x)
    '(vref (vref :all_param (car ,x)) (cdr ,x)))
```

If an index (i, j, etc.) appears in a useless loop the index is useless. On the other hand, if it appears in a useful loop, it is useful. We explain later what we do with the useful indices. The next function takes a 'for' loop, returns 5 if the loop is useless, and the index of the loop variable in case the loop is useful.

```
(defun :is-a-loop-useful (p)
    (if (= (vref p 0) 16) ; case <
            (if (and (:is-index01 (vref p 3) 1 "1")
                        (:is-index01 (vref p 1) 1 "1"))
            5
            (vref p 4))
        (if (= (vref p 0) 17) ; case <=
            (if (or (:is-index01 (vref p 3) 0 "0")
                        (:is-index01 (vref p 1) 0 "0"))
                        5
                (vref p 4))
            5)))
```

Given a pattern name i, this returns the list of useful indices in the pattern. We look at every element of chunk C_{0} (between C_{0} and C_{1}, there is an element with no opcode, i.e. with null p_{2}). The return value is a vector, that holds true for a given slot if the variable is useless. Note that in the case $i=6$ (division), there are two loops which are not in chunk C_{0}. For this reason we say that indices i and j are useful (in fact, they could be useless, but only if we divide a by b, where $\operatorname{deg} a<\operatorname{deg} b$ or $\operatorname{deg} b=0$, both conditions are false in our case).

```
(defun :find-useless (i)
    (let ((p (vref :patterns i))
                (res (makevector 6 true))
                k)
        (while (vref (car p) 2)
        (vset res (:is-a-loop-useful (car p)) false)
                (setq p (cdr p)))
            (when (= i 6) ; hack
                (vset res 3 false)
                (vset res 4 false))
    res))
```

Print the loops. Useless loops are not printed. There is some indentation, defined by the indent vector.

```
(defun :print-the-loops (p)
    (let (aux c j s (loop-number 0))
        (while (vref (car p) 2)
            (setq aux (car p))
            (setq p (cdr p))
            (unless (= 5 (:is-a-loop-useful aux))
                        (prin1 (vref :indent loop-number))
                        (setq loop-number (1+ loop-number))
                            (setq c (vref :template (vref aux 4)))
                            (prin1 "for(") (prin1 c) (prin1 "=0;") (prin1 c)
                                    (prin1 (vref aux 2))
                                    (setq j (vref aux 3))
                            (setq s (:dbl-index-val j))
                        (prin1 s)
                        (setq j (vref aux 1))
                        (when (consp j)
                        (setq s (:dbl-index-val j))
                        (prin1 "*") (prin1 s))
                        (print ";" c "++)")))))
```


4.8 Differentiation

Consider again the simple operation $C+=A B$. We have to generate

$$
C_{k l, i+j}=\sum_{w, i, j} A_{k w i} B_{w l j}
$$

If A is an $n \times m$ matrix, we store $A_{k w}$ in a vector at location $k+w n$, like in Fortran (but $0 \leq k<n$, $0 \leq w<m$ like in C), this avoids using 3 indirections for $A_{k w, i}$. The C code that refers to $A_{k w, i}$ is hence one of

```
a[k+w*n][i]
    a[k][i]
    a[w][i]
```

```
a[k+w*n]
    a[k]
    a[w]
    a[i]
```

(recall that some indices are useless; we assume that at least one of them is useful). Every such expression is obtained by instantiation of the string $\mathrm{X}[\mathrm{k}+\mathrm{w} * \mathrm{Y}]$ [i], which is called an abbreviation. Table 4.13 gives, for each abbreviation, its name, for instance 'a', the name of the variable (for instance 'A'), the value of the first index, and the value of the second index. Each index is encrypted as either a list of four items, or as a single integer.

Table 4.13: Table of abbreviations

	name	index1	index2	enc1	enc2
a	a	$k+w * A_{1}$	i	(0101)	4
at	a	$w+k * A_{2}$	$\operatorname{deg}(a)-i$	(022ll)	12
b	b	$w+l * B_{1}$	j	(1112)	5
bt	b	$l+w * B_{2}$	$\operatorname{deg}(b)-j$	(122ll)	23
c	c	$k+l * A_{1}$	$i+j$	$\left(\begin{array}{llll}0 & 1 & 0\end{array}\right)$	9
ct	c	$k+l * A_{2}$	$i+j$	(0202)	9
a1	a	k	$\operatorname{deg}(a)-i$	1	12
a2	a	k	$\operatorname{deg}(c)-i+j$	1	35
b1	b		$\operatorname{deg}(b)$	0	20
b2	b		J	0	5
c2	c	k	$\operatorname{deg}(c)-i$	1	32
cp	c			0	0

The next function takes as argument a list of 4 elements, for instance ($\left.\begin{array}{llll}0 & 1 & 0\end{array}\right)$ and evaluates it. The value is $k+w * A_{1}$, where A is the variable number 0 , the subscript 1 on A_{1} is the next element of the list, and variable k, w, have index 0 and 1 in the template string (kwlij). We return k if w is useless (or if A_{1} is zero), w if k is useless (since this implies $A_{1}=1$), and nil, if both are useless.

```
(defun :instantiate-big (idx useless)
    (let (j1 j2 i1 i2 T)
        (setq j1 (car idx) j2 (cadr idx) i1 (caddr idx) i2 (cadddr idx))
        (setq T (vref (vref :all_param j1) j2) )
        (if (or (= (sref T 0) #/O) (vref useless i2))
            (if (vref useless i1)
                        ()
                        (vref :template i1))
            (if (vref useless i1)
                        (vref :template i2)
                        (catenate (vref :template i1) "+" (vref :template i2) "*" T)))))
```

The next function takes as argument an integer or a list. See table 4.13 for the meaning of the different codes. These codes are generated in the following way: the code for i, j and k is one more than the index in the 'kwlij' string. The codes for $-i$ and $-j$ are 2 and 3 . The codes for the degrees of A, B and C are respectively 10,20 and 30 . The code of an expression is just the sum of the codes of the terms.

```
(defun :instantiate-idx1 (idx useless)
    (cond ((eq idx 0) ())
        ((or (eq idx 1) (eq idx 4) (eq idx 5))
            (setq idx (- idx 1))
            (if (vref useless idx)
```

```
267 ()
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
```

```
        (vref :template idx)))
```

 (vref :template idx)))
 ((or (eq idx 12) (eq idx 23) (eq idx 32))
 ((or (eq idx 12) (eq idx 23) (eq idx 32))
 (let (a b res)
 (let (a b res)
 (setq a (quomod idx 10) b #:ex:mod)
 (setq a (quomod idx 10) b #:ex:mod)
 (setq res (catenate (vref (vref :all_param (1- a)) 3)
 (setq res (catenate (vref (vref :all_param (1- a)) 3)
 (if (eq b 3) "-j" "-i")))
 (if (eq b 3) "-j" "-i")))
 (if (= (sref res 0) #/0)
 (if (= (sref res 0) #/0)
 () res)))
 () res)))
 ((eq idx 9)
 ((eq idx 9)
 (if (vref useless 3)
 (if (vref useless 3)
 (if (not (vref useless 4))
 (if (not (vref useless 4))
 "j" ())
 "j" ())
 (if (vref useless 4)
 (if (vref useless 4)
 "i"
 "i"
 "i+j")))
 "i+j")))
 ((eq idx 35)
 ((eq idx 35)
 (catenate (vref :param_c 3) "-i+j"))
 (catenate (vref :param_c 3) "-i+j"))
 ((eq idx 20)
 ((eq idx 20)
 (vref :param_b 3))
 (vref :param_b 3))
 (true (:instantiate-big idx useless))))
    ```
    (true (:instantiate-big idx useless))))
```

The next function does the same, but if the result is nil, it converts it to the empty string, otherwise, it adds square brackets around the expression.

```
(defun :instantiate-index (idx useless)
    (let ((res (:instantiate-idx1 idx useless)))
        (if res
            (catenate "[" res "]")
            "")))
```

Finally, we instantiate each of the 12 abbreviations, and put the result in a table. The table holds 19 elements, elements 12,13 are the degrees of b and c. These quantities are needed by the code of the division. Element 14 holds 'tmp', used for the division. Remaining elements are prefixes that are added before the variables.

```
(defun :instantiate-subst (useless)
    (let ((res1 (makevector 19 ()))
                slot)
        (for (i 0 1 11)
            (setq slot (vref :abbrevs i))
                        (vset res1 i (catenate (vref (vref :all_param (vref slot 0)) 0)
                            (:instantiate-index (vref slot 1) useless)
                            (:instantiate-index (vref slot 2) useless))))
        (vset res1 12 (vref :param_b 3))
        (vset res1 13 (vref :param_c 3))
        (vset res1 14 "tmp")
        (vset res1 15 "")
        (vset res1 16 "delta_")
        (vset res1 17 "d")
        (vset res1 18 "delta_d")
        res1))
```

Now, the pattern lists holds quantities like dc delta_b delta_dat. The next piece of code associates to each variable that has this form three numbers: the first is 2 in general, it is 1 in case the variable is a derivative of a, and 1 if it is a derivative of b. The second quantity is the index in the abbreviation table. The last one is the prefix.

```
(let (L1 V1 l1 v1 L2 L a b i)
    (setq L1 '("" "delta_" "d" "delta_d"))
    (setq V1 '(15 16 1% 17 18))
    (setq L2 '(a 0 at 0 b 1 bt 1 c 2 ct 2 a1 0 a2 0 b1 1
                b2 1 c2 2 cp 2 () O () 0 tmp 2))
    (while (consp L1)
        (setq l1 (car L1) v1 (car V1) L1 (cdr L1) V1 (cdr V1))
        (setq L L2 i 0)
        (while (consp L)
            (setq a (car L) b (cadr L) L (cddr L))
            (if (= v1 15) (setq b 2))
            (if a
                (putprop (concat l1 a) (mcons b v1 i) ':var-val))
            (setq i (+ i 1)))))
```

This reads now a prefix and a variable. If no variable is found, we hope it is OK, and act as if we found 'No variable found'. This will generate a syntax error when compiling.

```
(defun :split-pat-aux (str p loc)
    (let ((a (getprop str ':var-val)))
        (if a
                            (progn (vset p loc (cdr a)) (car a))
                            (vset p loc "No variable found")
                    2)))
```

The variable mask is 1 if a derivative of the variable ' a ' appears in the expression, 2 if a derivative of the variable ' b ' appears, 0 if none, and 3 if both.

We shall ignore every operation for which the logical 'and' between mask and :constant-flag is not zero. It is to be noticed that the mask is zero for all special operations ('for' loops, braces, etc.) and for all operations that do not have the form $x+=y$, where y is a product of two terms. If the mask is 1 , one of the factors is a derivative of a, if the mask is 2 , one of the factors is a derivative of b, and if the mask is 3 , one factor is a derivative of a and the second a derivative of b.

The expression we parse is a function call with 2 or 3 arguments. The next function updates the mask after having examined one argument. The index returned by the previous function is the argument b, by construction it is 0 (resp. 1) if the variable 'a' (resp. 'b') appears with a prefix in the expression, i.e. if the derivative of the variable appears in the expression. It is 2 if no such derivative appears.

```
(defun :add-to-mask (mask b)
    (cond ((= b 2) mask)
        ((= b 0) (if (or (= mask 0) (= mask 2)) (+ mask 1) mask))
        ((= b 1) (if (or (= mask 0) (= mask 1)) (+ mask 2) mask))))
```

This function takes as argument a string L, and a vector p, splits L into 3 arguments, puts the arguments into p_{2}, p_{3} and p_{4}. It computes also the mask, and puts it into p_{1}. The last field p_{0} of p is the operator, it is read by another function.

```
333 (setq open-p #/( close-p #/)) ; for emacs
334 (defun :split-pattern (L p)
335 (let ( (mask 0))
336 (setq i (:split-pat-aux (car L) p 2))
337 (setq mask (:add-to-mask mask i))
338 (setq i (:split-pat-aux (cadr L) p 3))
339 (setq mask (:add-to-mask mask i))
340 (setq i (:split-pat-aux (caddr L) p 4))
341 (setq mask (:add-to-mask mask i))
342 (vset p 1 mask)))
```

The code of the division is a bit special: there are 'for' loops inside the code, for instance: for ($\mathrm{j}=0 ; \mathrm{j}<$, degb, $; \mathbf{j}++$). The find-useless function knows about these loops: indices i and j are always useful in the case of division, even if the loop in which they appear is not in the C_{0} chunk. The number of times the loop is executed has abbreviation number 12 and 13. Recall that instantiate-subst instantiates these quantities to the degree of B and C. The special 'for' loops are parsed via the next function. It fills the fields p_{2}, p_{3} and p_{4} (the field p_{1} is left null).

```
(defun :special-pattern (L p)
    (vset p 2 (car L))
    (vset p 4 (caddr L))
    (cond ((eq (cadr L) 'degb) (vset p 3 12))
            ((eq (cadr L) 'degc) (vset p 3 13))
            (true (error "diff" "Bad pattern" L))))
```

Finally, a pattern line is converted using the following function. The argument may be nil (end-ofchunk marker), a string (uninterpreted), or a list. The first element of the list, if it is a symbol, is an operator, which is converted to some numbers, using convert-to-nb, and put in p_{0}, otherwise, there is no operator. After that, we should have an argument list, (a string that starts with an left parenthesis) or a special pattern, namely 3 strings.

```
(defun :fetch-normal-pattern (L p)
    (if (eq L ())
        (vset p 2 ())
        (if (consp L)
            (:special-pattern L p)
        (if (= (strlen L) 1)
                    (vset p 2 L)
                    (setq L (:str-to-list L))
                    (vset p 0 (getprop (car L) ':op-val))
                    (:split-pattern (cdr L) p)))))
```

This converts an operator, defined by the first two letters into a list of 3 items (see table 4.3).

```
(putprop '++ '(10 10)':op-val)
(putprop '+ '(0 1 15) ':op-val)
(putprop '-- '(11 11) ':op-val)
(putprop '- '(1 0 15) ':op-val)
(putprop '/ '(4 4 15) ':op-val)
(putprop '= '(6 6) ':op-val)
(putprop '1* '(7 12 16) ':op-val)
(putprop '2* '(8 13 17) ':op-val)
(putprop '3* '(9 14 18) ':op-val)
(putprop '_+ '(2 3 15) ':op-val)
(putprop '_- '(3 2 15) ':op-val)
(putprop '_/ '(5 5 15) ':op-val)
```

This is the code of the differentiator: it just replaces each abbreviation by its value. Recall that an abbreviation is a number, or a cons of two numbers, and we take the value from the subst vector.

```
(defun :instantiate-string (L subst)
    (cond ((stringp L) L)
        ((integerp L) (vref subst L))
        ((not L) "")
        ((consp L) (catenate (vref subst (car L)) (vref subst (cdr L))))
        (true "Bad string in instantiate")))
```

It's now time to print the result of the differentiator. We do not show the piece of code that prints debugging information. The 'funcall' that's here may print the name of the operator followed by the arguments, or expand it.

```
(defun :print-an-instruction (p subst prec)
    (when (= 0 (land (vref p 1) :constant-flag))
        (let ((s1 (vref p 2))(s2 (vref p 3))(s3 (vref p 4))
            args res db db-op need-debug (slot (vref p 0)))
                (if :neg-a (setq op (cadr slot)) (setq op (car slot)))
                (setq s1 (:instantiate-string s1 subst))
                (setq s2 (:instantiate-string s2 subst))
                (setq s3 (:instantiate-string s3 subst))
                (prin1 " ")
                (when op
                    (if (= 15 op)
                        (setq op ())
                            (setq op (vref :the-operators op))))
            (if (not op)
                (print s1 s2 s3)
                (setq args (list s1 s2 s3))
                (funcall op prec args)))))
```

Prints the whole code. For each mode i, each precision in the list of precisions, we print a section, that is formed of chunks C_{0} and C_{i}.

```
(defun :print-code (i title name)
    (let (useless subst p p1 p2)
        (setq useless (:find-useless i))
        (setq subst (:instantiate-subst useless))
        (setq p (vref :patterns i))
        (setq p1 p)
        (while (vref (car p1) 2)
            (setq p1 (cdr p1)))
        (for (prec 0 1 3)
            (setq p2 p1)
            (for (mode 0 1 3)
                        (:decl-sec title name)
                        (:print-the-loops p)
                        (setq p2 (cdr p2))
                        (while (vref (car p2) 2)
                            (:print-an-instruction (car p2) subst prec)
                    (setq p2 (cdr p2)))))))
```


4.9 Merging code

The next function takes as argument a list, with at least 3 elements. It calls the differentiate function with the first 4 arguments, and returns the fourth. This is the section title, one is invented if none is given. If more than four arguments are given, remaining arguments are printed as WEB comments.

```
411 (defun :call-diff (y)
412 (let (z (temp (cdddr y)))
413 (if (not temp)
            (setq z (catenate "Untitled section " (gensym) "."))
            (setq z (car temp)))
        (setq temp (cdr temp))
        (when temp
            (print "@")
            (show-usage)
            (while temp
                        (print (car temp))
```

```
422 (setq temp (cdr temp))))
423
(differentiate (car y) (cadr y) (caddr y) z)
z))
```

The next function takes as argument a list like (if test y). If y is a list, it calls call-diff on it. If this gives Y, we return the list with three items, the first is iftest\{, the second is Y, the last is \}. Note that the first argument must be the Lisp symbol if, and the second argument (called 'test' in the example), should be a valid C test, hence a parenthesised expression. We allow also the case of two arguments, (ifsomething y), where the first argument is a string that starts with the two letters ' i ' and ' f '. In the case where y is not a list, there is no call to call-diff, and Y is replaced by y.

Finally, the user may give y alone. The function returns y if it is not a list, the result Y of call-diff otherwise.

```
(defun :handle-if (x)
    (if (not (consp x))
            x
        (let ((test ()) y)
            (cond ((eq (car x) 'if)
                        (setq test (catenate "if" (cadr x) open-brace) y (caddr x)))
                        ((and (not (cddr x)) (substring-eq (car x) 0 "if" 0 2))
                        (setq test (catenate (car x) open-brace) y (cadr x)))
                        (true (setq y x)))
            (if (consp y) (setq y (:call-diff y)))
            (if test (list test y close-brace) y))))
```

This calls the previous function on each elements of the argument list. It calls merge-code on the result.

```
(defun differentiate1 (L)
    (let (res x)
            (newl res (car L))
            (setq L (cdr L))
            (while (consp L)
                    (setq x (car L) L (cdr L))
                    (newl res (:handle-if x)))
            (merge-code (nreverse res))))
```

For each mode, each precision in the precision list, the next function prints a section whose name is the first element of L. The list L is printed in reverse order in reverse mode. If an element L_{i} of L is a list, it has 3 elements, a string, a section title, and another string. Otherwise L_{i} is a section title. Typically, each L_{i} is the result of a call to handle-if (see example below). Each section title is printed via use-sec, that appends the mode and precision to it.

```
444 (defun merge-code (L)
445 (for (prec 0 1 3)
446 (for (mode 0 1 3)
447
448
449
450 (if (or (= mode 1) (= mode 3))
4 5 1
4 5 2
4 5 3
454
455
456
457
```


4.9.1 Example

We consider the case of where a is (y p 10), b is (y p 10 transpose), and c is z.
If we run the differentiate function, we get (z p p 0) as a result, and hYPERION prints, among other things:

```
@ Patterns for $T_b$
@<Title, delta diff, complex case@>=
for(k=0;k<p;k++)
    for(l=0;l<p;l++)
        {
    c_add_mult_conj_mac(dz[k+l*p],delta_y[k],delta_dy[l]);
    c_add_mult_conj_mac(delta_dz[k+l*p],y[k],delta_dy[l]);
    c_add_mult_mac(delta_y[l],dz[k+l*p],delta_dy[k]);
    c_add_mult_mac(y[l],delta_dz[k+l*p],delta_dy[k]);
    }
```

In the case where we want macros to be expanded, the start of the previous code may be the following (complex multiplication may use Karatsuba or the usual algorithm). We show here only the first multiplication.

```
@<Title, delta diff, complex case@>=
for(k=0;k<p;k++)
    for(l=0;l<p;l++)
        {
    {
double Ctemp1,Ctemp2;
Ctemp1 = dz[k+l*p].r*delta_y[k].r;
Ctemp2 = -dz[k+l*p].i*delta_y[k].i;
delta_dy[l].i += (dz[k+l*p].r-dz[k+l*p].i)*(delta_y[k].r+delta_y[k].i)
- Ctemp1 - Ctemp2;
delta_dy[l].r += Ctemp1 - Ctemp2;
}
```

Example of merge-code. Consider the following input to HYPERION:

```
(differentiate1 '(
    "Prepare $X$ and $Y$"
    "Complete code of B"
    "Code of |yD|"
    "Code of $E$"
    "Code of N"
    "Code of $X$, 1"
    "Code of $X$, 2"
    "Code of $X$, 3"
    ("if(p==2)" "Complete code of $Z$")
    (if "(p>2)" "Code of $Y$")))
```

In this piece of code, handle-if does not call call-diff. We could change the handle-if function in such a way the the last two lines could be merged in a single one, namely ("if ($\mathrm{p}==2$) " "Complete code of $\$ \mathrm{Z} \$$ " "elseif $(\mathrm{p}>2)$ " "Code of $\$ \mathrm{Y} \$$ "), but we think this is not really needed (if the compiler is smart enough, it will compare p against 2 only once, but even if the test is done twice, this will not really slow down the algorithm).

One of the 16 sections printed is:

```
@ @<Prepare $X$ and $Y$, direct, complex case@>=
@<Complete code of B, direct, complex case@>@;
@<Code of lyD|, direct, complex case@>@;
@<Code of $E$, direct, complex case@>@;
@<Code of N, direct, complex case@>@;
@<Code of $X$, 1, direct, complex case@>@;
@<Code of $X$, 2, direct, complex case@>@;
@<Code of $X$, 3, direct, complex case@>@;
if(p==2){
@<Complete code of $Z$, direct, complex case@>@;
}
if(p>2){
@<Code of $Y$, direct, complex case@>@;
}
```

And this is another section.

```
@ @<Prepare $X$ and $Y$, delta diff, complex case@>=
if(p>2){
@<Code of $Y$, delta diff, complex case@>@;
}
if (p==2) {
@<Complete code of $Z$, delta diff, complex case@>@;
}
@<Code of $X$, 3, delta diff, complex case@>@;
@<Code of $X$, 2, delta diff, complex case@>@;
@<Code of $X$, 1, delta diff, complex case@>@;
@<Code of N, delta diff, complex case@>@;
@<Code of $E$, delta diff, complex case@>@;
@<Code of |yD|, delta diff, complex case@>@;
@<Complete code of B, delta diff, complex case@>@;
```


4.10 Operators

In this section, we implement some functions that print something like $a+=b c$. Recall that we have a C macro double_add_mac, that is not shown here, and that could be used. We find it more readable to just print a $+=\mathrm{b} * \mathrm{c}$. On the other hand, in the complex case, we have a macro c_add_mult_mac, and using the function below makes the code unreadable. In fact, the main reason for doing so, is that we can switch between the standard macro, or the macro that uses Karatsuba, without changing the header files (recall the funcall in print-an-instruction).

The next function takes 2 arguments, a string s, and a list (x, y, z, t) or five arguments, s, x, y, z and t. It prints the string s, but ' X ', ' Y ', ' Z ' and ' T ' are replaced by x, y, z or t. Moreover, ' $\#$ ' is replaced by a newline character.

```
458 (defun :print-subst (str . 1)
    (when (and (consp (car l)) (not (cdr l))) (setq l (car l)))
    (let ((X (car l)) (Y (cadr l)) (Z (caddr l)) (T (cadddr l)))
        (let ((i (strlen str)) (j 0) c)
            (while (< j i)
                (setq c (sref str j) j (+ j 1))
                (cond ((eq c #/X) (prin1 X))
                        ((eq c #/Y) (prin1 Y))
                                ((eq c #/Z) (prin1 Z))
                        ((eq c #/T) (prin1 T))
```

```
468 ((eq c #/#) (terpri))
469 (true (princn c))))
470
(terpri))))
```

This is the table of operators (cf table 4.4 on page 114).
We give here only the code of one function per slot in the table. (For instance, there is a function equivalent to : op-add-mul-K that does not use Karatsuba, and another one that calls a C macro instead of expanding the call). Switching between equivalent function is trivially done by changing the name in the next table.

```
(setq :the-operators #[ :op-add-mul-K :op-sub-mul-K :op-add-mul-conj-K
    :op-sub-mul-conj-K :op-div :op-div-conj :op-set :op-plus-norm
    :op-2times :op-2timesr :op-add :op-sub :op-minus-norm
    :op-2times-neg :op-2timesr-neg])
```

This is used for C++. Instead of $f(a, b, c)$, we print $c . f(a, b)$.

```
(defun :pc++2 (op argl)
    (:print-subst "Z.X(Y);" (cons op args)))
(defun :pc++3 (op argl)
    (:print-subst "T.X(Y,Z);" (cons op args)))
(defun :pc++4 (op argl)
    (let (((x y z t) argl))
    (print t z "." op "(" x "," t y ");")))
```

This function computes $z=z+x y$. As will be the case for the following functions, the first argument prec is the precision, and the second argument is the list ($\mathrm{x} y \mathrm{z}$). Some operators take only two arguments. We call them x and y. Note that print-subst uses X, Y and Z.

```
(defun :op-add-mul-K (prec args)
    (cond ((eq prec 0) (:print-subst "Z += X*Y;" args))
        ((eq prec 2)(:pc++3 "add_mul_K" args))
        (true (:pc++3 "add_mul" args))))
```

This function computes $z=z-x y$.

```
(defun :op-sub-mul-K (prec args)
    (cond ((eq prec 0) (:print-subst "Z -= X*Y;" args))
        ((eq prec 2)(:pc++3 "sub_mul_K" args))
        (true (:pc++3 "sub_mul" args))))
```

This function computes $z=z+\bar{x} y$.

```
(defun :op-add-mul-conj-K (prec args)
    (cond ((eq prec 0) (:print-subst "Z += X*Y;" args))
        ((eq prec 1) (:pc++3 "add_mul" args))
        ((eq prec 2) (:pc++3 "add_mul_conj_K" args))))
        ((eq prec 3) (:pc++3 "add_mul_conj" args))))
```

This function computes $z=z-\bar{x} y$.

```
(defun :op-sub-mul-conj-K (prec args)
    (cond ((eq prec 0) (:print-subst "Z -= X*Y;" args))
        ((eq prec 1) (:pc++3 "sub_mul" args))
        ((eq prec 2)(:pc++3 "sub_mul_conj_K" args))
        ((eq prec 3) (:pc++3 "sub_mul_conj" args))))
```

This function computes $z=x / y$.

```
500 (defun :op-div (prec args)
    (cond ((eq prec 0) (:print-subst "Z = X/Y;" args))
        (true (:pc++3 "div" args))))
```

This function computes $z=x / \bar{y}$.

```
(defun :op-div-conj (prec args)
    (cond ((eq prec 0) (:print-subst "Z = X/Y;" args))
        ((eq prec 1) (:pc++3 "div" args))
        (true (:pc++3 "div_conj" args))))
```

This function computes $y=x$.

```
507 (defun :op-set (prec args)
    (:print-subst "Y = X;" args))
```

This function computes $y=y+|x|^{2}$.

```
(defun :op-plus-norm (prec args)
    (cond ((eq prec 0) (:print-subst "Y += X*X;" args))
        ((eq prec 2)
                        (:print-subst "{#Complex cmt = X; Y += cmt.r*cmt.r+cmt.i*cmt.i;#}" args))
        (true (:pc++2 "square" args))))
```

This function computes $y=y-|x|^{2}$.

```
(defun :op-minus-norm (prec args)
    (cond ((eq prec 0) (:print-subst "Y -= X*X;" args))
        ((eq prec 2)
                        (:print-subst "{#Complex cmt = X; Y -= cmt.r*cmt.r+cmt.i*cmt.i;#}" args))
        (true (:pc++2 "square_neg" args))))
```

The function computes $z=z+2 \Re(\bar{x} y)$. Note that z is real.

```
(defun :op-2times (prec args)
    (cond ((eq prec 0) (:print-subst "Z += 2*X*Y;" args))
        ((eq prec 2) (:print-subst "Z += 2*(X.r*Y.r +X.i*Y.i);" args))
        (true (:pc++3 "two_times" args))))
```

The function computes $z=z-2 \Re(\bar{x} y)$. Note that z is real.

```
(defun :op-2times-neg (prec args)
    (cond ((eq prec 0) (:print-subst "Z -= 2*X*Y;" args))
        ((eq prec 2) (:print-subst "Z -= 2*(X.r*Y.r +X.i*Y.i);" args))
        (true (:pc++3 "two_times_neg" args))))
```

This function computes $z=z+2 x y$. Here y is real, z and x may be complex.

```
(defun :op-2timesr (prec args)
    (cond ((eq prec 0) (:print-subst "Z += 2*X*Y;" args))
        ((eq prec 1) (:pc++3 "two_times" args))
        (true (:pc++3 "two_times_r" args))))
```

This function computes $z=z-2 x y$. Here y is real, z and x may be complex.

```
(defun :op-2timesr-neg (prec args)
    (cond ((eq prec 0) (:print-subst "Z -= 2*X*Y;" args))
        ((eq prec 1) (:pc++3 "two_times_neg" args))
        (true (:pc++3 "two_times_r_neg" args))))
```

This function computes $z=x+y$.
536
537

```
```

```
535 (defun :op-add (prec args)
```

```
535 (defun :op-add (prec args)
```

 (cond ((eq prec 0) (:print-subst "Z = X+Y;" args))
    ```
    (cond ((eq prec 0) (:print-subst "Z = X+Y;" args))
        (true (:pc++3 "add" args))))
```

 (true (:pc++3 "add" args))))
    ```

This function computes \(z=x-y\).
```

(defun :op-sub (prec args)
(cond ((eq prec 0) (:print-subst "Z = X-Y;" args))
(true (:pc++3 "sub" args))))

```

This prints the code associated to \(b+=|a|^{2}\).
```

(defun :print-add-norm (a b prec)
(let ((s1 "Y += XT*XT;") (s2 "Y.add_mul(XT,XT);"))
(cond ((= prec 0) (:print-subst s1 a b () ""))
((= prec 1) (:print-subst s2 a b () ""))
((= prec 2)
(:print-subst s1 a b () ".r")
(:print-subst s1 a b () ".i"))
((= prec 3)
(:print-subst s2 a b () ".r")
(:print-subst s2 a b () ".i")))))

```

This prints the code associated to \(b=|a|^{2}\), given real and imaginary part of \(a\).
```

(defun :print-add-norm1 (a1 a2 b prec)
(cond ((= prec 0)
(:print-subst "Z = X*X;" a1 a2 b))
((= prec 2)
(:print-subst "Z = X*X+Y*Y;" a1 a2 b))
((= prec 1)
(:print-subst "Z.mul(X,X);" a1 a2 b))
((= prec 3)
(:print-subst "Z.mul(X,X);\#Z.add_mul(Y,Y);" a1 a2 b))))

```

This prints the code associated to \(b=-a\).
```

(defun :print-neg (a b prec)
(cond ((= prec 0)
(:print-subst "Y = -X;" a b))
(true
(:print-subst "Y.neg(X);" a b))))

```

This prints the code associated to \(x=x-y\).
565 (defun :print-neg-equal (x y p)
    (print p x " -= " p y ";")

This function sets a variable to zero.
```

567 (defun :call_clear_op (prec)
568 (if (eq prec 0)
(print " = 0;")
(print ".kill();")))

```

\subsection*{4.11 Other functions}

From now on, the code is specific to our application. We first define two functions :real and :imag that return the real and imaginary part of a complex number. Since a complex number \(x\) is represented as a structure with two fields, this is \(x . r\) and \(x . i\).
```

571 (dmd :spec-imag (prec) '(= ,prec 2))
572 (defun :imag (x prec)
573 (catenate x ".i"))
574 (defun :real (x prec)
575 (if (:prec-real prec) x
576 (catenate x ".r")))

```

This returns true if precision is real or not. We have a function that returns the extension to use if we must take the real part of a complex number.
```

577 (dmd :prec-real (prec) '(< ,prec 2))
578 (dmd :prec-imag (prec) '(>= ,prec 2))
579 (defun :real-ext (prec) (if (:prec-real prec) "" ".r"))

```

What we have to differentiate is a function \(\psi\) that depends on \(Q\), which is a function of \(n\) vectors \(y_{i}\) of size \(p\). Note that \(y_{i}\) and \(Q\) can be complex. Thus the derivative is a set of \(n\) vectors \(y_{i}^{\prime}\) of size \(p\). Since our function is used by a generic optimiser, its input and output must be a single real vector \(Y\) and \(Y^{\prime}\). Thus we have to copy \(Y\) into \(y_{i}\) at the beginning, and \(y_{i}^{\prime}\) to \(Y^{\prime}\) at the end.

We shall explain later exactly how and where \(y_{i}\) and \(Y\) are stored. The next function converts a single element of \(Y\) into a single element of \(y_{i}\) (a single element of \(Y\) can be formed of two real numbers). It is assumed that \(s\) has the form \(\mathrm{x}[\mathrm{k}]\) and the destination \(d\) has the form \(\mathrm{y}[\mathrm{j}]\). This piece of code modifies the index \(k\), but not the index \(j\). The argument aux must have the form \(\mathrm{k}++\).
```

(defun :gen-copy-cmplx2real (s d aux prec)
(if (:prec-real prec)
(:print-subst "Y = X;Z" s d aux)
(:print-subst "Y = X.r;Z\#Y = X.i;Z" s d aux)))

```

This does the copy the other way.
```

584 (defun :gen-copy-real2cmplx (s d aux prec)
585 (if (:prec-real prec)
586 (:print-subst "Y = X;Z" s d aux)
587
(:print-subst "Y.r = X;Z\#Y.i = X;Z" s d aux)))

```

This piece of code declares a real variable (even in the complex case) and initialises the variable to 1 . Note that this must be after every other declaration and before any other executable C code (this restriction does not apply to \(\mathrm{C}++\) ).
```

(defun :initialise-psi (var prec)
(if (or (= prec 0) (= prec 2))
(print " double " var " = 1;")
(print " SLD " var "; " var ".get_one();")))

```

Same code, but the variable is set to one for a different reason (in the previous code, we have \(\|G\|=1\), here we have \(d \psi=1\) ).
```

592 (defun :clear-a-div (var prec)
593 (:initialise-psi var prec))

```

Sets a variable to one. If the mode is complex, the variable is still real (this can be used for instance to compute \(\left.1-|\omega|^{2}\right)\).
```

(defun :print-set-one-only (prec var)
(if (or (= prec 1) (= prec 3))
(print var ".get_one();")
(print var " = 1;")))

```

Set the real part of the variable to 1 , where the variable is defined by the concatenation of var1, extp and var2. This will be used for instance to initialise \(Q_{0}\) to the identity matrix.
```

598
599
600
6 0 1

```
\(602 \quad((=\operatorname{prec} 3)(\) print \(v a r 1\) extp var2 ".get_one();"))))

\subsection*{4.11.1 Main function}

Recall the example given at the start of this chapter.
```

@u double f (double x)
{
double y,z;
@<First part of f@>
@<Second part of f@>
return y;
}

```

We explained how to construct the sections 'First part of \(f\) ' and 'Second part of \(f\) ', and now we have to explain everything else. For simplicity, the functions we construct are members of a class \(T\), which is a huge data structure that contains everything (including the result of the function). There are objects in \(T\) which are not needed here (for instance, we always assume \(\|G\|=1\), by dividing \(G\) by its norm. The norm of \(G\) has to be kept somewhere, because we need it when computing the numerator \(\left.L_{F}(Q)\right)\). Whenever a field of \(T\) is first used, we shall explain where it is stored.

The first implementation choice we do concerns the naming of the external functions. The main function matrix_psi_fct computes \(\psi\). It just calls another function, that is precision dependent. Thus we have four medium size functions, instead of one big function (compilers prefer small functions, they are easier to optimise). The quantity prec_type is an integer that gives the current precision of \(T\). In the Lisp code, the precision is an integer between 0 and 3 . In the C code, it is an integer, for instance ll_type_scpolynom (the 'sc' part is variable). The next function prints a case statement. It is followed by some trivial functions.
```

603 (defun :print-switch-case (prec)
604 (print "case ll_type_" (vref prefix_types prec) "polynom:"))
6 0 5
6 0 6 ~ (d e f u n ~ : p r i n t - o p e n - b r a c e ~ () ~ (p r i n t ~ " \{ ")) ~
6 0 7 (defun :print-close-brace () (print "\}"))
6 0 8 ~ (d e f u n ~ : p r i n t - d o u b l e - c l o s e - b r a c e ~ () ~ (p r i n t ~ " \} \} ")) ,

```

In the case of \(\psi\) and \(\psi^{\prime}\), we just call the function that is in \(T\). In the case of \(\psi^{\prime \prime}\), the function in \(T\) compute the second derivative in one direction. Thus we have to define two functions : one that takes -1 as argument, and computes the Hessian in one direction (found in \(T\) ), and puts the result somewhere in \(T\), and a function without arguments, that computes the derivative in every direction. The variable mode is 3 or 4 . Note that \(n\) and \(p\) are represented by a_n and a_p in the data structure \(T\).
```

(defun print_a_switch_call1 (title mode)
(let ((args "(I);"))
(show-usage)
(print "@")
(print "@u void " title "()")
(:print-open-brace)
(if (= mode 4)
(setq args "(-1);")
(print "int I, N=a_n*a_p;")
(print "if(real_flag==0) N = 2*N;")
(print "for(I=O;I<N;I++)"))
(print "matrix_psi_delta_d" args)
(:print-close-brace)))

```

Equations (4.17) or (4.18) have the form \(Y=g_{1}(Q), \psi=g_{2}(Y)\). In writing this, we just mean that we take \(Q\) (which is a pair \((D, q)\) ), compute some quantities, and use these to compute \(\psi\). In the same fashion, equations (4.4) have the form \(X=f_{1}(A)\) and \(B=f_{2}(X)\). Now the code of \(\psi\) can be written as
\[
\begin{aligned}
& B=I \\
& \text { for } i=0 \text { to } n-1 \text { do } \\
& \quad A=B \\
& \quad X=f_{1}(A), B=f_{2}(X) \\
& Q=B \\
& Y=g_{1}(Q), \psi=g_{2}(Y) \\
& \text { store } \psi \text { in } T \text {. }
\end{aligned}
\]
or more generally as
Get variables, 1
for \(i=0\) to \(n-1\) do
Get variables, 2
The main loop
Get variables, 3
Remaining of the code
Code before returning.
The parts 'The main loop' and 'Remaining of the code' are obtained from the differentiator. The other parts are explained below.

The next function prints the code of \(\psi, \psi^{\prime}\) and \(\psi^{\prime \prime}\). There is one C function per precision, hence 12 functions at all.
```

22 (defun print-fct-00 ()
623 (for (prec 0 1 3)
624 (let (
625 (extp (vref prec_types prec))
626 (casep (vref precision_names prec)))

```

This is the first part of the Lisp function. It defines the function \(\psi\) as explained above. We shall see that 'Get variables, 3 ' is independent of the precision. We add a dot at the end of the section name so as to make web happy. Note that this piece of code is a member function of a sub-object of \(T\), whose type gives the precision.
```

627
print "@")
629 (print "@u double data2p" extp "::matrix_psi_fct()")
630 (:print-open-brace)
631 (print "@<Get variables, 1" case-direct casep at-semi)
632 (print "@<Special initialisation, direct@>@;")
633 (print " for(it=0;it<n;it++){")
634 (print " @<Get variables, 2" case-direct casep at-semi)
635 (print " @<The main loop" case-direct casep at-semi)
636 (print " }")
637 (print "@<Get variables, 3" case-direct "." at-semi)
638 (print " @<Remaining of the code" case-direct casep at-semi)
6 3 9 ~ (p r i n t ~ " ~ @ < C o d e ~ b e f o r e ~ r e t u r n i n g " ~ c a s e - d i r e c t ~ c a s e p ~ a t - s e m i) ~
640 (:print-close-brace)
6 4 1 ~ (t e r p r i)

```

This is the second part of the Lisp function. It defines the function \(\psi^{\prime}\) which computes the derivative of \(\psi\) in reverse mode. The order of the sections is reversed, as is the main loop. The section 'Code before returning' stores the derivative somewhere. Recall that, in reverse mode, since \(\psi\) is a function of \(y_{i}\), the derivative will be in \(y_{i}^{\prime}\), we copy this into a single vector.
```

642 (show-usage)
643 (print "@ @u void data2p" extp "::matrix_psi_grad()")
644 (:print-open-brace)
645 (print "@<Get variables, 1" case-diff casep at-semi)

```
```

646 (print "@<Get variables, 3" case-diff "." at-semi)
647 (print "@<Remaining of the code" case-diff casep at-semi)
648 (print " for(it=n-1;it>=0;it--){")
649 (print " @<Get variables, 2" case-diff casep at-semi)
650 (print " @<The main loop" case-diff casep at-semi)
651 (print " }")
652 (print "@<Code before returning" case-diff casep at-semi)
653 (:print-close-brace)
654 (terpri)

```

Last part. We compute \(\psi^{\prime \prime}\) by differentiating, in direct mode, the code of \(\psi\) and \(\psi^{\prime}\), applied to a vector \(v\), which depends on the argument \(I\). If \(I\) is not -1 , the section 'Code before returning' copies column \(I\) of the Hessian (which is somewhere in the data structure) into the desired place.
```

655 (show-usage)
656 (print "@ @u void data2p" extp "::matrix_psi_delta_d(int I)")
6 5 7 ~ (: p r i n t - o p e n - b r a c e)
658 (print "@<Get variables, 1" case-delta casep at-semi)
659 (print "@<Special initialisation, delta@>@;")
660 (print " for(it=0;it<n;it++){")
6 6 1 ~ (p r i n t ~ " ~ @ < G e t ~ v a r i a b l e s , ~ 2 " ~ c a s e - d e l t a ~ c a s e p ~ a t - s e m i)
662 (print " @<The main loop" case-delta casep at-semi)
663 (:print-close-brace)
664 (print "@<Get variables, 3" case-delta "." at-semi)
665 (print "@<Remaining of the code" case-delta casep at-semi)
666 (print "@<Get variables, 3" case-deltadiff "." at-semi)
667 (print "@<Get variables, 1" case-deltadiff casep at-semi)
668 (print "@<Remaining of the code" case-deltadiff casep at-semi)
669 (print " for(it=n-1;it>=0;it--){")
670 (print "@<Get variables, 2" case-deltadiff casep at-semi)
671 (print " @<The main loop" case-deltadiff casep at-semi)
6 7 2 ~ (: p r i n t - c l o s e - b r a c e) ~
6 7 3 ~ (p r i n t ~ " @ < C o d e ~ b e f o r e ~ r e t u r n i n g " ~ c a s e - d e l t a d i f f ~ c a s e p ~ a t - s e m i) ~
6 7 4 ~ (: p r i n t - c l o s e - b r a c e) ~
675)))

```

Let's go back to our program scheme. Instead of \(X=f_{1}(A)\), we shall write \(f_{1}(A, X)\). This means that \(f_{1}\) takes as arguments two pointers. It modifies the value pointed to by the second argument. The notation \(A \Rightarrow B\) means that \(A\) points to the memory location \(B\). In the case \(n=3\), our program becomes
```

$A \Rightarrow Q_{-1}, B \Rightarrow Q_{0}, X \Rightarrow X_{0}$
$B=0, X=0$
$f_{1}(A, X), f_{2}(X, B)$
$A \Rightarrow Q_{0}, B \Rightarrow Q_{1}, X \Rightarrow X_{1}$
$B=0, X=0$
$f_{1}(A, X), f_{2}(X, B)$
$A \Rightarrow Q_{1}, B \Rightarrow Q_{2}, X \Rightarrow X_{2}$
$B=0, X=0$
$f_{1}(A, X), f_{2}(X, B)$
$Q \Rightarrow Q_{2}, Y \Rightarrow Y_{0}, \psi \Rightarrow \psi_{0}$
$Y=0, \psi=0$
$g_{1}(Q, Y), g_{2}(Y, \psi)$

```

If for instance \(X=f_{1}(A)\) has the form \(X=A_{1}^{2}+A_{2}^{2}\), the code \(f_{1}(A, X)\) is now \(X+=A_{1}^{2}, X+=A_{2}^{2}\), since it is preceded by the assignment \(X=0\). If we differentiate this in reverse mode, we get \(d A_{1}+=\) \(2 A_{1} d X, d A_{2}+=2 A_{2} d X, d X=0\). In fact, we replace this by \(d A_{1}=0, d A_{2}=0, d A_{1}+=2 A_{1} d X\), \(d A_{2}+=2 A_{2} d X\) (there is no need to reset a variable to zero at the end of the code, but we have to clear
it at the start. The only variable for which \(d X\) should not be zero initially is \(d \psi\) and \(\delta y\). The case of \(d \psi\) is handled by :clear-a-div, the case of \(\delta y\) is a bit more complicated, and will be explained later).

Essentially, this means that the code of the derivative has the same structure than the code of the function: we have first to define \(k+1\) pointers, and clear \(k\) of them, before computing something really useful. We make now the difference between 'local' and 'global' variables. A better name would perhaps be 'inner' and 'outer', because, as explained, everything is in the data structure \(T\). A local variable is one that depends on \(i\) (it's it in the C code). They are used in the main loop. Global variables are used in the remaining of the code. Hence, with the notations above (see page 139), \(X\) is local, and \(Y\) is global. Variables \(A\), and \(Q\) have a special status (they are not cleared). Variable \(i\), together with all other indices have also a special status (for instance, there is no need to differentiate them).

In the case of a local variable, we have an assignment of the form \(Z \Rightarrow X_{i}\). This means that, in \(T\) there is a table \(X\), of size \(n\). There is also a table \(Q\) of size \(n\). In fact, we have a big table of size \(n\), that holds \(X\) and \(Q\), it is called T->temp. We have another table for the derivative. It is called T->dtemp. Note that \(Q_{-1}\) is not in this table. For the case of global variables, we have an assignment \(Y \Rightarrow Y_{0}\). There is no table here, we used the index zero, because \(Y \Rightarrow Y\) is a bit strange (the C code is in fact \(\mathrm{Y}=\mathrm{T}->\mathrm{Y}\), and this is unambiguous). We changed this: \(\mathrm{In} \mathrm{C}++\), there is no variable \(T\), so that we add a prefix before every variable.

If we differentiate, in direct mode, the start of the code above, we get
\[
\begin{gathered}
A \Rightarrow Q_{-1}, \quad B \Rightarrow Q_{0}, \quad X \Rightarrow X_{0} \\
\delta A \Rightarrow \delta Q_{-1}, \quad \delta B \Rightarrow \delta Q_{0}, \quad \delta X \Rightarrow \delta X_{0} \\
\delta B=0, \quad \delta X=0
\end{gathered}
\]

In other words, we have to declare \(X\) and \(\delta X\), but to kill only \(\delta X\). For this reason, the code is split into two parts: 'Get local variables' and 'Kill local variables'.
```

6 7 6 ~ (d e f u n ~ : g e t - a n d - k i l l - v a r s ~ (m o d e ~ e x t p ~ s w) ~
677 (let (L x name)
678 (setq L (prev-modes mode))
679 (unless sw ; special hack for globals / hessian.
680 (if (= mode 2)
681 (setq L '(0 1 2 3))
682 (if (= mode 3)
683 (setq L ()))))
684 (if sw (setq name "local") (setq name "global"))
685 (while (consp L)
686 (setq x (car L) L (cdr L))
687 (print "@<Get " name " variables" (vref mode_names x) "." at-semi))
688 (print "@<Kill " name " variables" (vref mode_names mode) extp at-semi)))

```

For each local or global variable \(v\), we initialise it in the following way
```

 delta_v = a_delta_v;
 delta_v = delta_temp[it].v;

```
depending on whether \(v\) is local or global.
The important point here is that the name in the structure is the same as the local variable associated to it in case it is in temp, and it has a prefix a_ before it otherwise. If the variable is \(Q\) in the previous notations, since \(Q\) is an inner matrix, we represent it by its numerator \(D\) (a matrix of polynomials) and its denominator \(q\) (a polynomial). The Schur algorithm computes \(Q_{B}\) as a function of \(Q_{A}\). We write \(q\) instead of \(q_{A}\) and nq instead of \(q_{B}\). This means that the data structure \(T\) contains nq and nD. This piece of code sets \(D\) and \(q\) to \(\mathrm{nD}[i]\) and \(\mathrm{nq}[i]\) for some \(i\). This is the assignment \(A \Rightarrow Q_{i-1}\) in the program scheme above.
```

(defun :access-Dq (loc extp mode)
(let (L x e)
(setq L (prev-modes mode))
(while (consp L)
(setq x (car L) L (cdr L))
(setq e (vref prefixes x))
(:print-subst "XD = Xtemp[Y].nD;" e loc)
(:print-subst "Xq = Xtemp[Y].nq;" e loc))))

```

This generates the section 'Get variables, 3 ', that defines the last \(D\) and \(q\) (i.e. at location \(n-1\) ) that is used to compute \(\psi(Q)\), where \(Q=D / q\).
```

(defun initialise-last-Dq()
(for (prec 0 1 3)
(let ((extp (vref prec_types prec))
(casep (vref precision_names prec)))
(for (mode 0 1 3)
(decl-sec "Get variables, 3")
(:access-Dq "n-1" extp mode)))))

```

If we come back to our simplified program, we see that the assignments to \(A\) and \(B\) are: \(A \Rightarrow Q_{-1}\), \(B \Rightarrow Q_{0}, A \Rightarrow Q_{0}, B \Rightarrow Q_{1}, A \Rightarrow Q_{1}, B \Rightarrow Q_{2}\), etc. Except for the first one, we write \(A=B\) (pointer assignment). In the next function sw is true if it is the first assignment. Note that \(A=B\) is just \(\mathrm{q}=\mathrm{nq}\). For the case of the first assignment, we assume that \(Q_{-1}\) is in the variable \(\mathrm{n}_{-} \mathrm{Q}\). Of course, the previous hack does not work if we differentiate the code in reverse mode, hence the test on mode.
```

(defun :access-mid-Dq0 (extp mode sw)
(if (and sw (or (= mode 1) (= mode 3)))
(:access-Dq "it-1" extp mode)
(let (L x e name)
(if sw (setq name "n") (setq name "g_"))
(setq L (prev-modes mode))
(while (consp L)
(setq x (car L) L (cdr L))
(setq e (vref prefixes x))
(:print-subst "TY = TXY;" name "D" () e)
(:print-subst "TY = TXY;" name "q" () e)))))

```

This generates the code in the any case. It prints 'if \(i=0\) then some code else some other code'.
```

(defun :access-mid-Dq (extp mode)
(print "if(it==0) {")
(:access-mid-Dq0 extp mode false)
(print "} else { ")
(:access-mid-DqO extp mode true)
(print "}"))

```

Now the compiler warns about possible un-initialisation of nD and nq , because of the code \(A=B, B=\) \(\ldots\).., which may use \(B\) before it is set (the compiler does not understand the if test).
```

(defun make-compiler-happy ()
(print "@ @<Special initialisation, direct@>=")
(print "nD=NULL; nq= NULL;")
(print "@ @<Special initialisation, delta@>=")
(print "delta_nD=nD=NULL; delta_nq=nq= NULL;"))

```

This generates the section 'Get variables, 2', which is the section that is used in the inner loop, which is the header of the computation \(B=T_{\Theta}(A)\). The variable \(A\) is defined by the first function call defined above, the variable \(B\) and the other variables that are needed are defined and killed by the second function call.
```

726 (defun initialise-midloop-vars ()
727 (for (prec 0 1 3)
728 (let ((extp (vref prec_types prec))
(casep (vref precision_names prec)))
(for (mode 0 1 3)
(decl-sec "Get variables, 2")
(:access-mid-Dq extp mode)
(:get-and-kill-vars mode casep true)))))

```

This generates now the section 'Get variables, 1 ', which is the start of the C function. There are four section, one per differentiation mode, and these are all different.
```

(defun print-initialisation ()
(for (prec 0 1 3)
(let ((extp (vref prec_types prec))
(prec1 (:prev-prec prec))
(casep (vref precision_names prec)))

```

First part, computation of \(\psi\). The function sets \(\psi\) to 1 . It calls an initialisation function that sets \(Q_{i}\) (i.e. \(D_{i}\) and \(q_{i}\) ) to zero, for each \(i \geq 0\), and \(Q_{-1}\) to the identity (which is not done by get-and-kill-vars). It sets also the derivatives (for the reverse mode) of these quantities to zero.
```

739 (show-usage)
740 (print "@ @<Get variables, 1" case-direct casep at-equal)
741 (print " @<Indices@>@;")
742 (print " @<Local variables" case-direct casep at-semi)
743 (:initialise-psi "psi" prec)
744 (print " init_Dq();")
745 (:get-and-kill-vars 0 casep false)
746 (terpri)

```

Second part, computation of \(\psi^{\prime}\), in reverse mode. It sets \(d \psi\) to 1 . It does not set the derivatives of \(Q_{i}\) (already done).
```

74 (show-usage)
748 (print "@ @<Get variables, 1" case-diff casep at-equal)
749 (print " @<Indices@>@;")
750 (print " @<Local variables" case-diff casep at-semi)
751 (:clear-a-div "dpsi" prec)
752 (:get-and-kill-vars 1 casep false)
753 (terpri)

```

Third part, computation of the Hessian. We compute the Hessian applied to a vector \(v_{I}\). We define and kill global variables, set \(\delta \psi\) and \(\delta d \psi\) to zero, \(d \psi\) to one, and after that, call the function arl2mat_set_hess that takes \(I\) as argument. It computes the vector \(v\) (which is somewhere in the data structure if \(I=-1\), and is the \(I\) th base vector otherwise), puts this vector into \(\delta y\) (recall that \(\psi\) is a function of \(y\) ). This function sets also \(\delta Q\) and \(\delta d Q\) to zero.
```

754 (show-usage)
756 (print " @<Indices@>@;")
759 (:get-and-kill-vars 2 casep false)
760 (print "set_hess(I);")
761 (prin1 "delta_psi") (:call_clear_op prec1)
762
763
764

```
```

755 (print "@ @<Get variables, 1" case-delta casep at-equal)

```
755 (print "@ @<Get variables, 1" case-delta casep at-equal)
757 (print " @<Local variables" case-deltadiff casep at-semi)
757 (print " @<Local variables" case-deltadiff casep at-semi)
758 (print (vref types-vector prec1) " delta_psi, delta_dpsi, dpsi;")
758 (print (vref types-vector prec1) " delta_psi, delta_dpsi, dpsi;")
```

(prin1 "delta_dpsi")(:call_clear_op prec1)

```
(prin1 "delta_dpsi")(:call_clear_op prec1)
(:print-set-one-only prec "dpsi")
(:print-set-one-only prec "dpsi")
(terpri)
```

(terpri)

```

Last part. This declares and kills all variables \(\delta d Y\).
```

765
(show-usage)
766 (print "@ @<Get variables, 1" case-deltadiff casep at-equal)

```
767 (:get-and-kill-vars 3 casep false))))

\subsection*{4.11.2 Managing results}

This is needed to copy \(\psi\) and \(\delta \psi\). Recall that \(\psi\) is, in the complex case, the only variable of real type in the program. However, the target may be complex.
```

768 (defun :copy-psi (src dest idx)
769 (print dest "[" idx "]" (:real-ext prec) " = " src ";"))

```

When we differentiate in reverse mode \(\psi=\psi(y)\), the derivative is in \(y^{\prime}\), and \(y^{\prime}\) is a set of complex vectors. We want to put the result in one real vector. This function is just a wrapper around :gen-copy-cmplx2real.
```

(defun :print-affect (dstart dend src prec)
(let (ext)
(setq ext (:real-ext prec))
(:gen-copy-cmplx2real (catenate src "[j]") (catenate dstart dend ext)
"k++;" prec)))

```

This prints the sections 'Code before returning'. Here sw is 2 when we compute \(\psi, 0\) when we compute the gradient, and 1 when we compute the Hessian.
```

775 (defun print-code-before-returning (prec sw)
776 (let ((extp (vref prec_types prec))
777 (casep (vref precision_names prec)))
778 (show-usage)
779 (print "@ @<Code before returning, "
780 (if (= sw 2) "direct" (if (= sw 0) "diff" "delta diff"))
781 casep at-equal)

```

This is not really needed: we store \(\delta \psi\) somewhere. This should be the same as \(d \psi\).
(when (= sw 1)
    (prin1 "if(I>=0) ") (:copy-psi "delta_psi" "a_dgrad" "I"))

If sw is 2 , we copy \(\psi\) into the data structure. We return the value of \(\psi\), converted to double precision, if required. Otherwise for each \(i\) and \(j\), we copy \(s_{i, j}\) into \(d_{k}\). The source \(s\) is \(d y\) (case of gradient), and \(\delta d y\) (case of Hessian). The destination is the field grad or hess in the data structure. In the case of the gradient, or Hessian applied to a vector, the starting index \(k\) is zero. In the case of full Hessian, the starting index is \(I N\), where \(N\) is the size of one row of the Hessian, and \(I\) is the index of the component we compute.
```

784 (if (= sw 2)
785 (progn
787
788
789
790
7 9 1
7 9 2
793
794
795

```
```

786 (:copy-psi "psi" "a_psi" 0)

```
786 (:copy-psi "psi" "a_psi" 0)
```

 (if (or (= prec 0) (= prec 2))
    ```
        (if (or (= prec 0 ) (= prec 2))
            (print "return psi;")
            (print "return psi;")
            (print "return psi.to_double();")))
            (print "return psi.to_double();")))
        (print "k=0;")
        (print "k=0;")
        (if (= sw 1)
        (if (= sw 1)
            (print "if(I<0) w=0; else w="
            (print "if(I<0) w=0; else w="
                (if (:prec-real prec) "" "2*") "I*n*p;"))
                (if (:prec-real prec) "" "2*") "I*n*p;"))
    (print "for(i=0;i<n;i++)")
    (print "for(i=0;i<n;i++)")
    (print "for(j=0;j<p;j++){")
```

 (print "for(j=0;j<p;j++){")
    ```

Table 4.14: Flags for memory allocation
\begin{tabular}{|c|c|c|c|c|c|}
\hline flag & islocal & decl & init & kill & alloc \\
\hline 1 & T & T & T & T & T \\
2 & T & T & T & F & T \\
3 & T & T & T & F & T \\
4 & T & T & T & F & F \\
5 & T & F & F & T & F \\
6 & F & T & T & T & T \\
7 & F & T & T & F & T \\
8 & F & T & F & F & F \\
9 & F & T & T & F & F \\
\hline
\end{tabular}
```

796
(:print-affect
(if (= sw 0) "a_grad" "a_hess")
(if (= sw 1) "[w+k]" "[k]")
(if (= sw 0) "dtemp[i].y" "delta_dtemp[i].y")
prec)
7 9 9
800
(print "}"))
))

```

\subsection*{4.11.3 Memory management}

To each variable variable we associate a flag, an integer between 1 and 9 , that has the meaning defined in table 4.14. This flag is formed of five bits, and explains how the variable is managed, as follows
1. In this case, the variable is a normal local variable. We have to declare it, kill it, initialise it, and allocate memory for it.
2. Same as 1 , but the variable is not killed. There are three such variables: \(n D, n q\) and \(B\). A special piece of code is used to kill \(n D\) and \(n q\). The variable \(B\) has a special status: it contains \(\beta\) (independent of \(y\) ) and some scalars, like \(\|y\|^{2}\).
3. As above. There is only one variable of this type, namely \(y\). Note that \(y\) is the input of the program, and it is initialised via a function copy_y not explained here. On the other hand, we shall give later on the code that initialises the derivatives of \(y\). Note also that the memory for \(y\) is allocated in a special way.
4. The variables having this flag are \(u\) and \(u u^{*}\). Since \(u\) is constant, there is no memory allocated for the derivative of it, and of course, we never put \(u\) to zero.
5. The variables having this flag are the scalars that appear in \(B\). Since \(B\) is declared, initialised and allocated, we just have to kill these variables.
6. Like 1 , but the variable is global.
7. Like 2, but the variable is global. The variables having this flag are g_q and g_D. They hold the identity matrix ( \(Q_{-1}\) in the notations above).
8. This variable is to be declared only. It is \(D\) or \(q\). When we compute \(X_{i}=f\left(X_{i-1}\right)\), we write it as \(Y=f(X)\). We have to declare kill initialise and allocate memory for \(X_{i}\) (included the case \(i=-1\) ), but \(X_{i-1}\) is to be declared only.
9. This is like 4 , but the variable is global. The only variable of this type is \(G\).

Table 4.15: Variables, size and flags
\begin{tabular}{|c|c|c|c|}
\hline name & dim1 & dim2 & flag \\
\hline yD & \(p\) & \(I+1\) & 1 \\
E & \(I+1\) & () & 1 \\
M & 4 & () & 1 \\
N & \(p * p\) & () & 1 \\
X & \(p * p\) & \(I+1\) & 1 \\
Z & \(p * p\) & \(I+2\) & 1 \\
Y 1 & \(p\) & \(I+1\) & 1 \\
Y 2 & \(p * p\) & \(I+I+1\) & 1 \\
B & 8 & () & 2 \\
nq & \(I+2\) & () & 2 \\
nD & \(p * p\) & \(I+2\) & 2 \\
y & \(p\) & () & 3 \\
B4 & 4 & () & 5 \\
(u) & \(*\) & () & 4 \\
(uu) & \(*\) & () & 4 \\
Gquo & \(\lambda * p\) & \(m+1\) & 6 \\
Grem & \(\lambda * p\) & \(m+1\) & 6 \\
P & \(\lambda * p\) & \(2 * n\) & 6 \\
V & \(\lambda * p\) & \(n\) & 6 \\
g_q & \(n+1\) & () & 7 \\
g_D & \(p * p\) & \(n+1\) & 7 \\
G & \(*\) & \(*\) & 9 \\
q & \(*\) & () & 8 \\
D & \(*\) & \(*\) & 8 \\
tmp & () & () & 8 \\
\hline
\end{tabular}

In the table 4.15 , we give the list of all variables, with their flags. We give also two dimensions. These dimensions are needed for memory allocation. In this table \(p\) is the dimension of \(Q, \lambda\) is the first dimension of \(G, m\) is the degree of \(G\), and \(n\) is the McMillan degree of the result. The quantity \(I\) is in fact it. It is the current index when we allocate memory for \(X_{i}\). In the case where a variable has only one dimension, the second one is indicated by (). In the case where no memory is allocated, we use '*, to represent any size.

The next macro takes the next element in the list \(L\). It sets some variables.
```

(dmd advance-L ()
'(setq x (car L) L (cdr L)
dim1 (vref x 1)
dim2 (vref x 2)
flag (vref x 3)
x (vref x 0)
info (vref info-array flag)))

```

The next function prints the declarations for a given mode and a given precision. We print a declaration unless flag is 5 . If the variable is (u) or (uu), it is constant, so that the derivatives are not declared. We have to print something like double \(* * X, * * d X, * * d e l t a \_X, * * d e l t a \_d X\); for each variable.
```

(defun :generate-decl-aux (L)
(let (x dim1 dim2 flag aux type stars nbdim y)
(setq aux (prev-modes mode) type (vref types-vector prec))
(while L
(advance-L)
(if dim2 (setq nbdim 2) (if dim1 (setq nbdim 1) (setq nbdim 0)))
(setq stars (vref stars-vect nbdim))
(if (consp x)
(setq x (car x) y '(0))
(setq y aux))
(unless (= flag 5)
(prin1 type)
(while y
(prin1 stars) (prin1 (vref prefixes (car y)))
(prin1 x)
(setq y (cdr y))
(if y (prin1 ",")))
(print ";")))))

```

The next function loops over all modes and precision.
```

828 (defun generate-decl (L)
829 (for (prec 0 1 3)
830 (for (mode 0 1 3)
831 (unless (= mode 2)
832 (decl-sec "Local variables")
833 (:generate-decl-aux L)))))

```

The next function generates the sections 'Get local variables' and 'Get global variables', depending on the value of sw.
```

834 (defun compute-lp (varlist sw)
835 (let (p pp L x dim1 dim2 flag info name loc)
836 (if sw
837 (setq name "Get local variables" loc "temp[it]." pp "")
838 (setq name "Get global variables" loc "" pp "a_"))
839 (for (prec 0 1 3)

```
```

840 (for (mode 0 1 3)
841 (setq p (vref prefixes mode)
842 L varlist)
843
(decl-sec1 name mode)
(while L
(advance-L)
(if (consp x)
(if (= mode 0)
(setq x (car x)) (setq x ())))
(if (and x (eq sw (vref info 0)) (vref info 2))
(print p x " = " pp p loc x ";"))))))

```

\subsection*{4.11.4 Hand-written code}

We consider here code that is not generated by the automatic differentiator.
We define a table \(B\) of size 8 , that holds 3 polynomials of degree \(1, B, B_{2}, B_{4}\), and 2 numbers \(s\) and \(F\). In the C code, \(s\) and \(F\) are called ss and FF . The constant term of \(B\) is at location 0 , the coefficient of \(z\) at location 1. The constant term of \(B_{2}\) is at location 2, the coefficient of \(z\) at location 3. Finally, the constant term of \(B_{4}\) is at location 4 , the coefficient of \(z\) at location 5.
```

851 (defun print-aliases ()
852 (let (e (s "@d TX=(TY)"))
853 (show-usage)
854 (print "@ Rename some variables.")
855 (for (i 0 1 3)
856 (setq e (vref prefixes i))
857 (:print-subst s "B2" "B+2" () e)
858 (:print-subst s "B4" "B+4" () e)
859 (:print-subst s "ss" "B[6]" () e)
860 (:print-subst s "FF" "B[7]" () e))))

```

We have to compute \(u y^{*}-y^{*} u\) in the case \(n=2\). If \(M\) contains \(u y^{*}\), this is a \(2 \times 2\) matrix. If \(F\) contains \(y^{*} u\), this is a scalar. Because of our representation of matrices, the code is just \(M_{0}-=F\), and \(M_{3}-=F\).
```

(defun print-M-minus-F ()
(for (prec 0 1 3)
(for (mode 0 1 3)
(decl-sec "Compute $M-F$")
(if (or (= mode 0) (= mode 2))
(progn
(:print-neg-equal "M[0]" "FF" (vref prefixes mode))
(:print-neg-equal "M[3]" "FF" (vref prefixes mode)))
(progn
(:print-neg-equal "FF" "M[0]" (vref prefixes mode))
(:print-neg-equal "FF" "M[3]" (vref prefixes mode)))))))

```

The five next sections compute \(s=\|y\|^{2}\) and its derivatives. Note that \(s\) is real, but declared complex, the imaginary part is always zero. We replace \(s\) by 1 , if it is very near to it. (I don't know if this is very interesting. In theory, we should have \(s \leq 1\) ).
```

872
873
874
875
876
877
878

```
```

(defun :s-code-mode0 (prec)
(cond ((= prec 0)
(print "ss += y[w]*y[w];"))
((= prec 1) (print "ss.add_mul(y[w],y[w]);"))
((= prec 2)
(print "ss.r += y[w].r * y[w].r + y[w].i * y[w].i;")
(print "if(fabs(ss.r-1.0)<1.e-15) ss.r = 1.0;"))

```
```

879 ((= prec 3)
880 (print "ss.r.square(y[w]);")
881 (print "if(fabs(ss.r.to_double()-1.0)<1.e-15)")
882 (print " ss.r.get_one();"))))

```

This computes the derivative, in reverse mode, of \(s=\|y\|^{2}\). This is just \(d y+=2 y d s\).
```

(defun :s-code-mode1 (prec)
(cond ((= prec 0)
(print "dy[w] += 2*y[w]*dss;"))
((= prec 1) (print "dy[w].two_times(y[w],dss);"))
(true (print "dy[w].two_times_r(y[w],dss.r);"))))

```

This computes the derivative, in direct mode. The code is \(\delta s+=2 y \delta y\).
```

(defun :s-code-mode2 (prec)
(cond ((= prec 0)
(print "delta_ss += 2*delta_y[w]*y[w];"))
((= prec 1) (print "delta_ss.two_times(delta_y[w],y[w]);"))
((= prec 2)
(print "delta_ss.r += 2*(delta_y[w].r*y[w].r+ delta_y[w].i*y[w].i);"))
((= prec 3)
(print "delta_ss.r.two_times(delta_y[w],y[w]);"))))

```

And now the code for the Hessian \(\delta d y+=2 y \delta d s+2 \delta y d s\).
```

(defun :s-code-mode3 (prec)
(print "\{")
(cond ((= prec 0)
(print "delta_dy[w] += 2*delta_y[w]*dss;")
(print "delta_dy[w] += 2*y[w]*delta_dss;"))
((= prec 1)
(print "delta_dy[w].two_times(delta_y[w],dss);")
(print "delta_dy[w].two_times(y[w],delta_dss);"))
(true
(print "delta_dy[w].two_times_r(delta_y[w],dss.r);")
(print "delta_dy[w].two_times_r(y[w],delta_dss.r);")))
(print "\}"))

```

This calls one of the four previously defined functions.
```

(defun print-s-code (mode prec)
(let ((extm (vref prefixes mode))
(casem (vref mode_names mode))
(extp (vref prec_types prec))
(casep (vref precision_names prec))
)
(show-usage)
(print "@ @<Code of s" casem casep at-equal)
(print " for(w=0;w<p;w++)")
(cond ((eq mode 0) (:s-code-mode0 prec))
((eq mode 1) (:s-code-mode1 prec))
((eq mode 2) (:s-code-mode2 prec))
((eq mode 3) (:s-code-mode3 prec)))))

```

Big hack for computing \(B\). More will come later. We assume that \(B_{0}\) and \(B_{1}\) hold the coefficients of \(b=(z-\omega)(1-\bar{\omega})\). We compute in \(B_{4}\) and \(B_{5}\) the coefficients of \(b_{4}=b-\|y\|^{2} \tilde{b}\). What we have to do is compute \(B_{4}=B_{0}-s \overline{B_{1}}, B_{5}=B_{1}-s \overline{B_{0}}\), where \(s=\|y\|^{2}\). If prec is zero (real, double case) we compute everything, otherwise just \(B_{4}=B_{0}\) and \(B_{5}=B_{1}\).

This computes \(B_{4}\) if prec is zero, sets \(B_{4}\) to \(b\) otherwise.
```

(defun :print-B-code-direct (mode prec)
(if (= prec 0)
(progn
(print " B[4] = B[0] - ss * B[1];")
(print " B[5] = B[1] - ss * B[0];"))
(print "B[4] = B[0];")
(print "B[5] = B[1];")))

```

This is the derivative in direct mode of the previous code. We have to compute \(\delta B_{4}=-\delta s \overline{B_{1}}\) and \(\delta B_{5}=-\delta s \overline{B_{0}}\).
```

928 (defun :print-B-code-delta (mode prec)
929 (if (= prec 0)
930 (progn
931 (print " delta_B[4] = -B[1] * delta_ss;")
932 (print " delta_B[5] = -B[0] * delta_ss;"))
933 (prin1 "delta_B[4]") (:call_clear_op prec)
934 (prin1 "delta_B[5]") (:call_clear_op prec)))

```

In case the mode is 0 or 2 , there is nothing to do if the precision is zero. Otherwise, we have to execute \(B_{4}-=\overline{B_{1}} s, B_{5}-=\overline{B_{0}} s\) or \(\delta B_{4}-=\overline{B_{1}} \delta s, \delta B_{5}-=\overline{B_{0}} \delta s\). If the mode is 1, we differentiate in reverse mode, hence write \(d s-=B_{1} d B_{4}, d s-=B_{0} d B_{5}\). Finally, if the mode is 3 , we generate \(\delta d s-=B_{1} \delta d B_{4}\), \(\delta d s-=B_{0} \delta d B_{5}\).
```

(defun :B-code-hack (mode prec)
(let ((extm (vref prefixes mode))
(casem (vref mode_names mode))
(extp (vref prec_types prec))
(casep (vref precision_names prec))
(sub-mul-mac ':op-sub-mul-K1)
(sub-mul-conj-mac ':op-sub-mul-conj-K1)
op
)
(if (or (= mode 1) (= mode 3))
(setq op sub-mul-mac)
(setq op sub-mul-conj-mac))
(when (or (= mode 1) (= mode 3) (> prec 0))
(if (or (= mode 0) (= mode 2))
(progn
(funcall op prec '("B[1]" "ss" "B[4]") extm)
(funcall op prec '("B[0]" "ss" "B[5]") extm))
(progn
(funcall op prec '("B[1]" "B[4]" "ss") extm)
(funcall op prec '("B[0]" "B[5]" "ss") extm))))))

```

This is the code that computes \(s\) and \(B_{4}\). Note the order of instructions.
```

955 (defun print-B-code (mode prec)
(decl-sec "Complete code of B")
(if (or (= mode 0) (= mode 2))
(use-sec "Code of s"))
(cond ((eq mode 0) (:print-B-code-direct mode prec))
((eq mode 2) (:print-B-code-delta mode prec)))
(:print-B-code-hack mode prec)
(if (or (= mode 1) (= mode 3))
(use-sec "Code of s"))))

```

This copies \(G\) into Grem. Remember: a copy of \(G\) is needed for the division in the first equation of (4.18.a).
```

964 (defun print-copy ()
965 (for (mode 0 1 3)
966 (for (prec 0 1 3)
967 (let ((casem (vref mode_names mode))
(casep (vref precision_names prec)))
(show-usage)
(print "@ @<Copy G into |Grem|" casem casep "@>=")
(when (= mode 0)
(print "for(k=0;k<gdim1*p;k++)")
(print "for(i=0;i<=m;i++)")
(print "Grem[k][i] = G[k][i];"))))))

```

\subsection*{4.11.5 Memory management}

This piece of code generates the code that clears all variables; depending of the value sw, we kill local or global variables.
```

975 (defun generate-clear (l sw)
976 (let (x dim1 dim2 flag info L prefix idx)
977 (for (prec 0 1 3)
978
979
980 (setq prefix (vref prefixes mode))
981 (setq L l)
982 (while (consp L)
983 (advance-L)
984 (when (and (vref info 3) (eq sw (vref info 0)))
985 (print "for(i=0;i<" dim1 ";i++)")
986 (setq idx "[i]);")
987 (when dim2
988 (setq idx "[i][j]);")
989
(print "for(j=0;j<" dim2 ";j++)"))
(prin prefix x idx) (:call_clear_op prec)))))))

```

This generates all declarations, initialisations, etc.
```

991 (defun declarations ()
992 (generate-clear big-varlist true)
993 (generate-clear big-varlist false)
994 (compute-lp big-varlist true)
995 (compute-lp big-varlist false)
996 (generate-decl big-varlist))

```

\subsection*{4.11.6 Auxiliary code}

The code generated in this section is printed in another file. Memory allocation for global variables is trivial: we print something like g_q = (Type) my_malloc_vector(n+1,type); for each variable. The C variable type contains the current precision. Note that C++ wants a type, this is matrix or polynom, which are typedefs in the template.
```

997 (defun print-a-global-malloc (L)
998 (let (dim1 dim2 x flag info extm)
999 (show-usage)
1000 (print "@ @<Allocate memory for all global variables@>=")
1001 (while L
1002 (advance-L)
1003 (when (and (vref info 4) (not (vref info 0)))

```
```

1004 (for (mode 0 1 3)
1005 (setq extm (vref prefixes mode))
1006 (prin1 " a_") (prin1 extm) (prin1 x)
1007 (if dim2
1008 (print " = (matrix) my_malloc_matrix(" dim1 ","
1009 dim2 ",type);")
1010 (print " = (polynom) my_malloc_vector(" dim1 ",type);")))))))

```

In the case of local variables, we print something like temp [it]. \(B=\) (Type) alloc (8,type); for each variable. The allocator is my_malloc_matrix or my_malloc_vector. The size may depend on it (this is because the \(k\)-th matrix we construct has McMillan degree \(k\) ). Everything is put in a loop, and a section is created for each mode. Special hack: space for \(y\) is allocated elsewhere, space for the derivatives of \(y\) is allocated here.
```

1011 (defun print-a-local-malloc (l)
1012 (let (dim1 dim2 x flag info extm L)
1013 (for (mode 0 1 3)
1014 (setq extm (vref prefixes mode))
1015 (setq L l)
1016 (show-usage)
1017 (print "@ @<Fill |" extm "temp|@>=")
1018 (print "for(it=0;it<n;it++){")
1019 (while (consp L)
1020 (advance-L)
1021 (when (and (vref info 4) (vref info 0))
1022 (if (= flag 3)
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
(if (= mode 0) (setq dim1 ())))
(when dim1
(prin1 extm)(prin1 "temp[it].") (prin1 x)
(prin1 " = ")
(if dim2 (prin1 "(matrix) my_malloc_matrix(")
(prin1 "(polynom) my_malloc_vector("))
(prin1 dim1)
(when dim2 (prin1 ",") (prin1 dim2))
(print ",type);"))))
(print "}"))))

```

As explained above, the quantities \(D\) and \(q\) are initialised in a special way. In the next function, if aux is empty, we put zero in \(Q_{i}\) and \(d Q_{i}(-1 \leq i<n)\). This piece of code is executed whenever we compute \(\psi\), and never when we compute the derivative. As a side effect, when we compute \(\psi\), some of the code here may be useless. We also put zero in \(d y\).

If the value of aux is delta_, we put zero in \(\delta Q_{i}, \delta d Q_{i}\) and \(\delta d y_{i}\). This is used when we compute the second derivative of \(\psi\).
```

1033 (defun print-init-Dq-aux (prec extp aux)
1034 (print "{")
1035 (print "int p = a_p;")
1036 (print "int n = a_n;")
1037 (print "int i,j,k;")
1038 (prin "a_" aux "g_q[0]") (:call_clear_op prec)
1039 (prin "a_" aux "dg_q[0]") (:call_clear_op prec)
1040 (print "for(i=0;i<p*p;i++) {")
1041 (prin "a_" aux "g_D[i][0]")(:call_clear_op prec)
1042 (prin "a_" aux "dg_D[i][0]")(:call_clear_op prec)
1043 (print "}")
1044 (print "for(k=0;k<n;k++) ")
1045 (print " for(i=0;i<=k+1;i++) {")

```
```

1046 (print " for(j=0;j<p*p;j++) {")
1047 (prin aux "temp[k].nD[j][i]")(:call_clear_op prec)
1048 (prin aux "dtemp[k].nD[j][i]")(:call_clear_op prec)
1049 (print "}")
1050 (prin aux "temp[k].nq[i]")(:call_clear_op prec)
1051 (prin aux "dtemp[k].nq[i]")(:call_clear_op prec)
1052 (print "}")
1053 (print "for(k=0;k<n;k++)")
1054 (print " for(i=0;i<p;i++)")
1055 (prin aux "dtemp[k].y[i]")(:call_clear_op prec))

```

This defines for each precision a function that calls the previous code. It puts in \(Q_{-1}\) the identity matrix. In other words, it puts some ones in the variables g_q and g_D. Then, it defines a single function that calls the one that corresponds to the current precision.
```

1056 (defun :generate_init_D ()
1057 (for (prec 0 1 3)
1058 (let ((extp (vref prec_types prec)))
1059 (show-usage)
1060 (print "@ @u void data2p" extp "::init_Dq()")
1061 (print-init-Dq-aux prec extp "")
1062 (set-cr-one "a_g_q" "[0]" prec "")
1063 (print "for(i=0;i<p;i++)")
1064 (set-cr-one "a_g_D" "[i*(p+1)][0]" prec "")
1065 (print "}")))
1066 (show-usage))

```

This defines for each precision a function, that sets every \(\delta D, \delta d D, \delta q\) and \(\delta d q\) to zero.
```

1067 (defun :init-delta-dq ()
1068 (for (prec 0 1 3)
1069 (let ((extp (vref prec_types prec)))
1070 (show-usage)
1071 (print "@ @u void data2p" extp "::init_delta_Dq()")
1072 (print-init-Dq-aux prec extp "delta_")
1073 (print "}"))))

```

The code of the Hessian always computes the Hessian applied to a vector \(v_{I}\), which is the \(I\) th base vector (we do not consider here the case \(I=-1\), case where \(v_{I}\) is set by the caller). This means that we have to set \(\delta Y\) to the vector that contains 1 in location \(I\). However \(\delta Y\) is a set of \(n\) vectors of size \(p\) that may be complex. Assume \(J_{1}=I\) and \(J_{2}=I-1\). Write
\[
J_{1}=c_{k}+p c_{i} \quad J_{2}=p_{k}+p p_{i}
\]
by Euclidean division by \(p\). Now, location \(J_{1}\) in \(Y\) is location \(c_{k}\) in \(y_{c_{i}}\). Assume \(I>1\). What we computed before is the Hessian of our function applied to \(v_{I-1}\). Thus, we have zeroes everywhere, but in \(I-1\), which is location \(p_{k}\) in \(y_{p_{i}}\). In the complex case, we let \(J_{1}=I / 2\), and \(J_{2}=(I-1) / 2\). Thus we have to put a one at location \(c_{k}\) in \(y_{c_{i}}\), using the real part if \(I\) is even, the imaginary part if \(I\) is odd. This function computes these funny quantities.
```

1074 (defun :compute-indices ()
1075 (if (:prec-imag prec)
(print "int is_even;"))
1076 (if (:prec-real prec)
1078 (print "J1=I;J2=I-1;")
1079 (print "is_even = I\&1 ? 0 : 1;")
1080 (print "J1=I/2;J2 = (I-1)/2;")
1081 (print "cur_i = J1/p;")

```
```

1082 (print "cur_k = J1 - p*cur_i;")
1083 (print "prev_i = J2/p;")
1084 (print "prev_k = J2-p*prev_i;")
1085)

```

In case \(I=0\), we put zeroes everywhere, otherwise at location \(J_{2}\) (in the complex case, we put a zero in the real and imaginary part).
```

1086 (defun :set-zero-where-indicated ()
1087 (print "if(I==0)")
1088 (print "for(i=0;i<n;i++) {")
1089 (print "delta_y = delta_temp[i].y;")
1090 (print "for(k=0;k<p;k++)")
1091 (prin "delta_y[k]")(:call_clear_op prec)
1092 (print " } else {")
1093 (prin "delta_temp[prev_i].y[prev_k]")(:call_clear_op prec)
1094 (print "}")

```

This is the main function. It sets \(\delta y\), and calls the function that clears the derivatives of \(Q\) and \(y\). There is one function per precision.
```

1095 (defun :print-set-hess1 ()
1096 (let (e var)
1097 (for (prec 0 1 3)
(setq e (vref prec_types prec))
(show-usage)
(print "@ @u void data2p" e "::set_hess(int I)")
(print "{")
(print "int p = a_p, n = a_n;")
(print "int i,k,J1,J2;")
(print "int cur_i,cur_k, prev_i,prev_k;")
(print (vref types-vector prec) "* delta_y;")
(:compute-indices)
(:set-zero-where-indicated)
(setq var (catenate "delta_temp[cur_i].y[cur_k]"))
(if (:prec-real prec)
(:print-set-one-only prec var)
(print "if(is_even)")
(:print-set-one-only prec (:real var prec))
(print "else")
(:print-set-one-only prec (:imag var prec)))
(print "init_delta_Dq();")
(print "}"))))

```

The Lisp function that generates all the code that is put in the 'arl2mat2aux' file.
```

1117 (defun init-aux2 ()
1118 (:print-bk-code)
1119 (:generate_init_D)
1120 (:init-delta-dq)
1121 (:print-set-hess1)
1122)

```

\subsection*{4.11.7 Inverse Schur code}

In this section, we compute \(b=(z-\omega)(1-\bar{\omega})\) and some formulas needed by the inverse Schur algorithm.
Recall that \(b=(z-\omega)(1-\bar{\omega})\). We assume that or and oi hold the real and imaginary part of \(\omega\). We have \(b=B_{0}+z B_{1}, b-\tilde{b}=B_{2}+z B_{3}\), i.e. \(B_{0}=|\omega|^{2}-\omega, B_{1}=1-\bar{\omega}, B_{2}=|\omega|^{2}-1, B_{3}=-B_{2}\). This is code for the real case. We use the relation \(B_{0}=-\omega B_{1}\).
```

1123 (defun :print-bk-real ()
1124 (show-usage)
1125 (print "@")
1126 (print "@u void data2pD::arl2mat_compute_B()")
1127 (print "{")
1128 (print "int it, n=a_n;")
1129 (print "for(it=0;it<n;it++) {")
1130 (print "double or = a_omega[it];")
1131 (print "double* B= temp[it].B;")
1132 (print " B[1] = 1.0-or;")
1133 (print " B[0] = -or *B[1];")
1134 (print " B[2] = or *or-1.0;")
1135 (print " B[3] = -B[2];")
1136 (print "}}"))

```

This is the complex code. We put \(|\omega|^{2}\) in \(x\), so that \(B_{0}=x-\omega\).
```

1137 (defun :print-bk-complex ()
1138 (show-usage)
1139 (print "@")
1140 (print "@u void data2pC::arl2mat_compute_B()")
1141 (print "{")
1142 (print "int it, n=a_n;")
1143 (print "for(it=0;it<n;it++) {")
1144 (print " double or,oi,x;")
1145 (print " Complex* B= temp[it].B;")
1146 (print " or = a_omega[it].r;")
1147 (print " oi = a_omega[it].i;")
1148 (print " B[1].r = 1.0-or;")
1149 (print " B[1].i = oi;")
1150 (print " x = or*or + oi*oi;")
1151 (print " B[0].r = x -or;")
1152 (print " B[0].i = -oi;")
1153 (print " B[2].r = x-1.0;")
1154 (print " B[3].r = -B[2].r;")
1155 (print " B[2].i = 0.0;")
1156 (print " B[3].i = 0.0;")
1157 (print "}}"))

```

This is the code in the SLD case. Note that we declare or, B, and a quantity t1 that holds the constant one. We use \(B_{0}=-\omega B_{1}, B_{2}=|\omega|^{2}-1\). The code is: \(B_{3}=|\omega|^{2}, B_{2}=B_{3}-1\), then \(B_{3}=-B_{2}\).
```

1158 (defun :print-bk-SLD ()
1159 (show-usage)
1160 (print "@")
1161 (print "@u void data2pS::arl2mat_compute_B()")
1162 (print "{")
1163 (print "int it, n=a_n;")
1164 (print "for(it=0;it<n;it++)")
1165 (print "{")
1166 (print " SLD t1;")
1167 (print " SLD\& or = a_omega[it];")
1168 (print " SLD * B=temp[it].B;")
1169 (print " t1.get_one();")
1170 (print " B[1].sub(t1,or);")
1171 (print " B[0].mul(or,B[1]);")
1172 (print " B[0].neg();")

```
```

1173 (print " B[3].mul(or,or);")
1174 (print " B[2].sub(B[3],t1);")
1175 (print " B[3].neg(B[2]);")
1176 (print "}}"))

```

And this is the code in the complex SLD case. Note that we declare or, oi, B, and two constants t1, t2 that hold 1 and \(|\omega|^{2}\).
```

1177 (defun :print-bk-SLD-complex ()
1178 (show-usage)
1179 (print "@")
1180 (print "@u void data2pSC::arl2mat_compute_B()")
1181 (print "{")
1182 (print "int it, n=a_n;")
1183 (print "for(it=0;it<n;it++)")
1184 (print "{")
1185 (print " SLD t1,t2;")
1186 (print " SLD_complex * B=temp[it].B;")
1187 (print " SLD\& or = a_omega[it].r;")
1188 (print " SLD\& oi = a_omega[it].i;")
1189 (print " t1.get_one();")
1190 (print " B[1].r.sub(t1,or);")
1191 (print " B[1].i = oi;")
1192 (print " t2.mul(or,or);")
1193 (print " t2.add_mul(oi,oi);")
1194 (print " B[0].r.sub(t2,or);")
1195 (print " B[0].i.neg(oi);")
1196 (print " B[2].kill();")
1197 (print " B[3].kill();")
1198 (print " B[2].r.sub(t2,t1);")
1199 (print " B[3].r.neg(B[2].r);")
1200 (print "}}"))

```

This is the code that computes \(B\) in every case. We declare the variables in case this is not yet done.
```

1201 (defun :print-bk-code ()
1202 (:print-bk-real)
1203 (:print-bk-complex)
1204 (:print-bk-SLD)
1205 (:print-bk-SLD-complex))

```

From now on, we consider the inverse Schur algorithm. We use a data structure, called \(T\), that contains now Lisp objects, instead of raw pointers. The first part of the algorithm computes \(y\) such that \(y=Q(\omega)^{*} u\). We do not explain here how \(u\) and \(\omega\) are computed. The important point is that omega and u are some real vectors of size \(n\) and \(n p\) (in the complex case, of size \(2 n\) and \(2 n p\) ) and we extract the \(j\) value as a real or complex vector, and put it in cur_omega and cur_u.

This copies \(\omega\).
```

1206 (defun :print-construct-cur-omega ()
1207 (let (ext1 ext2 x y)
1208 (for (prec 0 1 3)
1209 (decl-sec0 "Construct |cur_omega|" prec)
1210 (if (:prec-real prec)
1211 (print "k=j;")
1212 (print "k=2*j;"))
1213 (setq ext2 (vref prec_types prec))
1214 (setq ext1 (vref prec_types (:prev-prec prec)))

```
```

1215 (setq x (catenate "pol_coef" ext1 "(omega)[k]"))
1216 (setq y (catenate "pol_coef" ext2 "(cur_omega)[0]"))
1217 (:gen-copy-real2cmplx x y "k++;" prec))))

```

This copies \(u\).
```

1218 (defun :print-construct-cur-u ()
1219 (let (m)
1220 (for (prec 0 1 3)
1221 (decl-sec0 "Construct |cur_u|" prec)
1222 (print "{")
1223 (print (vref types-vector prec) "*U=mat_coef"
1224 (vref prec_types prec) "(cur_u);")
1225 (setq m (:prev-prec prec))
1226 (print (vref types-vector m) "*cu=pol_coef" (vref prec_types m) "(u);")
1227 (if (:prec-real prec)
1228 (print "k=j*p;")
1229 (print "k=2*j*p;"))
1230 (print "for(i=0;i<p;i++){")
1231 (:gen-copy-real2cmplx "cu[k]" "U[i]" "k++;" prec)
1232 (print "}}"))))

```

First part of Schur inverse. We fetch \(\omega\) and \(u\), compute \(\tilde{D}\) and \(\tilde{q}\). If \(Q\) is the quotient of these quantities, we evaluate the result at \(\omega\), then compute \(y=Q(\omega)^{*} u\). Note that \(Q=D_{B} / \tilde{q}_{B}\), and \(D=\tilde{D}_{B}\), \(q=q_{B}\), so that \(D / q\) is the tilde of \(Q\). We tilde these matrices, evaluate the result, and tilde it. This gives \(Q(\omega)\). If we multiply by \(u\), we get \(y\).
```

1233 (defun :print-schur-inverse1 ()
1234 (print "@ @u")
1235 (print "void Schur_inverse::part1(int j)")
1236 (print "\{")
1237 (print "int i,k;")
1238 (print "switch(pol_type)\{")
1239 (for (prec 013)
1240 (:print-switch-case prec)
1241 (use-sec0 "Construct lcur_omega|" prec)
1242 (use-sec0 "Construct |cur_u|" prec)
1243 (print " break;"))
1244 (print "\}")
1245 (print "\}"))

```

This computes \(s=\|y\|^{2}\). Here y is a pointer into some array, namely mat_coef (T->cur_y).D.
```

1246 (defun :print-ss-code-inv ()
1247 (for (prec 0 1 3)
1248 (decl-sec0 "Compute $\\norm y^2$ in |s|" prec)
1249 (prin "ss")(:call_clear_op prec)
1250 (print "for(w=0;w<p;w++) {")
1251 (:print-add-norm "y[w]" (:real "ss" prec) prec)
1252 (print "}")))

```

This defines or and oi, the real and imaginary part of \(\omega\).
```

1253 (defun :fetch-or-oi (prec)
1254 (let ((x "pol_coef") (y "(cur_omega)[0]") (z (vref prec_types prec)))
1255 (cond ((= prec 0) (print "or = " x z y ";"))
1256 ((= prec 1) (print "SLD\& or = " x z y ";"))
1257 ((= prec 2)
1258 (print "or = " x z y ".r;")

```
```

(print "oi = " x z y ".i;"))
1261 (print "SLD\& or = " x z y ".r;")
1262 (print "SLD\& oi = " x z y ".i;"))))

```
1260 ((= prec 3)

This computes \(B_{0}=(z-\omega)(1-\bar{\omega})\). We compute first the coefficient of \(z\), namely \(1-\bar{\omega}\), then \(x=|\omega|^{2}\), finally, the constant term, which is \(x-\omega\). We put 1 in t 1 .
```

1263 (defun :print-b0-code-inv ()
1264 (let (prec1)
1265 (for (prec 0 1 3)
1266 (setq prec1 (:prev-prec prec))
1267 (decl-sec0 "Put $(z-\\omega)(1-\\overline\\omega)$ in B_0" prec)
1268 (:fetch-or-oi prec)
1269 (:print-set-one-only prec "t1")
1270 (:op-sub prec1
1271 (list "t1" "or" (if (:prec-real prec) "B0[1]" "B0[1].r")))
1272 (when (:prec-imag prec)
1273 (print (:imag "B0[1]" prec) "=oi;"))
1274 (:print-add-norm1 "or" "oi" "x" prec)
1275 (:op-sub prec1
1276 (list "x" "or" (if (:prec-real prec) "B0[0]" "B0[0].r")))
1277 (when (:prec-imag prec)
1278 (:print-neg "oi" (:imag "B0[0]" prec) prec1)))))

```

This puts \(b-\tilde{b}\) into \(B_{1}\). The coefficient of \(z\) is \(1-x\), the constant term is the opposite of it.
```

1279 (defun :print-b1-code-inv ()
1280 (let (prec1)
1281 (for (prec 0 1 3)
1282 (setq prec1 (:prev-prec prec))
1283 (decl-sec0 "Put $b-\\tilde b$ in B_1" prec)
1284 (when (:prec-imag prec)
(prin "B1[0]")(:call_clear_op prec)
(prin "B1[1]")(:call_clear_op prec))
1286 (:op-sub prec1
1288 (list "x" "t1" (if (:prec-real prec) "B1[0]" "B1[0].r")))
1289 (if (:spec-imag prec)
1290 (:print-neg "B1[0].r" "B1[1].r" prec1)
1291 (:print-neg "B1[0]" "B1[1]" prec1)))))

```

This puts \(\tilde{b}-\|y\|^{2} b\) in \(B_{2}\). If \(b=A+z B\), we generate \(\bar{B}-s A+z(\bar{A}-s B)\) where \(s=\|y\|^{2}\).
```

1292 (defun :print-b2-code-inv ()
1293 (let (prec1 op)
1294 (for (prec 0 1 3)
1295 (setq prec1 (:prev-prec prec))
1296 (decl-sec0 "Put $\\tilde b-\\norm y b$ in B_2" prec)
1297 (:op-transpose prec '("BO[1]" "B2[0]"))
1298 (:op-transpose prec '("BO[0]" "B2[1]"))
1299 (:op-sub-mul-K prec '("BO[0]" "ss" "B2[0]"))
1300 (:op-sub-mul-K prec '("BO[1]" "ss" "B2[1]")))))

```

Prints the test: is \(\omega\) zero?. According to theorem \(21,(z-\omega)(1-\bar{\omega} z)\) divides every term in (3.11), and we have to do the division. This polynomial is of degree 2 , unless \(\omega=0\), case where the degree is one.
```

1301 (defun :print-deg-test (prec)
1302 (cond ((= prec 0) (print "or==0)"))
1303 ((= prec 2) (print "or==0 \&\& oi==0)"))
1304 ((= prec 1) (print "or.is_zero())"))
1305 ((= prec 3) (print "or.is_zero() \&\& oi.is_zero())"))))

```

Put \(-(z-\omega)(1-\bar{\omega} z)\) in \(B_{3}\). Note that \(B_{3}\) is a Lisp polynomial, whose degree is zero or one. We set the degree. The polynomial is \(\bar{\omega} x^{2}-(1+x) z+\omega\), with \(x=|\omega|^{2}\).
```

1306 (defun :print-b3-code-inv ()
1307 (let (prec1 op)
1308 (for (prec 0 1 3)
1309 (setq prec1 (:prev-prec prec))
1310 (decl-sec0 "Put $-(z-\\omega) (1-\\bar \\omega z)$ in B_3" prec)
1311 (print (:real "B3[0]" prec) " = or;")
1312 (print (:real "B3[2]" prec) " = or;")
1313 (when (:prec-imag prec)
1314 (print (:imag "B3[0]" prec) " = oi;")
1315 (:print-neg "oi" (:imag "B3[2]" prec) prec1))
1316 (prin "B3[1]")(:call_clear_op prec)
1317 (if (:prec-imag prec)
1318 (progn
1319 (:op-add prec1 '("t1" "x" "B3[1].r"))
1320 (:op-neg prec1 '("B3[1].r" "B3[1].r")))
1321 (:op-add prec1 '("t1" "x" "B3[1]"))
1322 (:op-neg prec1 '("B3[1]" "B3[1]")))
1323 (prin1 "if(")
1324 (:print-deg-test prec)
1325 (print "pol_deg(b3)=1; else pol_deg(b3) = 2;")
(326)))

```

Prints the declarations of all variables involved in the previous code.
```

1327 (defun :print-inv-header ()
1328 (let (prec1 op e)
1329 (for (prec 0 1 3)
1330 (setq prec1 (:prev-prec prec))
1331 (decl-sec0 "Initialize inverse" prec)
1332 (setq op (vref types-vector prec))
1333 (setq e (vref prec_types prec))
1334 (print op " * BO = pol_coef" e "(b0);")
1335 (print op " * B1 = pol_coef" e "(b1);")
1336 (print op " * B2 = pol_coef" e "(b2);")
1337 (print op " * B3 = pol_coef" e "(b3);")
1338 (print op " * y = mat_coef" e "(cur_y);")
1339 (print op " ss;")
1340 (setq op (vref types-vector prec1))
1341 (print op " x,t1;")
1342 (if (<> prec1 1) (print op " or;"))
1343 (if (= prec 2) (print op " oi;"))
1344 (print "int w;"))))

```

Constructs a section 'Compute \(b_{k}\) and related constants'. This is the start of the function schur_inverse2. Remaining of the code is written directly in C.
```

1345 (defun :merge-inv ()
1346 (for (prec 0 1 3)
1347 (decl-sec0 "Main inverse code" prec)
1348 (print "{")
1349 (use-sec0 "Initialize inverse" prec)
1350 (use-sec0 "Compute $\\norm y^2$ in |s|" prec)
1351 (use-sec0 "Put $(z-\\omega)(1-\\overline\\omega)$ in B_0" prec)
1352 (use-sec0 "Put $b-\\tilde b$ in B_1" prec)
1353 (use-sec0 "Put $\\tilde b-\\norm y b$ in B_2" prec)

```
```

 (use-sec0 "Put $-(z-\\omega)(1-\\bar \\omega z)$ in B_3" prec)
 (print "}"))
 (print "@ @<Compute b_k and related constants@>=")
(print "switch (prec_type) {")
(for (prec 0 1 3)
(:print-switch-case prec)
(use-sec0 "Main inverse code" prec)
(print " break;"))
(print "}"))

```

The Lisp function that computes all that is put in the file 'arl2mat3aux'.
```

1363 (defun print-schur-inverse ()
1364 (:print-construct-cur-omega)
1365 (:print-construct-cur-u)
1366 (:print-schur-inverse1)
1367 (:print-ss-code-inv)
1368 (:print-b0-code-inv)
1369 (:print-b1-code-inv)
1370 (:print-b2-code-inv)
1371 (:print-b3-code-inv)
1372 (:print-inv-header)
1373 (:merge-inv)
1374)

```

\subsection*{4.12 Main file}

The description of all variables is found in table 4.16. Note that each variable has three dimensions here.

\subsection*{4.12.1 Preliminaries}

Start of the file: load the differentiator, the patterns, the file with the main Lisp code. We open also the output file.
```

1375 (load "diff.ll")
1376 (load "patterns.ll")
1377 (load "make_hessian1.ll")
1378 (outchan (openo "arl2mat.web"))

```

We omit here the start of the WEB file: it contains some \(\mathrm{T}_{\mathrm{E}} \mathrm{X}\) header, and a C header, formed of C includes, and WEB includes.

\subsection*{4.12.2 The code of the functions}
```

1379 (print "@* Main code.")
1380 (print "These are the user callable functions.")
1381
1382 (print-fct-00)
1383 (initialise-last-Dq)
1384 (initialise-midloop-vars)
1385 (print-initialisation)
1386 (print-M-minus-F)
1387 (for (prec 0 1 3)
1388 (print-code-before-returning prec 0)
1389 (print-code-before-returning prec 1)

```

Table 4.16: List of variables
\begin{tabular}{|c|c|}
\hline name & specification \\
\hline y & (y p 10 ) \\
\hline u & (up 10 constant) \\
\hline yt & (y p 10 transpose) \\
\hline ut & (u p 10 transpose constant) \\
\hline D & (D p p it) \\
\hline E & (E11 it) \\
\hline q & (q 11 it ) \\
\hline yD & (yD 1 p it) \\
\hline Eneg & (E 11 it neg) \\
\hline F & (FF 110 ) \\
\hline M & (M p p 0) \\
\hline N & (N p p 0) \\
\hline qt & (q 11 it transpose) \\
\hline qdiv & (q 11 it div) \\
\hline qneg & (q 11 it neg) \\
\hline uu & (uu p p 0 constant) \\
\hline Z & (Z p p it) \\
\hline X & (X p p it) \\
\hline Y & (Y p p it) \\
\hline Gcopy & (Grem gdim1 p m) \\
\hline Grem & (Grem gdim1 p n-1) \\
\hline Gremneg & (Grem gdim1 p n-1 neg) \\
\hline Y1 & (Y1 p 1 it) \\
\hline Y2 & (Y2 p p it+it) \\
\hline P & (P gdim1 p n-1+n) \\
\hline V & (V gdim1 p n-1) \\
\hline psi & (psi 110 psi ) \\
\hline S & (ss 110 ) \\
\hline B2 & (B2 1111 constant) \\
\hline B2neg & (B2 1111 neg constant) \\
\hline B4 & (B4 1111\()\) \\
\hline lastD & (D p p n) \\
\hline lastqdiv & (q 11 n div) \\
\hline G & (G gdim1 p m constant) \\
\hline
\end{tabular}

Table 4.17: All calls to differentiate
\begin{tabular}{|c|c|c|c|}
\hline arg1 & arg2 & output & section name \\
\hline yt & D & yD & Code of -yD- \\
\hline yD & u & E & Code of \(E\) \\
\hline yt & u & FF & Code of \(F\) \\
\hline u & yt & M & Code of M \\
\hline y & ut & N & Code of N \\
\hline qt & M & Z & Code of \(Z\) \\
\hline D & uu & X & Code of \(X, 1\) \\
\hline y & yD & X & Code of \(X, 2\) \\
\hline qneg & N & X & Code of \(X, 3\) \\
\hline D & u & Y1 & Code of \(Y, 1\) \\
\hline Y1 & yD & Y2 & Code of \(Y, 2\) \\
\hline Eneg & D & Y2 & Code of \(Y, 3\) \\
\hline Y2 & qdiv & Z & Code of \(Y, 4\) \\
\hline B4 & D & nD & New D, 1 \\
\hline B2 & Z & nD & New D, 2 \\
\hline B2neg & X & nD & New D, 3 \\
\hline B4 & q & nq & New q, 1 \\
\hline B2neg & E & nq & New q, 2 \\
\hline Gcopy & lastqdiv & Gquo & First division \\
\hline Grem & lastD & P & Code of P \\
\hline P & lastqdiv & V & Code of V \\
\hline V & psi & psi & Code of psi, 1 \\
\hline Gremneg & psi & psi & Code of psi, 2 \\
\hline
\end{tabular}
```

1390 (print-code-before-returning prec 2)
1 3 9 1
1392
1393 (print_a_switch_call1 "matrix_psi_hess" 3)
1394 (print_a_switch_call1 "matrix_psi_hess_single" 4)
1395 (terpri)
1396 (show-usage)
1397 (print "@* Hand written code.")
1398 (print "@ Indices used everywhere. @<Indices@>=")
1399 (print " int p=a_p;")
1400 (print " int n = a_n, m=a_m;")
1401 (print " int i,j,k,l,w,it;")
1402 (terpri)
1403
1404 ;;; define the aliases.
1405 (print-aliases)
1406
1407 (print "")
1408 (print "@")
1409 (print "")
1410 (for (prec 0 1 3)
1411 (for (mode 0 1 3)
1412 (print-B-code mode prec)))
1413
1414
1415 (for (prec 0 1 3)
1416 (for (mode 0 1 3)
1 4 1 7 ~ (p r i n t - s - c o d e ~ m o d e ~ p r e c))) ~
1418 (print "@* The functions.")
1419 (print " ")
1420 (print "@ ")
1421 (print "")
1422 (print "")
1423 (print "@ @<External functions@>=")
1424 (print "extern void * GC_malloc(size_t size_in_bytes);")
1425 (print "extern void * GC_malloc_atomic(size_t size_in_bytes);")

```

\subsection*{4.12.3 The calls to the differentiator}
```

1426 (print "@* Code of Z.")
1427 (differentiate1
1428 '("Complete code of Z"
1429 (,yt ,u FF "Code of F" "Define F to be y^*u"
1430 "We call this |FF|, since it's an alias.")
1431 (,u ,yt M "Code of M" "Define M to be uy^*")
1432 "Compute $M-F$"
1433 (,qt ,M Z "Code of Z" "Compute now $M\\tilde q$ in Z.")))
1434 (print "@* Code of Y.")
1435 (differentiate1 (list
1436 "Code of Y"
1437 (list D u 'Y1 "Code of Y, 1")
1438 (list Y1 yD 'Y2 "Code of Y, 2")
1439 (list Eneg D 'Y2 "Code of Y, 3")
1440 (list Y2 qdiv 'Z "Code of Y, 4")
1441))

```
```

1442 (print "@* Code of X, Y and Z.")
1443 (differentiate1 (list
1444 "Prepare X and Y"
1445 "Complete code of B"
1446 (list yt D 'yD "Code of |yD|")
1447 (list yD u 'E "Code of E")
1448 (list y ut 'N "Code of N")
1449 (list D uu 'X "Code of X, 1")
1450 (list y yD 'X "Code of X, 2")
1451 (list qneg N 'X "Code of X, 3")
1452 (list 'if "(p==2)" "Complete code of Z")
1453 (list 'if "(p>2)" "Code of Y")
1454))
1455 (print "@* Inner loop.")
1456 (differentiate1 (list
1457 "The main loop"
1458 "Prepare X and Y"
1459 (list B4 D 'nD "New D, 1")
1460 (list B2 Z 'nD "New D, 2")
1461 (list B2neg X 'nD '"New D, 3")
1462 (list B4 q 'nq "New q, 1")
1463 (list B2neg E 'nq "New q, 2")
1464))
1465 (print "@* Outer code.")
1466
1467 (print-copy)
1468
1469 (differentiate1 (list
1470 "Remaining of the code"
1471 "Copy G into |Grem|" ; generated by print-copy.
1472 (list Gcopy lastqdiv 'Gquo "First division")
1473 (list Grem lastD 'P "Code of P")
1474 (list P lastqdiv 'V "Code of V")
1475 (list V psi 'psi "Code of psi, 1")
1476 (list Gremneg psi 'psi "Code of psi, 2")
1477))
1478 (print "@* The functions.")
1479 (declarations)
1480 (make-compiler-happy)
1481 (print "@* Index.")

```

We print now to a second file.
```

1482 (close (outchan))
1483 (outchan ())
1484 (outchan (openo "arl2mat2aux.web"))
1485 (print "@ Start of include file arl2mat2aux.web.")
1486 (print-banner "")
1487 (print-a-global-malloc global-list)
1488 (print-a-local-malloc local-list)
1489 (init-aux2)
1490 (print "@ End of include file arl2mat2aux.web.")
1491 (close (outchan))
1492 (outchan ())

```

We use yet another file for the inverse Schur code.
```

1493 (outchan (openo "arl2mat3aux.web"))
1494 (print "@ Start of include file arl2mat3aux.web.")
1495 (print-banner "")
1496 (print-schur-inverse)
1497 (print "@ End of include file arl2mat3aux.web.")
1498 (close (outchan))
1499 (outchan ())

```

\subsection*{4.13 Scalar case}

\subsection*{4.13.1 Introduction}

This is the code used in the scalar case. We generate two sets of functions one for the case with weight, and one for the case without weight. The variable have-weight is true when we generate the code for the weight.

This function sets a variable to zero.
```

1500 (defun :kill-var (var prec)
1501 (if (= prec 0)
1502 (print var "=0;")
1503 (print var ".kill();")))

```

This kills a whole array. i2 is the end test. The array is named var, the index is idx, and the first value is i 1 .
```

1504 (defun :kill-array (var idx i1 i2 prec)
1505 (print "for(" idx "=" i1 ";" idx i2 ";" idx "++)")
1506 (:kill-var (catenate var "[" idx "]") prec))

```

Generic function that calls an operator with three arguments. Uses a table.
```

1507 (defun :gen-op (a b c prec table)
1508 (let (op)
1509 (setq op (vref table prec))
1510 (print c "." op "(" a "," b ");")))

```

Computes \(c+=\bar{a} b\).
```

1511 (defun :add-mult-conj (a b c prec)
1512 (if (= prec 0)
1513 (print c " += " a "*" b ";")
1514 (:gen-op a b c prec
1515 \#[0 add_mul add_mul_conj add_mul_conj])))

```
    Computes \(c-=\bar{a} b\).
```

1516 (defun :sub-mult-conj (a b c prec)
1517 (if (= prec 0)
(print c " -= " a "*" b ";")
1519 (:gen-op a b c prec
1520 \#[0 sub_mul sub_mul_conj sub_mul_conj])))

```

Computes \(c-=a b\).
```

1521 (defun :sub-mult (a b c prec)
1522 (if (= prec 0)
1523 (print c " -= " a "*" b ";")
1524 (:gen-op a b c prec
1525 \#[0 sub_mul sub_mul sub_mul])))

```

Computes \(c+=a b\).
```

1526 (defun :add-mult (a b c prec)
1527 (if (= prec 0)
1528 (print c " += " a "*" b ";")
1529 (:gen-op a b c prec
1530 \#[0 add_mul add_mult add_mul])))

```

Computes \(\psi+=\mid\) var \(\left.\right|^{2}\).
```

1531 (defun :norm2 (var psi prec)
1532 (cond ((= prec 0)
1533 (print psi " += " var "*" var ";"))
1534 ((= prec 2)
1535 (print psi " += " var ".r* " var ".r + " var ".i*" var ".i;"))
1536 ((= prec 1)
1537 (print psi ".add_mul(" var "," var ");"))
1538 ((= prec 3)
1539 (print psi ".add_mul(" var ".r," var ".r);")
1540 (print psi ".add_mul(" var ".i," var ".i);"))))

```

Derivative in reverse mode of the previous code. If we assume \(d \psi=1\), this is just \(d v+=2 v\). We open code it. In the SLD case, we copy \(2 v\) in a temporary variable. Note that the name of the variable \(\psi\) is unused.
```

1541 (defun :norm2-diff (var prec)
1542 (cond ((= prec 0)
1543 (print "d" var " += 2*" var ";"))
1544 ((= prec 2)
1545 (print "d" var ".r += 2*" var ".r;")
1546 (print "d" var ".i += 2*" var ".i;"))
1547 ((= prec 1)
1548 (print "temp.double_it(" var ");")
1549 (print "d" var " += temp;"))
1550 ((= prec 3)
1551 (print "temp.double_it(" var ".r);")
1552 (print "d" var ".r += temp;")
1553 (print "temp.double_it(" var ".i);")
1554 (print "d" var ".i += temp;"))))

```

Derivative in direct mode. \(r+=2 \Re\left(\bar{x} x^{\prime}\right)\).
```

1555 (defun :cmplx_2times (x xp r prec)
1556 (cond ((= prec 0)
1557 (print r "+= 2*" x "*" xp ";"))
1558 ((= prec 2)
1559 (print r "+= 2*(" x ".r*" xp
1560 ".r +" x ".i*" xp ".i);"))
1561 ((= prec 1)
1562 (print r ".two_times(" x "," xp ");"))
1563 ((= prec 3)
1564 (print r ".two_times(" x "," xp ");"))))

```

Second derivative. Since the name of \(\psi\) is unused, we do not use it. The code is \(\delta d x+=2 \delta x\).
```

1565 (defun :norm2-delta-diff (var prec)
1566 (cond ((= prec 0)
1567 (print "delta_d" var " += 2*delta_" var ";"))
1568 ((= prec 2)
1569 (print "delta_d" var ".r += 2*delta_" var ".r;")

```
```

1570 (print "delta_d" var ".i += 2*delta_" var ".i;"))
1571 ((= prec 1)
1572 (print "temp.double_it(delta_" var ");")
1573 (print "delta_d" var "+= temp;"))
1574 ((= prec 3)
1575 (print "temp.double_it(delta_" var ".r);")
1576 (print "delta_d" var ".r += temp;")
1577 (print "temp.double_it(delta_" var ".i);")
1578 (print "delta_d" var ".i += temp;"))))

```

\subsection*{4.13.2 Basic code}

This computes the product of \(G\) by \(\tilde{q}\). In the case of weight, we have to multiply also by \(z^{d}\). Since \(G\) is constant, the code of the derivative is easy in this case.
```

1579 (defun :multiplication1 (prec)
1580 (let ((prefix (vref prefixes mode)) varp varq)
1581 (print "for(j=0;j<=m;j++)")
1582 (print "for(i=1;i<=n;i++)")
1583 (setq varq (catenate prefix "q[n-i]"))
1584 (setq varp (catenate prefix "p[i+j" (if have-weight "+Wdeg" "") "]"))
1585 (cond ((eq mode 0) (:add-mult-conj varq "g[j]" varp prec))
1586 ((eq mode 1) (:add-mult-conj varp "g[j]" varq prec))
1587 ((eq mode 2) (:add-mult-conj varq "g[j]" varp prec))
1588 ((eq mode 3) (:add-mult-conj varp "g[j]" varq prec)))))

```

We should also consider the case where we multiply \(g_{w}\) by the tilde of \(q w\). This assumes that we have a weight.
```

1589 (defun :multiplication-spec (prec)
1590 (let ((prefix (vref prefixes mode)) varp varq)
1591 (print "for(j=0;j<=m;j++)")
1592 (print "for(i=1;i<=nw;i++)")
1593 (setq varq (catenate prefix "qw[nw-i]"))
1594 (setq varp (catenate prefix "p[i+j]"))
1595 (cond ((eq mode 0) (:add-mult-conj varq "g[j]" varp prec))
1596 ((eq mode 1) (:add-mult-conj varp "g[j]" varq prec))
1597 ((eq mode 2) (:add-mult-conj varq "g[j]" varp prec))
1598 ((eq mode 3) (:add-mult-conj varp "g[j]" varq prec)))))

```

This is now the real code of the multiplication. We do not use the second function, because it is too slow in some cases. We just keep the code somewhere, in case we wanted to implement it.
```

1599 (defun :multiplication (prec)
1600 (:multiplication1 prec))
1601 (defun :multiplication-unused (prec)
1602 (if (not have-weight)
1603 (:multiplication1 prec)
1604 (print "if(use_fw) {")
1605 (:multiplication-spec prec)
1606 (print "} else {")
1607 (:multiplication1 prec)
1608 (print "}")))

```

This computes the quotient. In the case of weight, we divide by \(q w\), otherwise by \(q\). The quotient has \(m\) terms. The degree of \(q w\) is nw. Without weight, it is still nw, this makes is easier.
```

1609 (defun :division (prec)
1610 (let (q dq delta_q delta_dq)

```
```

1611 (if (or (= mode 0) (= mode 2))
1612 (print "for(j=m;j>=0;j--){")
1613 (print "for(j=0;j<=m;j++){"))
1614 (if (or (= mode 0) (= mode 2))
1615 (progn (:division-lc) (:division-other))
1616 (progn (:division-other) (:division-lc)))
1617 (print "}")))

```

If lc is the coefficieent of \(P_{i+n+d}\), then we have to add to \(\psi\) the square of this quantity.
```

1618 (defun :division-lc ()
1619 (cond ((eq mode 0)
1620 (print "lc = p[j+nw];")
1621 (:norm2 "lc" "psi" prec))
1622 ((eq mode 1)
1623 (:norm2-diff "p[j+nw]" prec))
1624 ((eq mode 2)
1625 (print "lc = p[j+nw];")
1626 (print "delta_lc = delta_p[j+nw];")
1627 (:cmplx_2times "lc" "delta_lc" "delta_psi" prec))
1628 ((eq mode 3)
1629 (:norm2-delta-diff "p[j+nw]" prec))))

```

This is the real code of the division. The code is: we decrement \(p_{i+j}\) by the product of \(q_{i}\) and \(p_{j+n}\). This quantity is in 1 c is the mode is even.
```

1630 (defun :division-other ()
1631 (if have-weight
1632
1633
1634
1635
1636
1 6 3 7
1638
1 6 3 9
1 6 4 0
1 6 4 1
1642
1643
1644
1645
1646
1647
1648
(setq q "qw[i]" dq "dqw[i]" delta_q "delta_qw[i]" delta_dq "delta_dqw[i]")
(setq q "q[i]" dq "dq[i]" delta_q "delta_q[i]" delta_dq "delta_dq[i]"))
(print "for(i=0;i<nw;i++){")
(cond ((eq mode 0)
(:sub-mult q "lc" "p[i+j]" prec))
((eq mode 1)
(:sub-mult-conj "p[j+nw]" "dp[i+j]" dq prec)
(:sub-mult-conj q "dp[i+j]" "dp[j+nw]" prec))
((eq mode 2)
(:sub-mult q "delta_lc" "delta_p[i+j]" prec)
(:sub-mult delta_q "lc" "delta_p[i+j]" prec))
((eq mode 3)
(:sub-mult-conj "p[j+nw]" "delta_dp[j+i]" delta_dq prec)
(:sub-mult-conj "delta_p[j+nw]" "dp[j+i]" delta_dq prec)
(:sub-mult-conj q "delta_dp[i+j]" "delta_dp[j+nw]" prec)
(:sub-mult-conj delta_q "dp[i+j]" "delta_dp[j+nw]" prec)))
(print "}"))

```

In the case of the weight, we have to compute \(q w\), and the derivatives. We assume that the orthogonal polynomials have been computed. Since one these polynomials is \(q w\), there is no need to compute them. The code is rather easy, since \(w\) is constant.
```

1649 (defun :qw-product (prec)
1650 (print "for(j=0;j<=Wdeg;j++)")
1651 (print "for(i=0;i<n;i++)")
1652 (cond ((eq mode 1)
1653 (:add-mult-conj "w[j]" "dqw[i+j]" "dq[i]" prec))
1654 ((eq mode 2)
(:add-mult "w[j]" "delta_q[i]" "delta_qw[i+j]" prec))
((eq mode 3)
(:add-mult-conj "w[j]" "delta_dqw[i+j]" "delta_dq[i]" prec))))

```

\subsection*{4.13.3 The code of the function}

This function multiplies \(G\) by the constant term of \(q w\). Since this term is one, no multiplication is required, and the derivative of this is zero. We use the same hack as for :multiplication, since this is the start of the multiplication.
```

1658 (defun :print-init-p-weight ()
1659 (print "for(j=0;j<=m;j++)")
1660 (print "p[j+Wdeg] = g[j];"))
1661 (defun :print-init-p-weight-unused ()
1662 (print "if(use_fw)")
1663 (print "for(j=0;j<=m;j++) {")
1664 (print " p[j] = g[j];")
1665 (print "} else {")
1666 (print "for(j=0;j<=m;j++)")
1667 (print "p[j+Wdeg] = g[j];")
1668 (print "}"))
1669 (defun :print-init-p (prec)
1670 (if have-weight
1671 (progn
1672 (:kill-array "p" "j" "0" "<=m+nw" prec)
1673 (:print-init-p-weight))
1674 (progn
1675 (:kill-array "p" "j" "m+1" "<=m+n" prec)
1676 (print "for(j=0;j<=m;j++)")
1677 (print "p[j] = g[j];"))))

```

We compute now \(\psi\) for each \(k\), i.e. for each component of \(G\). In the case of weight, we have two parts, see equation (2.71.3).
```

1678 (defun :print-main-psi (prec)
1679 (setq mode 0)
1680 (print "for(k=0;k<K;k++){")
1681 (print "p=P[k];")
1682 (print "g=G[k];")
1683 (:print-init-p prec)
1684 (:multiplication prec)
1685 (:division prec)
1686 (if have-weight (use-sec "Compute $\\psi_2$"))
1687 (print "}"))

```

This is the code for the function \(\psi\). We need the following variables. In the case of weight, we also need the degree of the weight, and the degree of \(q w\). For simplicity, we declare nw to be \(n\) is the case without weight. Note that \(m\) should be replaced by bigm in case we use \(g_{w}\). We fear that this might be a little too big.
```

1688 (defun :declare-scal-var-psi ()
1689 (show-usage)
1690 (print "@ @<Declare some local variable@>=")
1691 (print "int n = a_n;")
1692 ; (print "int m = use_fw ? bigm : a_m;")
1693 (print "int m = a_m;")
1694 (print "int K = g_dim1;")
1695 (print "int i,j,k;")
1696 (if have-weight
1697 (progn

```
```

1698 (print "int Wdeg = Wdeg;")
1699 (print "int nw = a_nw;"))
1700 (print "int nw = n;")))
1701
1702 (defun :print-scal-var-psi ()
1703 (print "@<Declare some local variable@>@;")
1704 (if (or (= prec 1) (= prec 3)) (print "SLD temp;")))

```

We declare now the variables \(g, q\) and \(p\), and \(G, P\). In the case of weight, we have to declare \(q w\).
```

1705 (defun :print-mat-var-psi (prec)
1706 (let ((type (vref types-vector prec)) (ext (vref prec_types prec)))
1707 (print type "*q=Y->q;")
1708 (print type "**G=use_fw ? Y->Gw : Y->G, *g;")
1709 (print type "**P=Y->p, *p;")
1710 (when have-weight
1711 (print type "**ps = Y->ps;")
1712 (print type "*qw = pol_coef" ext "(Y->qw);"))))

```

This defines three global variables. prev-prec is the real type associated to the current precision, type-psi is the type of \(\psi\) and type-lc is the type of the leading coefficient (used for the division). It is declared as a pointer in the SLD case.

1713
```

(defun :decl-psi-lc (prec)
(setq prev-prec (:prev-prec prec))
(setq type-psi (vref types-vector prev-prec))
(setq type-lc (vref types-vector prec)))

```

We define now the variables lc and psi. We initialise \(\psi\) to zero.
```

1717 (defun :print-other-var-psi (prec)
1718 (let (type-psi type-lc prev-prec aux)
1719 (:decl-psi-lc prec)
1720 (if (= prev-prec 1)
1721 (setq aux "; psi.kill();")
1722 (setq aux " = 0;"))
1723 (print type-lc " lc;")
1724 (print type-psi " psi" aux)))

```

We copy \(\psi\) in the structure \(X\) and \(Y\). The code is a bit easier in the double case.
```

1725 (defun :print-copy-psi (prec)
1726 (let ((prev (:prev-prec prec)))
1727 (if (= prev prec)
1728 (print "Y->psi[0] = psi;")
1729 (print "Y->psi[0].r = psi;"))
1730 (if (= prev 1)
1731 (progn
1732 (print "temp.get_one();");
1733 (print "a_psi = psi.to_double();")
1734 (print "psi.sub(temp,psi);")
1735 (print "one_minus_psi = psi.to_double();"))
1736 (print "a_psi = psi;")
1737 (print "one_minus_psi = 1-psi;"))))

```

We now put everything together. We use the same name, in the case of weight, and in the case without weight, because the function is declared static, and these are put in two different files.
```

1738 (defun :print-scal-psi (prec)
1739 (show-usage)

```
```

1740 (print "@ @u")
1741 (print "void arl2_data::scalar_psi" (:w-ext)
1742 " (arl2_scal" (vref prec_types prec) "*Y)")
1743 (print "{")
1744 (:print-scal-var-psi)
1745 (:print-mat-var-psi prec)
1746 (:print-other-var-psi prec)
1747 (:print-main-psi prec)
1748 (:print-copy-psi prec)
1749 (print "}"))

```

Some useful function. Note that \(Y\) is the data structure that contains everything that depends on the current precision, while \(X\) contains everything. The :w-ext function adds the extension weight to the name of the function, in case it is exported.
```

1750 (defun :fetch-Y ()
1751 (print "arl2_scal_temp* Y = cur_prec? SQ : SD;"))
1752 (defun :print-cast (prec)
1753 (let ((ext (vref prec_types prec)))
1754 (print "arl2_scal" ext "*Y1= static_cast<arl2_scal" ext "*>(Y);")))
1755 (defun :w-ext ()
1756 (if have-weight "_weight" ""))

```

This is the function that computes \(\psi\). It calls one of the previous ones. The name of the function depends on whether we use weight or not. If we do not use weight, we declare the function with weight.
```

1757 (defun :scalar-psi-def ()
1758 (show-usage)
1759 (print "@ @u")
1760 (print "void arl2_data::scalar_psi" (:w-ext) "()")
1761 (print "{")
1762 (:fetch-Y)
1763 (if have-weight (print "get_bezout(Y,1);"))
1764 (print "switch(Y->type){")
1765 (for (i 0 1 3)
1766 (:print-switch-case i) (print "{")
1767 (:print-cast i)
1768 (print "scalar_psi" (:w-ext) "(Y1);")
1769 (print "break;}"))
1770 (print "}")
1771 (print "}"))

```

\subsection*{4.13.4 Code of the derivative}

We start with the main function. In principle, it is like the previous one. Note that the first thing to do is to evaluate \(\psi\). This computes also the scalar products in ps. After that, we compute the Bezout coefficients. These are needed for \(\psi_{2}\).
```

1772 (defun :scalar-psi-prime-def()
1773 (show-usage)
1774 (print "@ @u")
1775 (print "void arl2_data::scalar_gradient" (:w-ext)
1776 "(double * grad, SLD* qqdot)")
1777 (print "{")
1778 (print "int N = a_N,i;");
1779 (:fetch-Y)
1780 (print "scalar_psi" (:w-ext) "();")
1781 (if have-weight (print "get_bezout(Y,2);"))

```
```

1782 (print "for(i=0;i<N;i++) grad[i]=0;")
1783 (print "switch(Y->type){")
1784 (for (prec 0 1 3)
1785 (:print-switch-case prec)
1786 (print "{");
1787 (:print-cast prec)
1788 (print "scalar_gradient" (:w-ext) "(grad,Y1);")
1789 (:psi-prime-end prec)
1790 (print "break;}"))
1791 (print "}")
1792 (print "a_norm = l2_norm(N,grad);")
1793 (print "}"))

```

At the end, the derivative is in \(d q\). We have to copy it into grad. In the multi-precision case, we have also to copy it into qqdot. This last copy is done is the main function, so that we do not need to pass qqdot as an argument
```

1794 (defun :psi-prime-end (prec)
1795 (if (or (= prec 1) (= prec 3))
1796 (progn
1797 (print "if(qqdot) {")
1798 (cond ((eq prec 1)
(print "SLD *dq = Y1->dq;")
(print "for(i=0;i<N;i++)")
(print "qqdot[i] = dq[i];"))
((eq prec 3)
(print "int n = N/2;")
(print "SLD_complex *dq = Y1->dq;")
(print "for(i=0;i<n;i++){")
(print " qqdot[2*i] = dq[i].r;")
(print " qqdot[2*i+1] = dq[i].i;")
(print "}")))
(print "}"))))

```

The first thing to do is to get all the variables. In the case of weight, \(q\) is not needed. However, the polynomial \(q\) is needed for \(\psi_{2}\).
```

1810 (defun :print-mat-var-psi-prime (prec)
1811 (let ((type (vref types-vector prec)) (ext (vref prec_types prec)))
1812 (if have-weight
1813 (progn
1814 (print type "*w, *qw, *dq, *g, *p, *dp, *dqw;")
1815 (print "Polynom* table = Y->table;"))
1816 (print type "*q, *dq, *g, *p, *dp;"))
1817 (if (not have-weight)
1818 (print "q=Y->q;"))
1819 (when have-weight
1820 (print type "**ps = Y->ps;")
1821 (print type "**dps = Y->dps;")
1822 (print "int N = a_N;");
1823 (print "Polynom pol_q = Y->pol_q;")
1824 (print "qw = pol_coef" ext "(Y->qw);")
1825 (print "w = pol_coef" ext "(Y->a_w);")
1826 (print "dqw = Y->dqw;"))
1827 (print "dq = Y->dq;")))

```

We start by initialising the derivative of \(q\) and \(q w\) to zero.
1828 (defun :kill-dq-dqw (prec)
```

1829 (:kill-array "dq" "i" 0 "<n" prec)
1830 (when have-weight (:kill-array "dqw" "i" 0 "<nw" prec)))

```

This is the start of the loop over \(k\). We get \(g, p\) and \(d p\), and clear the \(d p\) array.
```

1831 (defun :fetch-par-kill-p (prec)
1832 (print "g=Y->G[k];")
1833 (print "p=Y->p[k];")
1834 (print "dp=Y->dp[k];")
1835 (:kill-array "dp" "i" 0 "<=m+nw" prec))

```

This copies var into grad. Here var can be a complex variable, but grad is always real.
```

1836 (defun :copy-to-grad (var prec)
1837 (let ((need-brace false))
1838 (if (>= prec 2) (setq need-brace true))
1839 (print "for(i=0;i<n;i++)")
1840 (if need-brace (print "{"))
1841 (cond ((eq prec 0)
1842 (print "grad[i]=" var "[i];"))
1843 ((eq prec 1) ; SLD
1844 (print "grad[i] = " var "[i].to_double();"))
1845 ((eq prec 2)
1846 (print "grad[2*i]=" var "[i].r;")
1847 (print "grad[2*i+1]=" var "[i].i;"))
1848 ((eq prec 3)
1849 (print "grad[2*i] = " var "[i].r.to_double();")
1850 (print "grad[2*i+1] = " var "[i].i.to_double();")))
1851 (if need-brace (print "}"))))

```

Does the same operation the other way. Used for the Hessian. The value of grad is the direction in which we compute the Hessian.
```

82 (defun :copy-from-grad (var prec)
1853 (let ((need-brace false))
1854 (if (>= prec 2) (setq need-brace true))
1855 (print "for(i=0;i<n;i++)")
1856 (if need-brace (print "{"))
1857 (cond ((eq prec 0)
1858 (print var "[i]=grad[i];"))
1859 ((eq prec 1) ; SLD
1860 (print var "[i]=grad[i];"))
1861 ((eq prec 2)
1862 (print var "[i].r =grad[2*i];")
(print var "[i].i =grad[2*i+1];"))
((eq prec 3) ; SLD complex
(print var "[i].r = grad[2*i];")
(print var "[i].i = grad[2*i+1];")))
(if need-brace (print "}"))))

```

This is now the function.
```

1868 (defun :print-real-psi-prime (prec)
1869 (show-usage)
1870 (print "@ @u")
1871 (print "void arl2_data::scalar_gradient" (:w-ext)
1872 " (double* grad, arl2_scal" (vref prec_types prec) "*Y)")
1873 (print "{")
1874 (:print-scal-var-psi)

```
```

1875 (:print-mat-var-psi-prime prec)
1876 (:kill-dq-dqw prec)
1877 (print "for(k=0;k<K;k++){")
1878 (:fetch-par-kill-p prec)
1879 (:division prec)
1880 (:multiplication prec)
1881 (print "}")
1882 (if have-weight (:qw-product prec))
1883 (if have-weight (use-sec "Compute $\\psi_2$"))
1884 (:copy-to-grad "dq" prec)
1885 (print "}"))

```

This piece of code fills delta_q by putting 1 in the \(i\)-th component and zero everywhere else. This is used for computing the full Hessian.
```

1886 (defun :fill-delta-q (prec)
1887 (decl-sec0 "Fill |delta_q| for the Hessian" prec)
1888 (:kill-array "delta_q" "j" 0 "<n" prec)
1889 (cond ((eq prec 0)
(print "delta_q[i] = 1;"))
((eq prec 1)
(print "delta_q[i].get_one();"))
((eq prec 2)
(print "j = i/2;")
(print "if(i\&1) delta_q[j].i = 1;")
(print "else delta_q[j].r = 1;"))
((eq prec 3)
(print "j = i/2;")
(print "if(i\&1) delta_q[j].i.get_one();")
(print "else delta_q[j].r.get_one();"))))

```

\subsection*{4.13.5 Derivative in direct mode}

We fetch here the variables that are are needed for both parts.
```

1901 (defun :vars-for-hess (prec)
1902 (let ((ext (vref prec_types prec)))
1903 (print "q = Y->q;")
1904 (print "delta_q = Y->delta_q;")
1905 (print "delta_dq = Y->delta_dq;")
1906 (when have-weight
1907 (print "qw = pol_coef" ext "(Y->qw);")
1908 (print "w = pol_coef" ext "(Y->a_w);")
1909 (print "delta_qw = Y->delta_qw;")
1910 (print "delta_dqw = Y->delta_dqw;"))))

```

We fetch the variables \(p, \delta p\) and \(g\), and kill \(\delta p\).
```

1911 (defun :get-p-prime-direct (prec)
1912 (print "p = Y->p[k];")
1913 (print "delta_p = Y->delta_p[k];")
1914 (print "g = Y->G[k];")
1915 (:kill-array "delta_p" "j" 0 "<=m+nw" prec))

```

This is now the complete code of the first part of the Hessian.
```

1916 (defun :scalar-psi-prime-direct (prec)
1917 (let ((type (vref types-vector prec)) (ext (vref prec_types prec)))
1918 (setq mode 2)

```
```

1919 (decl-sec "Compute $\\psi$")
1920 (:vars-for-hess prec)
1921 (when have-weight
1922 (:kill-array "delta_qw" "i" 0 "<nw" prec)
1923 (:qw-product prec))
1924 (print "for(k=0;k<K;k++){")
1925 (:get-p-prime-direct prec)
1926 (:multiplication prec)
1927 (:division prec)
1928 (print "}")))

```

\subsection*{4.13.6 Hessian}

This clears the arrays \(\delta d q w\) and \(\delta d q\).
```

1929 (defun :kill-delta-qw (prec)
1930 (:kill-array "delta_dq" "i" 0 "<n" prec)
1931 (if have-weight (:kill-array "delta_dqw" "i" 0 "<nw" prec)))

```

Fetch the variables, kill \(\delta d p\).
```

1932 (defun :get-p-hessian (prec)
1933 (print "p = Y->p[k];")
1934 (print "dp = Y->dp[k];")
1935 (print "delta_p = Y->delta_p[k];")
1936 (print "delta_dp = Y->delta_dp[k];")
1937 (print "g = Y->G[k];")
1938 (:kill-array "delta_dp" "j" 0 "<=m+nw" prec))

```

This computes now the second part of the Hessian.
```

1939 (defun :scalar-psi-hess (prec)
1940 (setq mode 3)
1941 (let ((type (vref types-vector prec)) (ext (vref prec_types prec)))
1942 (decl-sec "Compute $\\psi$")
1943 (:kill-delta-qw prec)
1944 (print "for(k=0;k<K;k++){")
1945 (:get-p-hessian prec)
1946 (:division prec)
1947 (:multiplication prec)
1948 (if have-weight (use-sec "Compute $\\psi_2$"))
1949 (print "}")
1950 (if have-weight (:qw-product prec))))

```

This function computes one row of the Hessian.
```

1951 (defun :def-scalar-hess (prec)
1952 (let ((type (vref types-vector prec)) (ext (vref prec_types prec))
1953 prev-prec type-psi type-lc aux)
1954 (show-usage)
1955 (print "@ @u")
1956 (print "void arl2_data::scalar_hess"
1957 "(arl2_scal" (vref prec_types prec) "*Y, double* grad"
1958 (if have-weight ",int l" "") ")")
1959 (print "{")
1960 (:scal-hess-prepare prec)
1961 (setq mode 2)
1962 (use-sec "Compute $\\psi$")
1963 (setq mode 3)

```
```

1964 (use-sec "Compute $\\psi$")
1965 (:copy-to-grad "delta_dq" prec)
1966 (print "}")))

```

This initialises the variables for the Hessian.
```

1967 (defun :scal-hess-prepare (prec)
1968 (:print-scal-var-psi)
1969 (print type "*q, *delta_q, *delta_dq, *g;")
1970 (print type "*p, *dp,*delta_p, *delta_dp;")
1971 (when have-weight
(print type "**ps = Y->ps;")
(print type "**dps = Y->dps;")
(print type "**ddps = Y->ddps;")
(print "int $N=a_{-} N ; "$;
(print type "*w, *qw, *delta_qw, *delta_dqw;"))
(:decl-psi-lc prec)
(print type-lc " lc;")
(print type-lc " delta_lc;")
(if (= prev-prec 1)
(setq aux "; delta_psi.kill();")
(setq aux " = 0;"))
(print type-psi " delta_psi" aux))

```

This computes the full Hessian if the flag is non-zero, the Hessian applied to a vector in the other case. The vector is in grad. The result also. In the case of a weight, we have to compute the full Hessian (perhaps we could do better). In the case where we have to compute the Hessian applied to a vector, we compute the whole Hessian in temp storage and then, multiply. We could do better than allocate memory each time, but this code is still unused.
```

1984 (defun :def-scalar-hessian (prec)
1985 (let ((ex (vref prec_types prec)))
1986 (show-usage)
1987 (print "@ @u")
1988 (print "void arl2_data::scalar_hessian" (:w-ext)
1989 "(arl2_scal" ex "*Y, double* grad, int flag)")
1990 (print "{")
1991 (print "int n=a_n, N=a_N,i,j;")
1992 (print (vref types-vector prec) "*delta_q = Y->delta_q;")
1993 (unless have-weight
1994 (print "if(flag==0) {")
1995
1996
1997
1998
1999
2000
200
2002
2003
2004
2005
2006
2007
2008 (use-sec0 "Fill |delta_q| for the Hessian" prec)
2009 (if have-weight
2010
2011
(print "scalar_hess(Y,temp_grad,i);")
(print "scalar_hess(Y,grad);"))

```
```

2012 (if have-weight
2013 (print "temp_grad += N;")
2014 (print "grad += N;"))
2015 (print "}")
2016 (when have-weight
2017 (print "if(flag) return;")
2018 (print "for(i=0;i<N;i++)")
2019
2020
2021
2022
2023
2024

```
```

 (print " { aux[i] = grad[i]; grad[i] = 0; }")
    ```
    (print " { aux[i] = grad[i]; grad[i] = 0; }")
    (print "temp_grad = aux1;")
    (print "temp_grad = aux1;")
    (print "for(i=0;i<N;i++)")
    (print "for(i=0;i<N;i++)")
    (print "for(j=0;j<N;j++)")
    (print "for(j=0;j<N;j++)")
    (print "grad[i]+= temp_grad[N*i+j]* aux[j];"))
    (print "grad[i]+= temp_grad[N*i+j]* aux[j];"))
(print "}")))
```

(print "}")))

```

This is now the main function. It is assumed that a call to the gradient is made before we compute the Hessian.
```

2025 (defun :the-scalar-hessian ()
2026 (show-usage)
2027 (print "@ @u")
2028 (if have-weight
(print "void arl2_data::scalar_hessian_weight(double* grad,int flag)")
(print "void arl2_data::scalar_hessian(double* grad,int flag)"))
(print "{")
(:fetch-Y)
(if have-weight (print "get_bezout(Y,3);"))
(if have-weight (print "hess_of_scal(Y);"))
(print "switch(Y->type){")
(for (i 0 1 3)
(:print-switch-case i)
(print "{")
(:print-cast i)
(print "scalar_hessian" (:w-ext) "(Y1,grad,flag);")
(print "break;}"))
(print "}}"))

```

\subsection*{4.13.7 Second part of \(\psi\)}

We have \(\psi_{2}=\sum\left|a_{k j}\right|^{2}\) where
\[
a_{k j}=\left\langle F / w e_{k} \mid \Phi_{j} / q w\right\rangle
\]

The sum is over all \(k, j\) and \(e_{k}\) is the \(k\)-th base vector. Every piece of code that computes \(\psi_{2}\) is in a loop over \(k\). The loop over \(j\) is from \(n\) to \(n+d-1\), where \(d\) is the degree of the weight.

The scalar product \(\langle F / w \mid \Phi / x\rangle\) is computed by a call to my_long_div, that takes 3 arguments: the polynomial \(\Phi\), the data structure \(Y\) and the index \(k\). We may (or may not) use the Bezout relation. It is assumed that the denominator \(q w\), and the Bezout coefficient are stored somewhere in \(Y\).
```

2043 (defun :get-psi2-direct (prec)
2044 (let (aux (ext (vref prec_types prec)))
2045 (setq aux (catenate "ld_res->" ext))
2046 (cond ((eq prec 0) (setq aux "ld_res->C.r"))
2047 ((eq prec 1) (setq aux "ld_res->SC.r")))
2048 (setq mode 0)
2049 (decl-sec "Compute $\\psi_2$")
2050 (print "{")
2051 (print "for(j=0;j<Wdeg;j++){ ")
2052 (print "my_long_div(Y->orth_poly[0][0][j],Y,k);")
2053 (:norm2 aux "psi" prec)

```
```

(print "ps[k][j] = " aux ";")

```
2055 (print "\}\}")))

This computes now the derivative. We can safely put the result into \(d q\). This piece of code is (mostly) independent of the precision. The computation is done in direct mode! This has as side effect that we have to loop over \(i\). We have to put the result into the real or imaginary part of \(d q\). This makes the code a little complicated. Moreover, we have to compute \(\partial q\), the direction in which to evaluate the derivative. This is done by the function mk_zn, which puts the result in table at location 5 . Note that we compute the derivative of the scalar product of \(f\) and \(\Phi / q w\). This is the scalar product of \(f\) and the derivative of \(\Phi / q w\). This is \((\partial \Phi q-\Phi \partial q) / q^{2} w\). We have to compute the numerator of this. It is assumed that the denominator \(q^{2} w\) is somewhere in the table. The result is stored in dps. Recall that if \(a\) is the scalar product, then we have to add \(a^{2}\) to \(\psi\), hence \(2 a a^{\prime}\) to \(\psi^{\prime}\), and \(2\left(a a^{\prime \prime}+a^{\prime 2}\right)\) to \(\psi^{\prime \prime}\).
```

2056 (defun :get-psi2-diff (prec)
2057 (let (aux (ext (vref prec_types prec)))
2058 (setq aux (catenate "ld_res->" ext))
2059 (cond ((eq prec 0) (setq aux "ld_res->C.r"))
2060 ((eq prec 1) (setq aux "ld_res->SC.r")))
2061 (setq mode 1)
2062 (decl-sec "Compute $\\psi_2$")
2063 (print "{")
2064 (if (or (= prec 2) (= prec 3)) (print "int I,ev;"))
2065 (print "for(i=0;i<N;i++){ ")
2066 (if (or (= prec 2) (= prec 3))
2067 (print "I=i/2; ev = i\&1;"))
2068 (print "pol_deg(table[5]) = -1;")
2069 (if (or (= prec 2) (= prec 3))
2070
(print "table[5]->change_deg(I);")
(print "table[5]->change_deg(i);"))
(cond ((eq prec 0) (print "pol_coefD(table[5])[i] = 1.0;"))
((eq prec 1) (print "pol_coefS(table[5])[i].get_one();"))
((eq prec 2)
(print "if(ev) pol_coefC(table[5])[I].i= 1;")
(print " pol_coefC(table[5])[I].r= 1;"))
((eq prec 3)
(print "if(ev) pol_coefSC(table[5])[I].i.get_one();")
(print " pol_coefSC(table[5])[I].r.get_one();")))
(print "mk_zn(i,5,table);")
(print "for(j=0;j<Wdeg;j++){ ")
(print "table[7]->mul(Y->orth_poly[i+1][0][j],pol_q);")
(print "table[7]->sub_mul(Y->orth_poly[0][0][j],table[5]);")
(print "for(k=0;k<K;k++){")
(print "my_long_div(table[7],Y,k);")
(print "dps[k][j*N+i] = " aux ";")
(if (or (= prec 2) (= prec 3))
(progn
(print "if(ev){")
(:cmplx_2times "ps[k][j]" aux "dq[I].i" prec)
(print "} else { ")
(:cmplx_2times "ps[k][j]" aux "dq[I].r" prec)
(print "}"))
(:cmplx_2times "ps[k][j]" aux "dq[i]" prec))
(print "}}}}")))

```

Let's now compute the Hessian. The easiest thing to do is to compute the full Hessian of the scalar product, and then to multiply by whatever is needed. This is now the function that computes it. We have to compute the scalar product of \(f / w\) and \(x / q^{3} w\) where
\[
x=\Phi\left(-q_{12} q+2 q_{1} q_{2}\right)-\Phi_{1} q_{2} q-\Phi_{2} q_{1} q+\Phi_{12} q^{2}
\]
where \(x_{i}\) is the derivative of \(x\) in one direction. This piece of code computes the polynomial \(x\). We compute the derivative in the directions \(i\) and \(l\). Note that \(q_{12}=0\). It is assumed that \(q^{3} w\) is somewhere in the table.
```

2096 (defun :compute-one-hess-elt ()
2097 (print "for(i=0;i<N;i++){ ")
2098 (print " mk_zn(i,5,table);")
2099 (print " for(l=0;l<=i;l++){ ")
2100 (print " mk_zn(l,6,table);")
2101 (print " table[9]->mul(table[5],table[6]);")
2102 (print " table[9]->mul(table[9],2);")
2103 (print " for(j=0;j<Wdeg;j++){ ")
2104 (print "table[7]->mul(table[9],Y->orth_poly[0][0][j]);")
2105 (print "table[8]->mul(table[5],Y->orth_poly[l+1][0][j]);")
2106 (print "table[8]->add_mul(table[6],Y->orth_poly[i+1][0][j]);")
2107 (print "table[7]->sub_mul(table[8],pol_q);")
2108 (print "table[7]->add_mul(table[10],Y->orth_poly[i+1][l+1][j]);"))

```

We compute now the scalar products, and put them in a big table. This function is independent of the type. The type is needed when we do the copy, but we know the type, since it is in the result of the long division. Since the Hessian is symmetric, we copy \(A_{i j}\) into \(A_{j i}\).
```

2109 (defun :compute-more-hess-elts ()
2110 (print "table[10]->mul(pol_q,pol_q);")
2111 (:compute-one-hess-elt)
2112 (print "for(k=0;k<K;k++){")
2113 (print "my_long_div(table[7],Y,k);")
2114 (print "my_copy_ld(ddps,k,l+N*(j*N+i));")
2115 (print "if(i!=l) my_copy_ld(ddps,k,i+N*(j*N+l));")
2116 (print "}}}}"))

```

We add now the declarations.
```

2117 (defun :hess-of-scal ()
2118 (print "@ @u void arl2_data::hess_of_scal"
2119 " (arl2_scal_temp*Y)")
2120 (print "{")
2121 (print "int N=a_N, i,j,k,l;")
2122 (print "int K = g_dim1;")
2123 (print "void* ddps = Y->get_ddps();")
2124 (print "Polynom* table = Y->table;")
2125 (print "Polynom pol_q = Y->pol_q;")
2126 (print "orth_poly(1);")
2127 (:compute-more-hess-elts)
2128 (print "}"))

```

This computes now the Hessian. In fact, we compute the Hessian in a given direction. It is assumed that the direction is delta_q. This direction is the \(l\)-th partial derivative of \(q\). The result should be added to delta_dq. Recall that \(a_{i j}\) is the scalar product. Denote this by \(a\). We have \(\psi=|a|^{2}\). This gives \(\psi_{12}=2\left(a a_{12}+a_{1} a_{2}\right)\).
```

2129 (defun :get-psi2-hess (prec)
2130 (let ((dest))
2131 (setq mode 3)
2132 (decl-sec "Compute $\\psi_2$")
2133 (print "{")
2134 (if (or (= prec 2) (= prec 3)) (print "int I,ev;"))
2135 (print "for(i=0;i<N;i++) {")
2136 (if (or (= prec 2) (= prec 3))

```
```

2137 (print "I=i/2; ev = i\&1;"))
2138 (print "for(j=0;j<Wdeg;j++){")
2139 (if (or (= prec 2) (= prec 3))
2140 (progn
2141 (print "if(ev){")
2142 (if (= prec 2)
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152 (defun :cpl-aux (r)
2153 (:cmplx_2times "ps[k][j]" "ddps[k][l+N*(j*N+i)]" r prec)
2154 (:cmplx_2times "dps[k][j*N+i]" "dps[k][j*N+l]" r prec))

```

This is now the main function of this file.
```

2155 (defun main-code ()
2156 (for (i 0 1 3) (:print-scal-psi i))
2157 (:scalar-psi-def)
2158 (:declare-scal-var-psi)
2159 (print "@* First derivative.")
2160 (setq mode 1)
2161 (for (i 0 1 3) (:print-real-psi-prime i))
2162 (:scalar-psi-prime-def)
2163 (print "@* Second derivative.")
2164 (setq mode 2)
2165 (for (i 0 1 3) (:scalar-psi-prime-direct i))
2166 (for (i 0 1 3) (:scalar-psi-hess i))
2167 (for (i 0 1 3) (:fill-delta-q i))
2168 (for (i 0 1 3) (:def-scalar-hess i))
2169 (for (i 0 1 3) (:def-scalar-hessian i))
2170 (when have-weight
2171 (:hess-of-scal)
2172 (for (i 0 1 3) (:get-psi2-direct i))
2173 (for (i 0 1 3) (:get-psi2-diff i))
2174 (for (i 0 1 3) (:get-psi2-hess i))
2175)
2176 (:the-scalar-hessian))
2177

```

This piece of code generates everything in the case without weight.
```

2178 (setq have-weight ())
2179 (outchan (openo "arl3aux.web"))
2180 (rmargin 100)
2181 (print "@* The function psi.")
2182 (print "@ Start of include file arl3aux.web")
2183 (print-banner "") (print "Copyright 1998-1999 INRIA/MIAOU")
2184 (print "The source was make
_scalar.ll.")
2185 (main-code)
2186 (print "@ End of include file arl3aux.web.")

```
```

2187 (close (outchan))
2188 (outchan ())
2189

```

This one generates everything in the case of weight.
```

2190 (setq have-weight true)
2191 (outchan (openo "arl3w1.web"))
2192 (rmargin 100)
2193 (print "@* The function psi.")
2194 (print "@ Start of include file arl3auxw.web")
2195 (print-banner "") (print "Copyright 1998-1999 INRIA/MIAOU")
2196 (print "The source was make
_scalar.ll.")
2197 (main-code)
2198 (print "@ End of include file arl3auxw.web.")
2199 (close (outchan))
2200 (outchan ())

```

\section*{Chapter 5}

\section*{Complexity}

\subsection*{5.1 Scalar case of dimension one}

Recall that, if \(q=z-\alpha\), then \(\psi(q)=\|g\|^{2}-\left(1-|\alpha|^{2}\right)|g(\alpha)|^{2}\). We can always assume that \(\|g\|=1\). In this section, we shall write \(\psi(\alpha)\) instead of \(\psi(q)\).

\subsection*{5.1.1 Real case of dimension one}

In the real case, we can forget the absolute values, so that we have
\[
\begin{equation*}
\psi(x)=1-\left(1-x^{2}\right) g(x)^{2} \tag{5.1}
\end{equation*}
\]

We want to find the minimum of \(\psi\) for \(-1 \leq x \leq 1\). We know that \(\psi( \pm 1)=1\), and that \(0 \leq \psi(x) \leq 1\). Thus, \(\psi\) has at least one local minimum. In fact, if \(\psi\) has \(n\) local minima, and \(m+2\) local maxima (including \(\pm 1\) ), then \(n=m+1\).

Note that a zero of \(g\) is a maximum of \(\psi\), so that, if \(g\) is of degree \(M, \psi\) could have more than \(M\) local minima. Assume that we approximate a fraction \(p / q\). Then \(g\) is roughly \(\tilde{p} / \tilde{q}\). If equality holds, then \(\psi^{\prime}=0\) if \(\tilde{p}=0\) or \(x \tilde{p} \tilde{q}=\left(1-x^{2}\right)\left(\tilde{p} \tilde{q}^{\prime}-\tilde{p}^{\prime} \tilde{q}\right)\). This shows that \(\psi\) cannot have more than \(3 n / 2\) minima, which is much better.

Note that our algorithm will fail in the case where \(\psi^{\prime}=\psi^{\prime \prime}=0\). We have \(\psi^{\prime}=0\) if \(g(x)=0\) or \(x g=\left(1-x^{2}\right) g^{\prime}\). The additional condition is
\[
-2 g^{2} g^{\prime 2}+g^{3} g^{\prime \prime}-9 g^{\prime 4}+6 g^{\prime 2} g g^{\prime \prime}-g^{2} g^{\prime \prime 2}=0
\]

We give here the algorithm that is used to find all local minima of \(\psi\).

Step one. The first three derivatives of \(\psi\) are given by:
\[
\begin{gather*}
\psi^{\prime}=2 g\left(x g-\left(1-x^{2}\right) g^{\prime}\right)  \tag{5.2.a}\\
\psi^{\prime \prime}=2 g^{2}+8 x g g^{\prime}-2\left(1-x^{2}\right)\left(g^{\prime 2}+g g^{\prime \prime}\right)  \tag{5.2.b}\\
\psi^{\prime \prime \prime}=12\left(g g^{\prime}+x g^{\prime 2}+x g g^{\prime \prime}\right)-2\left(1-x^{2}\right)\left(3 g^{\prime} g^{\prime \prime}+g g^{\prime \prime \prime}\right) \tag{5.2.c}
\end{gather*}
\]

Let \(I_{k}\) be the interval \([-1+k / 20,-1+(k+1) / 20], 0 \leq k<40\). The interval \(I=[-1,1]\) is hence split into 40 smaller intervals. On each of them, we compute the maximum of the absolute value of \(\psi^{\prime \prime}\) and \(\psi^{\prime \prime \prime}\) by evaluating these quantities on one thousand points. The main assumption is that the number of evaluation points is large enough.

Step two. If \(f\) is any function, we know that, for each interval \([a, b]\), there exists a point \(\xi\) in the interval such that
\[
\frac{f(a)-f(b)}{a-b}=f^{\prime}(\xi)
\]

Now, if \(M\) is the maximum of \(\left|f^{\prime}\right|\) on \([a, b]\), and if \(\epsilon=|f(a)| / M\), then \(f\) does not change sign on the interval \([a, b]\) in case \(b=a+\epsilon\). We give here a procedure that, given \(a\), returns \(\epsilon\), such that \(f\) is of constant sign on \([a, a+\epsilon]\). The trouble is, of course, that \(M\) depends on \(\epsilon\), and \(\epsilon\) is defined as a function of \(M\). We assume here that \(Z\) is a table, such that \(Z_{k}\) is the maximum of \(|f|\) on \(I_{k}\).
1. Let \(i=0, z_{i-1}=0\), and \(k\) be such that \(a \in I_{k}\).
2. Let \(z_{i}\) be the max of \(z_{i-1}\) and \(Z_{k+i}\) (loop invariant: it is the max of \(f^{\prime}\) on \(I_{k}, \ldots, I_{k+i}\) ).
3. Let \(\epsilon=|f(a)| / z_{i}\), and \(j\) such that \(a+\epsilon\) is in \(I_{k+j}\).
4. If \(j \leq i\), we have found \(\epsilon\). If \(a+|\epsilon|>1\), we take \(\epsilon=1-a\) (so that \(a+\epsilon=1\) ). Otherwise, we increment \(i\) and go back to point 2 .

Step three. Given \(a\), we compute here \(b\) such that \(\psi\) has zero or one local minimum in the interval \([a, b]\). We compute first \(\epsilon\) and \(\epsilon_{1}\) such that \(\psi^{\prime}\) does not change sign on \([a, a+\epsilon]\) and \(\psi^{\prime \prime}\) does not change \(\operatorname{sign}\) on \(\left[a, a+\epsilon_{1}\right]\). Let \(b=a+\max \left(\epsilon, \epsilon_{1}\right)\).
- If \(\epsilon>\epsilon_{1}\), there is no root of \(\psi^{\prime}\) on \([a, b]\), because \(\psi^{\prime}\) has constant sign on \([a, b]\).
- Assume now \(\epsilon<\epsilon_{1}\). The assumption is now that \(\psi^{\prime \prime}\) has constant sign on \([a, b]\). If \(\psi^{\prime}\) and \(\psi^{\prime \prime}\) have the same signs at \(a\), then there is no root of \(\psi^{\prime}\) on \([a, b]\) (because either \(\psi^{\prime}\) is positive and increasing, or negative and decreasing).
- Now, \(\psi^{\prime}\) may change sign, but only once, in the interval \([a, b]\). In the case \(\psi^{\prime}(a)<0\) and \(\psi^{\prime}(b)>0\), then we have a local minimum in the interval.
- Otherwise, there is no local minimum in the interval.

Step four. We have now a procedure that given \(a\), returns \(b\) such that the interval \([a, b]\) contains a single local minimum of \(\psi\), or none. In the first case, we compute it, in the second case we do nothing. After that, we replace \(a\) by \(b\), and restart with this new value of \(a\), until we get \(a=1\).

The trouble is that the quantity \(b-a\) may be too small. If this is the case (i.e. if \(b-a<\epsilon_{0}\), for some fixed \(\epsilon_{0}\) ), we replace \(b\) by \(a+\epsilon_{0}\), and decide that we have a local minimum, if and only if \(\psi^{\prime}(a)<0\) and \(\psi^{\prime}(b)>0\).

Step five. In the case where we know that there is a root between \(a\) and \(b\), we try the Newton method to find it. There is however no warranty that this will succeed and that the result is between \(a\) and \(b\). For this reason, we try three starting points, namely \(a, b\) and \((a+b) / 2\).

\subsection*{5.1.2 Complex case of dimension one}

If we write the equation \(\psi^{\prime}=0\), we get either \(g(\alpha)=0\) or
\[
\begin{equation*}
\bar{\alpha} g(\alpha)-(1-|\alpha|)^{2} g^{\prime}(\alpha)=0 \tag{5.3}
\end{equation*}
\]

In the first case, \(\alpha\) is a maximum of \(\psi\). Hence, one way to minimise \(\psi\) is solve equation (5.3), evaluate the second derivative of \(\psi\), and check whether the Hessian is positive definite or not.

There is a way to find the roots of a function \(h(x, y)\), called exclusion method, see for instance [5]. The method works in the case where \(h\) has more than two arguments (in the case of 3 , replace "squares" by "cubes" and "four sub-squares" by "eight sub-cubes"). Let's write \(z=x+i y\), so that \(h\) becomes a


Figure 5.1: Exclusion circles, showing the minimum of \(\psi\), which is in one of the two white zones. It is to be noticed that the size of the circle is not a function of the distance to the minimum: we have chosen the centre on three horizontal lines. On the first and the last, the radius is rather constant, on the middle line, the radius varies a lot.
real function of the complex variable \(z\). Let \(Z\) be the set of all \(z\) such that \(h(z)=0\), this is the set of zeroes of \(h\). The idea is to take a point \(z_{0}\), evaluate \(h\) at \(z_{0}\), and if this is not zero, find \(\epsilon\) such that \(z \notin Z\) if \(\left|z-z_{0}\right| \leq \epsilon\). Hence, we can exclude zones in which the function does not vanish. The function \(z_{0} \rightarrow \epsilon\) is called the exclusion function. On figure 5.1 we have shown a certain number of disks \(\left|z-z_{0}\right| \leq \epsilon\) near a zero of \(h\).

There are different ways of using the exclusion function. One way is the following. We consider a square that covers the domain of interest \(D\). After a while, we get a certain number of squares \(S_{i}\), such that, if \(z \in Z\), then \(x\) is in at least one square. For each square \(S_{i}\), we evaluate \(\epsilon(x)\) at the centre of the square. In the good case, we can eliminate this square. In the bad case, we split the square into four sub-squares. Some of these sub-squares may be outside \(D\), hence can also be eliminated. After a while, if the function \(\epsilon(z)\) satisfies good properties, we can "see" the set of zeroes of \(h\). The case of interest is when \(h\) has only isolated zeroes (for instance if \(h\) is a polynomial). The hope is that, after a while, we have as many small squares as roots of \(h\), and a Newton method, with the centre of the square as initial condition, will find the root. In practice (see figure 5.1), we get much more squares than roots of \(h\), and this method is not used to find the minimum of \(\psi\).

Let \(\eta\left(z_{0}\right)\) be the distance of \(z_{0}\) to the set of roots of \(h\). Then \(0 \leq \epsilon(z) / \eta(z) \leq 1\). One property of \(\epsilon\) we need is that the limit \(\epsilon(z) / \eta(z)\) is not zero if \(z\) approaches \(Z\). Assume that \(h\) is a polynomial function of \(z\). Then \(Z\) contains a finite number of points \(z_{i}(1 \leq i \leq n)\), and the condition \(z\) approaches \(Z\) can be written as: there is some \(i\) such that \(\lim z=z_{i}\), and in this case \(\eta(z)=\left|z-z_{i}\right|\).

Fix \(z_{0}\). Write
\[
\begin{equation*}
h\left(z+z_{0}\right)=\sum_{k=0}^{n} h_{k} z^{k} \tag{5.4.a}
\end{equation*}
\]

Let \(a_{i}=\left|h_{i}\right|\) and
\[
\begin{equation*}
f(x)=-a_{0}+\sum_{i=1}^{n} a_{i} x^{i} \tag{5.4.b}
\end{equation*}
\]

Because \(a_{i} \geq 0\), there is a unique \(\alpha \geq 0\) such that \(f(\alpha)=0\). Moreover, if \(x>\alpha\) then \(f(x)>0\), and if \(0<x<\alpha, f(x)<0\). It is very easy to find \(x\) such that \(x>\alpha\) : we start with \(x=1\), and multiply \(x\) by 2 while \(f(x)<0\). Moreover, if \(x_{0}>0\), then the sequence \(x_{k+1}=x_{k}-f\left(x_{k}\right) / f^{\prime}\left(x_{k}\right)\) converges to \(\alpha\), and satisfies \(\alpha<x_{k}\). Thus, it is easy to find \(x\) such that \(0.99 x<\alpha<x\) (in case \(f\left(0.99 x_{k}\right)<0\), then \(x=x_{k}\) is a good value). Hence, we obtain without pain a good estimation of \(\alpha\) (with a precision of \(1 \%\) ).

If we compare (5.4.a) and (5.4.b), we see that \(\alpha\) (or anything smaller than \(\alpha\) ) is a candidate for \(\epsilon\left(z_{0}\right)\). Using the Taylor expansion, one can show that, if \(z_{0}\) is a root of multiplicity \(i\) of \(h\), then
\[
\lim \frac{\alpha}{\left|z-z_{0}\right|}=2^{1 / i}-1
\]

In particular, this limit is one in case of a single root, \(\sqrt{2}-1\) in case of a double root. Thus, if \(h\) has only single roots, our function \(\epsilon\) is optimal.

In the special case where the polynomial is \(z^{2}-1\), and \(z_{0}=a+i b\), we have
\[
f(x)=-|1-(a+i b)|^{2}+2 x|a+i b|+x^{2}=0
\]
hence
\[
\epsilon=-\sqrt{a^{2}+b^{2}}+\sqrt{a^{2}+b^{2}+\sqrt{\left(1-a^{2}+b^{2}\right)^{2}+4 a^{2} b^{2}}}
\]

Note that, if \(b=0\) and \(-1 \leq a \leq 1\), then \(\epsilon\) is the largest possible: the circle with centre \(z_{0}\) and radius \(\epsilon\) passes through one of the roots of the polynomial. We have shown in figure 5.2 some circles that show the root \(z=1\).

We want to apply this technique in the case
\[
h(a)=\bar{a} g(a)-\left(1-|a|^{2}\right) g^{\prime}(a)
\]

Instead of (5.4.a), we have now \(h\left(z_{0}+z\right)=\sum_{i}\left(a_{i} z^{i}+b_{i} \bar{z} z^{i-1}\right)\), from which we get a bound
\[
\left|h\left(z_{0}+z\right)-h\left(z_{0}\right)\right| \leq \sum\left(\left|a_{i}\right|+\left|b_{i}\right|\right)|z|^{i}
\]

Hence we get a function \(f\) like before. Note however that \(h\) is not a polynomial. In particular, the set of zeroes of \(h\) can contain an infinite number of points (see example from chapter 2: \(\psi(a)=1-|a|^{2}+|a|^{4}\) ).

\subsection*{5.2 Scalar case}

As explained elsewhere, we find a minimum of \(\psi\) using integration or a Quasi-Newton algorithm. The number of times \(\psi^{\prime}\) and \(\psi^{\prime \prime}\) are computed depends a lot on the initial condition. In general, we use an initial condition that has a pole on \(\mathbb{T}\), thus, is generally far from the minimum. In some other cases, we may have a good guess of where the minimum lies.

From now on, we compute the complexity of the computation of \(\psi, \psi^{\prime}\) and \(\psi^{\prime \prime}\). What we count is the number of multiplications. We assume that a division is equivalent to a multiplication. We assume that the cost of a complex multiplication or division is four times the cost of a real multiplication.

In this section, we look at the scalar case. The quantity \(n\) will be the degree of \(q\). In the real case, we have
\[
q=z^{n}+\sum_{i=0}^{n-1} q_{i} z^{i}
\]


Figure 5.2: Exclusion circles for \(z^{2}-1\), near the root \(z=1\).
so that \(\psi\) is a function of \(n\) arguments. Of course, \(\psi\) depends on some other quantities (the function \(f\), and maybe the weight), so that the complexity will depend on some other quantities. The important point is that we have to compute \(n\) partial derivatives.

In the complex case, we write
\[
q=z^{n}+\sum_{k=0}^{n-1}\left(q_{k}+i r_{k}\right) z^{k}
\]
so that \(\psi\) will be a function of \(2 n\) real variables. Note that \(\psi\) is a \(C^{\infty}\) function of \(q_{k}\) and \(r_{k}\), but is not an analytic function of \(q_{k}+i r_{k}\).

If we compute the derivatives of \(\psi\) in direct mode, we have twice as many partial derivatives to compute in the complex case ( \(n\) in the real case, and \(2 n\) in the complex case). Since the Hessian is a symmetric matrix, we have to compute \(n(n+1) / 2\) partial derivatives for \(\psi^{\prime \prime}\) in the real case, and \(n(2 n+1)\) partial derivatives in the complex case. Hence, the complex code of \(\psi^{\prime \prime}\) is a priori 16 times slower than the real code. The quantity \(d\) will be the degree of the weight. The quantity \(m\) will be the number of terms in \(G\). Recall that \(G\) is an \(M \times p\) matrix, and in the scalar case \(p=1\). Each element of \(G\) is a polynomial. We assume that all elements have the same degree (the programs adds zeroes if needed), say \(M_{1}\). Then \(m=M\left(M_{1}+1\right)\). In general, we have \(M=1\), and in most cases, the complexity depends only on \(m\). If this is not the case, we shall indicate what happens if \(M \neq 1\). For the numerical applications, we always assume \(m=400\). We shall consider four values of \(n\), namely \(5,8,10\) and 20 . In the case of weight, the weight will be \(1,2,5\), and 10 .

\subsection*{5.2.1 Orthogonal polynomials}

If \(P=\Phi_{n}\) and \(Q=\Phi_{n-1}\) the formula for orthogonal polynomials is
\[
\tilde{Q}(0) \tilde{Q}=\tilde{P}(0) \tilde{P}-\overline{P(0)} P
\]

Recall that \(\tilde{Q}(0)\) is the leading coefficient of \(Q\), and this is a real number. Assume \(P=\sum p_{i} z^{i}\) and \(Q=\sum q_{i} z^{i}\). Then
\[
\begin{equation*}
q_{n-1} q_{j}=p_{n} p_{j+1}-p_{0} \bar{p}_{n-j-1} \tag{5.5}
\end{equation*}
\]
and for \(j=n-1\) we get
\[
\begin{equation*}
q_{n-1}^{2}=p_{n}^{2}-\left|p_{0}\right|^{2} \tag{5.6}
\end{equation*}
\]

If we differentiate these formulas, we get
\[
\begin{equation*}
q_{n-1}^{\prime} q_{j}+q_{n-1} q_{j}^{\prime}=p_{n}^{\prime} p_{j+1}+p_{n} p_{j+1}^{\prime}-p_{0}^{\prime} \bar{p}_{n-1-j}-p_{0} \bar{p}_{n-j-1}^{\prime} \tag{5.7}
\end{equation*}
\]
and
\[
\begin{equation*}
q_{n-1} q_{n-1}^{\prime}=p_{n} p_{n}^{\prime}-\Re\left(p_{0} p_{0}^{\prime}\right) \tag{5.8}
\end{equation*}
\]

We can differentiate again. Note that the second derivative of a product \(a b\) is
\[
\delta a d b+a \delta d b+\delta d a b+d a \delta b
\]
if \(d X\) and \(\delta X\) are the derivatives of \(X\) in two directions. Hence, we get 12 terms for the derivatives of (5.7). Equation (5.8) gives us \(q_{n-1}^{\prime}\) and equation (5.7) gives us \(q_{j}^{\prime}\). The complexity for computing the generic term \(q_{j}, q_{j}^{\prime}\) and \(q_{j}^{\prime \prime}\) is hence 3,6 and 12 respectively. In the complex case, we take advantage of the fact that the leading coefficients of \(P\) and \(Q\) are real, so that, instead of multiplying these numbers by 4 , we get 8,16 and 32 . The cost of the leading term \(q_{n-1}, q_{n-1}^{\prime}\) and \(q_{n-1}^{\prime \prime}\) is 2,3 and 6 in the real case, 3,4 and 8 in the complex case. Note that, for \(q_{n-1}\) we have to extract a square root.

Thus, we get a cost of \(12 k+6\) for one partial second derivative of \(Q\), in the case where \(Q\) has degree \(k\). We have to compute all \(\Phi_{k}\) (of degree \(k\) ) for \(n \leq k \leq n+d\). Note that \(\Phi_{n+d}=q w\), so that the first derivative with respect to \(q_{i}\) is just \(z^{i} w\) : no multiplication is required. The second derivative is zero. Results are in table 5.1.

Table 5.1: Complexity of orthogonal polynomials (time)
\begin{tabular}{|c|c|c|c|}
\hline & \(\Psi\) & \(\Psi^{\prime}\) & \(\Psi^{\prime \prime}\) \\
\hline real & \(d(4 n+3 d / 2+1 / 2)\) & \(n d(6 n+3 d)\) & \(3 n(n+1)(2 n+d) d\) \\
complex & \(d(12 n+4 d+1)\) & \(8 n d(4 n+2 d-1)\) & \(8 n(2 n+1)(4 n+2 d-1) d\) \\
\hline\(n=5, d=1\) & \(22 / 65\) & \(165 / 4840\) & \(990 / 99240\) \\
\(n=8, d=2\) & \(71 / 210\) & \(864 / 4480\) & \(7776 / 76160\) \\
\(n=10, d=5\) & \(240 / 705\) & \(3750 / 19600\) & \(41250 / 411600\) \\
\(n=20, d=10\) & \(955 / 2810\) & \(30000 / 158400\) & \(630000 / 6494400\) \\
\hline
\end{tabular}

Table 5.2: Complexity of orthogonal polynomials (space)
\begin{tabular}{|c|c|c|}
\hline & real & complex \\
\hline & \(\left(n^{2}+n+1\right)(n+1+d / 2)(d+1)\) & \(\left(4 n^{2}+2 n+1\right)(2 n+2+d)(d+1)\) \\
\hline\(n=5, d=1\) & 403 & 5106 \\
\(n=8, d=2\) & 2190 & 16380 \\
\(n=10, d=5\) & 8981 & 63992 \\
\(n=20, d=10\) & 120406 & 938652 \\
\hline
\end{tabular}

Memory requirements: for simplicity we store the full Hessian. This gives hence table 5.2. The algorithm for computing \(\Psi^{\prime}\) is not optimal. To see why, consider for instance the case \(d=2\) and \(n=3\). We have
\[
\Phi_{5}=w_{0} q_{0}+\left(w_{0} q_{1}+w_{1} q_{0}\right) z+\left(w_{0} q_{2}+w_{1} q_{1}+q_{0}\right) z^{2}+\left(w_{0}+w_{1} q_{2}+q_{1}\right) z^{3}+\left(w_{1}+q_{2}\right) z^{4}+z^{5}
\]

Let \(\alpha=\sqrt{1-w_{0}^{2} q_{0}^{2}}\). Note that \(\alpha\) depends only on \(q_{0}\), and \(\alpha d \alpha / d q_{0}=-q_{0} w_{0}^{2}\). Let \(\Phi_{5}=a_{0}+a_{1} z+\) \(a_{2} z^{2}+a_{3} z^{3}+a_{4} z^{4}+z^{5}\). Then
\[
\alpha \Phi_{4}=a_{1}-a_{0} a_{4}+\left(a_{2}-a_{0} a_{3}\right) z+\left(a_{3}-a_{0} a_{2}\right) z^{2}+\left(a_{4}-a_{0} a_{1}\right) z^{3}+\alpha^{2} z^{4}
\]

Write this as \(b_{0}+b_{1} z+b_{2} z^{2}+b_{3} z^{3}+b_{4} z^{4}\). Now \(b_{4}\) is independent of \(q_{1}, q_{2}\). Moreover, the derivative of \(b_{i}\) with respect to \(q_{j}(j \neq 0)\) has the form \(a_{u}^{\prime}-a_{0} a_{v}^{\prime}\), for some indices \(u\) and \(v\). Given the form of \(a_{i}\), we can compute \(a_{u}^{\prime}\) without multiplication. Now \(a_{v}^{\prime}\) is \(1, w_{0}\) or \(w_{1}\). Hence it suffices to use 2 multiplications in order to compute \(a_{0} a_{v}^{\prime}\). Thus the complexity is 10 (we have 8 divisions), instead of 54 . Since the total cost is 144 , this reduces it to 100 . If we compute the second derivative, it is clear that \(\partial^{2} \Phi_{u} / \partial q_{i} \partial q_{j}\) is zero, if none of \(i\) and \(j\) is zero. Thus, it suffices to compute only the first row of the Hessian.

In the general case, we can optimise the code of \(\Phi_{n+d-1}\), and perhaps the code of \(\Phi_{n+d-2}\). Given the complexity of the other terms, these optimisations can be neglected.

\subsection*{5.2.2 Additional code}

We have to compute now \(\psi_{0}\) and its derivative, where
\[
\begin{equation*}
\psi_{0}=\sum_{j=1}^{M} \sum_{i=n}^{n+d-1}\left|\left\langle\left.\frac{\Phi_{i} e_{j}}{q} \right\rvert\, F\right\rangle_{w}\right|^{2} \tag{5.9}
\end{equation*}
\]

Denote by \(s_{k}\) the scalar product in this expression. Then \(\psi_{0}=\sum\left|s_{k}\right|^{2}, d \psi_{0}=2 \sum \Re\left(\overline{s_{k}} d s_{k}\right)\) and \(\delta d \psi=2 \sum \Re\left(\delta s_{k} d s_{k}+\overline{s_{k}} \delta d s_{k}\right)\). In the next table (5.3), we assume \(M=1\) (recall that \(M\) is the number of components of \(F)\). We show the cost of \(\psi_{0}\) and its derivatives, assuming that \(s_{k}\) and their derivatives have been computed.

Table 5.3: Complexity of squares in (5.9), case \(M=1\)
\begin{tabular}{|c|c|c|c|}
\hline & \(\psi\) & \(\psi^{\prime}\) & \(\psi^{\prime \prime}\) \\
\hline real & \(M d\) & \(M n d\) & \(M d n(n+1)\) \\
complex & \(2 M d\) & \(4 M n d\) & \(4 M d n(2 n+1)\) \\
\hline\(n=5, d=1\) & \(1 / 2\) & \(5 / 20\) & \(30 / 220\) \\
\(n=8, d=2\) & \(2 / 4\) & \(16 / 64\) & \(144 / 1088\) \\
\(n=10, d=5\) & \(5 / 10\) & \(50 / 200\) & \(550 / 4200\) \\
\(n=20, d=10\) & \(10 / 20\) & \(200 / 800\) & \(4200 / 32800\) \\
\hline
\end{tabular}

We compute now the complexity of a single scalar product like
\[
\begin{equation*}
\psi_{0}=\left\langle\frac{F}{w} \left\lvert\, \frac{\Phi}{q w}\right.\right\rangle \tag{5.10}
\end{equation*}
\]

We have
\[
\begin{gather*}
d \psi_{0}=\left\langle\frac{F}{w} \left\lvert\, \frac{d \Phi}{q w}\right.\right\rangle-\left\langle\frac{F}{w} \left\lvert\, \frac{\Phi d q}{q^{2} w}\right.\right\rangle .  \tag{5.11.a}\\
d \psi_{0}=\left\langle\frac{F}{w} \left\lvert\, \frac{q d \Phi-\Phi d q}{q^{2} w}\right.\right\rangle .  \tag{5.11.b}\\
\delta d \psi_{0}=\left\langle\frac{F}{w} \left\lvert\, \frac{\delta d \Phi}{q w}\right.\right\rangle-\left\langle\frac{F}{w} \left\lvert\, \frac{\delta q d \Phi+d q \delta \Phi}{q^{2} w}\right.\right\rangle+2\left\langle\frac{F}{w} \left\lvert\, \frac{\Phi d q \delta q}{q^{3} w}\right.\right\rangle .  \tag{5.12.a}\\
\delta d \psi_{0}=\left\langle\frac{F}{w} \left\lvert\, \frac{q^{2} \delta d \Phi-q \delta d d \Phi-q \delta \Phi d q+2 \Phi d q \delta q}{q^{3} w}\right.\right\rangle . \tag{5.12.b}
\end{gather*}
\]

The question is now: should we implement (5.11.a) and (5.12.a) or (5.11.b) and (5.12.b). The answer depends on what is the cheapest: the scalar product \(\langle F \mid d \Phi / q\rangle_{w}\) or the product \(q d \Phi\). Let's start with easy things: the multiplication by 2 in (5.12). In equation (5.12.a), the best thing to do is multiply \(F\) by 2 . This costs (in the example) 400 multiplications, and 400 memory cells. In the case of ( \(5.12 . b\) ), the best thing to do is to multiply \(\Phi\) by 2 . This costs
\[
\begin{equation*}
d(2 n+d+1) / 2 \tag{5.13}
\end{equation*}
\]
multiplications and memory cells. This is small, so that we do not count it in our tables.
Assume now that we implement (5.12.b). The numerator has the form \(a q^{2}+b q+c\). We can compute this as
\[
\begin{equation*}
(a q+b) q+c=a\left(q^{2}\right)+b q+c \tag{5.14}
\end{equation*}
\]

In general the first method (Horner scheme) is more efficient than the second one. But \(q d \Phi\) appears in (5.11), hence can be precomputed. In the next table (cf 5.4) we give the memory cost of storing these quantities (which is \(n d(4 n+d+1) / 2)\).

In the next table (cf 5.5), we give the complexity of computing the denominator of (5.11.b) and (5.12.b). Recall that we have \(q w=\Phi_{n+d}\), and this is already computed. The complexity is \(n(n+d)\) for the product \(q^{2} w\) and \(n(2 n+d)\) for the product \(q^{3} w\). If we assume that we compute (5.14) as \(a\left(q^{2}\right)+b q+c\), we count also the cost of \(q^{2}\) which is \(n^{2}\). Now, we can compute \(q^{2} w\) by multiplying \(q^{2}\) by \(w\). This costs \(2 n d\). Whether this is better than multiplying \(q w\) by \(q\) depends on which is the greatest, \(n\) or \(d\). In our example, we always have \(n>d\), but this is not always true. In fact, since \(q^{2}\) is needed for the Hessian, and \(q^{2} w\) for the first derivative, the best thing to do when we compute the first derivative is to multiply \(q w\) by \(q\). On the other hand, when we compute the Hessian, we need \(q^{3} w\). We can multiply \(q w\) by \(q^{2}\), with a cost of \(2 n(n+d)\), but this is greater than \(n(2 n+d)\), the cost of multiplying \(q^{2} w\) by \(q\).

Table 5.4: Space needed for the products \(q d \Phi\)
\begin{tabular}{|c|r|c|}
\hline & real & complex \\
\hline\(n=5, d=1\) & 55 & 220 \\
\(n=8, d=2\) & 280 & 1120 \\
\(n=10, d=5\) & 1150 & 4600 \\
\(n=20, d=10\) & 9100 & 36400 \\
\hline
\end{tabular}

Table 5.5: Complexity of denominators in (5.11) and (5.12)
\begin{tabular}{|c|c|c|c|}
\hline & \(\psi^{\prime}\) & \(\psi^{\prime \prime}\) & \(\psi^{\prime \prime}\) plus \(q^{2}\) \\
\hline real & \(n(n+d)\) & \(n(2 n+d)\) & \(n(3 n+d)\) \\
complex & \(4 n(n+d)\) & \(4 n(2 n+d)\) & \(4 n(3 n+d)\) \\
\hline\(n=5, d=1\) & \(30 / 120\) & \(55 / 220\) & \(80 / 320\) \\
\(n=8, d=2\) & \(80 / 320\) & \(144 / 876\) & \(208 / 432\) \\
\(n=10, d=5\) & \(150 / 600\) & \(250 / 1000\) & \(350 / 1400\) \\
\(n=20, d=10\) & \(600 / 2400\) & \(1000 / 4000\) & \(1400 / 5600\) \\
\hline
\end{tabular}

In the next table (cf. 5.6) we give the complexity for computing the numerators of (5.11.b) and (5.12.b). In the first case, we have to compute \(q d \Phi\). If \(\Phi\) has degree \(i\), this costs \(n(i+1)\). Since \(i\) varies between \(n\) and \(n+d-1\), this gives a total cost of \(n d(2 n+d+1) / 2\). We have to multiply this by the number of directions \(d \Phi\) ( \(n\) in the real case, and \(2 n\) in the complex case). In the second column of the table, we give the costs of the right-hand side of (5.14), assuming that \(q d \Phi\) has been computed and stored. Each term costs \(2 n(i+1)\), hence a total of \(n d(2 n+d+1)\) for each direction. In the real case, there are \(n(n+1) / 2\) directions (because the Hessian is a symmetric matrix). In the complex case there are \(n(2 n+1)\) directions. In the last last column, we give the cost when we use the left-hand side of (5.14). We have a cost of \(n(n+2 i+2)\) for each direction.

Table 5.6: Complexity of numerators in (5.11) and (5.12)
\begin{tabular}{|c|c|c|c|}
\hline & \(\psi^{\prime}\) & \(\psi^{\prime \prime}\) (fast) & \(\psi^{\prime \prime}\) (slow) \\
\hline real & \(n^{2} d(2 n+d+1) / 2\) & \(n^{2} d(2 n+d+1)(n+1) / 2\) & \(n^{2} d(3 n+d+1)(n+1) / 2\) \\
complex & \(4 n^{2} d(2 n+d+1)\) & \(4 n^{2} d(2 n+d+1)(2 n+1)\) & \(4 n^{2} d(3 n+d+1)(2 n+1)\) \\
\hline\(n=5, d=1\) & \(150 / 1200\) & \(900 / 13200\) & \(1275 / 18500\) \\
\(n=8, d=2\) & \(1216 / 9728\) & \(10944 / 165376\) & \(15552 / 235008\) \\
\(n=10, d=5\) & \(6500 / 52000\) & \(71500 / 1092000\) & \(99000 / 1512000\) \\
\(n=20, d=10\) & \(102000 / 816000\) & \(2142000 / 33456000\) & \(2982000 / 46576000\) \\
\hline
\end{tabular}

Assume now that the scalar product
\[
\begin{equation*}
\left\langle\left.\frac{F}{w} \right\rvert\, \frac{p}{q}\right\rangle \tag{5.15}
\end{equation*}
\]
is computed via its Taylor expansion. Write
\[
\begin{equation*}
\frac{F}{w}=\sum_{k=0}^{\infty} f_{k} / z^{k+1} \tag{5.16.a}
\end{equation*}
\]
\[
\begin{equation*}
\frac{p}{q}=\sum_{k=0}^{\infty} p_{k} / z^{k+1} \tag{5.16.b}
\end{equation*}
\]

Then
\[
\begin{equation*}
\left\langle\left.\frac{F}{w} \right\rvert\, \frac{p}{q}\right\rangle=\sum_{k=0}^{\infty} f_{k} p_{k} \tag{5.16.c}
\end{equation*}
\]

Let \(F_{w}\) be the truncation of \(F / w\) with \(m^{\prime}\) terms and \(F^{\prime}=w F_{w}\). If \(m^{\prime}\) is big enough, the best approximation to \(F\) is very near to the best approximation to \(F^{\prime}\). This means that we can replace \(F\) by \(F^{\prime}\) (in fact, in some examples given to HYPERION, the data are measured with an unknown precision, and given with 6 digits; the quantity \(F\) is an approximation to these data, with a typical precision of \(10^{-3}\) in the good cases, \(10^{-2}\) in the bad cases. We do not lose precision in the case where the distance between \(F\) and \(F^{\prime}\) is less than \(10^{-6}\) ).

Note however that we are computing the second term in (2.71.3). If we replace \(F\) by \(F^{\prime}\), we should also replace \(G\) by \(G^{\prime}\). This means that the complexity of the first term is increased. In fact, we do not replace \(G\) by \(G^{\prime}\). This has no practical consequence, but in theory, it could change some results (the behaviour on the boundary of the manifold, for instance).

The number of terms to take in the truncation depends on \(F\) and \(w\). If the zeroes of \(w\) are small (in fact if \(1-|z|\) is small enough for each root \(z\) of \(w\) ), then we can take a small value for \(m^{\prime}-m\), for instance \(m / 10\). In the examples below, we take \(m^{\prime}-m=m / 2\), thus \(m^{\prime}=600\).

Quantities \(p_{k}\) in (5.16.b) are computed as follows. Assume
\[
\begin{equation*}
\frac{p}{q}=\sum_{k=0}^{n} p_{k} / z^{k+1}+\frac{s}{q z^{n+1}} \tag{5.17.a}
\end{equation*}
\]
then
\[
\begin{equation*}
\frac{p}{q}=\sum_{k=0}^{n+1} p_{k} / z^{k+1}+\frac{s^{\prime}}{q z^{n+2}} \tag{5.17.b}
\end{equation*}
\]
provided that
\[
\begin{equation*}
s z=p_{n+1} q+s^{\prime} \tag{5.17.c}
\end{equation*}
\]

In other words, the cost of each coefficient \(p_{k}\) is the degree of \(q\) (we assume \(q\) monic). In (5.16.c), we have \(m^{\prime}\) coefficients to compute, and for each coefficient one multiplication is required. This gives a complexity of \(m^{\prime}(n+1)\). In table 5.7 we give the complexity of the scalar products.

Table 5.7: Complexity of scalar products via truncation
\begin{tabular}{|c|c|c|c|}
\hline & \(\psi\) & \(\psi^{\prime}\) & \(\psi^{\prime \prime}\) \\
\hline real & \(m^{\prime}(n+d+1) d\) & \(m^{\prime}(2 n+d+1) d n\) & \(m^{\prime}(3 n+d+1) d n(n+1) / 2\) \\
complex & \(4 m^{\prime}(n+d+1) d\) & \(8 m^{\prime}(2 n+d+1) d n\) & \(4 m^{\prime}(3 n+d+1) d n(2 n+1)\) \\
\hline\(n=5, d=1\) & \(4200 / 16800\) & \(36000 / 288000\) & \(153000 / 2244000\) \\
\(n=8, d=2\) & \(13200 / 52800\) & \(182400 / 1539200\) & \(1456400 / 21705600\) \\
\(n=10, d=5\) & \(48000 / 192000\) & \(780000 / 6240000\) & \(5940000 / 90720000\) \\
\(n=20, d=10\) & \(186000 / 744000\) & \(6120000 / 48960000\) & \(89400000 / 1377280000\) \\
\hline
\end{tabular}

It is clear, according to this table, that (5.12.b) should be preferred to (5.12.a) (it is also clear that another method should be used to compute the scalar products).

One way to reduce the complexity is by avoiding the truncation. This essentially replaces \(m^{\prime}\) by \(m\). We shall give later another way to compute the scalar products. The complexity is still \(O\left(n^{3} d\right)\) for the Hessian, but we can remove the factor \(m\) (thus replace ten minutes by one second).

Assume that \(w\) is a polynomial of degree \(d\). By definition of the scalar product, we have
\[
\left\langle\left.\frac{F}{w} \right\rvert\, x\right\rangle=\left\langle F \left\lvert\, \frac{x z^{d}}{\tilde{w}}\right.\right\rangle
\]

Let \(x=p / s\), and consider the equation
\[
\begin{equation*}
A s+B \tilde{w}=z^{d} \tag{5.18.a}
\end{equation*}
\]

Then
\[
\left\langle\left.\frac{F}{w} \right\rvert\, \frac{p}{s}\right\rangle=\left\langle F \left\lvert\, \frac{p A}{\tilde{w}}\right.\right\rangle+\left\langle F \left\lvert\, \frac{B p}{s}\right.\right\rangle .
\]

Since \(w\) and \(F\) are stable, \(F\) is orthogonal to \(A p / \tilde{w}\), so that
\[
\begin{equation*}
\left\langle\left.\frac{F}{w} \right\rvert\, \frac{p}{s}\right\rangle=\left\langle F \left\lvert\, \frac{B p}{s}\right.\right\rangle \tag{5.18.b}
\end{equation*}
\]

In the next table 5.8, we give the cost of computing \(A, B\) and \(s\). Recall that \(s\) is \(q w\) for \(\psi, q^{2} w\) for \(\psi^{\prime}\) and \(q^{3} w\) for \(\psi^{\prime \prime}\). This is a stable polynomial, so that the Bezout equation (5.18.a) has a solution.

Table 5.8: Complexity of the Bezout relation (5.18.a)
\begin{tabular}{|c|c|c|c|}
\hline & \(\psi\) & \(\psi^{\prime}\) & \(\psi^{\prime \prime}\) \\
\hline real & \((2 d+1)(n+2 d)\) & \((2 d+1)(2 n+2 d)+n(n+d)\) & \((2 d+1)(3 n+2 d)+(n+2 d) n\) \\
complex & \(4(2 d+1)(n+2 d)\) & \(4(2 d+1)(2 n+2 d)+4 n(n+d)\) & \(4(2 d+1)(3 n+2 d)+4(n+2 d) n\) \\
\hline\(n=5, d=1\) & \(21 / 82\) & \(66 / 264\) & \(86 / 344\) \\
\(n=8, d=2\) & \(60 / 240\) & \(180 / 720\) & \(236 / 944\) \\
\(n=10, d=5\) & \(220 / 880\) & \(480 / 1920\) & \(660 / 2640\) \\
\(n=20, d=10\) & \(840 / 3360\) & \(1860 / 7440\) & \(2480 / 9920\) \\
\hline
\end{tabular}

In the next table 5.9 , we give the cost of the scalar products \(\langle F \mid B p / s\rangle\). Assume that \(s=q^{i} w\), so that its degree is \(d+i n\) and that \(p\) has degree \(j\). Now \(B\) has degree \(d+i n-1\) and the cost of the product \(B p\) is \(j(d+i n)\). Its degree is \(j+d+i n-1\). Thus \(B p / s\) has the form \(\alpha+\beta / s\), where \(\operatorname{deg}(\beta)<\operatorname{deg}(s)\), and \(\alpha\) has degree \(j-1\). Computing \(\alpha\) and \(\beta\) costs \(j(d+i n)\), and \(\langle F \mid B p / s\rangle=\langle F \mid \beta / s\rangle\). The cost of the scalar product is \(m(d+i n)\). This gives a total cost of \((d+i n)(m+2 j)\). Such a scalar product must be computed for each orthogonal polynomial and for each direction of differentiation.

Table 5.9: Complexity of scalar products via the Bezout relation, \(\alpha=m+2 n+d+1\)
\begin{tabular}{|c|c|c|c|}
\hline & \(\psi\) & \(\psi^{\prime}\) & \(\psi^{\prime \prime}\) \\
\hline real & \((n+d) d \alpha\) & \(n(2 n+d) d \alpha\) & \((3 n+d) d \alpha n(n+1) / 2\) \\
complex & \(4(n+d) d \alpha\) & \(8 n(2 n+d) d \alpha\) & \(4(3 n+d) d \alpha n(2 n+1)\) \\
\hline\(n=5, d=1\) & \(247 / 9888\) & \(22660 / 181280\) & \(98850 / 1449800\) \\
\(n=8, d=2\) & \(8380 / 33520\) & \(120672 / 965376\) & \(784368 / 11852672\) \\
\(n=10, d=5\) & \(31950 / 127800\) & \(532500 / 4260000\) & \(4100250 / 63622000\) \\
\(n=20, d=10\) & \(135300 / 541200\) & \(4150000 / 33220000\) & \(66297000 / 1035496000\) \\
\hline
\end{tabular}

Note that the last number in this table is still greater than \(10^{9}\).
We consider now another technique for computing the scalar products. Let \(d_{i}\) be defined by
\[
\begin{equation*}
\left\langle\frac{F}{w} \left\lvert\, \frac{z^{i}}{s}\right.\right\rangle=d_{i} \tag{5.19.a}
\end{equation*}
\]

Then, if \(p=\sum p_{i} z^{i},\langle F / w \mid p / s\rangle=\sum p_{i} d_{i}\), so that, if \(D=\sum d_{i} z^{i}\),
\[
\begin{equation*}
\left\langle\left.\frac{F}{w} \right\rvert\, \frac{p}{s}\right\rangle=\langle p \mid D\rangle \tag{5.19.b}
\end{equation*}
\]

In the next table 5.10, we give the cost for (5.11.b) and (5.12.b), if the scalar products are computed in this way.

Table 5.10: Complexity of scalar products via (5.19.b)
\begin{tabular}{|c|c|c|c|}
\hline & \(\psi\) & \(\psi^{\prime}\) & \(\psi^{\prime \prime}\) \\
\hline real & \(d(2 n+d+1) / 2\) & \(n d(4 n+d+1) / 2\) & \(d(6 n+d+1) n(n+1) / 4\) \\
complex & \(2 d(2 n+d+1)\) & \(4 n d(4 n+d+1)\) & \(2 d(6 n+d+1) n(2 n+1)\) \\
\hline\(n=5, d=1\) & \(6 / 24\) & \(55 / 440\) & \(240 / 3520\) \\
\(n=8, d=2\) & \(19 / 74\) & \(280 / 2240\) & \(1836 / 27744\) \\
\(n=10, d=5\) & \(65 / 260\) & \(1150 / 9200\) & \(9075 / 138600\) \\
\(n=20, d=10\) & \(255 / 1020\) & \(9100 / 72800\) & \(137550 / 2148400\) \\
\hline
\end{tabular}

Now, since these numbers are small, it is worth implementing (5.11.a) and (5.11.b). Assume that \(\Phi\) has degree \(j\). Then the cost of \(\langle F / w \mid d \Phi / q w\rangle\) is \(j+1\). The cost of the scalar product of \(F / w\) and \(\Phi d q / q^{2} w\) is also \(j+1\), because \(\Phi d q\) has only \(j+1\) non zero coefficients. Thus we get a cost of \(2(j+1)\), hence a cost of \(d(2 n+d+1)\) for each direction. In the same fashion, we can write (5.11.b) as a sum of four terms, each with complexity \(j+1\). Results are given in table 5.11.

Table 5.11: Complexity of scalar products via (5.19.b), and (5.11.a), (5.12.a)
\begin{tabular}{|c|c|c|c|}
\hline & \(\psi\) & \(\psi^{\prime}\) & \(\psi^{\prime \prime}\) \\
\hline real & \(d(2 n+d+1) / 2\) & \(n d(2 n+d+1)\) & \(d(2 n+d+1) n(n+1)\) \\
complex & \(2 d(2 n+d+1)\) & \(8 n d(2 n+d+1)\) & \(8 d(2 n+d+1) n(2 n+1)\) \\
\hline\(n=5, d=1\) & \(6 / 24\) & \(60 / 480\) & \(360 / 5280\) \\
\(n=8, d=2\) & \(19 / 74\) & \(304 / 2432\) & \(2736 / 41344\) \\
\(n=10, d=5\) & \(65 / 260\) & \(1300 / 10400\) & \(14300 / 218400\) \\
\(n=20, d=10\) & \(255 / 1020\) & \(10200 / 81600\) & \(214200 / 3345600\) \\
\hline
\end{tabular}

We have now to compute the quantities that appear in (5.19.a). Assume that \(s\) has degree \(n\) and that \(z^{n-1} / s=\sum_{k} s_{k} / z^{k+1}\). Moreover, assume that we use the truncated power series expansion of \(F / w\). Then
\[
\left\langle\frac{F}{w} \left\lvert\, \frac{z^{i}}{s}\right.\right\rangle=\left\langle\left.\frac{F}{w} \right\rvert\, \sum s_{k} z^{i-n+1} / z^{k+1}\right\rangle
\]
and
\[
d_{i}=\sum_{k} f_{k+(n-i-1)} s_{k}
\]

Hence, we get a cost of \(2 m^{\prime} n\), see table 5.12.
Assume now that we use formula (5.18.b). We get
\[
d_{i}=\left\langle\frac{F}{w} \left\lvert\, \frac{z^{i}}{s}\right.\right\rangle=\left\langle F \left\lvert\, \frac{B z^{i}}{s}\right.\right\rangle=\left\langle\left.\frac{F}{z^{i}} \right\rvert\, \frac{B}{s}\right\rangle .
\]

This means that we can use the same technique as before. We have to compute \(B\) and the expansion \(B / s\), the cost is given in table 5.8, and then the scalar products are as in table 5.12 , with \(m^{\prime}\) replaced by \(m\) (for numeric values, multiply everything in the previous table by \(2 / 3\) ).

Table 5.12: Complexity of the relation (5.19.a)
\begin{tabular}{|c|c|c|c|}
\hline & \(\psi\) & \(\psi^{\prime}\) & \(\psi^{\prime \prime}\) \\
\hline real & \(2 m^{\prime}(n+d)\) & \(2 m^{\prime}(2 n+d)\) & \(2 m^{\prime}(3 n+d)\) \\
complex & \(8 m^{\prime}(n+d)\) & \(8 m^{\prime}(2 n+d)\) & \(8 m^{\prime}(3 n+d)\) \\
\hline\(n=5, d=1\) & \(7200 / 28800\) & \(13200 / 52800\) & \(19200 / 76800\) \\
\(n=8, d=2\) & \(12000 / 48000\) & \(21600 / 86400\) & \(31200 / 124800\) \\
\(n=10, d=5\) & \(18000 / 72000\) & \(30000 / 120000\) & \(42000 / 168000\) \\
\(n=20, d=10\) & \(36000 / 144000\) & \(60000 / 240000\) & \(84000 / 336000\) \\
\hline
\end{tabular}

The conclusion is the following: if there are few scalar products to compute (i.e., when we compute \(\psi\), and \(n, d\) are small), we can use a direct formula. Otherwise, the best thing to do is compute \(D\) such that \(\langle F / w \mid x / q\rangle=\langle D \mid x\rangle\), and replace all scalar products with \(F / w\) by scalar products with \(D\). In the case where \(n\) is large enough, in the case of the derivatives of \(\psi\), the complexity of the scalar products becomes smaller that the complexity of the orthogonal polynomials.

\subsection*{5.2.3 Non-weighted case}

Here, we have to compute \(\psi\) and its derivatives, given the formulas
\[
\begin{equation*}
G \tilde{q}=V q+R, \quad \psi=\|V\|^{2} \tag{5.20}
\end{equation*}
\]

A basic implementation says that the cost of \(\psi\) is \(m(2 n+1)\). If we differentiate in reverse mode, we get a complexity of \(3 m n\), because \(G\) is constant, thus a cost of \(m(5 n+1)\) for \(\psi\) and \(\psi^{\prime}\). If we differentiate again, we get a cost of \(8 m n^{2}\).

In the table 5.13 , we give the complexity of computing \(\psi\) and its derivatives in the case of a weight. Here we have \(G z^{d} \tilde{q}=V q w+R\).

Table 5.13: Complexity of \(\psi_{1}\), first part of \(\psi\) with weight
\begin{tabular}{|c|c|c|c|}
\hline & \(\psi\) & \(\psi^{\prime}\) & \(\psi^{\prime \prime}\) \\
\hline real & \(m(2 n+d+1)\) & \(m(3 n+2 d)+n(d+1)\) & \(n m(8 n+6 d+1)+2 n^{2}(d+1)\) \\
complex & \(m(8 n+4 d+2)\) & \(4 m(3 n+2 d)+4 n(d+1)\) & \(m n(64 n+48 d+2)+16 n^{2}(d+1)\) \\
\hline\(n=5, d=1\) & \(4800 / 18400\) & \(6810 / 27240\) & \(94100 / 740800\) \\
\(n=8, d=2\) & \(7600 / 29600\) & \(11224 / 44896\) & \(246784 / 1955072\) \\
\(n=10, d=5\) & \(10400 / 40800\) & \(16060 / 64240\) & \(445200 / 3537600\) \\
\(n=20, d=10\) & \(20400 / 80800\) & \(32220 / 128880\) & \(1776800 / 14166400\) \\
\hline
\end{tabular}

In the case without weight, we can simplify a bit these formulas. Results are given in table 5.14.
The question is now: what is the intrinsic complexity of \(\psi\) ? We assume that \(G\) is a polynomial, of degree \(m-1\), hence has \(m\) terms. If we consider the equations
\[
\begin{equation*}
z P_{k+1}+g_{k} \tilde{q}=V_{k} q+P_{k} \tag{5.21}
\end{equation*}
\]
where \(P_{k}\) are polynomials of degree \(<n\), initialised with \(P_{m}=0\), then these equations allow us to compute all the coefficients \(V_{k}\) of \(V\), with the same time complexity as above, but we have only to allocate \(n\) memory cells for \(P\), instead of \(n+m\) for the product \(G \tilde{q}\).

Remember that, in the case where \(q\) is of degree one and \(q=z-\alpha\), we have
\[
\begin{equation*}
\psi=\|G\|^{2}-\left(1-|\alpha|^{2}\right)|G(\alpha)|^{2} \tag{5.22}
\end{equation*}
\]

Table 5.14: Complexity of \(\psi\), scalar case, no weight
\begin{tabular}{|c|c|c|c|}
\hline & \(\psi\) & \(\psi^{\prime}\) & \(\psi^{\prime \prime}\) \\
\hline real & \(m(2 n+1)\) & \(3 m n\) & \(n m(8 n+1)\) \\
complex & \(m(8 n+2)\) & \(12 m n\) & \(m n(64 n+2)\) \\
\hline\(n=5\) & \(4400 / 16800\) & \(6000 / 24000\) & \(82000 / 644000\) \\
\(n=8\) & \(6800 / 26400\) & \(9600 / 38400\) & \(208000 / 1644800\) \\
\(n=10\) & \(8400 / 32800\) & \(12000 / 48000\) & \(324000 / 2568000\) \\
\(n=20\) & \(16400 / 64800\) & \(24000 / 96000\) & \(1288000 / 10256000\) \\
\hline
\end{tabular}
and this gives a complexity of \(m+3\) (recall that the norm of \(G\) is one). This is smaller than \(m(2 n+1)\) evaluated at \(n=1\).

More generally, assume that \(q=\prod\left(z-\alpha_{i}\right)\), and \(q\) has only simple roots. Then (5.20) says
\[
\begin{equation*}
G\left(\alpha_{i}\right) \tilde{q}\left(\alpha_{i}\right)=R\left(\alpha_{i}\right) \tag{5.23.a}
\end{equation*}
\]

Let \(P=\tilde{R}\). There exist some quantities \(\beta_{i}\) such that \(P / q=\sum \beta_{i} /\left(z-\alpha_{i}\right)\) and
\[
\begin{equation*}
\left\langle F \left\lvert\, \frac{P}{q}\right.\right\rangle=\sum\left\langle F \left\lvert\, \frac{\beta_{i}}{z-\alpha_{i}}\right.\right\rangle=\sum_{i} \beta_{i} G\left(\alpha_{i}\right) \tag{5.23.c}
\end{equation*}
\]

Now, the quantities \(\beta_{i}\) are defined by the equation:
\[
\begin{equation*}
\sum_{j} \beta_{j} \prod_{k \neq j}\left(1-\overline{\alpha_{k}} \alpha_{i}\right)=\overline{R\left(\alpha_{i}\right)} \tag{5.23.c}
\end{equation*}
\]

Recall that \(\psi=\|F\|^{2}-\langle F \mid P / q\rangle\). Thus, the complexity for \(\psi\) is the following: we need \(n m\) multiplications for evaluating \(G\) at \(\alpha_{i}\), plus a cost that depends only on \(n\) : we have to compute the roots of \(q\), evaluate \(\tilde{q}\left(\alpha_{i}\right)\), compute \(\prod\left(1-\overline{\alpha_{k}} \alpha_{i}\right)\), solve (5.23.c), etc. Hence, we have an algorithm whose complexity is \(m n+f(n)\). It works only in the case where \(q\) has single roots.

In order to see what happens if \(q\) has multiple roots, let's consider the case where \(q\) has two roots \(\alpha\) and \(\beta\). We have
\[
\begin{gather*}
\left\langle F \left\lvert\, \frac{P}{q}\right.\right\rangle=\frac{X+Y-Z}{\Delta}  \tag{5.24.1}\\
\Delta=|1-\alpha \bar{\beta}|^{2}-\left(1-|\alpha|^{2}\right)\left(1-|\beta|^{2}\right),  \tag{5.24.2}\\
X=|G(\alpha)|^{2}\left(1-|\alpha|^{2}\right)|1-\alpha \bar{\beta}|^{2},  \tag{5.24.3}\\
Y=|G(\beta)|^{2}\left(1-|\beta|^{2}\right)|1-\alpha \bar{\beta}|^{2},  \tag{5.24.4}\\
Z=2 \Re[G(\alpha) \overline{G(\beta)}(1-\alpha \bar{\beta})]\left(1-|\alpha|^{2}\right)\left(1-|\beta|^{2}\right) \tag{5.24.5}
\end{gather*}
\]

These formulas are valid only in the case \(\alpha \neq \beta\). In fact, \(\Delta=|\alpha-\beta|^{2}\). But we have a limit, and this is
\[
\begin{equation*}
\left\langle F \left\lvert\, \frac{P}{q}\right.\right\rangle=\left|G^{\prime}(\alpha)\right|^{2}\left(1-|\alpha|^{2}\right)^{3}+|G(\alpha)|^{2}\left(1-|\alpha|^{2}\right)-2 \Re\left[\overline{G(\alpha)} G^{\prime}(\alpha) \alpha\right]\left(1-|\alpha|^{2}\right)^{2} \tag{5.25}
\end{equation*}
\]

\subsection*{5.2.4 Alternate formulas}

Consider equations (5.24) in the real case. These are symmetric functions of \(\alpha\) and \(\beta\), hence must be rational functions of the coefficients of \(q\) (this is false in the complex case: \(\psi\) is not analytic, but there must be a formula). The idea is the following: since \(\psi\) depends on \(G\) only through the values of \(G\) at the roots of \(q\), there has to be a way to express \(\psi\) as a function of the remainder of \(G\) by \(q\). Thus the formula:
\[
\begin{equation*}
G=V_{1} q+R_{1} \quad R_{1} \tilde{q}=V_{2} q+R_{2} \tag{5.26.a}
\end{equation*}
\]
\[
\begin{equation*}
\psi=\|G\|^{2}-\left\|R_{1}\right\|^{2}+\left\|V_{2}\right\|^{2} \tag{5.26.b}
\end{equation*}
\]

This trick does not work in the weighted case: essentially, we have to replace \(G\) by \(G_{w}=G z^{d} / \tilde{w}\). But this is not a polynomial. We get a polynomial if we multiply the first equation by \(\tilde{w}\). This means that we have to divide \(G z^{d}\) by \(q \tilde{w}\). Note that the division is possible, but numerically unstable. Results are given in table 5.15.

Table 5.15: Complexity of \(\psi\), scalar case, alternate
\begin{tabular}{|c|c|c|c|}
\hline & \(\psi\) & \(\psi^{\prime}\) & \(\psi^{\prime \prime}\) \\
\hline real & \(m n+2 n+n^{2}\) & \(m n+3 n^{2}\) & \(n\left(2 m n+10 n^{2}+2 n\right)\) \\
complex & \(4\left(m n+2 n+n^{2}\right)\) & \(4\left(m n+3 n^{2}\right)\) & \(8 n\left(2 m n+10 n^{2}+2 n\right)\) \\
\hline\(n=5\) & \(2035 / 8140\) & \(2075 / 8300\) & \(21300 / 170400\) \\
\(n=8\) & \(3280 / 13120\) & \(3392 / 13568\) & \(56448 / 451584\) \\
\(n=10\) & \(4120 / 16480\) & \(4300 / 17200\) & \(90200 / 721600\) \\
\(n=20\) & \(8440 / 33760\) & \(9200 / 36800\) & \(400800 / 3206400\) \\
\hline
\end{tabular}

\subsection*{5.2.5 Direct mode differentiation}

Let's introduce the quantities defined by the following equations
\[
\begin{gather*}
G z^{n-i}=U_{i} q+C_{i},  \tag{5.27.a}\\
U_{i} z^{j}=X_{i j} q+z_{i j}, \quad W_{i} q+D_{i}  \tag{5.27.b}\\
W_{i} z^{j}=Y_{i j} q+T_{i j}
\end{gather*}
\]

If we differentiate \(G \tilde{q}=V q+R, \psi=\|V\|^{2}\), we get
\[
\begin{gather*}
G \partial \tilde{q}=\partial V q+V \partial q+\partial R,  \tag{5.28.a}\\
\partial \psi=2 \Re\langle V \mid \partial V\rangle \tag{5.28.b}
\end{gather*}
\]

We assume now that \(q=\sum\left(q_{k}+i r_{k}\right) z^{k}\), where \(q_{n}+i r_{n}=1\). In (5.28), we have to consider the case where \(\partial X\) is the derivative with respect to \(q_{k}\) or \(r_{k}\). In this case, \(\partial q\) is \(z^{k}\) or \(i z^{k}\), while \(\partial \tilde{q}\) is \(z^{n-k}\) or \(-i z^{n-k}\). Hence we get
\[
\begin{aligned}
G z^{n-k}-V z^{k} & =q \frac{\partial V}{\partial q_{k}}+\frac{\partial R}{\partial q_{k}} \\
-i G z^{n-k}-i V z^{k} & =q \frac{\partial V}{\partial r_{k}}+\frac{\partial R}{\partial r_{k}}
\end{aligned}
\]

According to (5.27.a), we get
\[
\begin{equation*}
\frac{\partial V}{\partial q_{k}}=U_{k}-W_{k}, \quad \frac{\partial V}{\partial r_{k}}=-i U_{k}-i W_{k} \tag{5.29.a}
\end{equation*}
\]
and (5.28.b) gives
\[
\begin{equation*}
\frac{\partial \psi}{\partial q_{k}}=2 \Re\left\langle V \mid U_{k}-W_{k}\right\rangle, \quad \frac{\partial \psi}{\partial r_{k}}=2 \Im\left\langle V \mid U_{k}+W_{k}\right\rangle \tag{5.29.b}
\end{equation*}
\]

If we differentiate again, we obtain
\[
\begin{gather*}
d \partial \psi=2 \Re\langle d V \mid \partial V\rangle+2 \Re\langle V \mid d \partial V\rangle  \tag{5.30.a}\\
G d \partial \tilde{q}=d \partial V q+d V \partial q+\partial V d q+V d \partial q+d \partial R .
\end{gather*}
\]

Since \(d \partial \tilde{q}\) and \(d \partial q\) are zero, we get
\[
\begin{equation*}
-d V \partial q-\partial V d q=d \partial V q+d \partial R \tag{5.30.b}
\end{equation*}
\]

If we use (5.29.a), we get
\[
-U_{k} z^{j}+W_{k}-U_{j} z^{k}+W_{j} z^{k}=\frac{\partial^{2} V}{\partial q_{k} \partial q_{j}} q+\frac{\partial^{2} R}{\partial q_{k} \partial q_{j}}
\]
and some other formulas. From (5.27), we get now
\[
\begin{align*}
\frac{\partial^{2} \psi}{\partial q_{i} \partial q_{j}} & =2 \Re\left\langle U_{i}-W_{i} \mid U_{j}-W_{j}\right\rangle+2 \Re\left\langle V \mid Y_{i j}+Y_{j i}-X_{i j}-X_{j i}\right\rangle  \tag{5.31.a}\\
\frac{\partial^{2} \psi}{\partial q_{i} \partial r_{j}} & =-2 \Im\left\langle U_{j}+W_{j} \mid U_{i}-W_{i}\right\rangle+2 \Im\left\langle V \mid-Y_{i j}-Y_{j i}+X_{i j}-X_{j i}\right\rangle  \tag{5.31.b}\\
\frac{\partial^{2} \psi}{\partial r_{i} \partial r_{j}} & =2 \Re\left\langle U_{i}+W_{i} \mid U_{j}+W_{j}\right\rangle-2 \Re\left\langle V \mid Y_{i j}+Y_{j i}+X_{i j}+X_{j i}\right\rangle \tag{5.31.c}
\end{align*}
\]

Let \(Q_{q}(X)\) and \(R_{q}(X)\) be the quotient and remainder in the division of \(X\) by \(q\). Let also \(Q_{n}(X)\) and \(R_{n}(X)\) be the quotient and remainder in the division of \(X\) by \(z^{n}\). The second equation (5.27.a) is
\[
\begin{equation*}
D_{i} z=\alpha_{i} q+D_{i+1}, \quad W_{i} z+\alpha_{i}=W_{i+1} \tag{5.32}
\end{equation*}
\]

Thus \(W_{i}=Q_{1}\left(W_{i+1}\right)\). More generally,
\[
\begin{equation*}
W_{i}=Q_{n-i-1}\left(W_{n-1}\right), \quad U_{i}=Q_{i}\left(U_{0}\right) \tag{5.33}
\end{equation*}
\]

Let \(v_{i}\) be the coefficient of \(z^{i}\) in \(V, w_{i}\) the coefficient of \(z^{i}\) in \(W_{n-1}\) and \(u_{i}\) the coefficient of \(z^{i}\) in \(U_{0}\). Then (5.29.b) is
\[
\begin{equation*}
\frac{\partial \psi}{\partial q_{k}}=2 \Re \sum_{i} v_{i}\left(u_{i-k}-w_{n-k-1+i}\right) \tag{5.34}
\end{equation*}
\]

This relation says that we have only to compute \(W_{n-1}\) and \(U_{0}\) and allocate memory for these two polynomials. Since \(G\) has degree \(m-1, U_{0}\) has degree \(m-1\) and \(W_{n-1}\) has degree \(m-2\). The cost of computing these polynomials is \((2 m-1) n\). The number of terms in (5.34) is
\[
\max (m-k, m-n+k)
\]

This is between \(m-n / 2\) and \(m\). Since \(n\) is small compared to \(n\), we can estimate it to \(m\) (in fact, in order to simplify the code, the polynomials are padded with zeroes, so that always \(m\) terms are computed). Thus, the total cost of \(\psi^{\prime}\) is \((3 m-1) n\).

From (5.27), we get the equivalent of (5.32), namely
\[
\begin{equation*}
Y_{i, j+1}=Y_{i j} z+\beta_{i j} \tag{5.35}
\end{equation*}
\]

But (5.32) says
\[
\begin{equation*}
W_{i} z^{j+1}=Y_{i+1, j} q+T_{i+1, j}-\alpha_{i} z^{j} \tag{5.36}
\end{equation*}
\]

This equation says \(Y_{i+1, j}=Y_{i, j+1}\). In fact, \(Y_{i j}\) is nothing else than the quotient of \(V z^{i+j}\) by \(q^{2}\). The equivalent of (5.33) is
\[
\begin{equation*}
X_{i j}=Q_{n-j-1+i}\left(X_{0, n-1}\right), \quad Y_{i j}=Q_{n-i-1+n-j-1}\left(Y_{n-1, n-1}\right) \tag{5.37}
\end{equation*}
\]

Note that \(X_{0, n-1}\) has degree \(m-2\), and \(Y_{n-1, n-1}\) has degree \(m-3\). This gives a cost of \((2 m-3) n\) for computing these polynomials. Let's compute the cost of equations (5.31). Each scalar product has a cost
of \(m\). In the real case, this gives a cost of \(m n(n+1)\). There is another way to compute these equations: we compute \(\left\langle V \mid X_{i j}\right\rangle\) and \(\left\langle V \mid Y_{i j}\right\rangle\) for each \(i\) and \(j\). Since \(X_{i j}\) depends only on \(i-j\) and \(Y_{i j}\) depends only on \(i+j\), we have \(2(2 n-1)\) such scalar products to compute. This gives a cost of \(m n(n+1) / 2+2 m(2 n-1)\). This is cheaper for \(n \geq 7\). In the complex case, the first scalar products in (5.31) costs \(2 n(2 n+1) m\). This gives a cost of \(4 n(2 n+1) m\) if we implement directly (5.31). If we compute the scalar products \(\left\langle V \mid X_{i j}\right\rangle\) and \(\left\langle V \mid Y_{i j}\right\rangle\), we get a cost of \(2 n(2 n+1) m+8 m(2 n-1)\). This is cheaper for \(n \geq 2\). Results are given in table 5.16. It shows that for small \(n\), there is little difference between these two methods. In table 5.17, we give the complete complexity.

Table 5.16: Comparison of the two methods of computing \(\psi^{\prime \prime}\). It has the form \(m \alpha(n)+\beta(n)\). The table gives \(\alpha(n)\).
\begin{tabular}{|c|c|c||c|c|}
\hline\(n\) & real 1 & real 2 & complex 1 & complex 2 \\
\hline 1 & 4 & 5 & 20 & 22 \\
2 & 10 & 13 & 56 & 60 \\
3 & 18 & 22 & 108 & 106 \\
4 & 28 & 32 & 176 & 160 \\
5 & 40 & 43 & 260 & 222 \\
6 & 54 & 55 & 360 & 292 \\
7 & 70 & 68 & 476 & 370 \\
\hline
\end{tabular}

Table 5.17: Complexity of the derivatives of \(\psi\), scalar case, direct mode
\begin{tabular}{|c|c|c|c|}
\hline & \(\psi\) & \(\psi^{\prime}\) & \(\psi^{\prime \prime}\) \\
\hline real & \(m(2 n+1)\) & \((3 m-1) n\) & \(m(n(n+1) / 2+6 n-2)-3 n\) \\
complex & \(m(8 n+2)\) & \(4(3 m-1) n\) & \(m\left(4 n^{2}+26 n-8\right)-12 n\) \\
\hline\(n=5\) & \(4400 / 16800\) & \(5995 / 23980\) & \(17185 / 88740\) \\
\(n=8\) & \(6800 / 26400\) & \(9592 / 38368\) & \(32776 / 182304\) \\
\(n=10\) & \(8400 / 32800\) & \(11990 / 47960\) & \(45170 / 260680\) \\
\(n=20\) & \(16400 / 64800\) & \(23980 / 95920\) & \(131140 / 844560\) \\
\hline
\end{tabular}

Consider now what happens when we implement the alternate formulas (5.26). We get
\[
\begin{gather*}
-V_{1} \partial q=\partial V_{1} q+\partial R_{1}  \tag{5.38.a}\\
\partial R_{1} \tilde{q}+R_{1} \partial \tilde{q}-V_{2} \partial q=\partial V_{2} q+\partial R_{2}  \tag{5.38.b}\\
\partial \psi=2\left\langle V_{2} \mid \partial V_{2}\right\rangle-2\left\langle R_{1} \mid \partial R_{1}\right\rangle \tag{5.38.c}
\end{gather*}
\]

If we differentiate with respect to \(q_{i}\), the first equation becomes
\[
\begin{equation*}
-V_{1} z^{i}=\partial V_{1} q+\partial R_{1} \tag{5.39}
\end{equation*}
\]

Consider
\[
\begin{equation*}
V_{1} z^{i}=W_{i} q+D_{i} \tag{5.40}
\end{equation*}
\]

Now (5.32) is still valid:
\[
\begin{equation*}
D_{i} z=\alpha_{i} q+D_{i+1}, \quad W_{i} z+\alpha_{i}=W_{i+1} \tag{5.41}
\end{equation*}
\]

We cannot obtain \(D_{i+1}\) directly from \(D_{i}\). However, computing \(D_{0}\) via (5.40) and \(D_{i}\) via (5.41) has the same cost as dividing \(G z^{n-1}\) by \(q\) : it costs \((m-1) n\), and an additional memory cost of \(n(n-1)\). The cost
of \(\left\langle R_{1} \mid \partial R_{1}\right\rangle\) is \(n(n-1)\). In order to implement (5.38.b), we have to divide \(R_{1} \partial \tilde{q}-V_{2} \partial d q\) by \(q\). Using the previous techniques, this costs \((2 n-1) n\). The cost of \(\left\langle V_{2} \mid \partial V_{2}\right\rangle\) is \(n^{2}\).

Now, there is an additional term: the division of \(\partial R_{1} \tilde{q}\) by \(q\). Write
\[
\begin{equation*}
D_{i} \tilde{q}=X_{i} q+S_{i} \tag{5.42}
\end{equation*}
\]

We have to compute the quantity \(X_{i}\). Write \(z S_{i}=\beta_{i} q+S_{i+1}\). Then
\[
\begin{equation*}
X_{i+1}+\alpha_{i} \tilde{q}=X_{i} z+\beta_{i} \tag{5.43}
\end{equation*}
\]

What we have to compute now is just the quantities \(\alpha_{i} \tilde{q}\). This costs \(n(n-1)\). Thus, we have a total cost for \(\psi^{\prime}\) of
\[
\begin{equation*}
n(m+5 n-4) \tag{5.44}
\end{equation*}
\]

Let's consider now the Hessian. Differentiating our equations again gives
\[
\begin{gather*}
-d V_{1} \partial q-\partial V_{1} d q=d \partial V_{1} q+d \partial R_{1}  \tag{5.45.a}\\
\partial R_{1} d \tilde{q}+d R_{1} \partial \tilde{q}+d \partial R_{1} \tilde{q}-d V_{2} \partial q-\partial V_{1} d q=d \partial V_{2} q+d \partial R_{2}  \tag{5.45.b}\\
d \partial \psi=\left\langle V_{2} \mid d \partial V_{2}\right\rangle+\left\langle d V_{2} \mid \partial V_{2}\right\rangle-\left\langle R_{1} \mid d \partial R_{1}\right\rangle-\left\langle d R_{1} \mid \partial R_{1}\right\rangle \tag{5.45.c}
\end{gather*}
\]

If
\[
W_{i} z^{j}=A_{i j} q+B_{i j}
\]
then \(d \partial R_{1}=B_{i j}+B_{j i}\). Remember that \(A_{i+1, j}=A_{i, j+1}\). There is no such relation for \(B\). Equation (5.41) says \(B_{i+1, j}=B_{i, j+1}+\alpha_{i} z^{j}\). This equation says that \(B_{i j}\) can be obtained easily if we know \(B_{0 j}\) and \(B_{i, n-1}\). We have also, for some numbers \(\gamma_{i j}, B_{i, j+1}=B_{i j} z-\gamma_{i j} q\). Combining these equations gives \(B_{i+1, j}=B_{i j} x z-\gamma_{i j} q+\alpha_{i} z^{j}\). Hence, we can compute \(B_{00}\) with a cost of \((m-2 n) n\), then \(B_{0, j}\) for each \(j\) with a cost of \((n-1) n\). Once we have \(B_{0, n-1}\), we compute \(B_{i, n-1}\) with a cost of \((n-1) n\). Hence, we get a total cost of \((m-2) n\). The cost of \(\left\langle R_{1} \mid d \partial R_{1}\right\rangle+\left\langle d R_{1} \mid \partial R_{1}\right\rangle\) is \(n^{2}(n+1)\).

We have now to compute \(d \partial V_{2}\) from (5.45.b). Since there is no obvious relation between the quantities \(d \partial R_{1}\), the best thing to do is to divide for each direction. The non trivial operation on the left hand side of (5.45.b) is the product of \(d \partial R_{1}\) by \(\tilde{q}\). This costs \(n^{2}\). The division costs also \(n^{2}\). Thus, we have a total of \(n^{3}(n+1)\). This means that the total cost of the second derivative of \(\psi\) is
\[
\begin{equation*}
(m-2) n+2 n^{2}(n+1)+n^{3}(n+1) \tag{5.46}
\end{equation*}
\]

\subsection*{5.2.6 Other formulas}

Assume that \(Y\) is defined by
\[
\begin{equation*}
\left\langle F \left\lvert\, \frac{D}{q}\right.\right\rangle=\langle\tilde{D} \mid Y\rangle, \quad \operatorname{deg} D<n \tag{5.47}
\end{equation*}
\]

From \(\psi=\|F-P / q\|^{2}\) we get
\[
\partial \psi=2\left\langle F-\frac{P}{q} \left\lvert\, \frac{-\partial P}{q}+\frac{P \partial q}{q^{2}}\right.\right\rangle
\]

We have
\[
\left\langle F-\frac{P}{q} \left\lvert\, \frac{r s}{q^{2}}\right.\right\rangle=\left\langle\left.\check{V} \frac{\tilde{q}}{q} \right\rvert\, \frac{r s}{q^{2}}\right\rangle=\left\langle\left.\frac{\tilde{r}}{q} \right\rvert\, \frac{V s}{q}\right\rangle .
\]

If \(r=P\) and \(s=\partial q, V \partial q=s q+D\) we get
\[
\left\langle F-\frac{P}{q} \left\lvert\, \frac{p \partial q}{q^{2}}\right.\right\rangle=\left\langle\left.\frac{\tilde{p}}{q} \right\rvert\, s+\frac{D}{q}\right\rangle
\]
hence
\[
\partial \psi=\left\langle\left.\frac{\tilde{p}}{q} \right\rvert\, \frac{D}{q}\right\rangle=\left\langle\left.\frac{\tilde{D}}{q} \right\rvert\, \frac{P}{q}\right\rangle
\]

Remember that \(\langle F \mid r / q\rangle=\langle P / q \mid r / q\rangle\). If we consider again (5.27.a):
\[
V z^{i}=W_{i} q+D_{i}
\]
we get
\[
\begin{equation*}
\partial \psi=2\left\langle D_{i} \mid Y\right\rangle \tag{5.48}
\end{equation*}
\]

Assume \(F=\sum_{k=0}^{m-1} f_{k} / z^{k+1}\). Write
\[
\begin{equation*}
\frac{z^{n-1}}{q}=\sum_{k=0}^{\infty} \frac{a_{k}}{z^{k+1}} \tag{5.49.a}
\end{equation*}
\]

Then
\[
\begin{equation*}
\left\langle F \left\lvert\, \frac{z^{i}}{q}\right.\right\rangle=\sum_{k} f_{k} a_{k+1-n-i} \tag{5.49.b}
\end{equation*}
\]

This scalar product is the coefficient of \(z^{i}\) in \(Y\). We have to compute \(a_{k}\) for \(0 \leq k<m\), and the products in (5.49.b). This gives a cost of \(2 m n\). As explained above, computing \(D_{i}\) for each \(i\) costs \(m n\), and the scalar products \(\left\langle D_{i} \mid Y\right\rangle\) costs \(n\). Thus, we have a total cost of \(3 m n+n^{2}\) for \(\psi^{\prime}\).

If we differentiate (5.48) we get
\[
\begin{equation*}
d \partial \psi / 2=\left\langle d D_{i} \mid Y\right\rangle+\left\langle D_{i} \mid d Y\right\rangle \tag{5.50}
\end{equation*}
\]

If we differentiate (5.47) we get
\[
\left\langle F \left\lvert\, \frac{D d q}{q^{2}}\right.\right\rangle=\langle\tilde{D} \mid d Y\rangle, \quad \forall D
\]

If \(Z\) is such that
\[
\left\langle F \left\lvert\, \frac{D}{q^{2}}\right.\right\rangle=\langle\tilde{D} \mid Z\rangle, \quad \operatorname{deg} D<2 n
\]
then
\[
\left\langle z^{i} \left\lvert\, \frac{\partial Y}{\partial q_{j}}\right.\right\rangle=\left\langle z^{n-i-j} \mid Z\right\rangle
\]
so that \(d Y\) is trivially obtained if we know \(Z\). The quantity \(Z\) is computed exactly like \(Y\). It costs \(4 m n+n^{2}\). We already computed the cost of \(d D_{i}\) : it is \(d \partial R_{1}\) in (5.45.a). Hence the total cost of \(\psi^{\prime \prime}\) is
\[
\begin{equation*}
5 m n+n^{2}-2 m+n^{2}(n+1) \tag{5.51}
\end{equation*}
\]

\subsection*{5.3 Matrix case}

We make the following assumptions here: the size of \(G\) is \(p^{\prime} \times p\), and for simplicity, we assume \(p^{\prime}=p\). The McMillan degree of the result is \(n\). The degree of the elements in \(G\) is \(<m\). All entries in \(G\) are padded so that there are exactly \(m\) coefficients in each polynomial. For numerical applications, we shall assume \(m=400\).

There are \(n p\) entries in \(y\). This gives \(n p\) columns in \(\psi^{\prime \prime}\) in the real case, and \(2 n p\) columns in the complex case. What we have to do is compute the cost of formulas (4.4) and (4.18).

\subsection*{5.3.1 Cost of \(\psi\)}

We consider here formulas (4.18):
\[
\begin{gathered}
G=V_{1} q+R_{1} \quad R_{1} \tilde{D}=V_{2} q+R_{2} \\
\psi=\|F\|^{2}-\left\|R_{1}\right\|^{2}+\left\|V_{2}\right\|^{2}
\end{gathered}
\]

The first equation is \(G=V_{1} q+R_{1}\). We have to divide a \(p \times p\) matrix of degree \(m-1\) by a polynomial of degree \(n\). For some reasons, we do not use the fact that \(G\) is constant, so that the complexity is the same as if \(G\) were variable.
\begin{tabular}{|c|c|c|c|}
\hline & \(\psi\) & \(\psi^{\prime}\) & \(\psi^{\prime \prime}\) \\
\hline real & \(p^{2}(m-n)(n+1)\) & \(2 p^{2}(m-n)(n+1)\) & \(p^{3} n(m-n)(6 n+7)\) \\
complex & \(4 p^{2}(m-n)(n+1)\) & \(8 p^{2}(m-n)(n+1)\) & \(8 p^{3} n(m-n)(6 n+7)\) \\
\hline
\end{tabular}

From now on, everything depends only on \(n\) and \(p\). We have now to multiply \(R_{1}\), a \(p \times p\) matrix of degree \(<n\) by \(\tilde{D}\), which is a \(p \times p\) matrix of degree \(n\). The cost is the following.
\begin{tabular}{|c|c|c|c|}
\hline & \(\psi\) & \(\psi^{\prime}\) & \(\psi^{\prime \prime}\) \\
\hline real & \(p^{3} n(n+1)\) & \(2 p^{3} n(n+1)\) & \(6 p^{4} n^{2}(n+1)\) \\
complex & \(4 p^{3} n(n+1)\) & \(8 p^{3} n(n+1)\) & \(48 p^{4} n^{2}(n+1)\) \\
\hline
\end{tabular}

We have now to divide \(P=R_{1} \tilde{D}\) by \(q\). The cost is the same as the previous division, with \(m\) replaced by \(2 n\).
\begin{tabular}{|c|c|c|c|}
\hline & \(\psi\) & \(\psi^{\prime}\) & \(\psi^{\prime \prime}\) \\
\hline real & \(p^{2} n(n+1)\) & \(2 p^{2} n(n+1)\) & \(p^{3} n^{2}(6 n+7)\) \\
complex & \(4 p^{2} n(n+1)\) & \(8 p^{2} n(n+1)\) & \(8 p^{3} n^{2}(6 n+7)\) \\
\hline
\end{tabular}

Finally, we have to compute \(\psi=\|G\|^{2}-\left\|R_{1}\right\|^{2}+\left\|V_{2}\right\|^{2}\). Essentially, we compute the square of the modules of \(2 n p^{2}\) terms.
\begin{tabular}{|c|c|c|c|}
\hline & \(\psi\) & \(\psi^{\prime}\) & \(\psi^{\prime \prime}\) \\
\hline real & \(2 n p^{2}\) & \(2 n p^{2}\) & \(6 n^{2} p^{3}\) \\
complex & \(4 n p^{2}\) & \(4 n p^{2}\) & \(24 n^{2} p^{3}\) \\
\hline
\end{tabular}

If we put all these quantities together, the complexity of the function is asymptotically
\[
C(\psi)=p^{2}(n+1)(m+p n)
\]

In table 5.18 we give the cost of computing \(\psi\) and its derivatives. This cost does not include the cost of computing the Schur parameters.

\subsection*{5.3.2 Cost of the Schur parameters}

We compute here the complexity of the following formulas, as implemented in chapter 4.
\[
\begin{gathered}
q_{B}=\left(b-\tilde{b}\|y\|^{2}\right) q_{A}+(\tilde{b}-b) y^{*} \tilde{D}_{A} u \\
\tilde{D}_{B}=\left(b-\tilde{b}\|y\|^{2}\right) \tilde{D}_{A}+(\tilde{b}-b)\left[\tilde{D}_{A} u u^{*}+y y^{*} \tilde{D}_{A}-y^{*} u q_{A}\right]+\frac{b-\tilde{b}}{q_{A}}\left[\tilde{D}_{A} u y^{*} \tilde{D}_{A}-y^{*} \tilde{D}_{A} u \tilde{D}_{A}\right]
\end{gathered}
\]

We start by computing \(s=\|y\|^{2}\). The complexity is the following.
\begin{tabular}{|c|c|c|c|}
\hline & \(\psi\) & \(\psi^{\prime}\) & \(\psi^{\prime \prime}\) \\
\hline real & \(n p\) & \(n p\) & \(3 n^{2} p^{2}\) \\
complex & \(2 n p\) & \(2 n p\) & \(12 n^{2} p^{2}\) \\
\hline
\end{tabular}

We compute then \(b-\tilde{b}\|y\|^{2}\). Here \(\tilde{b}\) is constant and has two coefficients.
\begin{tabular}{|c|c|c|c|}
\hline & \(\psi\) & \(\psi^{\prime}\) & \(\psi^{\prime \prime}\) \\
\hline real & \(2 n\) & \(2 n\) & \(4 n^{2} p\) \\
complex & \(4 n\) & \(4 n\) & \(16 n^{2} p\) \\
\hline
\end{tabular}

In the case \(p=2\), we have to compute \(Z=\tilde{q}\left(y^{*} u-u y^{*}\right)\). The product \(y^{*} u \operatorname{costs} p\), and the product \(u y^{*}\) costs \(p^{2}\). The cost of \(y^{*} u-u y^{*}\) is hence the following:

Table 5.18: Cost of \(\psi\) and its derivatives, real and complex case. We have \(p=2\) and \(p=4\).
\begin{tabular}{|c|r|r|r|r|r|r|}
\hline\(n\) & Real \(\psi\) & Real \(\psi^{\prime}\) & \multicolumn{1}{|c|}{ Real \(\psi^{\prime \prime}\)} & Complex \(\psi\) & Complex \(\psi^{\prime}\) & Complex \(\psi^{\prime \prime}\) \\
\hline 1 & 3224 & 6440 & 41840 & 12880 & 25744 & 334528 \\
2 & 4864 & 9712 & 122944 & 19424 & 38816 & 982784 \\
3 & 6520 & 13016 & 243888 & 26032 & 52016 & 1949376 \\
4 & 8192 & 16352 & 405248 & 32704 & 65344 & 3238912 \\
5 & 9880 & 19720 & 607600 & 39440 & 78800 & 4856000 \\
6 & 11584 & 23120 & 851520 & 46240 & 92384 & 6805248 \\
7 & 13304 & 26552 & 1137584 & 53104 & 106096 & 9091264 \\
8 & 15040 & 30016 & 1466368 & 60032 & 119936 & 11718656 \\
9 & 16792 & 33512 & 1838448 & 67024 & 133904 & 14692032 \\
10 & 18560 & 37040 & 2254400 & 74080 & 148000 & 18016000 \\
\hline 1 & 12960 & 25888 & 336256 & 51776 & 103488 & 2688512 \\
2 & 19648 & 39232 & 992768 & 78464 & 156800 & 7936000 \\
3 & 26464 & 52832 & 1978752 & 105664 & 211136 & 15816192 \\
4 & 33408 & 66688 & 3303424 & 133376 & 266496 & 26402816 \\
5 & 40480 & 80800 & 4976000 & 161600 & 322880 & 39769600 \\
6 & 47680 & 95168 & 7005696 & 190336 & 380288 & 55990272 \\
7 & 55008 & 109792 & 9401728 & 219584 & 438720 & 75138560 \\
8 & 62464 & 124672 & 12173312 & 249344 & 498176 & 97288192 \\
9 & 70048 & 139808 & 15329664 & 279616 & 558656 & 122512896 \\
10 & 77760 & 155200 & 18880000 & 310400 & 620160 & 150886400 \\
\hline
\end{tabular}

Table 5.19: Complexity of \(Z=\tilde{q}\left(y^{*} u-u y^{*}\right)\) in the case \(p=2\)
\begin{tabular}{|c|r|r|r|r|r|r|}
\hline\(n\) & Real \(\psi\) & Real \(\psi^{\prime}\) & Real \(\psi^{\prime \prime}\) & Complex \(\psi\) & Complex \(\psi^{\prime}\) & Complex \(\psi^{\prime \prime}\) \\
\hline 1 & 10 & 14 & 72 & 40 & 56 & 480 \\
2 & 18 & 30 & 336 & 72 & 120 & 2496 \\
3 & 30 & 54 & 936 & 120 & 216 & 7200 \\
4 & 46 & 86 & 2016 & 184 & 344 & 15744 \\
5 & 66 & 126 & 3720 & 264 & 504 & 29280 \\
6 & 90 & 174 & 6192 & 360 & 696 & 48960 \\
7 & 118 & 230 & 9576 & 472 & 920 & 75936 \\
8 & 150 & 294 & 14016 & 600 & 1176 & 111360 \\
9 & 186 & 366 & 19656 & 744 & 1464 & 156384 \\
10 & 226 & 446 & 26640 & 904 & 1784 & 212160 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & \(\psi\) & \(\psi^{\prime}\) & \(\psi^{\prime \prime}\) \\
\hline real & 6 & 6 & \(24 n\) \\
complex & 24 & 24 & \(96 n\) \\
\hline
\end{tabular}

At iteration \(I\), the polynomial \(q\) has degree \(I\). The cost of multiplication of \(y^{*} u-u y^{*}\) by \(\tilde{q}\) is \((I+1) p^{2}\). This gives a total of \(p^{2} n(n+1) / 2\).
\begin{tabular}{|c|c|c|c|}
\hline & \(\psi\) & \(\psi^{\prime}\) & \(\psi^{\prime \prime}\) \\
\hline real & \(2 n(n+1)\) & \(4 n(n+1)\) & \(24 n^{2}(n+1)\) \\
complex & \(8 n(n+1)\) & \(16 n(n+1)\) & \(192 n^{2}(n+1)\) \\
\hline
\end{tabular}

Table 5.20: Cost of \(Y\), in the case \(p=4\).
\begin{tabular}{|c|r|r|r|r|r|r|}
\hline\(n\) & Real \(\psi\) & Real \(\psi^{\prime}\) & Real \(\psi^{\prime \prime}\) & Complex \(\psi\) & Complex \(\psi^{\prime}\) & Complex \(\psi^{\prime \prime}\) \\
\hline 1 & 64 & 112 & 1728 & 256 & 448 & 13824 \\
2 & 288 & 528 & 14976 & 1152 & 2112 & 119808 \\
3 & 768 & 1440 & 58752 & 3072 & 5760 & 470016 \\
4 & 1600 & 3040 & 161280 & 6400 & 12160 & 1290240 \\
5 & 2880 & 5520 & 360000 & 11520 & 22080 & 2880000 \\
6 & 4704 & 9072 & 701568 & 18816 & 36288 & 5612544 \\
7 & 7168 & 13888 & 1241856 & 28672 & 55552 & 9934848 \\
8 & 10368 & 20160 & 2045952 & 41472 & 80640 & 16367616 \\
9 & 14400 & 28080 & 3188160 & 57600 & 112320 & 25505280 \\
10 & 19360 & 37840 & 4752000 & 77440 & 151360 & 38016000 \\
\hline
\end{tabular}

In table 5.19, we have put the total complexity of \(Z\), in the case \(p=2\). Let's now compute the complexity of \(Y\). This is the same quantity as above, but in the case \(p \neq 2\). Note that if \(p=1\), this expression is zero. In general it is:
\[
\frac{\tilde{D}_{A} u y^{*} \tilde{D}_{A}-y^{*} \tilde{D}_{A} u \tilde{D}_{A}}{q_{A}}
\]

We assume that \(y_{D}\) contains \(y^{*} \tilde{D}_{A}\) and that \(E\) contains \(y^{*} \tilde{D}_{A} u\). Thus, we have to divide \(D u y_{D}-E D\) by \(q\).

The complexity of the product \(D u\) is \(p^{2}(I+1)\), because we multiply a matrix of size \(p \times p\) and degree \(I\) by a vector of size \(p \times 1\) of degree zero. The result is a vector of size \(p \times 1\), of degree \(I\). Since we multiply it by a vector of size \(1 \times p\), of degree \(I\), the cost is \(p^{2}(I+1)^{2}\). Now, we multiply the scalar \(E\), of degree \(I\) by the \(p \times p\) matrix \(D\) of degree \(I\). This costs also \(p^{2}(I+1)^{2}\). Finally, we have to divide this all by \(q\). The division costs also \(p^{2}(I+1)^{2}\).

In the next table, \(\alpha\) is the sum of \((I+1)^{2}\), this is \(n(n+1)(2 n+1) / 6\). We take into account the fact that \(u\) is constant in the multiplication of \(D\) by \(u\).
\begin{tabular}{|c|c|c|c|}
\hline & \(\psi\) & \(\psi^{\prime}\) & \(\psi^{\prime \prime}\) \\
\hline real & \(3 p^{2} \alpha+p^{2} n(n+1) / 2\) & \(6 p^{2} \alpha+p^{2} n(n+1) / 2\) & {\(\left[18 p^{2} \alpha+7 p^{2} n(n+1) / 2\right] n p\)} \\
complex & \(12 p^{2} \alpha+2 p^{2} n(n+1)\) & \(24 p^{2} \alpha+2 p^{2} n(n+1)\) & \(8\left[18 p^{2} \alpha+7 p^{2} n(n+1) / 2\right] n p\) \\
\hline
\end{tabular}

In table 5.20 we give the cost of \(Y\) in the case \(p=4\). This is the equivalent of table 5.19 , which is valid only if \(p=2\). The cost of \(Y\) is essentially
\[
C(Y)=p^{2} n^{3}
\]

We have now to compute \(X=D u u^{*}+y y^{*} D-y^{*} u q\). In the next table, we start with three products: there is the product \(y_{D}=y^{*} D\); this has a cost of \(p^{2}(I+1)\). We multiply this by \(u\) in order to get \(E=y^{*} D u\); it has a cost of \(p(I+1)\). Finally, we compute \(N=y u^{*}\); this has a cost of \(p^{2}\). Note that \(u\) is a constant. We obtain the following result.
\begin{tabular}{|c|c|c|c|}
\hline & \(\psi\) & \(\psi^{\prime}\) & \(\psi^{\prime \prime}\) \\
\hline real & \(\left(p^{2}+p\right) n(n+1) / 2+n p^{2}\) & \(\left(2 p^{2}+p\right) n(n+1) / 2+n p^{2}\) & {\(\left[\left(p+3 p^{2}\right) n(n+1)+2 n p^{2}\right] n p\)} \\
complex & \(2\left(p^{2}+p\right) n(n+1)+4 n p^{2}\) & \(2\left(2 p^{2}+p\right) n(n+1)+4 n p^{2}\) & \(8\left[\left(p+3 p^{2}\right) n(n+1)+2 n p^{2}\right] n p\) \\
\hline
\end{tabular}

The complexity of \(X\) is the following. We have to compute \(D u u^{*}\). This costs \(p^{3}(I+1)\) (we assume that \(u u^{*}\) is already computed). Then we compute \(y y^{*} D\), product of \(y\) by \(y_{D}\); this costs \(p^{2}(I+1)\). Finally, we compute \(N q\), this costs also \(p^{2}(I+1)\).

Table 5.21: Complexity of \(X\), for \(p=2\) and \(p=4\)
\begin{tabular}{|c|r|r|r|r|r|r|}
\hline\(n\) & Real \(\psi\) & Real \(\psi^{\prime}\) & \multicolumn{1}{|c|}{ Real \(\psi^{\prime \prime}\)} & Complex \(\psi\) & Complex \(\psi^{\prime}\) & Complex \(\psi^{\prime \prime}\) \\
\hline 1 & 30 & 42 & 220 & 112 & 160 & 1680 \\
2 & 82 & 118 & 1248 & 312 & 456 & 9664 \\
3 & 156 & 228 & 3636 & 600 & 888 & 28368 \\
4 & 252 & 372 & 7936 & 976 & 1456 & 62208 \\
5 & 370 & 550 & 14700 & 1440 & 2160 & 115600 \\
6 & 510 & 762 & 24480 & 1992 & 3000 & 192960 \\
7 & 672 & 1008 & 37828 & 2632 & 3976 & 298704 \\
8 & 856 & 1288 & 55296 & 3360 & 5088 & 437248 \\
9 & 1062 & 1602 & 77436 & 4176 & 6336 & 613008 \\
10 & 1290 & 1950 & 104800 & 5080 & 7720 & 830400 \\
\hline 1 & 138 & 186 & 1888 & 540 & 732 & 14848 \\
2 & 392 & 536 & 10944 & 1544 & 2120 & 86528 \\
3 & 762 & 1050 & 32256 & 3012 & 4164 & 255744 \\
4 & 1248 & 1728 & 70912 & 4944 & 6864 & 563200 \\
5 & 1850 & 2570 & 132000 & 7340 & 10220 & 1049600 \\
6 & 2568 & 3576 & 220608 & 10200 & 14232 & 1755648 \\
7 & 3402 & 4746 & 341824 & 13524 & 18900 & 2722048 \\
8 & 4352 & 6080 & 500736 & 17312 & 24224 & 3989504 \\
9 & 5418 & 7578 & 702432 & 21564 & 30204 & 5598720 \\
10 & 6600 & 9240 & 952000 & 26280 & 36840 & 7590400 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & \(\psi\) & \(\psi^{\prime}\) & \(\psi^{\prime \prime}\) \\
\hline real & \(\left(p^{3}+2 p^{2}\right) n(n+1) / 2\) & \(\left(p^{3}+4 p^{2}\right) n(n+1) / 2\) & \(\left(p^{3}+6 p^{2}\right) n^{2}(n+1) p\) \\
complex & \(2\left(p^{3}+2 p^{2}\right) n(n+1)\) & \(2\left(p^{3}+4 p^{2}\right) n(n+1)\) & \(8\left(p^{3}+6 p^{2}\right) n^{2}(n+1) p\) \\
\hline
\end{tabular}

Let's now compute \(D\). We have to multiply \(D\) by \(b_{4}\). This costs \(2 p^{2}(I+1)\). We have to compute \(b_{2} Z\). This has the same cost, but \(b_{2}\) is constant. We are in the same case for \(b_{2} X\). For \(q\), we have to compute \(b_{4} q-b_{2} E\). Each term costs \(2(I+1)\), but \(b_{2}\) is still constant.
\begin{tabular}{|c|c|c|c|}
\hline & \(\psi\) & \(\psi^{\prime}\) & \(\psi^{\prime \prime}\) \\
\hline real & \(\left(3 p^{2}+2\right) n(n+1)\) & \(\left(4 p^{2}+3\right) n(n+1)\) & \(\left(10 p^{2}+8\right) n^{2}(n+1) p\) \\
complex & \(4\left(3 p^{2}+2\right) n(n+1)\) & \(4\left(4 p^{2}+3\right) n(n+1)\) & \(8\left(10 p^{2}+8\right) n^{2}(n+1) p\) \\
\hline
\end{tabular}

\subsection*{5.3.3 Memory requirements}

Since all variables are declared in table 4.15 on page 146 , computation of memory space is easy. The cost of inner variables (used by the Schur algorithm) is
\[
\left(5 p^{2}+2 p+2\right) n(n+1) / 2+\left(2 p^{2}+p+13\right) n+p^{2}+1
\]

We have to add to this quantity the memory cost for \(u\) and \(u u^{*}\), namely \(n\left(1+p^{2}\right)\), but no memory is needed for the derivative of it. The variables needed for computing \(\psi\) need \(p^{2}(m+4 n)\). Note that, if \(G\) is not a square matrix, but of size \(q \times p\), this has to be replaced by \(q p(m+4 n)\). Results are given in table 5.22.

Note that the space for \(\psi^{\prime}\) is more or less the space for \(\psi\). If this quantity is \(N\), then we allocate \(3 N\) objects (for \(\psi, \psi^{\prime}\) and \(\psi^{\prime \prime}\) ). Each object is a number in double and quadruple precision. Hence \(84 N\) bytes are allocated. In the complex case twice as many memory is needed. In the case \(p=4, n=8\), this is \(1.8 M\). The total memory allocated by HYPERION is \(4.3 M\).

Table 5.22: Space complexity for \(p=2\) and \(p=4\)
\begin{tabular}{|r|r|r||r|r|}
\hline n & \(\psi\) & \(\psi^{\prime}\) & \(\psi\) & \(\psi^{\prime}\) \\
\hline 1 & 1675 & 5 & 6637 & 6620 \\
2 & 1771 & 10 & 6947 & 6913 \\
3 & 1893 & 15 & 7347 & 7296 \\
4 & 2041 & 20 & 7837 & 7769 \\
5 & 2215 & 25 & 8417 & 8332 \\
6 & 2415 & 30 & 9087 & 8985 \\
7 & 2641 & 35 & 9847 & 9728 \\
8 & 2893 & 40 & 10697 & 10561 \\
9 & 3171 & 45 & 11637 & 11484 \\
10 & 3475 & 50 & 12667 & 12497 \\
11 & 3805 & 55 & 13787 & 13600 \\
12 & 4161 & 60 & 14997 & 14793 \\
13 & 4543 & 65 & 16297 & 16076 \\
14 & 4951 & 70 & 17687 & 17449 \\
15 & 5385 & 75 & 19167 & 18912 \\
16 & 5845 & 80 & 20737 & 20465 \\
17 & 6331 & 85 & 22397 & 22108 \\
18 & 6843 & 90 & 24147 & 23841 \\
19 & 7381 & 95 & 25987 & 25664 \\
20 & 7945 & 100 & 27917 & 27577 \\
\hline
\end{tabular}

The number of multiplications needed is the sum of all quantities given above. At first approximation it is:
\[
C=p^{2} n\left(m+3 p n / 2+n^{2}\right)
\]

Note that, in general, \(m\) is greater than \(3 p n / 2+n^{2}\), in practice, the ratio is between 2 and 4 . Thus, it could be interesting to truncate first \(G\) with \(m / 2\) coefficients, find the best approximation of this, and use this result as starting condition for the approximation of \(G\) with all its coefficients. Such an algorithm is not yet implemented in hyperion.

In the case \(p=2\), the complexity can be approximated by \(35 n^{2}+4 m n\) for \(\psi, 56 n^{2}+8 m n\) for \(\psi^{\prime}\) and \(308 n^{3}+48 n^{2} m\) for \(\psi^{\prime \prime}\). For large \(n\), the quotient \(\psi^{\prime} / \psi\) is 1.6 (recall that we have a theorem that says that this is bounded by 2 , see results on figure 5.3.3).

In the case \(p>2\), and \(n\) large, the complexity comes essentially from \(Y\). It is \(p^{2} n^{3}\). In this case the ratio \(\psi^{\prime} / \psi\) has 2 as limit. This means essentially that the number of terms in our sums that are products of a constant and a variable is small against the number of terms where each factor is variable.

In the table 5.23 , we give the exact total cost in the cases \(p=2, p=3\) and \(p=4\). We give also on figure 5.3, 5.4 and 5.5 the values of the cost. We take \(p=2, p=3, p=4, p=5\) and \(p=6\). On the \(y\)-axis we have put the logarithm of the time.

\subsection*{5.4 Derivatives in direct mode}

In this section, we shall compute the cost of \(\psi^{\prime}\) and \(\psi^{\prime \prime}\) if the derivatives are computed in direct mode. We assume that we have enough memory, so that everything will be stored, rather then recomputed. For simplicity, we consider only the real case: in the complex case, we have to multiply the complexity of \(\psi^{\prime}\) and \(\psi^{\prime \prime}\) by a factor which is approximatively 8 or 16 . In all tables, we show some values for \(p=2\) and \(p=10\). More values of \(p\) will be used for the figures.

Table 5.23: Global complexity, \(p=2, p=3\) and \(p=4\)
\begin{tabular}{|c|r|r|r|r|r|r|}
\hline\(n\) & Real \(\psi\) & Real \(\psi^{\prime}\) & Real \(\psi^{\prime \prime}\) & Complex \(\psi\) & Complex \(\psi^{\prime}\) & Complex \(\psi^{\prime \prime}\) \\
\hline 1 & 3292 & 6534 & 42324 & 13144 & 26112 & 338224 \\
2 & 5048 & 9974 & 125680 & 20144 & 39848 & 1004160 \\
3 & 6874 & 13526 & 251916 & 27424 & 54032 & 2012592 \\
4 & 8770 & 17190 & 422880 & 34984 & 68664 & 3378304 \\
5 & 10736 & 20966 & 640420 & 42824 & 83744 & 5116080 \\
6 & 12772 & 24854 & 906384 & 50944 & 99272 & 7240704 \\
7 & 14878 & 28854 & 1222620 & 59344 & 115248 & 9766960 \\
8 & 17054 & 32966 & 1590976 & 68024 & 131672 & 12709632 \\
9 & 19300 & 37190 & 2013300 & 76984 & 148544 & 16083504 \\
10 & 21616 & 41526 & 2491440 & 86224 & 165864 & 19903360 \\
\hline 1 & 7437 & 14765 & 143610 & 29702 & 59014 & 1148076 \\
2 & 11533 & 22771 & 431094 & 46040 & 90992 & 3445536 \\
3 & 15942 & 31326 & 877149 & 63630 & 125166 & 7009956 \\
4 & 20718 & 40538 & 1500360 & 82688 & 161968 & 11990016 \\
5 & 25915 & 50515 & 2323200 & 103430 & 201830 & 18565500 \\
6 & 31587 & 61365 & 3372030 & 126072 & 245184 & 26947296 \\
7 & 37788 & 73196 & 4677099 & 150830 & 292462 & 37377396 \\
8 & 44572 & 86116 & 6272544 & 177920 & 344096 & 50128896 \\
9 & 51993 & 100233 & 8196390 & 207558 & 400518 & 65505996 \\
10 & 60105 & 115655 & 10490550 & 239960 & 462160 & 83844000 \\
\hline 1 & 13262 & 26320 & 341216 & 52972 & 105204 & 2727936 \\
2 & 20628 & 40698 & 1026752 & 82360 & 162640 & 8206848 \\
3 & 28594 & 56126 & 2093952 & 114148 & 224276 & 16735488 \\
4 & 37256 & 72796 & 3589376 & 148720 & 290880 & 28686336 \\
5 & 46710 & 90900 & 5568800 & 186460 & 363220 & 44505600 \\
6 & 57052 & 110630 & 8097216 & 227752 & 442064 & 64713216 \\
7 & 68378 & 132178 & 11248832 & 272980 & 528180 & 89902848 \\
8 & 80784 & 155736 & 15107072 & 322528 & 622336 & 120741888 \\
9 & 94366 & 181496 & 19764576 & 376780 & 725300 & 157971456 \\
10 & 109220 & 209650 & 25323200 & 436120 & 837840 & 202406400 \\
\hline & & & & & &
\end{tabular}


Figure 5.3: Complexity of the function


Figure 5.4: Complexity of the first derivative


Figure 5.5: Complexity of the second derivative. On each curve \(p\) is constant \((2 \leq p \leq 6)\). On the \(x\)-axis we have \(n\), on the \(y\)-axis we have \(\log _{10}(T)\), the base-ten logarithm of time complexity. Computations are done for the algorithm described in chapter 4.


Figure 5.6: Normalised cost: upper left, cost of \(\psi_{r}^{\prime} / 2 \psi_{r}\); upper right, cost of \(\psi_{c}^{\prime} / 8 \psi_{r}\); lower left, \(\psi_{r}^{\prime \prime} / 6 n p \psi_{r}\); lower right \(\psi_{c}^{\prime \prime} / 48 n p \psi_{r}\). Here \(\psi_{r}\) is the cost of \(\psi\) in the real case, \(\psi_{r}^{\prime}\) and \(\psi_{r}^{\prime \prime}\) the cost of the first and second derivatives of \(\psi ; \psi_{c}^{\prime}\) and \(\psi_{c}^{\prime \prime}\) are the cost of the first and second derivatives of \(\psi\) in the complex case. We have \(2 \leq n \leq 20,2 \leq p \leq 10\). In principle the value should be one. Note the special case \(p=2\).


Figure 5.7: Normalised cost: here \(n\) ranges from 1 to 200 . The limits for \(n=\infty\) are 1 in the general case. In the case \(p=2\), the limit is 0.8 for the derivative, and 0.733 for the second derivative.

Recall that the cost of the product \(A B\), where \(A\) and \(B\) are matrices of size \(\left(n_{1}, n_{2}\right)\) and \(\left(n_{2}, n_{3}\right)\) and degree \(p\) and \(q\) is
\[
n_{1} n_{2} n_{3}(p+1)(q+1)
\]

If \(C\) has size \(\left(n_{3}, n_{4}\right)\) and degree \(s\), then the cost of the product \(A B C\) is
\[
\begin{aligned}
& T[A(B C)]=n_{2} n_{4}\left[n_{1}(p+1)(q+s+1)+n_{3}(q+1)(s+1)\right] \\
& T[(A B) C]=n_{1} n_{3}\left[n_{2}(p+1)(q+1)+n_{4}(p+q+1)(s+1)\right]
\end{aligned}
\]

The first computation is the best if
\[
\frac{(p+1)(q+s+1)}{n_{3}}+\frac{(q+1)(s+1)}{n_{1}}<\frac{(p+1)(q+1)}{n_{4}}+\frac{(p+q+1)(s+1)}{n_{2}}
\]

For instance, if the matrices are of degree zero, the condition becomes:
\[
\frac{1}{n_{1}}+\frac{1}{n_{3}}<\frac{1}{n_{2}}+\frac{1}{n_{4}}
\]

In the case where \(p=q=s\) is large, the condition becomes
\[
\frac{1}{n_{1}}+\frac{2}{n_{3}}<\frac{2}{n_{2}}+\frac{1}{n_{4}}
\]

These formulas show that it is not obvious a priori to say which is the best order of computation. Note that, if \(n_{1}=n_{4}\) (case where the result is a square matrix), in these two cases, the conditions simplify to \(n_{2}<n_{3}\).

In what follows, we consider \(B=T_{\Theta}(A)\), where \(A\) is of degree \(i\), and we differentiate this with respect to \(y_{j}\) and \(y_{k}\). We assume that \(y_{j}\) and \(y_{k}\) appear in \(\Theta_{J}\) and \(\Theta_{K}\). For the Hessian, we may always assume \(k \leq j\), hence \(K \leq J\) (recall that the Hessian is a symmetric matrix). This has the following consequences:
- If \(J>i+1\), then \(B\) is independent of \(y_{j}\).
- If \(J=i+1\), then \(A\) is independent of \(y_{j}\) and \(\Theta\) depends on \(y_{j}\).
- If \(J<i+1\), then \(\Theta\) is independent of \(y_{j}\), but \(A\) depends on \(y_{j}\).

We shall make a heavy use of the following formulas.
\[
\begin{gathered}
\sum_{i<n} i=\frac{n(n-1)}{2} \\
\sum_{i<n} i^{2}=\frac{n(n-1)(2 n-1)}{6} \\
\sum_{i<n} i^{3}=\frac{n^{2}(n-1)^{2}}{4} \\
\sum_{i<n} i(i+1)=\frac{n(n-1)(n+1)}{3} \\
\sum_{i<n}(i+1) i p(i p+1)=\frac{p n(n-1)(n+1)}{3}\left(1+\frac{p(3 n-2)}{4}\right)
\end{gathered}
\]

\subsection*{5.4.1 Pseudo-code}

The polynomial \(q\) is defined
\[
\begin{equation*}
q_{B}=\left(b-\tilde{b}\|y\|^{2}\right) q_{A}+(\tilde{b}-b) y^{*} \tilde{D}_{A} u \tag{*}
\end{equation*}
\]

In order to make explicit the equations for which we compute the complexity, we shall give an implementation in pseudo-code.

In equation \((*)\), we assume that the quantities \(q_{A}\) and \(\tilde{D}_{A}\) are in \(q(i)\) and \(D(i)\), so that what we have to compute is \(q(i+1)\). We assume that \(b-\tilde{b}\|y\|^{2}\) and \(\tilde{b}-b\) have been computed and stored in \(B_{4}(i)\) and \(B_{2}(i)\) (we use here the same notations as in the previous chapter). The pseudo-code associated to \((*)\) is
\[
\forall i: \quad q(i+1)=B_{2}(i) * q(i)+B_{4}(i) *\left(y_{t}(i) *(D(i) * u(i))\right)
\]

In fact, the pseudo-code will be more complicated than that, because we have to indicate the storage used for every operation. Assume that we put \(\tilde{D}_{A} u\) in \(D_{u}\) and \(y^{*} \tilde{D}_{A} u\) in \(D_{u y}\). Then the pseudo-code will be
\[
\begin{gathered}
\forall i: \quad D_{u}(i)=D(i) * u(i) \\
\forall i: \quad D_{u y}(i)=y_{t}(u) * D_{u}(i) \\
\forall i: \quad q(i+1)=B_{4}(i) * D_{u y}(i) \\
\forall i: \quad q(i+1)+=b_{2}(i) * q(i)
\end{gathered}
\]

It will always be understood that the quantification \(\forall i\) means: for all \(i\) from 0 up to \(n-1\). The derivative of the first part of \((*)\) looks like
\[
\begin{gathered}
\forall i, j,(J \leq i): \quad d q(i, j)=B_{4}(i) * d q(i, j) \\
\forall i, j,(J=i+1): \quad d q(i, j)=-T_{1}(i) * 2 y_{j}
\end{gathered}
\]

Here \(d q(i, j)\) is the derivative of \(q_{A}=q(i)\), with respect to \(y_{j}\), which is one component of the vector \(y\). In the first case, we assume \(J \leq i\), and in the second case \(J=i+1\). The derivative is zero in case \(J>i+1\). The quantity \(T_{1}\) in the second equation is \(\tilde{b} q_{A}\). The code of the second derivative has the form
\[
\forall i, j, k,(K \leq J \leq i): \quad d d q(i+1, j, k)=B_{4}(i) * d d q(i, j, k)
\]

Here \(d d q(i, j, k)\) is the second derivative of \(q_{A}\) in the directions \(y_{j}\) and \(y_{k}\). Since this is symmetric, we compute only one half of the Hessian. Thus we assume \(k \leq j\). This implies \(K \leq J\).

\subsection*{5.4.2 Sample formula}

Assume that we have an expression of the form
\[
\begin{equation*}
B=A y \tag{5.52.a}
\end{equation*}
\]
where \(A\) depends on \(y_{j}\) for \(J \leq i\) and \(y\) depends on \(y_{j}, J=i+1\). We have
\[
\begin{array}{cc}
\frac{\partial B}{\partial y_{j}}=y \frac{\partial A}{\partial y_{j}}, & J \leq i \\
\frac{\partial B}{\partial y_{j}}=\frac{\partial y}{\partial y_{j}} A, & J=i+1 \tag{5.52.c}
\end{array}
\]

Let \(T\left(A_{i}^{\prime}\right)\) be the complexity of equation (5.52.b) and \(T\left(A_{i}\right)\) the complexity of (5.52.c). We assume that these complexities depend only on \(i\). Let's denote by \(T\left(B^{\prime}\right)\) and \(T\left(B^{\prime \prime}\right)\) the complexity of the complete first and second derivatives of \(B\).

There are \(i p\) vectors \(y_{j}\) such that \(J \leq i\) and \(p\) vectors such that \(J=i+1\). Hence
\[
\begin{equation*}
T\left(B^{\prime}\right)=p \sum i T\left(A_{i}^{\prime}\right)+p \sum T\left(A_{i}\right) \tag{5.52.d}
\end{equation*}
\]

Let's now compute the complexity of the Hessian. Since \(k \leq j\), we have \(K \leq J\). So
\[
\frac{\partial^{2} B}{\partial y_{j} \partial y_{k}}=y \frac{\partial^{2} A}{\partial y_{j} \partial y_{k}}, \quad J \leq i
\]

The number of vectors \(y_{j}, y_{k}\) such that \(k \leq j\) and \(J \leq i\) is \(i p(i p+1) / 2\). We denote by \(T\left(A_{i}^{\prime \prime}\right)\) the complexity of one of these terms. If we differentiate now (5.52.c), the result will be zero if \(K=J\). In some cases, it can be non-zero, but only if \(y\) appears non-linearly in the expression. There remains
\[
\frac{\partial^{2} B}{\partial y_{j} \partial y_{k}}=\frac{\partial y}{\partial y_{j}} \frac{\partial A}{\partial y_{k}}, \quad J=i+1, K \leq i
\]

Let's denote by \(T\left(A_{i}^{\prime}\right)\) the cost of such an expression. For each \(i\), there are \(i p\) vectors \(y_{k}\) with \(K \leq i\) and \(p\) vectors \(y_{j}\) with \(J=i\). Hence
\[
\begin{equation*}
T\left(B^{\prime \prime}\right)=\sum i p(i p+1) T\left(A_{i}^{\prime \prime}\right) / 2+p^{2} \sum i T\left(A_{i}^{\prime}\right) \tag{5.52.e}
\end{equation*}
\]

\subsection*{5.4.3 Notations}

We have to implement
\[
\begin{gather*}
q_{B}=\left(b-\tilde{b}\|y\|^{2}\right) q_{A}+(\tilde{b}-b) y^{*} \tilde{D}_{A} u  \tag{5.53.a}\\
\tilde{D}_{B}=\left(b-\tilde{b}\|y\|^{2}\right) \tilde{D}_{A}+(\tilde{b}-b)\left[\tilde{D}_{A} u u^{*}+y y^{*} \tilde{D}_{A}-y u^{*} q_{A}-\frac{\tilde{D}_{A} u y^{*} \tilde{D}_{A}-y^{*} \tilde{D}_{A} u \tilde{D}_{A}}{q_{A}}\right] \tag{5.53.b}
\end{gather*}
\]

The computation is done by introducing some variables (main variables)
\[
\begin{gather*}
X_{1}=\left(b-\tilde{b}\|y\|^{2}\right) q_{A}  \tag{5.54.a}\\
X_{2}=(\tilde{b}-b) y^{*} \tilde{D}_{A} u  \tag{5.54.b}\\
X_{3}=\left(b-\tilde{b}\|y\|^{2}\right) \tilde{D}_{A}  \tag{5.54.c}\\
X_{4}=\tilde{D}_{A} u u^{*}  \tag{5.54.d}\\
X_{5}=y y^{*} \tilde{D}_{A}  \tag{5.54.e}\\
X_{6}=y u^{*} q_{A}  \tag{5.54.f}\\
X_{7}=\tilde{D}_{A} u y^{*} \tilde{D}_{A}  \tag{5.54.g}\\
X_{8}=y^{*} \tilde{D}_{A} u \tilde{D}_{A}  \tag{5.54.h}\\
X_{9}=X_{7}-X_{8}  \tag{5.54.i}\\
X=X_{9} / q_{A}  \tag{5.54.j}\\
Z=(\tilde{b}-b)\left(X_{4}+X_{5}-X_{6}-X\right) \tag{5.54.k}
\end{gather*}
\]

With these notations, \(q_{B}=X_{1}+X_{2}\) and \(\tilde{D}_{B}=X_{3}+Z\).
We introduce other variables (temporaries)
\[
\begin{gather*}
B_{4}=b-\tilde{b}\|y\|^{2}  \tag{5.55.a}\\
B_{2}=\tilde{b}-b  \tag{5.55.b}\\
T_{1}=\tilde{b} q_{A} \tag{5.55.c}
\end{gather*}
\]
\[
\begin{gather*}
T_{2}=\tilde{b} \frac{\partial\|y\|^{2}}{\partial y_{j}},  \tag{5.55.d}\\
T_{3}=(\tilde{b}-b) y,  \tag{5.55.e}\\
T_{4}=\frac{\partial}{\partial y_{j}} \tilde{D}_{A} u,  \tag{5.55.f}\\
T_{5}=\frac{\partial^{2}}{\partial y_{j} \partial y_{k}} \tilde{D}_{A} u,  \tag{5.55.g}\\
T_{6}=\tilde{b} \tilde{D}_{A},  \tag{5.55.h}\\
T_{7}=y^{*} \tilde{D}_{A},  \tag{5.55.i}\\
T_{8}=y^{*} \frac{\partial}{\partial y_{j}} \tilde{D}_{A},  \tag{5.55.j}\\
T_{9}=\tilde{D}_{A} u,  \tag{5.55.k}\\
T_{10}=y^{*} \tilde{D}_{A} u,  \tag{5.55.l}\\
T_{11}=y^{*} \frac{\partial}{\partial y_{j}} \tilde{D}_{A} u,  \tag{5.55.m}\\
T_{12}=y u^{*} \tag{5.55.n}
\end{gather*}
\]

In some cases, we write \(b_{t}\) for \(\tilde{b}\), and \(y_{t}\) for \(y^{*}\). A scalar temporary \(T\) will also be used.

\subsection*{5.4.4 Space complexity}

We have to store \(q, D\) and the derivatives of these quantities. This has a cost of \(\sum \alpha(i+1)\), where \(i\) ranges between 1 and \(n\), and \(\alpha\) is 1 for \(q\), ip for \(q^{\prime}\) and \(i p(i p+1) / 2\) for \(q^{\prime \prime}\). This gives a total of
\[
\frac{(n+1)(n+2)}{2}, \quad p \frac{n(n+1)(n+2)}{3}, \quad \frac{p n(n+1)(n+2)}{6}\left(1+p \frac{3 n+1}{4}\right) .
\]

The memory cost for \(D\) is the same, multiplied by \(p^{2}\).
We shall see later, that for \(X=X_{9} / q_{A}\), we have to allocate memory for \(X_{9}\) and its derivatives, and for \(X\) and its first derivative. No space is needed for the second derivative of \(X\). The degree of \(X_{9}\) is \(2 i\), and the degree of \(X\) is \(i\). This gives hence
\[
\begin{gathered}
S(X)=p^{2} n(n+1) / 2, \quad S\left(X^{\prime}\right)=p^{3}\left(n^{3}-n\right) / 3 \\
S\left(X_{9}\right)=p^{2} n^{2}, \quad S\left(X_{9}^{\prime}\right)=p^{3} n(4 n+1)(n-1) / 6, \quad S\left(X_{9}^{\prime \prime}\right)=p^{3}(n-1) n\left(3 p n^{2}-p n+4 n+1-p\right) / 12
\end{gathered}
\]

We need also space for \(Z_{0}\). This is the same as for \(D\), but with \(n\) replaced by \(n-1\).
We need space for \(b, \tilde{b}, b-\tilde{b}\) and \(b-\tilde{b}\|y\|^{2}\). This gives a total of \(8 p\).
We have to allocate space for the temporary variables, see table 5.24.
This gives a total of
\[
\begin{gather*}
S=p^{2}(n+1)(3 n+1)+p\left(n^{2}+3 n+8\right)+(n+1)^{2} .  \tag{5.56.a}\\
S^{\prime}=p^{3} n \frac{10 n^{2}+3 n-1}{6}+p^{2} \frac{2 n(n-1)(n+1)}{3}+p \frac{2 n(n+1)(2 n+1)}{3}++\frac{n(n+1)}{2}  \tag{5.56.b}\\
S^{\prime \prime}=\frac{p n}{24}\left[p^{3}\left(6+6 n+12 n^{3}\right)+p^{2}\left(4+3 n+14 n^{2}+3 n^{3}\right)+p\left(-2+9 n+14 n^{2}+3 n^{3}\right)+56+12 n+4 n^{2}\right] . \tag{5.56.c}
\end{gather*}
\]

Table 5.24: Space complexity for temporary variables
\begin{tabular}{|c|c|l|}
\hline name & used by & complexity \\
\hline\(T_{1}\) & \(\psi^{\prime}\) & \(n(n+1) / 2\) \\
\(T_{2}\) & \(\psi^{\prime \prime}\) & \(2 n p\) \\
\(T_{3}\) & \(\psi\) & \(2 n p\) \\
\(T_{4}\) & \(\psi^{\prime}\) & \(p^{2} n(n-1)(n+1) / 2\) \\
\(T_{5}\) & \(\psi^{\prime \prime}\) & \(p^{2} n(n-1)(n+1)(1+p(3 n-2) / 4) / 6\) \\
\(T_{6}\) & \(\psi\) & \(p^{2} n(n+1) / 2\) \\
\(T_{7}\) & \(\psi\) & \(p n(n+1) / 2\) \\
\(T_{8}\) & \(\psi^{\prime}\) & \(p^{2} n(n-1)(n+1) / 3\) \\
\(T_{9}\) & \(\psi\) & \(p n(n+1) / 2\) \\
\(T_{10}\) & \(\psi\) & \(n(n+1) / 2\) \\
\(T_{11}\) & \(\psi^{\prime}\) & \(p n(n-1)(n+1) / 3\) \\
\(T_{12}\) & \(\psi\) & \(n p^{2}\) \\
\hline
\end{tabular}

Table 5.25: Space complexity
\begin{tabular}{|c|r|r|r||r|r|r|}
\hline\(n\) & \(\psi\) & \(\psi^{\prime}\) & \(\psi^{\prime \prime}\) & \(\psi\) & \(\psi^{\prime}\) & \(\psi^{\prime \prime}\) \\
\hline 2 & 129 & 179 & 260 & 2289 & 15603 & 103380 \\
5 & 516 & 2535 & 7090 & 10116 & 230215 & 3371450 \\
8 & 1173 & 10084 & 43224 & 23541 & 925796 & 21564760 \\
10 & 1761 & 19495 & 103180 & 35601 & 1796455 & 52311900 \\
20 & 6501 & 152690 & 1581860 & 133221 & 14177010 & 828267300 \\
\hline
\end{tabular}


Figure 5.8: Space complexity for direct mode. On each curve \(p\) is fixed (between 2 and 10). We give the cost of \(\psi, \psi^{\prime}\) and \(\psi^{\prime \prime}\)

\subsection*{5.4.5 Case of \(X_{1}\)}

We have
\[
\begin{gather*}
X_{1}=\left(b-\tilde{b}\|y\|^{2}\right) q_{A},  \tag{5.57.a}\\
\frac{\partial X_{1}}{\partial y_{j}}=\left(b-\tilde{b}\|y\|^{2}\right) \frac{\partial q_{A}}{\partial y_{j}}, \quad J \leq i,  \tag{5.57.b}\\
\frac{\partial X_{1}}{\partial y_{j}}=-\tilde{b} q_{A} \frac{\partial\|y\|^{2}}{\partial y_{j}}, \quad J=i+1,  \tag{5.57.c}\\
\frac{\partial^{2} X_{1}}{\partial y_{j} \partial y_{k}}=\left(b-\tilde{b}\|y\|^{2}\right) \frac{\partial^{2} q_{A}}{\partial y_{j} \partial y_{k}}, \quad K \leq J \leq i,  \tag{5.57.d}\\
\frac{\partial^{2} X_{1}}{\partial y_{j} \partial y_{k}}=-\tilde{b} q_{A} \frac{\partial^{2}\|y\|^{2}}{\partial y_{j} \partial y_{k}}, \quad K=J=i+1,  \tag{5.57.e}\\
\frac{\partial^{2} X_{1}}{\partial y_{j} \partial y_{k}}=-\tilde{b} \frac{\partial q_{A}}{\partial y_{k}} \frac{\partial\|y\|^{2}}{\partial y_{j}}, \quad K<J=i+1 . \tag{5.57.f}
\end{gather*}
\]

Since \(q_{B}=X_{1}+X_{2}\), we can store \(X_{1}\) and its derivatives in \(q(i+1)\). This gives the following pseudo-code
\[
\begin{gather*}
\forall i: \quad q(i+1)=B_{4}(i) * q(i),  \tag{5.58.a}\\
\forall i, j(J \leq i): \quad d q(i+1, j)=B_{4}(i) * d q(i, j),  \tag{5.58.b}\\
\forall i: \quad T_{1}(i)=b_{t}(i) * q(i),  \tag{5.58.c}\\
\forall i, j(J=i+1): \quad d q(i+1, j)=-T_{1}(i) * 2 y_{j},  \tag{5.58.d}\\
\forall i, j(J=i+1): \quad T_{2}(i, j)=b_{t}(i) * 2 y_{j},  \tag{5.58.e}\\
\forall i, j, k(K=J=i+1, k=j): \quad d d q(i+1, j, k)=-2 T_{1}(i),  \tag{5.58.f}\\
\forall i, j, k(K<J=i+1): \quad d d q(i+1, j, k)=-T_{2}(i, k) * d q(i, j),  \tag{5.58.g}\\
\forall i, j, k(K \leq J \leq i): \quad d d q(i+1, j, k)=B_{4}(i) * d d q(i, j, k) . \tag{5.58.h}
\end{gather*}
\]

Time complexity: The cost of the product in \((a)\) is \(2(i+1)\), hence
\[
\begin{equation*}
T\left(X_{1}\right)=n(n+1)+2 n p . \tag{5.59.a}
\end{equation*}
\]

The complexity for each multiplication in (b), (c) and (d) is \(2(i+1), 2(i+1)\) and \(i+2\), so that we get \(\sum 2(i+1) i p+\sum 2(i+1)+\sum(i+2) p\) and
\[
\begin{equation*}
T\left(X_{1}^{\prime}\right)=n(n+1)+p n \frac{5+3 n+4 n^{2}}{6} . \tag{5.59.b}
\end{equation*}
\]

The complexity of the multiplication in \((e),(f),(g)\) and \((h)\) is \(2,0,2(i+1)\) and \(2(i+1)\), so that we get \(\sum 2 p+2 i(i+1) p^{2}+(i+1) i p(i p+1)\), hence
\[
\begin{equation*}
T\left(X_{1}^{\prime \prime}\right)=2(n-1) p+\frac{n(n-1)(n+1)}{3}\left(p+p^{2} \frac{3 n+6}{4}\right) . \tag{5.59.c}
\end{equation*}
\]

Note that \(T\left(X_{1}^{\prime \prime}\right)\) is zero for \(n=1\). This is because equation \((e)\) is not executed for \(i=1\).

Table 5.26: Cost of \(X_{1}\) in direct mode
\begin{tabular}{|c|r|r|r||r|r|r|}
\hline\(n\) & \(\psi\) & \(\psi^{\prime}\) & \(\psi^{\prime \prime}\) & \(\psi\) & \(\psi^{\prime}\) & \(\psi^{\prime \prime}\) \\
\hline 2 & 6 & 24 & 32 & 6 & 96 & 640 \\
5 & 30 & 230 & 936 & 30 & 1030 & 21480 \\
8 & 72 & 832 & 5404 & 72 & 3872 & 127820 \\
10 & 110 & 1560 & 12576 & 110 & 7360 & 300480 \\
20 & 420 & 11520 & 180956 & 420 & 55920 & 4415980 \\
\hline
\end{tabular}

\subsection*{5.4.6 Case of \(X_{2}\)}
\[
\begin{gather*}
X_{2}=(\tilde{b}-b) y^{*} \tilde{D}_{A} u  \tag{5.60.a}\\
\frac{\partial X_{2}}{\partial y_{j}}=(\tilde{b}-b) y^{*} \frac{\partial \tilde{D}_{A}}{\partial y_{j}} u, \quad J \leq i  \tag{5.60.b}\\
\frac{\partial X_{2}}{\partial y_{j}}=(\tilde{b}-b) \frac{\partial y^{*}}{\partial y_{j}} \tilde{D}_{A} u, \quad J=i+1  \tag{5.60.c}\\
\frac{\partial^{2} X_{2}}{\partial y_{j} \partial y_{k}}=(\tilde{b}-b) y^{*} \frac{\partial^{2} \tilde{D}_{A}}{\partial y_{j} \partial y_{k}} u, \quad K \leq J \leq i  \tag{5.60.d}\\
\frac{\partial^{2} X_{2}}{\partial y_{j} \partial y_{k}}=(\tilde{b}-b) \frac{\partial y^{*}}{\partial y_{j}} \frac{\partial \tilde{D}_{A}}{\partial y_{k}} u, \quad K<J=i+1 \tag{5.60.e}
\end{gather*}
\]

Pseudo code
\[
\begin{gather*}
\forall i: \quad T_{9}(i)=D(i) * u(i),  \tag{5.61.a}\\
\forall i: \quad T_{3}(i)=B_{2}(i) * y_{t}(i),  \tag{5.61.b}\\
\forall i: \quad q(i+1)=T_{3}(i) * T_{9}(i),  \tag{5.61.c}\\
\forall i, j(J \leq i): \quad T_{4}(i, j)=d D(i, j) * u(i),  \tag{5.61.d}\\
\forall i, j(J \leq i): \quad d q(i+1, j)=T_{3}(i) * T_{4}(i, j),  \tag{5.61.e}\\
\forall i, j(J=i+1): \quad d q(i+1, j)=B_{2}(i) * T_{9}(i)(j),  \tag{5.61.f}\\
\forall i, j, k(K \leq J \leq i): \quad T_{5}(i, j, k)=d d D(i, j, k) * u(i)  \tag{5.61.g}\\
\forall i, j, k(K \leq J \leq i): \quad d d q(i+1, j, k)=T_{3}(i) * T_{5}(i, j, k)  \tag{5.61.h}\\
\forall i, j, k(K<J=i+1): \quad d d q(i+1, j, k)=B_{2}(i) * T_{4}(i, k)(j) \tag{5.61.i}
\end{gather*}
\]

The cost of \((a),(b)\) and \((c)\) is \((i+1) p^{2}, 2 p\) and \(2 p^{2}(i+1)\), hence
\[
\begin{equation*}
T\left(X_{2}\right)=\frac{3 p^{2} n(n+1)}{2}+2 n p \tag{5.62.a}
\end{equation*}
\]

The cost of the multiplication in \((d),(e)\) and \((f)\) is \(p^{2}(i+1), 2 p^{2}(i+1)\) and \(2(i+1)\), hence
\[
\begin{equation*}
T\left(X_{2}^{\prime}\right)=p n(n+1)+p^{3} n(n-1)(n+1) \tag{5.62.b}
\end{equation*}
\]

The cost of the multiplications in \((g),(h)\) and \((i)\) is \(p^{2}(i+1), 2 p^{2}(i+1)\) and \(2(i+1)\), hence
\[
\begin{equation*}
T\left(X_{2}^{\prime \prime}\right)=p^{2} n(n-1)(n+1)\left(\frac{2}{3}+\frac{p}{2}+p^{2} \frac{3 n-2}{8}\right) \tag{5.62.c}
\end{equation*}
\]

Table 5.27: Cost of \(X_{2}\) in direct mode
\begin{tabular}{|c|r|r|r||r|r|r|}
\hline\(n\) & \(\psi\) & \(\psi^{\prime}\) & \(\psi^{\prime \prime}\) & \(\psi\) & \(\psi^{\prime}\) & \(\psi^{\prime \prime}\) \\
\hline 2 & 44 & 60 & 88 & 940 & 6060 & 33400 \\
5 & 200 & 1020 & 3920 & 4600 & 120300 & 2018000 \\
8 & 464 & 4176 & 25536 & 10960 & 504720 & 14145600 \\
10 & 700 & 8140 & 62040 & 16700 & 991100 & 35211000 \\
20 & 2600 & 64680 & 978880 & 63400 & 7984200 & 583072000 \\
\hline
\end{tabular}

Table 5.28: Cost of \(X_{3}\) in direct mode
\begin{tabular}{|c|r|r|r||r|r|r|}
\hline\(n\) & \(\psi\) & \(\psi^{\prime}\) & \(\psi^{\prime \prime}\) & \(\psi\) & \(\psi^{\prime}\) & \(\psi^{\prime \prime}\) \\
\hline 2 & 24 & 104 & 112 & 600 & 10600 & 62000 \\
5 & 120 & 928 & 3680 & 3000 & 104000 & 2140000 \\
8 & 288 & 3336 & 21504 & 7200 & 388200 & 12768000 \\
10 & 440 & 6248 & 50160 & 11000 & 737000 & 30030000 \\
20 & 1680 & 46088 & 723520 & 42000 & 5593000 & 441560000 \\
\hline
\end{tabular}

\subsection*{5.4.7 Case of \(X_{3}\)}

We have
\[
X_{3}=\left(b-\tilde{b}\|y\|^{2}\right) \tilde{D}_{A} .
\]

This is like \(X_{1}\), but \(q_{A}\) is replaced by \(\tilde{D}_{A}\), and we use other temporaries. Note that \(\tilde{b} \partial\|y\|^{2} / \partial y_{j}\) is already computed. The result is stored in \(D(i+1)\). Thus we get
\[
\begin{gather*}
T\left(X_{3}\right)=p^{2} n(n+1) .  \tag{5.63.a}\\
T\left(X_{3}^{\prime}\right)=p^{2}\left[n(n+1)+p \frac{(n+1)(n+2)}{2}+\frac{2 p n(n-1)(n+1)}{3}\right] .  \tag{5.63.b}\\
T\left(X_{3}^{\prime \prime}\right)=p^{3} \frac{n(n-1)(n+1)}{3}\left(1+p \frac{3 n+6}{4}\right) . \tag{5.63.c}
\end{gather*}
\]

\subsection*{5.4.8 Case of \(X_{4}\)}
\[
\begin{align*}
X_{4} & =\tilde{D}_{A} u u^{*},  \tag{5.64.a}\\
\frac{\partial X_{4}}{\partial y_{j}} & =\frac{\partial \tilde{D}_{A}}{\partial y_{j}} u u^{*},  \tag{5.64.b}\\
\frac{\partial^{2} X_{4}}{\partial y_{j} \partial y_{k}} & =\frac{\partial^{2} \tilde{D}_{A}}{\partial y_{j} \partial y_{k}} u u^{*} . \tag{5.64.c}
\end{align*}
\]

We put \(X_{4}, X_{5}, X_{6}\) and \(X\) in \(Z_{0}\). The pseudo code is
\[
\begin{gather*}
\forall i: \quad Z_{0}(i)=T_{9}(i) * u(i),  \tag{5.65.a}\\
\forall i, j(J \leq i): \quad d Z_{0}(i+1, j)=T_{4}(i, j) * u(i),  \tag{5.65.b}\\
\forall i, j, k(K \leq J \leq i): \quad d d Z_{0}(i+1, j, k)=T_{5}(i, j, k) * u(i) . \tag{5.65.c}
\end{gather*}
\]

Table 5.29: Cost of \(X_{4}\) in direct mode
\begin{tabular}{|c|r|r|r||r|r|r|}
\hline\(n\) & \(\psi\) & \(\psi^{\prime}\) & \(\psi^{\prime \prime}\) & \(\psi\) & \(\psi^{\prime}\) & \(\psi^{\prime \prime}\) \\
\hline 2 & 12 & 16 & 24 & 300 & 2000 & 11000 \\
5 & 60 & 320 & 1200 & 1500 & 40000 & 670000 \\
8 & 144 & 1344 & 8064 & 3600 & 168000 & 4704000 \\
10 & 220 & 2640 & 19800 & 5500 & 330000 & 11715000 \\
20 & 840 & 21280 & 319200 & 21000 & 2660000 & 194180000 \\
\hline
\end{tabular}

Each multiplication in \((a),(b)\) and \((c)\) costs \(p^{2}(i+1)\) hence
\[
\begin{gather*}
T\left(X_{4}\right)=p^{2} n(n+1) / 2  \tag{5.66.a}\\
T\left(X_{4}^{\prime}\right)=p^{3} \frac{n(n-1)(n+1)}{3}  \tag{5.66.b}\\
T\left(X_{4}^{\prime \prime}\right)=p^{3} \frac{n(n-1)(n+1)}{6}\left(1+p \frac{3 n-2}{4}\right) . \tag{5.66.c}
\end{gather*}
\]

\subsection*{5.4.9 Code of \(X_{5}\)}
\[
\begin{gather*}
X_{5}=y y^{*} \tilde{D}_{A},  \tag{5.67.a}\\
\frac{\partial X_{5}}{\partial y_{j}}=y y^{*} \frac{\partial \tilde{D}_{A}}{\partial y_{j}}, \quad J \leq i,  \tag{5.67.b}\\
\frac{\partial X_{5}}{\partial y_{j}}=\left(\frac{\partial y}{\partial y_{j}} y^{*}+y \frac{\partial y^{*}}{\partial y_{j}}\right) \tilde{D}_{A}, \quad J=i+1,  \tag{5.67.c}\\
\frac{\partial^{2} X_{5}}{\partial y_{j} \partial y_{k}}=y y^{*} \frac{\partial^{2} \tilde{D}_{A}}{\partial y_{j} \partial y_{k}}, \quad K \leq J \leq i  \tag{5.67.d}\\
\frac{\partial^{2} X_{5}}{\partial y_{j} \partial y_{k}}=\left(\frac{\partial y}{\partial y_{j}} y^{*}+y \frac{\partial y^{*}}{\partial y_{j}}\right) \frac{\partial \tilde{D}_{A}}{\partial y_{k}}, \quad K<J=i+1,  \tag{5.67.e}\\
\frac{\partial^{2} X_{5}}{\partial y_{j} \partial y_{k}}=\frac{\partial^{2} y y^{*}}{\partial y_{j} \partial y_{k}} \tilde{D}_{A}, \quad K=J=i+1 \tag{5.67.f}
\end{gather*}
\]

The pseudo code
\[
\begin{array}{ll}
\forall i: & T_{7}(i)=y_{t}(i) * D(i) \\
\forall i: & Z_{0}(i)=y(i) * T_{7}(i) \tag{5.68.b}
\end{array}
\]
\[
\begin{equation*}
\forall i, j(J=i+1): \quad d Z_{0}(i+1, j)=T_{7}(i)(j) \tag{5.68.c}
\end{equation*}
\]
\[
\begin{equation*}
\forall i, j(J=i+1): \quad d Z_{0}(i+1, j)=y(i) * D(i)(j) \tag{5.68.d}
\end{equation*}
\]
\[
\begin{equation*}
\forall i, j(J \leq i): \quad T_{8}(i, j)=y_{t}(i) * d D(i, j) \tag{5.68.e}
\end{equation*}
\]
\[
\begin{equation*}
\forall i, j(J \leq i): \quad d Z_{0}(i+1, j)=y(i) * T_{8}(i, j) \tag{5.68.f}
\end{equation*}
\]
\[
\begin{equation*}
\forall i, j, k(K \leq J \leq i): \quad T(i)=y_{t}(i) * d d D(i, j, k) \tag{5.68.g}
\end{equation*}
\]
\[
\begin{equation*}
\forall i, j, k(K \leq J \leq i): \quad d d Z_{0}(i+1, j, k)=y(i) * T(i) \tag{5.68.h}
\end{equation*}
\]
\[
\begin{equation*}
\forall i, j, k(K<J=i+1): \quad d d Z_{0}(i+1, j, k)=y_{y}(i) * d D(i, k)(j) \tag{5.68.i}
\end{equation*}
\]
\[
\begin{equation*}
\forall i, j, k(K<J=i+1): \quad d d Z_{0}(i+1, j, k)=T_{8}(i, k) \tag{5.68.j}
\end{equation*}
\]

Table 5.30: Cost of \(X_{5}\) in direct mode
\begin{tabular}{|c|r|r|r|r|r|r|}
\hline\(n\) & \(\psi\) & \(\psi^{\prime}\) & \(\psi^{\prime \prime}\) & \(\psi\) & \(\psi^{\prime}\) & \(\psi^{\prime \prime}\) \\
\hline 2 & 24 & 56 & 80 & 600 & 7000 & 42000 \\
5 & 120 & 760 & 3040 & 3000 & 95000 & 1740000 \\
8 & 288 & 2976 & 18816 & 7200 & 372000 & 11088000 \\
10 & 440 & 5720 & 44880 & 11000 & 715000 & 26730000 \\
20 & 1680 & 44240 & 680960 & 42000 & 5530000 & 414960000 \\
\hline
\end{tabular}
\[
\begin{equation*}
\forall i, j, k(K<J=i+1): \quad d d Z_{0}(i+1, j, k)=D(i)(j) \tag{5.68.k}
\end{equation*}
\]

The cost of the multiplications in \((a)\) and \((b)\) is \(p^{2}(i+1)\), hence
\[
\begin{equation*}
T\left(X_{5}\right)=p^{2} n(n+1) \tag{5.69.a}
\end{equation*}
\]

There is no cost for \((c)\), the cost of \((d)\) is \(p^{2}(i+1)\), this is the same as \((e),(f)\), hence a total of \(\sum p^{3}(i+1)+2 p^{2} i p(i+1)\).
\[
\begin{equation*}
T\left(X_{5}^{\prime}\right)=\frac{p^{3} n(n+1)(4 n-1)}{6} \tag{5.69.b}
\end{equation*}
\]

The cost of the products in \((g),(h)\) and \((i)\) are \(p^{2}(i+1)\), hence a total of \(\sum p^{2}(i+1)\left(i p(i p+1)+i p^{2}\right)\).
\[
\begin{equation*}
T\left(X_{5}^{\prime \prime}\right)=\frac{p^{3} n(n-1)(n+1)(3 p n+2 p+4)}{12} \tag{5.69.c}
\end{equation*}
\]

\subsection*{5.4.10 Case of \(X_{6}\)}
\[
\begin{gather*}
X_{6}=y u^{*} q_{A},  \tag{5.70.a}\\
\frac{\partial X_{6}}{\partial y_{j}}=y u^{*} \frac{\partial q_{A}}{\partial y_{j}}, \quad J \leq i,  \tag{5.70.b}\\
\frac{\partial X_{6}}{\partial y_{j}}=\frac{\partial y}{\partial y_{j}} u^{*} q_{A}, \quad J=i+1,  \tag{5.70.c}\\
\frac{\partial^{2} X_{6}}{\partial y_{j} \partial y_{k}}=y u^{*} \frac{\partial^{2} q_{A}}{\partial y_{j} \partial y_{k}}, \quad K \leq J \leq i,  \tag{5.70.d}\\
\frac{\partial^{2} X_{6}}{\partial y_{j} \partial y_{k}}=\frac{\partial y}{\partial y_{j}} u^{*} \frac{\partial q_{A}}{\partial y_{k}}, \quad K<J=i+1 . \tag{5.70.e}
\end{gather*}
\]

Pseudo code
\[
\begin{gather*}
\forall i: \quad T_{12}(i)=y(i) * u_{t}(i),  \tag{5.71.a}\\
\forall i: \quad Z_{0}(i+1)=T_{12}(i) * q(i),  \tag{5.71.b}\\
\forall i, j(J \leq i): \quad d Z_{0}(i+1, j)=T_{12}(i) * d q(i, j),  \tag{5.71.c}\\
\forall i, j(J=i+1): \quad d Z_{0}(i+1, j)=u_{t}(i)(j) * q(i),  \tag{5.71.d}\\
\forall i, j, k(K \leq J \leq i): \quad d d Z_{0}(i+1, j, k)=T_{12}(i) * d d q(i, j, k),  \tag{5.71.e}\\
\forall i, j, k(K<J=i+1): \quad d d Z_{0}(i+1, j, k)=u_{t}(i)(j) * d q(i, k) . \tag{5.71.f}
\end{gather*}
\]

The cost of \((b),(c)\) and \((e)\) is \(p^{2}(i+1)\), the cost of \((a)\) is \(p^{2}\), the cost of \((d)\) and \((f)\) is \(p(i+1)\), hence
\[
\begin{gather*}
T\left(X_{6}\right)=p^{2} n(n+3) / 2 .  \tag{5.72.a}\\
T\left(X_{6}^{\prime}\right)=\frac{p^{3} n(n-1)(n+1)}{3}+p^{2} \frac{n(n+1)}{2} .  \tag{5.72.b}\\
T\left(X_{6}^{\prime \prime}\right)=\frac{p^{3} n(n-1)(n+1)}{6}\left(3+p \frac{3 n-2}{4}\right) . \tag{5.72.c}
\end{gather*}
\]

Table 5.31: Cost of \(X_{6}\) in direct mode
\begin{tabular}{|c|r|r|r||r|r|r|}
\hline\(n\) & \(\psi\) & \(\psi^{\prime}\) & \(\psi^{\prime \prime}\) & \(\psi\) & \(\psi^{\prime}\) & \(\psi^{\prime \prime}\) \\
\hline 2 & 20 & 28 & 40 & 500 & 2300 & 13000 \\
5 & 80 & 380 & 1520 & 2000 & 41500 & 710000 \\
8 & 176 & 1488 & 9408 & 4400 & 171600 & 4872000 \\
10 & 260 & 2860 & 22440 & 6500 & 335500 & 12045000 \\
20 & 920 & 22120 & 340480 & 23000 & 2681000 & 196840000 \\
\hline
\end{tabular}

\subsection*{5.4.11 Case of \(X_{7}\)}
\[
\begin{gather*}
X_{7}=\tilde{D}_{A} u \cdot y^{*} \tilde{D}_{A}  \tag{5.73.a}\\
\frac{\partial X_{7}}{\partial y_{j}}=\tilde{D}_{A} u \cdot \frac{\partial y^{*}}{\partial y_{j}} \tilde{D}_{A}, \quad J=i+1  \tag{5.73.b}\\
\frac{\partial X_{7}}{\partial y_{j}}=\frac{\partial \tilde{D}_{A}}{\partial y_{j}} u \cdot y^{*} \tilde{D}_{A} u+\tilde{D}_{A} u \cdot y^{*} \frac{\partial \tilde{D}_{A}}{\partial y_{j}}, \quad J \leq i  \tag{5.73.c}\\
\frac{\partial^{2} X_{7}}{\partial y_{j} \partial y_{k}}=\frac{\partial \tilde{D}_{A}}{\partial y_{k}} u \cdot \frac{\partial y^{*}}{\partial y_{j}} \tilde{D}_{A}+\tilde{D}_{A} u \cdot \frac{\partial y^{*}}{\partial y_{j}} \frac{\partial \tilde{D}_{A}}{\partial y_{k}}, \quad K<J=i+1  \tag{5.73.d}\\
\frac{\partial^{2} X_{7}}{\partial y_{j} \partial y_{k}}=\frac{\partial^{2} \tilde{D}_{A}}{\partial y_{j} \partial y_{k}} u \cdot y^{*} \tilde{D}_{A}+\tilde{D}_{A} u \cdot y^{*} \frac{\partial^{2} \tilde{D}_{A}}{\partial y_{j} \partial y_{k}}+\frac{\partial \tilde{D}_{A}}{\partial y_{j}} u \cdot y^{*} \frac{\partial \tilde{D}_{A}}{\partial y_{k}}+\frac{\partial \tilde{D}_{A}}{\partial y_{k}} u \cdot y^{*} \frac{\partial \tilde{D}_{A}}{\partial y_{j}}, \quad K \leq J \leq i . \tag{5.73.e}
\end{gather*}
\]

Pseudo code
\[
\begin{gather*}
\forall i: \quad X_{9}(i+1)=T_{9}(i) * T_{7}(i)  \tag{5.74.a}\\
\forall i, j(J \leq i): \quad d X_{9}(i+1, j)=T_{4}(i, j) * T_{7}(i)+T_{9}(i) * T_{8}(i, j),  \tag{5.74.b}\\
\forall i, j(J=i+1): \quad d X_{9}(i+1, j)=T_{9}(i) * D(i)(j),  \tag{5.74.c}\\
\forall i, j, k(K<J=i+1): \quad d d X_{9}(i+1, j, k)=T_{4}(i, k) * D(i)(j)+T_{9}(i) * d D(i, k)(j),  \tag{5.74.d}\\
\forall i, j, k(K \leq J \leq i): \quad d d X_{9}(i+1, j, k)=T_{4}(i, j) * T_{8}(i, k),  \tag{5.74.e}\\
\forall i, j, k(K \leq J \leq i): \quad T=d d D(i, j, k) * u(i),  \tag{5.74.f}\\
\forall i, j, k(K \leq J \leq i): \quad d d X_{9}(i+1, j, k)=T * T_{7}(i),  \tag{5.74.g}\\
\forall i, j, k(K \leq J \leq i): \quad T=y_{t}(i) * d d D(i, j, k),  \tag{5.74.h}\\
\forall i, j, k(K \leq J \leq i): \quad d d X_{9}(i+1, j, k)=T_{9}(i) * T . \tag{5.74.i}
\end{gather*}
\]

Complexity. For \((a)\) we have \(\sum p^{2}(i+1)^{2}\) hence
\[
\begin{equation*}
T\left(X_{7}\right)=p^{2} \frac{n(n+1)(2 n+1)}{6} \tag{5.75.a}
\end{equation*}
\]

Each multiplication in \((b)\) and \((c)\) costs \(p^{2}(i+1)^{2}\). There are \(2 i p+p\) such products, thus
\[
\begin{equation*}
T\left(X_{7}^{\prime}\right)=\frac{p^{3} n(n+1)\left(3 n^{2}+n-1\right)}{6} \tag{5.75.b}
\end{equation*}
\]

Each product in \((d),(e),(f),(g),(h)\) and \((i) \operatorname{costs} p^{2}(i+1)\). For \((d)\) we have \(2 i p^{2}\) products, for (e) we have \((i p)^{2}\) products, and for the other we have \(i p(i p+1) / 2\) each. Hence
\[
\begin{equation*}
T\left(X_{7}^{\prime \prime}\right)=p^{3} n(n-1)(n+1) \frac{18 p n^{2}+15 p n+15 n-2 p+10}{30} \tag{5.75.c}
\end{equation*}
\]

Table 5.32: Cost of \(X_{7}\) in direct mode
\begin{tabular}{|c|r|r|r|r|r|r|}
\hline\(n\) & \(\psi\) & \(\psi^{\prime}\) & \(\psi^{\prime \prime}\) & \(\psi\) & \(\psi^{\prime}\) & \(\psi^{\prime \prime}\) \\
\hline 2 & 20 & 104 & 384 & 500 & 13000 & 208000 \\
5 & 220 & 3160 & 36192 & 5500 & 395000 & 21260000 \\
8 & 816 & 19104 & 358848 & 20400 & 2388000 & 215544000 \\
10 & 1540 & 45320 & 1070784 & 38500 & 5665000 & 648120000 \\
20 & 11480 & 682640 & 32571168 & 287000 & 85330000 & 20027140000 \\
\hline
\end{tabular}

\subsection*{5.4.12 Case of \(X_{8}\)}
\[
\begin{gather*}
X_{8}=y^{*} \tilde{D}_{A} u \cdot \tilde{D}_{A}  \tag{5.76.a}\\
\frac{\partial X_{8}}{\partial y_{j}}=\frac{\partial y^{*}}{\partial y_{j}} \tilde{D}_{A} u \cdot \tilde{D}_{A}, \quad J=i+1  \tag{5.76.b}\\
\frac{\partial X_{8}}{\partial y_{j}}=y^{*} \frac{\partial \tilde{D}_{A}}{\partial y_{j}} u \cdot \tilde{D}_{A}+y^{*} \tilde{D}_{A} u \cdot \frac{\partial \tilde{D}_{A}}{\partial y_{j}}, \quad J \leq i  \tag{5.76.c}\\
\frac{\partial^{2} X_{8}}{\partial y_{j} \partial y_{k}}=\frac{\partial y^{*}}{\partial y_{j}} \frac{\partial \tilde{D}_{A}}{\partial y_{k}} u \cdot \tilde{D}_{A}+\frac{\partial y^{*}}{\partial y_{j}} \tilde{D}_{A} u \cdot \frac{\partial \tilde{D}_{A}}{\partial y_{k}}+y^{*} \frac{\partial \tilde{D}_{A}}{\partial y_{j}} u \cdot \frac{\partial \tilde{D}_{A}}{\partial y_{k}}, \quad K<J=i+1,  \tag{5.76.d}\\
\frac{\partial^{2} X_{8}}{\partial y_{j} \partial y_{k}}=y^{*} \frac{\partial^{2} \tilde{D}_{A}}{\partial y_{j} \partial y_{k}} u \cdot \tilde{D}_{A}+y^{*} \frac{\partial \tilde{D}_{A}}{\partial y_{k}} u \cdot \frac{\partial \tilde{D}_{A}}{\partial y_{j}}+y^{*} \tilde{D}_{A} u \cdot \frac{\partial^{2} \tilde{D}_{A}}{\partial y_{j} \partial y_{k}}, \quad K \leq J \leq i . \tag{5.76.e}
\end{gather*}
\]

Pseudo code
\[
\begin{gather*}
\forall i: \quad T_{10}(i)=y_{t}(i) * T_{9}(i),  \tag{5.77.a}\\
\forall i: \quad X_{9}(i+1)=T_{10}(i) * D(i),  \tag{5.77.b}\\
\forall i, j(J=i+1): \quad d X_{9}(i+1, j)=T_{9}(i)(j) * D(i),  \tag{5.77.c}\\
\forall i, j(J \leq i): \quad T_{11}(i, j, J)=y_{t}(i) * T_{4}(i, j),  \tag{5.77.d}\\
\forall i, j(J \leq i): \quad d X_{9}(i+1, j)=T_{11}(i, j) * D(i),  \tag{5.77.e}\\
\forall i, j(J \leq i): \quad d X_{9}(i+1, j)=T_{10}(i) * d D(i, j),  \tag{5.77.f}\\
\forall i, j, k(K<J=i+1): \quad d d X_{9}(i+1, j, k)=T_{4}(i, k)(j) * D(i),  \tag{5.77.g}\\
\forall i, j, k(K<J=i+1): \quad d d X_{9}(i+1, j, k)=T_{9}(i)(j) * d D(i, k),  \tag{5.77.h}\\
\forall i, j, k(K \leq J \leq i): \quad T=y_{t}(i) * T_{5}(i, j, k),  \tag{5.77.i}\\
\forall i, j, k(K \leq J \leq i): \quad d d X_{9}(i+1, j, k)=T * D(i),  \tag{5.77.j}\\
\forall i, j, k(K \leq J \leq i): \quad d d X_{9}(i+1, j, k)=T_{11}(i, k) * d D(i, j),  \tag{5.77.k}\\
\forall i, j, k(K \leq J \leq i): \quad d d X_{9}(i+1, j, k)=T_{11}(i, j) * d D(i, k),  \tag{5.77.l}\\
\forall i, j, k(K \leq J \leq i): \quad d d X_{9}(i+1, j, k)=T_{10}(i) * d d D(i, j, k) \tag{5.77.m}
\end{gather*}
\]

Complexity The cost of \((a)\) is \(p(i+1)\), the cost of \((b)\) is \(p^{2}(i+1)^{2}\), hence
\[
\begin{equation*}
T\left(X_{8}\right)=p \frac{n(n+1)}{2}+p^{2} \frac{n(n+1)(2 n+1)}{6} . \tag{5.78.a}
\end{equation*}
\]

The cost of \((d)\) is \(p(i+1)\), the cost of \((c),(e),(f)\) is \(p^{2}(i+1)^{2}\). Number of operations: \(p\) for \((c)\), \(i p\) for \((d),(e)\) and \((f)\), hence
\[
\begin{equation*}
T\left(X_{8}^{\prime}\right)=p^{3} \frac{n(n+1)(2 n+1)}{6}+p^{2} \frac{n(n-1)(n+1)}{3}+p^{3} \frac{n(n-1)(n+1)(3 n+2)}{6} . \tag{5.78.b}
\end{equation*}
\]

RR no 0123456789

Table 5.33: Cost of \(X_{8}\) in direct mode
\begin{tabular}{|c|r|r|r||r|r|r|}
\hline\(n\) & \(\psi\) & \(\psi^{\prime}\) & \(\psi^{\prime \prime}\) & \(\psi\) & \(\psi^{\prime}\) & \(\psi^{\prime \prime}\) \\
\hline 2 & 26 & 112 & 300 & 530 & 13200 & 165100 \\
5 & 250 & 3320 & 26088 & 5650 & 399000 & 15317000 \\
8 & 888 & 19776 & 252000 & 20760 & 2404800 & 151082400 \\
10 & 1650 & 46640 & 744876 & 39050 & 5698000 & 449971500 \\
20 & 11900 & 693280 & 22203552 & 289100 & 85596000 & 13631968000 \\
\hline
\end{tabular}

Table 5.34: Cost of \(X\) in direct mode
\begin{tabular}{|c|r|r|r||r|r|r|}
\hline\(n\) & \(\psi\) & \(\psi^{\prime}\) & \(\psi^{\prime \prime}\) & \(\psi\) & \(\psi^{\prime}\) & \(\psi^{\prime \prime}\) \\
\hline 2 & 32 & 64 & 144 & 800 & 8000 & 66000 \\
5 & 280 & 2720 & 19008 & 7000 & 340000 & 10680000 \\
8 & 960 & 17472 & 205632 & 24000 & 2184000 & 120456000 \\
10 & 1760 & 42240 & 632016 & 44000 & 5280000 & 375210000 \\
20 & 12320 & 659680 & 20416032 & 308000 & 82460000 & 12440820000 \\
\hline
\end{tabular}

The cost of \((i)\) is \(p(i+1)\), the cost of \((g),(h),(j),(k),(l)\) and \((m)\) is \(p^{2}(i+1)^{2}\). Equations \((g)\) and \((h)\) are executed \(i p^{2}\) times, \((i),(j)\) and \((m)\) are executed \(i p(i p+1) / 2\) times, while \((k, l)\) is executed \((i p)^{2}\) times (note the special case when indices \(k\) and \(j\) are equal).

Hence \(\sum 2 p^{4} i(i+1)^{2}+p^{2} i(i+1)(i p+1) / 2+p^{2}(i+1)^{2} i p(i p+1)+p^{4} i^{2}(i+1)^{2}\).
\[
\begin{equation*}
T\left(X_{8}^{\prime \prime}\right)=n(n-1)(n+1) p^{2} \frac{48 p^{2} n^{2}+60 p^{2} n+45 p n+20+10 p+8 p^{2}}{120} \tag{5.78.c}
\end{equation*}
\]

\subsection*{5.4.13 Cost of \(X\)}

If \(X_{9}=X_{7}-X_{8}\), then
\[
\begin{gather*}
X=X_{9} / q_{A}  \tag{5.79.a}\\
\frac{\partial X}{\partial y_{j}}=\frac{1}{q_{A}}\left(\frac{\partial X_{9}}{\partial y_{j}}-X * \frac{\partial q_{A}}{\partial y_{j}}\right)  \tag{5.79.b}\\
\frac{\partial^{2} X}{\partial y_{j} \partial y_{k}}=\frac{1}{q_{A}}\left(-\frac{\partial q_{A}}{\partial y_{k}} \frac{\partial X}{\partial y_{j}}-\frac{\partial X}{\partial y_{k}} \frac{\partial q_{A}}{\partial y_{j}}-X * \frac{\partial^{2} q_{A}}{\partial y_{j} \partial y_{k}}+\frac{\partial^{2} X_{9}}{\partial y_{j} \partial y_{k}}\right) \tag{5.79.c}
\end{gather*}
\]

The pseudo code is trivial. Note however the following facts. When we compute \(X\) and its first derivative, we compute first the numerator, store it somewhere, divide, and store the result. This will be added to \(Z_{0}\) and its derivative. However, there is no need to store the second derivative of \(X\), we just add it.

Complexity: each polynomial division costs \((i+1)(i+2)\).
\[
\begin{gather*}
T(X)=p^{2} \frac{n(n+1)(n+2)}{3} .  \tag{5.80.a}\\
T\left(X^{\prime}\right)=p^{3} n(n-1)(n+1)(3 n+2) / 6 .  \tag{5.80.b}\\
T\left(X^{\prime \prime}\right)=p^{3} n(n+1)(n-1) \frac{8 p n^{2}-5 p n+10 n-2 p}{20} . \tag{5.80.c}
\end{gather*}
\]

Table 5.35: Cost of \(Z\) in direct mode
\begin{tabular}{|c|r|r|r||r|r|r|}
\hline\(n\) & \(\psi\) & \(\psi^{\prime}\) & \(\psi^{\prime \prime}\) & \(\psi\) & \(\psi^{\prime}\) & \(\psi^{\prime \prime}\) \\
\hline 2 & 24 & 32 & 48 & 600 & 4000 & 22000 \\
5 & 120 & 640 & 2400 & 3000 & 80000 & 1340000 \\
8 & 288 & 2688 & 16128 & 7200 & 336000 & 9408000 \\
10 & 440 & 5280 & 39600 & 11000 & 660000 & 23430000 \\
20 & 1680 & 42560 & 638400 & 42000 & 5320000 & 388360000 \\
\hline
\end{tabular}

\subsection*{5.4.14 Case of \(Z\)}

Since
\[
\begin{equation*}
Z=(b-\tilde{b}) Z_{0} \tag{5.81.a}
\end{equation*}
\]
we have
\[
\begin{align*}
\frac{\partial Z}{\partial y_{j}} & =(b-\tilde{b}) \frac{\partial Z_{0}}{\partial y_{j}},  \tag{5.81.b}\\
\frac{\partial^{2} Z}{\partial y_{j} \partial y_{k}} & =(b-\tilde{b}) \frac{\partial^{2} Z_{0}}{\partial y_{j} \partial y_{k}} . \tag{5.81.c}
\end{align*}
\]

Each operation costs \(2(i+1) p^{2}\).
\[
\begin{gather*}
T(Z)=p^{2} n(n+1)  \tag{5.82.a}\\
T\left(Z^{\prime}\right)=\frac{2}{3} p^{3} n(n-1)(n+1)  \tag{5.82.b}\\
T\left(Z^{\prime \prime}\right)=\frac{p^{3} n(n-1)(n+1)(3 p n-2 p+4)}{12} \tag{5.82.c}
\end{gather*}
\]

This gives a total complexity which is the following.
\[
\begin{gather*}
T(Q)=n\left(2+2 n+p n+5 p+15 p^{2} n+2 p^{2} n^{2}+15 p^{2}\right) / 2  \tag{5.83.a}\\
T\left(Q^{\prime}\right)=n+n^{2}+p\left[\frac{3 n^{2}}{2}++\frac{11 n}{6}+\frac{2 n^{3}}{3}\right]+p^{2}\left[\frac{3 n^{2}}{2}+\frac{n^{3}}{3}+\frac{7 n}{6}\right]+p^{3}\left[-\frac{7 n}{3}+\frac{16 n^{3}}{3}+\frac{n^{2}}{2}+\frac{3 n^{4}}{2}\right] .  \tag{5.83.b}\\
T\left(Q^{\prime \prime}\right)=2 p n(n-1)+\frac{p n(n-1)(n+1)}{120}\left(168 p^{3} n^{2}+30 p n+255 p^{3} n+165 p^{2} n+40+160 p-2 p^{3}+310 p^{2}\right) \tag{5.83.c}
\end{gather*}
\]

On figure 5.9 we have plotted some values. On figure 5.10 , we have plotted the ratio of \((b)\) and \((c)\) by ( \(a\) ) (we divided by \(n p\) in the first case, and \(n p(n p+1) / 2\) in the second case). These ratios should be smaller than 2 and 4 respectively. In all equations but \(X_{7}, X_{8}\) and \(X\), the ratio for the second derivative is \(1 / 2\). This means that the average complexity of the second derivative of a product \(a b\) is \(1 / 2\); it is due to the fact that, in general, one of the factors is constant, and the other factor depends only on half of the input variables. In the case of \(X_{7}\) and \(X_{8}\), it happens that \(\tilde{D}_{A}\) appears twice in the formula. In the case of \(X\), we divide something non-constant by \(q\), so that the ratio is greater. According to (5.83.c), the limit for large \(p\) and \(n\) is \(14 / 5\).


Figure 5.9: Cost of the Schur parameters direct mode. On each curve \(p\) is fixed (between 2 and 10). We give the complexity of \(Q, Q^{\prime}\) and \(Q^{\prime \prime}\). For \(Q^{\prime \prime}\), we assume \(n \geq 2\), since no multiplication is required for \(n=1\).


Figure 5.10: Cost of the Schur parameters direct mode. On each curve \(p\) is fixed (between 2 and 10). We give the ratio of the cost of one element of \(Q^{\prime}\) or \(Q^{\prime \prime}\) by the cost of \(Q\).

\subsection*{5.4.15 Complexity of \(\psi\)}

We assume here that \(\tilde{D}, q\) and the derivatives of these quantities have been computed and stored somewhere. We compute now \(\psi\) and its derivatives. In order to speed up things, we assume \(q\) monic. This means that we have to divide everything by the leading coefficient \(u\) of \(q\). Assume that we divide \(a\) by \(u\), giving \(b\). The equations are
\[
\begin{gather*}
b=\frac{a}{u}  \tag{5.84.a}\\
\frac{\partial b}{\partial y}=\frac{1}{u}\left(\frac{\partial a}{\partial y}-b \frac{\partial u}{\partial y}\right)  \tag{5.84.b}\\
\frac{\partial^{2} b}{\partial y \partial t}=\frac{1}{u}\left(\frac{\partial^{2} a}{\partial y \partial t}-\frac{\partial b}{\partial t} \frac{\partial u}{\partial y}-\frac{\partial b}{\partial y} \frac{\partial u}{\partial t}-b \frac{\partial^{2} u}{\partial y \partial t}\right) \tag{5.84.c}
\end{gather*}
\]

No additional memory is required. The cost of \((a),(b)\) and \((c)\) is 1,2 and 4 . We have \(\left(p^{2}+1\right)(n+1)-1\) such quantities to compute, since there are \(p^{2}(n+1)\) coefficients in \(\tilde{D}\), and \(n\) coefficients in \(q\) (the leading coefficient of \(q\) is left unchanged). This gives a complexity of
\[
\begin{gather*}
T(\psi)=\left(p^{2}+1\right)(n+1)-1  \tag{5.85.a}\\
T\left(\psi^{\prime}\right)=2 n p\left[\left(p^{2}+1\right)(n+1)-1\right]  \tag{5.85.b}\\
T(\psi)=2 n p(n p+1)\left[\left(p^{2}+1\right)(n+1)-1\right] \tag{5.85.c}
\end{gather*}
\]

We implement now the formula \(G \tilde{D}=V q+R, \psi=\|G\|^{2}-\|V\|^{2}\). Assume that \(G=\sum G_{k} z^{k}\). Let \(R_{m}=0\) and \(\psi_{m}=\|G\|^{2}\). Consider
\[
\begin{gather*}
R_{k+1} z+G_{k} \tilde{D}=V_{k} q+R_{k}  \tag{5.86.a}\\
\psi_{k}=\psi_{k+1}-\|V\|_{k}^{2} \tag{5.86.b}
\end{gather*}
\]

In each iteration of \((a)\), we compute the left hand side. The leading coefficient of this will be \(V_{k}\). We subtract \(V_{k}\left(q-z^{n}\right)\) from this. Given \(V_{k}\), we compute its norm and update \(\psi\). After that, computing \(R_{k+1} z\) is nothing else than shifting \(R_{k+1}\) and ignoring the leading term \(V_{k}\). Thus we need only allocate space for a matrix of polynomials of degree \(n\).

Assume that \(G\) has \(g\) rows. This gives a space complexity of
\[
\begin{gather*}
S(\psi)=g p(n+1)  \tag{5.87.a}\\
S\left(\psi^{\prime}\right)=n p g p(n+1)  \tag{5.87.b}\\
S\left(\psi^{\prime \prime}\right)=n p(n p+1) g p(n+1) / 2 \tag{5.87.c}
\end{gather*}
\]

If we differentiate (5.86) we get
\[
\begin{gather*}
\frac{\partial R_{k+1}}{\partial y} z+G_{k} \frac{\partial \tilde{D}}{\partial y}=\frac{\partial V_{k}}{\partial y} q+V_{k} \frac{\partial q}{\partial y}+\frac{\partial R_{k}}{\partial y}  \tag{5.88.a}\\
\frac{\partial \psi_{k}}{\partial y}=\frac{\partial \psi_{k+1}}{\partial y}-2\left\langle V_{k} \left\lvert\, \frac{\partial V_{k}}{\partial y}\right.\right\rangle \tag{5.88.b}
\end{gather*}
\]
and
\[
\begin{gather*}
\frac{\partial R_{k+1}}{\partial y \partial t} z+G_{k} \frac{\partial^{2} \tilde{D}}{\partial y \partial t}=\frac{\partial^{2} V_{k}}{\partial y \partial t} q+V_{k} \frac{\partial^{2} q}{\partial y \partial t}+\frac{\partial V_{k}}{\partial y} \frac{\partial q}{\partial t}+\frac{\partial V_{k}}{\partial t} \frac{\partial q}{\partial y}+\frac{\partial^{2} R_{k}}{\partial y \partial t}  \tag{5.89.a}\\
\frac{\partial^{2} \psi_{k}}{\partial y \partial t}=\frac{\partial^{2} \psi_{k+1}}{\partial y \partial t}-2\left\langle\left.\frac{\partial V_{k}}{\partial y} \right\rvert\, \frac{\partial V_{k}}{\partial t}\right\rangle-2\left\langle V_{k} \left\lvert\, \frac{\partial^{2} V_{k}}{\partial y \partial t}\right.\right\rangle \tag{5.89.b}
\end{gather*}
\]

Multiplying \(G_{k}\) by a matrix costs \(g p^{2}(n+1)\), multiplying a matrix by a polynomial \(\operatorname{costs} g p(n+1)\), the division by \(q\) costs \(g p n\). Hence the complexity is
\[
\begin{gather*}
T(\psi)=\operatorname{mgp}(n+1)(p+1)  \tag{5.90.a}\\
T\left(\psi^{\prime}\right)=n p m g p(n+1)(p+2)  \tag{5.90.b}\\
T\left(\psi^{\prime \prime}\right)=\frac{n p(n p+1)}{2} m g p[(n+1)(p+4)+1] \tag{5.90.c}
\end{gather*}
\]

We have another way to compute \(\psi\), namely \(G=V_{1} q+R_{1}, R_{1} \tilde{D}=V_{2} q+R_{2}, \psi=\|G\|^{2}-\left\|R_{1}\right\|^{2}+\left\|V_{1}\right\|^{2}\). We use the same technique as before. Once \(R_{1}\) has been computed, we copy it in a matrix \(W\), and define \(W=\sum w_{k} z^{k}\). We use the same memory location for the two division loops, but in the formulas that follow, we shall add primes for the second loop.
\[
\begin{gather*}
S(\psi)=g p(n+2)  \tag{5.90.a}\\
S\left(\psi^{\prime}\right)=n p g p(n+2)  \tag{5.90.b}\\
S\left(\psi^{\prime \prime}\right)=n p(n p+1) g p(n+2) / 2 \tag{5.90.c}
\end{gather*}
\]

The formulas are
\[
\begin{gather*}
R_{k+1} z+G_{k}=V_{k} q+R_{k}  \tag{5.91.a}\\
R_{k+1}^{\prime} z+W_{k} \tilde{D}=V_{k}^{\prime} q+R_{k}^{\prime}  \tag{5.91.b}\\
\psi_{k}=\psi_{k+1}+\left\|V_{k}^{\prime}\right\|^{2}-\left\|W_{k}\right\|^{2} \tag{5.91.c}
\end{gather*}
\]

The formulas for the derivatives are
\[
\begin{gather*}
\frac{\partial R_{k+1}}{\partial y} z=\frac{\partial V_{k}}{\partial y} q+V_{k} \frac{\partial q}{\partial y}+\frac{\partial R_{k}}{\partial y}  \tag{5.93.a}\\
\frac{\partial R_{k+1}^{\prime}}{\partial y} z+\frac{\partial W_{k}}{\partial y} \tilde{D}+W_{k} \frac{\partial \tilde{D}}{\partial y}=\frac{\partial V_{k}^{\prime}}{\partial y} q+V_{k}^{\prime} \frac{\partial q}{\partial y}+\frac{\partial R_{k}^{\prime}}{\partial y}  \tag{5.93.b}\\
\frac{\partial \psi_{k}}{\partial y}=\frac{\partial \psi_{k+1}}{\partial y}+2\left\langle V_{k}^{\prime} \left\lvert\, \frac{\partial V_{k}^{\prime}}{\partial y}\right.\right\rangle-2\left\langle W_{k} \left\lvert\, \frac{\partial W_{k}}{\partial y}\right.\right\rangle \tag{5.93.c}
\end{gather*}
\]

The formulas for the second derivatives are
\[
\begin{gather*}
\frac{\partial^{2} R_{k+1}}{\partial y \partial t} z=\frac{\partial^{2} V_{k}}{\partial y \partial t} q+\frac{\partial V_{k}}{\partial y} \frac{\partial q}{\partial t}+\frac{\partial V_{k}}{\partial t} \frac{\partial q}{\partial y}+V_{k} \frac{\partial^{2} q}{\partial y \partial t}+\frac{\partial^{2} R_{k}}{\partial y \partial t}  \tag{5.94.a}\\
\frac{\partial^{2} R_{k+1}^{\prime}}{\partial y \partial t} z+\frac{\partial^{2} W_{k}}{\partial y \partial t} \tilde{D}+\frac{\partial W_{k}}{\partial y} \frac{\partial \tilde{D}}{\partial t}+\frac{\partial W_{k}}{\partial t} \frac{\partial \tilde{D}}{\partial y}+W_{k} \frac{\partial^{2} \tilde{D}}{\partial y \partial t}= \\
=\frac{\partial^{2} V_{k}^{\prime}}{\partial y \partial t} q+\frac{\partial W_{k}}{\partial y} \frac{\partial \tilde{D}}{\partial t}+\frac{\partial W_{k}}{\partial t} \frac{\partial \tilde{D}}{\partial y}+\frac{\partial V_{k}^{\prime}}{\partial y} \frac{\partial q}{\partial t}+V_{k}^{\prime} \frac{\partial^{2} q}{\partial y \partial t}+\frac{\partial^{2} R_{k}^{\prime}}{\partial y \partial t}  \tag{5.94.b}\\
\frac{\partial^{2} \psi_{k}}{\partial y \partial t}=\frac{\partial^{2} \psi_{k+1}}{\partial y \partial t}+2\left(\left\langle V_{k}^{\prime} \left\lvert\, \frac{\partial^{2} V_{k}^{\prime}}{\partial y \partial t}\right.\right\rangle+\left\langle\left.\frac{\partial V_{k}^{\prime}}{\partial y} \right\rvert\, \frac{\partial V_{k}^{\prime}}{\partial t}\right\rangle-\left\langle W_{k} \left\lvert\, \frac{\partial^{2} W_{k}}{\partial y \partial t}\right.\right\rangle-\left\langle\left.\frac{\partial W_{k}}{\partial y} \right\rvert\, \frac{\partial W_{k}}{\partial t}\right\rangle\right) \tag{5.94.c}
\end{gather*}
\]

The complexity is easy to compute. It is
\[
\begin{gather*}
T(\psi)=g p n[m+2+p(n+1)]  \tag{5.95.a}\\
T\left(\psi^{\prime}\right)=n p g p[m(2 n+1)+2 n(1+p(n+1))]  \tag{5.95.b}\\
T\left(\psi^{\prime \prime}\right)=g p n \frac{n p(n p+1)}{2}[m(4 n+3)+4 n(1+p(n+1))] \tag{5.95.c}
\end{gather*}
\]

Table 5.36: Cost of \(\psi\), formulas (5.95), in direct mode, \(m=400\).
\begin{tabular}{|c|r|r|r||r|r|r|}
\hline\(n\) & \(\psi\) & \(\psi^{\prime}\) & \(\psi^{\prime \prime}\) & \(\psi\) & \(\psi^{\prime}\) & \(\psi^{\prime \prime}\) \\
\hline 2 & 3264 & 32448 & 356480 & 86400 & 4248000 & 195216000 \\
5 & 8280 & 181200 & 10406000 & 231000 & 25050000 & 6642750000 \\
8 & 13440 & 454656 & 63574016 & 393600 & 66048000 & 43835904000 \\
10 & 16960 & 708800 & 152208000 & 512000 & 106200000 & 109282000000 \\
20 & 35520 & 2899200 & 2403584000 & 1224000 & 496800000 & 2013216000000 \\
\hline
\end{tabular}


Figure 5.11: Cost of \(\psi\) in direct mode. On each curve \(p\) is fixed (between 2 and 10). We assume \(g=p\) and \(m=400\). The curves correspond to the function, the first derivative and the second derivative

Let's compute the ratio of these two complexities. We introduce
\[
\begin{gather*}
\lambda=1+p(n+1), \quad t=m / n \\
r=1+\frac{(t-1) \lambda-1}{t n+\lambda+1}  \tag{5.96.a}\\
r^{\prime}=1+\frac{(t-2) \lambda}{2 t n+t+2 \lambda}  \tag{5.96.b}\\
r^{\prime \prime}=1+\frac{(t-4) \lambda+t}{t(4 n+3)+4 \lambda} . \tag{5.96.c}
\end{gather*}
\]

In case \(t \geq 4\), these quantities are greater than one, and the second method is better than the first one. In the case \(m\) is much larger than \(n\), we can simplify a bit these formulas
\[
\begin{gather*}
r=1+\frac{\lambda}{n}  \tag{5.97.a}\\
r^{\prime}=1+\frac{\lambda}{2 n+1}  \tag{5.97.b}\\
r^{\prime \prime}=1+\frac{\lambda+1}{4 n+3} \tag{5.97.c}
\end{gather*}
\]

If we assume that \(n p\) is much smaller than \(m\), we get
\[
\begin{equation*}
r=1+p, \quad r^{\prime}=1+p / 2, \quad r^{\prime \prime}=1+p / 4 \tag{5.98.a}
\end{equation*}
\]

But if \(p\) becomes large, we get
\[
\begin{equation*}
r=t, \quad r^{\prime}=t / 2, \quad r^{\prime \prime}=t / 4 \tag{5.98.b}
\end{equation*}
\]

For instance, if \(m=200\) and \(n=20\), then \(t=10\). Hence \(r^{\prime \prime}\) is \(1+p / 4\) for small \(p, 10 / 4\) for large \(p\). In case \(p=2\), we have
\[
r=2.6, \quad r^{\prime}=1.7 \quad r^{\prime \prime}=1.4
\]

This means that we have more than a factor two for \(\psi\), and \(40 \%\) for the second derivative.


Figure 5.12: Gain. On each curve \(p\) is fixed (between 2 and 10). We assume \(g=p\) and \(m=400\). Function, first derivative, second derivative.

\section*{Bibliography}
[1] Daniel Alpay, Laurent Baratchart, and Andrea Gombani. On the differential structure of matrixvalued rational inner functions. Operator Theory: Advances and Applications, 73:30-66, 1994.
[2] Laurent Baratchart. Sur l'approximation rationnelle L² pour les systèmes dynamiques linéaires. PhD thesis, Université de Nice, 1987.
[3] Laurent Baratchart and José Grimm. An elementary proof of the nonexistence of canonical forms in the real and complex case. Systems and Control Letters, 3:193-196, September 1993.
[4] Michel Cardelli. Contribution à l'approximation rationnelle \(L^{2}\) des fonctions de transfert. PhD thesis, Université de Nice-Sophia Antipolis, 1990.
[5] Jean-Pierre Dedieu and Jean-Claude Yakoubsohn. Localization of an algebraic hypersurface by the exclusion algorithm. AAEC, 2:239-256, 1992.
[6] C. Faure and Y. Papegay. Odyssée User's Guide. Version 1.7. Rapport technique 0224, INRIA, September 1998.
[7] Christèle Faure. Le gradient de THYC3D par Odyssée. Technical Report RR-3519, Inria, 1998.
[8] Pascale Fulcheri. Approximation rationnelle matricielle dans \(H^{2}\) et analyse de Schur. Application à l'identification des systèmes. PhD thesis, Université de Nice-Sophia Antipolis, December 1994.
[9] Pascale Fulcheri and Martine Olivi. Matrix rational \(H_{2}\) approximation: a gradient algorithm based on Schur analysis. Siam J. on Cont. Optim., 36(6):2103-2127, November 1998.
[10] C. William Gear. Numerical Initial Value Problems in Ordinary Diffe rential Equations. Prentice Hall, 1971.
[11] G. Hall and J.M. Watt, editors. Modern Numerical Methods for Ordinary Differential Equations. Clarendon Press, Oxford, 1976.
[12] Donald E. Knuth and Silvio Levy. The CWEB system of Structured Documentation. Addison-Wesley, 1994.
[13] Juliette Leblond and Martine Olivi. Weighted \(H^{2}\) approximation of transfer functions. Technical Report 2863, INRIA, 1996.
[14] Jacques Morgenstern. How to compute fast a function and its derivatives. SIGACT news, 1985.
[15] Norman Ramsey. Building a language-independent WEB. Communications of the ACM, pages 10511055, 1989.
[16] N. Rostaing. Différentiation automatique: application à un problème d'optimisation en météorologie. PhD thesis, Université de Nice-Sophia Antipolis, 1993.
[17] Walter Rudin. Real and Complex Analysis. McGraw-Hill, 1966.
[18] Szegö. Orthogonal Polynomials. Colloquium Publications, AMS, 1939.
[19] J.C. Willems. From time series to linear systems. part I: Finite dimensional linear time invariant systems. Automatica, 22:561-580, 1986.

\section*{Index}
access-Dq, 141
access-mid-Dq, 142
access-mid-Dq0, 142
add-a-brace, 122
add-braces, 122
add-mult, 166
add-mult-conj, 165
add-to-mask, 128
advance-L, 147
call-clear-op, 136
call-diff, 130
check-mat-prod, 115
clear-a-div, 137
cmplx-2times, 166
compute-indices, 153
compute-lp, 147
compute-more-hess-elts, 179
compute-one-hess-elt, 179
construct-deg, 117
construct-result, 116
copy-from-grad, 173
copy-psi, 144
copy-to-grad, 173
cpl-aux, 180
dbl-index-val, 124
decl-psi-lc, 170
decl-sec, 112
decl-sec0, 112
decl-sec1, 112
declarations, 151
declare-scal-var-psi, 169
def-scalar-hess, 175
def-scalar-hessian, 176
deg-add, 118
deg-sub, 118
differentiate, 115
differentiate1, 131
division, 167
division-lc, 168
division-other, 168
fetch-for-pattern, 123
fetch-normal-pattern, 129
fetch-or-oi, 157
fetch-par-kill-p, 173
fetch-Y, 171
fill-delta-q, 174
find-useless, 125
gen-copy-cmplx2real, 137
gen-copy-real2cmplx, 137
gen-op, 165
generate-clear, 151
generate-decl, 147
generate-decl-aux, 147
generate-init-D, 153
get-and-kill-vars, 141
get-p-hessian, 175
get-p-prime-direct, 174
get-psi2-diff, 178
get-psi2-direct, 177
get-psi2-hess, 179
handle-if, 131
hess-of-scal, 179
imag, 136
init-aux2, 154
init-delta-dq, 153
initialise-diff, 115
initialise-last-Dq, 142
initialise-midloop-vars, 142
initialise-psi, 137
instantiate-big, 126
instantiate-idx1, 126
instantiate-index, 127
instantiate-string, 129
instantiate-subst, 127
is-a-loop-useful, 124
is-index01, 124
kill-array, 165
kill-delta-qw, 175
kill-dq-dqw, 172
kill-var, 165
main-code, 180
make-compiler-happy, 142
merge-code, 131
merge-inv, 159
multiplication, 167
multiplication-spec, 167
multiplication1, 167
norm2, 166
norm2-delta-diff, 166
norm2-diff, 166
op-2times, 135
op-2times-neg, 135
op-2timesr, 135
op-2timesr-neg, 135
op-add, 135
op-add-mul-conj-K, 134
op-add-mul-K, 134
op-div, 134
op-div-conj, 135
op-minus-norm, 135
op-plus-norm, 135
op-set, 135
op-sub, 135
op-sub-mul-conj-K, 134
op-sub-mul-K, 134
operators, 134
print-a-global-malloc, 151
print-a-local-malloc, 152
print-a-switch-call1, 138
print-add-norm, 136
print-add-norm1, 136
print-affect, 144
print-aliases, 148
print-an-instruction, 129
print-B-code, 150
print-B-code-delta, 150
print-B-code-direct, 149
print-B-code-hack, 150
print-b0-code-inv, 158
print-b1-code-inv, 158
print-b2-code-inv, 158
print-b3-code-inv, 159
print-bk-code, 156
print-bk-complex, 155
print-bk-real, 154
print-bk-SLD, 155
print-bk-SLD-complex, 156
print-cast, 171
print-code, 130
print-code-before-returning, 144
print-construct-cur-omega, 156
print-construct-cur-u, 157
print-copy, 150
print-copy-psi, 170
print-deg-test, 158
print-fct-00, 139
print-init-Dq-aux, 152
print-init-p, 169
print-init-p-weight, 169
print-initialisation, 143
print-inv-header, 159
print-M-minus-F, 148
print-main-psi, 169
print-mat-var-psi, 170
print-mat-var-psi-prime, 172
print-neg, 136
print-neg-equal, 136
print-other-var-psi, 170
print-real-psi-prime, 173
print-s-code, 149
print-scal-psi, 170
print-scal-var-psi, 169
print-schur-inverse, 160
print-schur-inverse1, 157
print-set-hess1, 154
print-set-one-only, 137
print-ss-code-inv, 157
print-subst, 133
print-switch-case, 138
print-the-loops, 125
psi-prime-end, 172
qw-product, 168
read-one-pattern, 122
read-patterns1, 122
real, 136
real-ext, 137
s-code-mode0, 148
s-code-mode1, 149
s-code-mode2, 149
s-code-mode3, 149
scal-hess-prepare, 176
scalar-psi-def, 171
scalar-psi-hess, 175
scalar-psi-prime-def, 171
scalar-psi-prime-direct, 174
set-cr-one, 137
set-zero-where-indicate, 154
special-pattern, 129
split-pat-aux, 128
split-pattern, 128
str-to-list, 123
sub-mult, 165
sub-mult-conj, 165
the-scalar-hessian, 177
use-sec, 112
use-sec0, 112
use-sec1, 112
vars-for-hess, 174
w-ext, 171

\section*{List of Tables}
4.1 Table of modes ..... 111
4.2 Table of precisions ..... 111
4.3 Operator table ..... 113
4.4 Operators ..... 114
4.5 How flags determine the operation ..... 117
4.6 The patterns for \(N\) ..... 119
4.7 The patterns for \(T_{a}\) ..... 119
4.8 The patterns for \(T_{b}\) ..... 120
4.9 The patterns for \(S\) ..... 120
4.10 The patterns for \(S T\) ..... 120
4.11 The patterns for \(\psi\) ..... 120
4.12 The patterns for \(D\) ..... 121
4.13 Table of abbreviations ..... 126
4.14 Flags for memory allocation ..... 145
4.15 Variables, size and flags ..... 146
4.16 List of variables ..... 161
4.17 All calls to differentiate ..... 162
5.1 Complexity of orthogonal polynomials (time) ..... 189
5.2 Complexity of orthogonal polynomials (space) ..... 189
5.3 Complexity of squares in (5.9), case \(M=1\) ..... 190
5.4 Space needed for the products \(q d \Phi\) ..... 191
5.5 Complexity of denominators in (5.11) and (5.12) ..... 191
5.6 Complexity of numerators in (5.11) and (5.12) ..... 191
5.7 Complexity of scalar products via truncation ..... 192
5.8 Complexity of the Bezout relation (5.18.a) ..... 193
5.9 Complexity of scalar products via the Bezout relation, \(\alpha=m+2 n+d+1\) ..... 193
5.10 Complexity of scalar products via (5.19.b) ..... 194
5.11 Complexity of scalar products via (5.19.b), and (5.11.a), (5.12.a) ..... 194
5.12 Complexity of the relation (5.19.a) ..... 195
5.13 Complexity of \(\psi_{1}\), first part of \(\psi\) with weight ..... 195
5.14 Complexity of \(\psi\), scalar case, no weight ..... 196
5.15 Complexity of \(\psi\), scalar case, alternate ..... 197
5.16 Comparison of the two methods of computing \(\psi^{\prime \prime}\). It has the form \(m \alpha(n)+\beta(n)\). The table gives \(\alpha(n)\). ..... 199
5.17 Complexity of the derivatives of \(\psi\), scalar case, direct mode ..... 199
5.18 Cost of \(\psi\) and its derivatives, real and complex case. We have \(p=2\) and \(p=4\). ..... 203
5.19 Complexity of \(Z=\tilde{q}\left(y^{*} u-u y^{*}\right)\) in the case \(p=2\) ..... 203
5.20 Cost of \(Y\), in the case \(p=4\). ..... 204
5.21 Complexity of \(X\), for \(p=2\) and \(p=4\) ..... 205
5.22 Space complexity for \(p=2\) and \(p=4\) ..... 206
5.23 Global complexity, \(p=2, p=3\) and \(p=4\) ..... 207
5.24 Space complexity for temporary variables ..... 215
5.25 Space complexity ..... 215
5.26 Cost of \(X_{1}\) in direct mode ..... 218
5.27 Cost of \(X_{2}\) in direct mode ..... 219
5.28 Cost of \(X_{3}\) in direct mode ..... 219
5.29 Cost of \(X_{4}\) in direct mode ..... 220
5.30 Cost of \(X_{5}\) in direct mode ..... 221
5.31 Cost of \(X_{6}\) in direct mode ..... 222
5.32 Cost of \(X_{7}\) in direct mode ..... 223
5.33 Cost of \(X_{8}\) in direct mode ..... 224
5.34 Cost of \(X\) in direct mode ..... 224
5.35 Cost of \(Z\) in direct mode ..... 225
5.36 Cost of \(\psi\), formulas (5.95), in direct mode, \(m=400\). ..... 229

\section*{List of Figures}
2.1 Step size adjustment of the integrator ..... 31
2.2 Coefficients for which \(g=z^{2}+a z+b\) has no roots in \([-1,1]\) ..... 40
2.3 Coefficients for which \(\psi\) has a unique critical point. ..... 41
2.4 Coefficients for which the real minimum is a saddle point ..... 42
2.5 Coefficients for which the real minimum is a saddle point ..... 43
2.6 Example of \(\psi\) ..... 43
2.7 Set of stable polynomials ..... 51
3.1 Values of \(p_{3}\) and \(p_{4}\), as a function of \(a\) and \(b\) ..... 93
3.2 Values of \(a\) and \(b\), as a function of \(p_{3}\) and \(p_{4}\) ..... 94
3.3 Roots of (3.111) ..... 97
5.1 Exclusion circles, showing the minimum of \(\psi\) ..... 185
5.2 Exclusion circles for \(z^{2}-1\), near the root \(z=1\). ..... 187
5.3 Complexity of the function ..... 208
5.4 Complexity of the first derivative ..... 208
5.5 Complexity of the second derivative ..... 208
5.6 Normalised cost, \(1 \leq n \leq 20\) ..... 209
5.7 Normalised cost, \(1 \leq n \leq 100\) ..... 210
5.8 Space complexity for direct mode ..... 216
5.9 Cost of the Schur parameters direct mode ..... 226
5.10 Normalised cost of the Schur parameters direct mode ..... 226
5.11 Cost of \(\psi\) in direct mode ..... 229
5.12 Gain ..... 231

\section*{Contents}
1 Introduction ..... 3
1.1 Definitions ..... 3
\(1.2 \quad H^{p}\) spaces ..... 4
1.3 Form of Smith McMillan ..... 7
1.4 Inner matrices ..... 9
1.5 Shift invariant spaces ..... 12
1.6 The state space ..... 15
1.7 Left shift ..... 17
2 System Theory ..... 21
2.1 Realization ..... 21
2.2 Study of the approximation problem ..... 26
2.2.1 Scalar case ..... 26
2.2.2 Matrix case ..... 27
2.3 Properties of \(\psi\) ..... 28
2.3.1 Optimisation methods ..... 28
2.3.2 Primality ..... 33
2.3.3 Scalar case of degree one ..... 38
2.3.4 Boundary conditions ..... 44
2.3.5 Derivatives of \(\psi\) ..... 52
2.3.6 Other formulas ..... 54
2.3.7 Weighted approximation ..... 54
2.4 Continuous time systems ..... 60
3 The Schur algorithm ..... 67
3.1 Schur functions ..... 67
3.2 The Schur algorithm ..... 68
3.2.1 Direct formulas ..... 69
3.2.2 Inverse formulas ..... 70
3.2.3 Properties of the Schur algorithm ..... 70
3.3 Reproducing kernel Hilbert spaces ..... 71
3.4 J-inner functions ..... 73
3.4.1 Introduction ..... 73
3.4.2 Basic properties ..... 74
3.4.3 \(J\)-inner functions and left shift invariant spaces ..... 76
3.4.4 The theorem of Potapov ..... 79
3.5 The Schur algorithm ..... 83
3.6 The manifold of inner functions ..... 87
3.6.1 Case of dimension one ..... 87
3.6.2 The case of dimension 2 ..... 89
3.6.3 General case ..... 94
3.6.4 Minimisation of \(\psi\) ..... 97
4 Automatic differentiation ..... 101
4.1 Introduction ..... 101
4.2 Straight line programs ..... 102
4.2.1 Definition ..... 103
4.2.2 Rational SLP ..... 103
4.2.3 Differentiation in direct mode ..... 104
4.2.4 Reverse mode ..... 104
4.2.5 Complex numbers ..... 106
4.2.6 Matrices ..... 106
4.2.7 The case of polynomials ..... 106
4.3 The WEB system ..... 108
4.4 Naming scheme ..... 110
4.5 Web interface ..... 112
4.6 Parsing arguments ..... 113
4.7 The patterns ..... 118
4.8 Differentiation ..... 125
4.9 Merging code ..... 130
4.9.1 Example ..... 132
4.10 Operators ..... 133
4.11 Other functions ..... 136
4.11.1 Main function ..... 138
4.11.2 Managing results ..... 144
4.11.3 Memory management ..... 145
4.11.4 Hand-written code ..... 148
4.11.5 Memory management ..... 151
4.11.6 Auxiliary code ..... 151
4.11.7 Inverse Schur code ..... 154
4.12 Main file ..... 160
4.12.1 Preliminaries ..... 160
4.12.2 The code of the functions ..... 160
4.12.3 The calls to the differentiator ..... 163
4.13 Scalar case ..... 165
4.13.1 Introduction ..... 165
4.13.2 Basic code ..... 167
4.13.3 The code of the function ..... 169
4.13.4 Code of the derivative ..... 171
4.13.5 Derivative in direct mode ..... 174
4.13.6 Hessian ..... 175
4.13.7 Second part of \(\psi\) ..... 177
5 Complexity ..... 183
5.1 Scalar case of dimension one ..... 183
5.1.1 Real case of dimension one ..... 183
5.1.2 Complex case of dimension one ..... 184
5.2 Scalar case ..... 186
5.2.1 Orthogonal polynomials ..... 188
5.2.2 Additional code ..... 189
5.2.3 Non-weighted case ..... 195
5.2.4 Alternate formulas ..... 196
5.2.5 Direct mode differentiation ..... 197
5.2.6 Other formulas ..... 200
5.3 Matrix case ..... 201
5.3.1 Cost of \(\psi\) ..... 201
5.3.2 Cost of the Schur parameters ..... 202
5.3.3 Memory requirements ..... 205
5.4 Derivatives in direct mode ..... 206
5.4.1 Pseudo-code ..... 212
5.4.2 Sample formula ..... 212
5.4.3 Notations ..... 213
5.4.4 Space complexity ..... 214
5.4.5 Case of \(X_{1}\) ..... 217
5.4.6 Case of \(X_{2}\) ..... 218
5.4.7 Case of \(X_{3}\) ..... 219
5.4.8 Case of \(X_{4}\) ..... 219
5.4.9 Code of \(X_{5}\) ..... 220
5.4.10 Case of \(X_{6}\) ..... 221
5.4.11 Case of \(X_{7}\) ..... 222
5.4.12 Case of \(X_{8}\) ..... 223
5.4.13 Cost of \(X\) ..... 224
5.4.14 Case of \(Z\) ..... 225
5.4.15 Complexity of \(\psi\) ..... 227


Unité de recherche INRIA Sophia Antipolis 2004, route des Lucioles - BP 93-06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes 4, rue Jacques Monod - 91893 ORSAY Cedex (France) Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique 615, rue du Jardin Botanique - BP 101-54602 Villers-lès-Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l'Europe - 38334 Montbonnot Saint-Ismier (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105-78153 Le Chesnay Cedex (France)```


[^0]:    ${ }^{1}$ http://www.mcs.anl.gov/Projects/autodiff/AD_Tools/index.html

