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1 General primality test

The purpose of this section is to give an algorithm that shows that a given integer n is prime,
or quasi-prime (i.e. having a high probability to be prime). The function is called isprime, it
is divided into some sub-functions.

The function small-int-is-prime is considered first. Let L be the list 2, 3, 5, 7, ..., 89, 97,
the list of all prime numbers between 2 and 100, let P1 be the product of all prime numbers
between 1 and 100, P2 the product of all prime numbers between 100 and 1000. The first
prime after 100 is 101, the first prime after 1000 is 1009, the square of these numbers appear
in the algorithm below, which is trivial.

Algorithm 1 (small-int-is-prime) Argument, a positive integer n. This gives a partial an-
swer to the question: is n prime.

1. If n ∈ L, return ‘prime’.

2. If gcd(n, P1) 6= 1, return ‘composite’.

3. If n < 10201, return ‘prime’.

4. If gcd(n, P2) 6= 1, return ‘composite’.

5. If n < 1018081, return ‘prime’.

6. Otherwise, return ‘maybe’.

The number P1 has 37 decimal digits, P2 has 379 digits. The gcd of two numbers a and b
can be computed as follows: let a0 be the largest, and a1 be the other one. Let ak+1 be the
remainder in the division of ak−1 by ak. If the division is exact, the ak is the gcd, otherwise,
continue. A variant of this algorithm produces two numbers u and v such that

au+ vb = p, p = gcd(a, b). (Bezout)

Generically, the quotient is small, the cost is linear with the size of n, and log n divisions are
needed. The worst case is when all quotients are 1, case where we consider two consecutive
Fibonacci numbers. Thus the cost is log2 n.

Experiments show that the gcd of n and P1 costs 30 microseconds when n has 20 digit, 40
microseconds when n has 100 digits. Computing the gcd of n and P2 costs 41 microseconds if
n has 20 digits, and 642 microseconds if n has 380 digits. These timings are very small.

Algorithm 2 (isprime) Argument, a positive integer n. This gives an answer to the question:
is n prime.
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Runtime of isprime

Figure 1: Runtime of isprime, for some small numbers. The maximum is at 769. Limitations
of clock precision imply that all measurements are integer multiple of 2.10−7

1. Call small-int-is-prime. This may give an answer.

2. Call Fermat(n, p) for some small prime numbers p. This may show that n is composite.

3. If a definite answer is required, call true-isprime.

4. Otherwise, let ak = 1 +
√

2n/k and bk =
√
n/k. In each case, the integer part of the

quotient is taken, then the integer part of the square root.

5. In the case ak divides n, or bk divides n, declare n composite. Otherwise, declare n
quasi-prime.

In step 2, the number of tests is controlled by the variable-function set-max-iter-in-
isprime, the default value being 5. For step 5, the index k in ak varies between 3 and 9,
the index for bk varies between 5 and 20. These numbers may change in a future version. In
the case n = 21569059132741, the Fermat test fails five times, and a4 divides n.

1.1 Cyclicity

Let Z(n) be the set of all integers modulo n, and G(n) the multiplicative group modulo n

m ∈ G(n) ⇐⇒ 0 < m < n and ∃q mq = 1 mod n (1)

We define φ(n) to be the number of elements of G(n).

Lemma 1 We have φ(n) = n− 1 if and only if n is prime. This is the negation of: there exists
m and q between 1 and n− 1 such that mq = 0 mod n.
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Figure 2: Runtime of isprime, for larger numbers. The numbers we have chosen are: all up
to 500, then 502 + 3k, then 1004 + 5k, then 2004 + 11k then 100069 + 101k. After that, the
interval has been enlarged to 211, 401, 1009. If n > 10000, there are integers for which step
4 is required, and you can see the additional cost: it jumps from 3.5 to 7.5 microseconds.
A curious phenomenon can be seen: there are lots of numbers less then 215 with a runtime
between 3.5 and 4.5 microseconds, and fewer with n > 215. For these, the runtime is in
general 3.5 microseconds. As in the previous figure, all timings are integer multiple of 2.10−7.

The lemma is easy: if n is composite, then n = mq for some m and q. If n is prime, and
0 < m < n, then the Bezout relation gives q such that mq = 1 + kn. In the case mq = 0 mod n,
if 0 < m < n and 0 < q < n, there exist numbers p1 > 1 and p2 > 1, p1 divides m and n, p2

divides q and n. In particular this implies m 6∈ G(n). �
Consider the set {m, 2m, 3m, . . . ,mn} (mod n). If this set contains n elements, then it

contains all numbers between 0 and n − 1, including 1, and m ∈ G(n). Otherwise, at least
one element is repeated, there is i and j with m(i − j) = 0, and m 6∈ G(n). If 0 < m < n we
can conclude that n is composite. This gives an awfully bad algorithm: compute the number
of elements of this set for every m. The complexity is of the order of n2. There is a better
algorithm: for each m check whether or not m divides n; this algorithm has complexity n. No
good algorithm exists. The algorithm shown below assumes that the factorization of n− 1 can
be obtained, this is not always easy.

Assume that
n =

∏
pαk

k (2)

is the factorization of n into distinct primes. Let ψk(m) be m mod pαk

k . This gives a function
from Z(n) into Z(pαk

k ) that preserves addition and multiplication. Let ψ(m) = (ψ1(m), ψ2(m), . . .).
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Figure 3: Runtime of isprime, for larger numbers.

We get an application
ψ : Z(n) −→

∏
Z(pαk

k ). (3)

The Chinese Remainder Theorem says that this is a bijection, preserving addition and mul-
tiplication (the theorem is just a consequence of the Bezout relation). In particular, it maps
invertible elements to invertible elements, hence induces a function

ψ : G(n) −→
∏

G(pαk

k ). (4)

As a consequence, φ(n) =
∏
φ(pαk

k ). This can be restated: if a and b are coprime, then
φ(a)φ(b) = φ(ab). Note that m ∈ G(pα) if and only if m is not a multiple of p, there are pα−1

multiples of p between 1 and pα, so that φ(pα) = pα(1− 1/p) hence

φ(n) =
∏

(pαk

k − pαk−1
k ) = n

∏
(1− 1/pk). (5)

Lemma 2 The following relation holds for any integer n∑
d|n

φ(d) = n. (6)

Proof. Assume first n = pk, and let di = pi. The only divisors of n are the di. We have
φ(d0) = d0, and φ(di) = di − di−1 otherwise. Hence the sum is dk, thus n.

Otherwise, factor n as in (2). Then d divides n if and only if d =
∏
di, where each di divides

pαi
i . Use φ(d) =

∏
φ(di). Then

∑
φ(d) is the product of the

∑
φ(di). By what precedes, this

sum is pαi
i , and the product is n. �
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We say that a group G is of order n if it has n elements; we say that an element x is of
order n if the group it generates (formed of all xi) is of order n. If G is the group generated
by x, then G is called cyclic, and x is a generator. Consider a group G, an element x. Let C(y)
be the set of all yxk. In general, this is not a group, but its number of elements is independent
of y, it is the order of x. Suppose that C(y) and C(z) intersect; there exist α and β such that
yxα = zxβ. From this we deduce C(y) = C(z). Thus G is the disjoint union of all C(y), its
order is a multiple of n.

This can be restated as: If x ∈ G, then the order of x divides the order of G. We can also
say: if g is the order of G then xg = 1, whatever x. This equation can also be satisfied by
a number smaller than g, for instance, in G(8), that has four elements, we have x2 = 1. Of
course, G is not cyclic. Note that, if x is of order n, then xm is of order n/ gcd(n,m), which is
obvious from the Bezout relation, so that teh set {xi} contains φ(n) elements of order n. If p
is prime, then every x between 1 and p− 1 is in G(p), thus has an order that divides p. Thus

Theorem 1 (Fermat) If p is prime, 0 < x < p, then xp−1 = 1 (mod p).

Lemma 3 If n is prime, then G(n) is cyclic.

Let’s consider a prime number p. Let ψ(d) be the number of elements of G(p) whose order
are exactly d. We pretend ψ(d) ≤ φ(d). This is obvious if no element is of order d. Otherwise,
let’s consider one x of order d. If y = xk, then yd = 1. There are d distinct powers of x, hence
d solutions to Xd − 1 = 0. Since p is prime, Z(p) is a field, and the polynomial Xd − 1 has not
more than d roots. Thus, if y is a generator, it must be a power of x. Since the powers of x
cainain φ(d) elements of order d, we have: ψ(d) is zero or φ(d). If n = p− 1 we have∑

d|n

ψ(d) = n. (7)

This equation is equivalent to say that every element of G(p), a group with n elements, has
an order that divides n. If we compare with (6), we see that φ(d) = ψ(d), whenever d divides
n. This is in particular true if d = n, i.e. if d = p − 1; this shows that G(p) has at least one
generator, in fact, it has φ(p− 1) generators. �

Examples: G(2) is trivial, it contains only 1; the group G(3) has two elements, 1 and 2,
the square of 2 is 1, and 2 is a generator. If n is an odd prime, n = 1 + q2k, q odd, then
φ(n− 1) = 2k−1φ(q). This is even if k > 1 or if q > 1 (if q is odd, q > 1, then φ(q) is even). Thus,
if n > 3, φ(n − 1) is even, there are an even number of generators (if fact, if x is a generator,
so is its inverse).

We may ask the following questions: are there other cyclic groups. As said above, G(8) not
cyclic. This is because, if m is odd, we have m = 2k+ 1 and m2 = 4k(k+ 1) + 1, and k(k+ 1) is
even. Hence

∀m odd ,∃k m2r = 1 + 8rk

for r = 1. If we take squares, we see that this is true whenever r is a power of two. Thus
m2r = 1 whenever m ∈ G(8r). Since G(8r) has 4r elements, it cannot be cyclic. For the case
of G(pk) with p odd we start with:

Lemma 4 Let p be some prime number. Let f(n) be the power of p in n!, and g(n, i) the power
of p in

(
n
i

)
. In the case where n = pk and i = qpj , with q coprime to p, we have g(n, i) ≥ k − j.
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We have
f(n) =

⌊n
p

⌋
+

⌊ n
p2

⌋
+ . . .+

⌊ n
pk

⌋
+ . . . (8)

In the case n = mpj , we can write this as

f(n) = m(1 + p+ . . .+ pj−1) + f(m) = mPj + f(m).

We have g(n, i) = f(n)− f(i)− f(n− i). If n and i are as in the lemma, m = pk−j , the factors
of Pj are m− q − (m− q). Thus

g(n, i) = g(m, j).

This means that we need only to prove the theorem in the case j = 0. We have

b

(
a

b

)
= a

(
a− 1
b− 1

)
so that, if a and b are coprime,

(
a
b

)
is a multiple of a. � We continue with:

Lemma 5 Let p be an odd prime, k ≥ 2, q = pk−2(p − 1). Let θ be an integer such that, if
x = θp−1 − 1, then x is zero modulo p, but not modulo p2. Then θq is not 1 modulo pk.

We start with

θq = (1 + x)pk−2
=

∑
i

(
pk−2

i

)
xi.

The first term is one, the second is xpk−2, this is not zero mod pk. Remaining terms are zero.
This is because the power of p is at least g(pk−2, i) + i. According to the previous lemma, this
is at least k − 2 + i − j. Thus, we have to show that i ≥ j + 2. This is true for j = 0, since we
consider only i ≥ 2. Otherwise, we know i = qpj , so that it suffices to show pj ≥ j + 2. For
j = 1, this gives p ≥ 3 (remember that p is odd). For j ≥ 2, we have 2j ≥ j + 2, and pj ≥ 2j,
which is true if p ≥ 2 and j ≥ 2. �

Lemma 6 If p is an odd prime, then G(pk) is a cyclic group.

In fact, consider ξ, a generator modulo p. Let θ be as follows. If ξq−1 6= 1 (mod p2), we take
θ = ξ, otherwise θ = ξ + p. Then θ is a generator modulo p, and the conditions of the previous
lemma are satisfied. What is the order modulo pk? it is some divisor of the order of the group,
namely g = pk−1(p − 1). If the order is not g, then there is a prime r such that θg/r = 1
(mod pk). Assume first that r divides p − 1. Then θg/r = 1 (mod p). However θp = θ (mod p),
hence θ(p−1)/r = 1 (mod p), and this contradicts the fact that θ is a generator modulo p. Hence
the order of θ is a multiple of p − 1, is it pα(p − 1). We have α ≥ k − 1, so that the order is g,
since otherwise this would imply θq = 1. �

Note that if p is an odd prime, then G(2pk) is a cyclic group. This is really because G(pk)
and G(2pk) are isomorphic: consider f such that f(m) = m is m is odd, and f(m) = m+ pk if
m is even. Then f is a bijection from G(pk) to G(2pk). It preserves multiplication.

Lemma 7 Let G be a commutative group, a1 and a2 in G with order g1 and g2. Let α be the
gcd of g1 and g2. Then the order of a1a2 divides g1g2/α2 and multiplies g1g2/α. In particular, if
g1 and g2 are coprime, the order is g1g2.
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In fact, let g1 = αh1 and g2 = αh2. We have (a1a2)αh1h2 = 1. On the other hand, if (a1a2)γ = 1,
raising thius to the power αh1 gives aαh1γ

2 = 1, so that αh1γ is a multiple of αh2 and γ is a
multiple of h2. Thus γ is a multiple of h1h2. �

Lemma 8 If G is a commutative group, the product of some groups, G1, G2, etc., then G is
cyclic if and only if each Gi is cyclic, and the orders of the Gi are coprime.

If suffices, by induction, to prove the lemma in the case of two factors. If x = (x1, x2) ∈ G, we
have x = a1a2, where a1 = (x1, 1), and a2 = (1, x2). If G1 is of order g1, and G2 of order g2, then
a1a2 is of order at most the gcd of g1 and g2. If we want G to be cyclic, and x a generator, since
G has g1g2 elements, we need g = g1g2, i.e. g1 and g2 coprime. Moreover, if x is a generator,
then x1 is a generator of G1 and x2 of G2. These conditions are sufficient. �

Consider now an integer n, and (2) its factorization. If pk is odd or p = 2 and αk > 1, then
φ(pαk

k ) is even. If n has two such factors, G(n) cannot be cyclic. We have shown:

Theorem 2 The group G(n) is cyclic if and only if n = pk, or n = 2pk or n = 1 or n = 4, where
p is an odd prime.

Algorithm 3 (generator-modp) Argument, an integer n. This returns a generator modulo
n, if one exists.

1. If n = 2, return 1, if n = 4, return 3.

2. Factor n =
∏
pαi

i , with p1 < p2 < . . . < pk.

3. If there are more than two factors, return ‘failed’.

4. If k = 2 (case of two factors), if p1 6= 2, or α1 > 1, return ‘failed’. Set p to p2, and e to α2.

5. If there is one factor, set p to p1, and e to α1. Return ‘failed’ if p1 = 2.

6. Compute g, a generator modulo p via igenerator(p).

7. If e ≥ 2, and gp−1 = 1 (mod p2), replace g by g + p.

8. If n is even, and g is even, replace g by g + pk.

9. Return g.

1.2 Primality tests

Let’s consider the following three algorithms. Algorithmn A is: For k beween 1 and n − 1,
compute the remainder of k by n. Returns true if false is found. Algorithm B depends on x, it
is: set y = x, for k between 1 and n − 1, replace y by the remainder in the division of xy by
n. For each integer i between 1 and n − 1, count how many times it is a y. Return true if all
these counts are 1. Algorithm C is the same, but we count only the the appearance of 1.

If the algorithm returns true, then n is prime. If algorithm A returns false then n is com-
posite. For the other algorithms, we must test a lot of numbers x. Algorithm B cannot be
used in practice, since it needs a huge table. All algorithms have a runtime proportional to n.
The only efficient algorithm we know assumes that the factorization of n − 1 is known. This
is because xk 6= 1 for 0 < k < n − 1 is equivalent to xk 6= 1 whenever k = (n − 1)/r, for any
prime r. For instance, if n = 17, this is x8 6= 1. Three multiplications are required. Half of the
numbers satisfy this equation.

This condition is not enough: we must add xn−1 = 1, a relation that holds for any x, not only
for generators. For instance, if n = 6, we have 25 = 2. In fact, we have 23 = 2, and 2 6∈ G(6).

7



 0

 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0  50000  100000  150000  200000  250000

Figure 4: Runtime of ‘generator-modp’. For n < 100000, one number out of 11 is chosen,
otherwise one out of 101.
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Figure 5: Runtime of ‘generator-modp’, for larger numbers.
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The complexity of the algorithm is the following. Computing xk costs log k multiplications. If
N is the size of n, each multiplication costs N2. We can estimate k ≤ n, hence log k ≤ N . The
number of prime factors is also bounded by log n, so that the cost is N4. This is something
reasonable; the question is however: how many integers x do we need to try? We shall give a
variant, where some numbers are tested; each test costs N3, and will help to prove that n is
prime (or show that n is composite). For each prime r, dividing n− 1, some numbers have to
be tested, but we have no idea of how many.

Let’s consider a group with g elements, and the factorisation of g.

g =
∏

pαk

k . (9)

If the group is cyclic, we have a generator, hence for each i an element ai such that

ag
i = 1 a

g/pi

i 6= 1. (10)

It suffices to chose ai = x. On the other hand, assume that these relations are true. Let
qi = g/pαi

i , and bi = aqi

i . Then (10) is equivalent to

b
p

αi
i

i = 1 b
p

αi−1
i

i 6= 1. (11)

In other words, bi is of order p
αi
i , and b =

∏
bi is of order g. This gives a method for finding a

generator.

Algorithm 4 (igenerator) Argument, a number n, optionally, a list L. If L is given, it is the
list of factors of n− 1, some elements being marked. In this cases, steps 1 and 2 are useless.
This returns a generator of G(n), or fails if n is composite.

1. Factor n− 1 as
∏
pαi

i .

2. Initialise g to 1. Unmark all positions i.

3. Repeat the following steps, until all primes are marked, where P is 2, 3, 5, etc, a prime
number.

4. Consider all positions i that are not marked. We have a prime p, an exponent k.

5. Let B = P (n−1)/p (mod n). If Bp 6= 1 (mod n), return ‘composite’. If the gcd of B−1 and
n is neither 1 nor n, return ‘composite’. If the gcd is not n, mark the position i.

6. Let q = (n − 1)/pk, r = pk−1, b = P q (mod n). If br 6= 1 (mod n), multiply g by b, and
mark i.

7. If all positions are marked, then n is prime and a generator of G(n) is g.

Some comments. If we want to find a generator of G(n), we know that n is prime, and we
can skip step 5. If we want to prove that n is prime, we can skip the computation of g in 6. We
have B = br. Conditions (11) are br 6= 1 and brp = 1. This last condition is true, if we assume
n prime. It can be used in 5 to show that n is composite. In the case n prime, either B = 1,
case where the gcd of B − 1 and n is 1, or B 6= 1, case where the gcd is not n, hence is 1. If n
is composite, the gcd could be a proper factor, and this is tested. Said otherwise, we replace
condition (11) by the stronger one

an−1 = 1 (mod n) gcd(a(n−1)/pi − 1, n) = 1. (12)

9



Lemma 9 If (12) is true for some a, it is also true for some prime not greater than a. This
explains why, in step 3 of the algorithm, we chose only prime numbers P .

In fact, assume a = bc. If bs = 1 and cs = 1, then (bc)s = 1. The converse can be false. Hence,
we can miss an opportunity to show that n is composite. Let q = (n−1)/pi. If bq−1 is coprime
to n, condition (12) is true for b. If bq is 1 mod n, then (12) is true for a if and only if it is true
for c. Otherwise n is composite, and can can miss an opportunity to show it. �

The reason why we introduce the gcd is the following (Knuth exercise 4.5.4.26).

Lemma 10 Assume n = 1 + fr, 0 < r ≤ f + 1. If (12) is true for every prime factor pi of f ,
then n is prime.

Let’s write n = 1 + QR, where Q is coprime to R, R has the same prime factors as f , so that
f ≤ R. Write b = aQ. Then

bR = 1 (mod n) gcd(bR/pi − 1, n) = 1. (13)

Let P be a prime factor of n. Then bR = 1 (mod P ), and bR/pi 6= 1 (mod P ). If for each prime
factor of R we have such a b, this gives an element of order R modulo P . Thus, R < P . In
particular f < P . Suppose n composite. Since all pime factors are greate then f we have
n ≥ (f + 1)2 ≥ r(f + 1) = rf + r = n− 1 + r. This implies r = 1. But r = 1 says f = n− 1, and
we have a generator modulo n.

Consider n = 31. We have to find numbers such that a15 6= 1, a10 6= 1, a6 6= 1. There are
15 numbers satisfying y15 = 1, (this condition is equivalent for y to be a square modulo 31).
These numbers are 1, 2, 4, 5, 7, 8, 9, 10, 14, 16, 18, 19, 20, 25, and 28. There are nearly√
n/2 integers between n/2 and n that are a square (here 16 and 25). It could happen that

all numbers less then n/2 −
√
n/2 are square mod n. In this case, the generators are 3, 11,

12, 13, 17, 21, 22, 24, 25 and 28. Note: we have 25 = 1, so that 215 = 1. Thus 2 is not a
generator. However, since 2− 1 is coprime to 31, the relation 25 = 1 (mod 31) shows that any
prime factor of 51, has order at leat 5, hence is at least 6. Since 31 < 62 it is prime.

Algorithm 5 (true-isprime) Argument, a number n. This checks whether n is prime or not

1. Factor n− 1 =
∏
pαi

i .

2. Write n − 1 = fr, with r = 1. For each i, write r′ = rpαi
i and f ′ = f/pαi

i . If r′ ≤ f ′ + 1,
replace r by r′ and f by f ′, and mark the index i.

3. Call igenerator, with arguments the prime decomposition with the marks.

Note. In igenerator, we have a test: Bp 6= 1 (mod n). This is the same as Pn−1 6= 1 (mod n);
we execute it only once for each prime P . Moreover, we skip the test for all primes that satisfy
the Fermat criterion.

1.3 Fermat test

We shall use algorithm P of Knuth (section 4.5.4).

Algorithm 6 (Fermat) Arguments n, p. This procedure may find that n is composite.

1. If this is not already done, write n = 1 + x2k, where x is odd.

2. Consider a0 = px (mod n).
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Figure 6: This figure shows, for every n, the number of times Q(k) ≤ 100 where k is between
n and n+ 105, k is odd and composite.

3. If a0 = 1, return ‘maybe’.

4. Consider ai = a2
i−1 (mod n). Return ‘composite’ if ai = 1 or ‘maybe’ if ai = −1 mod n.

Do this check for i = 0, 1, 2, . . ..

5. Do not compute ak, return ‘composite’.

The algorithm returns ‘composite’ in two cases. In the case where a = b2 and a = 1
(mod n), we have (b − 1)(b + 1) = 0 (mod n). Thus either b = 1, or b = −1, or there is a
non-trivial factor between n and b− 1. What is ak? this is xn−1 mod n. In the case ak = 1, we
can conclude that n is composite (as before), otherwise, we can conclude that n is composite
(Fermat Theorem).

Theorem 3 If algorithm Fermat fails to detect that n is prime for a random number p, then
the probability that n is composite is less than 1/4. In fact, it is much less than that, see
figures.

Of course, we do not call the algorithm with a random number, but with a small prime. We
shall assume n odd (in fact, the numers we try have no factor less 100).

Some notations. We factor n =
∏
qei
i . The group G(qei

i ) is cyclic, let ξi be a generator, let
Bi = (qi−1)qei−1

i be its order. The Chinese Remainder Theorem says that a ∈ G(n) is uniquely
characterised ny all remainders mod qei

i , hence the numbers ri(a) such that

a = ξ
ri(a)
i (mod qei

i ).
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Figure 7: This figure shows, for every n, the number of times Q(k) ≤ 5 where k is odd and
composite and ≤ n.

Write n = 1 + x2k, qi = 1 + xi2ki , where x and xi are odd. Write x′i = gcd(x, xi). We have

gcd(x2j , Bi) = gcd(x2j , (qi − 1)qei−1
i ) = gcd(x2j , qi − 1) = gcd(x2j , xi2k) = 2j gcd(x, xi) = 2jx′i,

provided 0 ≤ j ≤ k, because qi 6= 2 since n is odd, x and xi are odd, qi does not divide x. The
factors qi are sorted such that k1 ≤ k2 ≤ · · · ≤ ks. Let K = k1. We have qi = 1 (mod 2K),
hence n = 1 (mod 2K), in other words, K ≤ k.

Define bn as the number of integers for which the algorithm fails (i.e. returns ‘maybe’).
These are numbers a such that either ax = 1, or ax2j

= −1 for some j > 0.
The first case of failure is ax = 1. This is equivalent to ax = 1 mod each qei

i . This is
equivalent to ri(a)x = 0 (mod Bi). The number of integers r that satisfy rx = 0 (mod B) is
gcd(x,B), here gcd(Bi, x) = x′i. Hence, the number of solutions to ax = 1 is hence

∏
x′i.

Consider now the number of solutions to ax2j

= −1. The condition is now

ri(a)x2j = Bi/2 (mod Bi).

The equation can be written as rx2j+1 = (2l+ 1)Bi for some l. Remember that the power of 2
in Bi is ki, so that the equation has no solution of j + 1 > ki. In particular if j ≥ K = k1, there
is at least one i for which there is no solution. Otherwise, j < ki, there is a solution r′, all other
solutions satisfy (r − r′)x2j = 0 (mod Bi), and the number of solutions is gcd(x2j , Bi) = x′i2

j .
Since we have s factors, the total number is 2js

∏
x′i. Hence

bn = (1 +
K−1∑
j=0

2js)
∏

x′i. (14)
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Let
P (n) = bn/n Q(n) = 1/P (n) (15)

The quantity P is the probability of failure, the theorem claims Q ≥ 4. Note that Q is indepen-
dent of ei, so that if m =

∏
qi, we have

Q(n) = Q(m)
∏

pei−1
i

As a consequence, when n has repeated factors, the probability of failure becomes smaller. In
particular, if we assume that n has no prime factor less than 1000, this gives Q ≥ 1000.

Let A be the first factor in bn. This is also

A = 1 +
2Ks − 1
2s − 1

. (16)

Introduce B = 2Ks. We claim that B/A ≥ 2s−1. If y = 2−s, this is equivalent to

wK ≤ 2 where wK =
1− yK

1− y
+ yK−1.

We have wk = wk−1 + (2y − 1)yk−2, w1 = 2, and 2y − 1 ≤ 0, thus the claim.
SinceK is the smallest ok the ki, the quantity r/B =

∏
2ki−K is an integer. Let’s introduce

φ(n). We have φ(n) = r
∏
xi

∏ ∏
qei−1
i , hence

Q =
n

φ(n)

∏
xi∏
x′i

r

B

B

A

∏
qei−1
i .

In this product all factors are ≥ 1. We want to show Q ≥ 4, and that most of the time Q ≥ 8.
Because B/A ≥ 2s−1, we have Q ≥ 8 if s > 3, so that we need only consider the case of one,
two and three factors.

Consider the case when n has a single prime factor. We have bn = gcd(2Kx, q1 − 1). In
particular bn ≤ q1, and Q ≥ qe1−1

1 . In the case n = 9, we have Q = 9/2, because b9 = 2 (The
Fermat criterion fails for a± 1, so that A ≥ 2, in this case we have equality). In all other cases
where n is composite, odd and the power of a prime n = pe, we have have either p ≥ 5 or
e ≥ 3, hence Q ≥ 5 or Q ≥ 9. In fact, assume that n has no prime factor less than 1000. Then
Q ≥ 1000.

We consider now the case s = 2 or s = 3. Then B/A is at least 2 or 4. In fact can be divided
by a power of a prime p, then Q ≥ 2p or Q ≥ 4p, since p ≥ 3, this will show the theoreom.
Hence the only non-trivial case is when n is the product of two distinct primes, say

n = 1 + x2k = (1 + y2k1)(1 + z2k2).

If k2 = k1 + δ, then
r

A
=

3.2δ.22k

2 + 22k
= 2δ 3

1 + 21−2K
≥ 2δ+1.

We have

Q =
1 + y2k1

y′2k1

1 + z2k2

z′2k2

r

A
. (17)

If δ ≥ 2, r/A is at least 8. In any case, it is at least 2. Consider δ = 0 first. We have

x2k−K = y + z + yz2K
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and y′ is the gcd of x and y. If w = y/y′, the first factor in (17) is at least w, so that, if w
is not trivial, we have Q ≥ 6. (remember that y is odd). If w = 1, this says that y divides x.
The previous equation implies that y divides z. Same conclusion if we exchange the roles of y
and z. Note that we have y 6= z, because n has two distinct prime factors. Thus, if neither y
divides z, nor z divides y, we have Q ≥ 18. In the case

n = (1 + y2k)(1 + yz2k) (two prime factors)

we have Q ∼ 2z.
Consider finally the bad case, where δ = 1. If K ≥ 2, we have r/A ≥ 16/3, and if K = 1 we

have r/A = 4. Nothing more can be gained if y and z divide x; this condition implies x = y = z,
and n = (1+2y)(1+4y). According to Knuth, the least such number is obtained for y = 24969.
�

In the case s = 3, we have B/A ≥ 4. This proves the theorem. We pretend however that a
better bound can be found. Obviously, we exclude the case x′i 6= xi (a factor 3 can be gained
here). A factor 2 can be gained in r/B if ki 6= K. The situation is now

n = (1 + x12K)(1 + x22K)(1 + x32K) = 1 + x2k.

Expanding, and looking at powers of 2 shows that K = k. The condition x′1 = x1 implies that
x1 divides x. Since x = x2 +x3 +x2x32K (mod x1), we have (1+x22K)(1+x32K) = 1+x1y12K

for some y1, hence n = (1 + x12K)(1 + x1y12K). Moreover, two other relations, with indices 2
and 3 also hold. I do not know if such numbers exist.

1.4 Debugging

This chapter is a test. Its aim is to find numbers for which the Fermat criterion fails. Using
the procedures defined below, we found the numbers shown here. The value n is the number
of primes needed to make the Fermat test work.

n = xy x y p n

118670087467 1 + 2p 1 + 8p 86121 5
315962312077 1 + 4p 1 + 16p 70263 5
354864744877 1 + 4p 1 + 16p 74463 5
602248359169 1 + 2p 1 + 10p 173529 5
457453568161 1 + 4p 1 + 12p 97623 5
307768373641 1 + 8p 1 + 16p 49035 5
528929554561 1 + 4p 1 + 12p 104973 5
546348519181 1 + 4p 1 + 8p 130665 5

11377272352951 1686511 4x-3 p N

22749134240827 2384803 4x-3 p N
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1.5 Algorithm p− 1 of Pollard

I do not know exactly how this works. The idea is the following. Let s = s0 be the seed,
a number coprime with n. Let R be some integer, and compute sR − 1. If R is the product
of the ri’s, we do this by computing si = sri

i−1. Let k denote the number of factors of R. If
gcd(sR − 1, n) is one, we are not lucky. Since for each prime p dividing n we have sp−1 = 1
mod p, this means that for each p dividing n, p − 1 does not divide R. So, if we are not lucky,
then n has no small primes.

Assume now that we are lucky, in other words, there exists a least i such that gcd(si−1, n)
is not 1. If moreover this is not n, then we have a nontrivial factor of n. If this is n, we may
try to factor ri. Assume first that ri is p1 . . . pm, where each pj appears with exponent 1. We
define S0 = si−1 and Sj = S

pj

j−1, so that Sm = 1 mod n. This equation means that there is a
least j such that gcd(Sj − 1, n) is not one. If this gcd is not n, then we have a nontrivial factor
of n. Otherwise, we start again with spj as seed instead of s. In this case, we will get Sj−1 = 1.
This equation means that the second time, we shall execute less steps than the first time. The
algorithm will finish if we decide to stop in the case where i = 1. We return 1 in this case. We
return 0 in case gcd(sR − 1, n) = 1. In all other cases, we return a nontrivial factor.

1.6 Algorithm of Morrisson and Brillhart

Assume that n is not a perfect square, and consider g, the integer part of
√
n. The algorithm

uses the continued fraction expansion of
√
n.

Let x0 =
√
n, and for i > 0, xi = ai + 1/xi+1, where ai is a positive integer, and xi > 1. We

can always write

xi =
αi +

√
n

βi
. (1)

In fact, this is true for i = 0 with α0 = 0 and β0 = 1. If we compute xi+1 we get

xi+1 =
βi(αi − aiβi)− βi

√
n

(αi − aiβi)2 − n
. (2)

This can obviously be written in the form (1) if the following holds:

αi+1 = aiβi − αi (3)

βiβi+1 = n− α2
i+1. (4)

Consider now ri = g − α2i−1, si = g − α2i, qi = a2i, pi = a2i+1, Pi = β2i and Qi = β2i−1. In
Equation (3) separate even and odd cases. We get

2g − si = Piqi + ri+1 (5)

2g − ri+1 = Qi+1pi + si+1. (6)

Note that x1 = (g +
√
n)/(n − g2) hence α1 = g, β1 = n − g2. Consider now Equation (4). We

have βiβi+1 = n− α2
i+1 and βiβi−1 = n− α2

i . Consider the difference, and use (3). This gives

βi+1 − βi−1 = ai(αi − αi+1). (7)

It is now obvious that the quantities αi and βi are integers. Separate even and odd cases. We
get

Qi+1 = Qi + qi(ri+1 − si) (8)
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Pi+1 = Pi + pi(si+1 − ri+1). (9)

Assume for a moment 0 ≤ g − αi < βi−1, in other words, 0 ≤ ri+1 < Pi and 0 ≤ si+1 < Qi+1.
This means that (5) and (6) are Euclidean division. Assume si, Pi and Qi are given. Then qi
and Ri+1 are deduced from (5), Qi+1 from (8), pi and si+1 from (6) and finally Pi+1 from (9).

Assume βi > 0; let us show 0 ≤ g − αi+1 < βi and βi+1 > 0. Since xi+1 = βi/(
√
n − αi+1),

the condition xi+1 > 1 is equivalent to βi >
√
n− αi+1 > 0. This gives 0 ≤ gαi+1 < βi. Now by

(3) αi+1 ≥ −αi ≥ −g > −
√
n by induction. This implies βi+1 > 0.

As a consequence, we have −g ≤ αi ≤ g and 0 ≤ βi ≤ 2g. In other words, this process is
periodic, the period being at most 4n.

We introduce now some other quantities, defined by

γi+1 = γi−1 + ai+1γi (10)

δi+1 = δi−1 + ai+1δi. (11)

where γ−1 = 1, γ−2 = 0, δ0 = 1, δ−1 = 0. One can show that these are the numerator and
denominator of the approximants to

√
n. Write Ai = γ2i−2 and Bi = γ2i−1. Then (10) is

equivalent to
Ai+1 = Ai + qiBi (12)

Bi+1 = Bi + piAi+1. (13)

Consider finally
Xi = nδ2i − γ2

i − (−1)iβi+1

Yi = nδiδi−1 − γiγi−1 + (−1)iαi+1

Compute first Yi+1. Replace δi+1 and γi+1 using Equations (10) and (11). Recognise Xi and
Yi. There are some other terms, that vanish because of Equation (3). We get

Yi+1 = ai+1Xi + Yi.

Compute then Xi+1. Replace δi+1 and recognise Xi and Xi−1. We get

Xi+1 = a2
i+1Xi +Xi−1 + 2nai+1δiδi−1 − 2ai+1γiγi−1 + (−1)iβi+2 − (−1)iβi + (−1)ia2

i+1βi+1.

Using (3) and (7), we have βi+2 − βi + a2
i+1βi+1 = 2ai+1αi+1. Hence

Xi+1 = a2
i+1Xi +Xi−1 + 2ai+1Yi.

Since X0 = 0, X−1 = 0, Y0 = 0, we deduce Xi = 0 for all i. This means that the following is
true:

A2
i +Qi = nδ22i−2

B2
i − Pi = nδ22i−1.

In general, we shall use these equations in the form b2 = r mod n, and compute bmodulo n.
However, if p is a prime number that divides r, the equation b2 = r + δ2n implies that n is a
square modulo p.
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2 Lenstra

The algorithm is based on so-called “elliptic curves”. Assume that K is a field, A, B, C, D
are elements of K. We consider the set E of points P with homogeneous coordinates (x, y, z)
satisfying

Azy2 = x3 +Bzx2 + Cz2x+Dz3. (0)

In the case z = 0, we get x = 0, hence y = 1. This point will be noted O in the sequel. For all
other points, we may assume z = 1, and consider the equation

Ay2 = x3 +Bx2 + Cx+D. (1)

For a point P with coordinates (x, y) we denote by P the point with coordinates (x,−y). If P
is on the curve, this new point will also be on it. We shall assume that the equation y = 0 has
only simple roots in x. This will ensure that the tangent at the curve is defined at each point.
Given two points P1 and P2, let P1P2 be the third point of intersection of the line passing
through P1 and P2 with the curve (the tangent if both points are equal). If this point is Q, then
Q will be called the sum of the two points and denoted by P1 + P2.

Assume P3 = P1 + P2, and the coordinates of Pi are xi and yi. We have then the following
equations:

δ =
3x2

1 + 2Bx1 + C

2Ay1
if P1 = P2 δ =

y1 − y2
x1 − x2

otherwise. (2)

y2 + y3 = δ(x2 − x3) x1 + x2 + x3 +B = Aδ2. (3)

Proof. As we shall see these formulae are only useful if no point is at infinity. It is in fact clear
that O + P = P +O = P , and that P + P = O.

Assume first that the two points are distinct. Write x3 = x2 + λ(x1 − x2) and −y3 =
y2 + λ(y1 − y2). Eliminate λ between these two equations. We get y2 + y3 = δ(x2 − x3). In the
case where the two points are equal, these equations have to be replaced by x3 = x2 + x̄ and
−y3 = y2 + ȳ where the quotient of x̄ and ȳ is the slope of the tangent. This gives the same
equation.

Consider the difference Ay2
2 − Ay2

3 = A(y2 − y3)(y2 + y3). Write it in function of x2 and x3,
and introduce δ. This gives

Aδ(y2 − y3) = x3
2 + x2x3 + x2

3 +Bx2 +Bx3 + C. (∗)

We have the same equation with x1 instead of x2. Consider the difference of these two
equations and factor out δ = (y2 − y1)/(x2 − x1). This gives the second equation when the
two points are different. If they are equal, just consider the difference of Equation (∗) and
2Ay2δ = 3x2

2 + 2Bx2 + C.
Lemma: Consider the projective complex plane. If two cubics, defined by homogeneous

polynomials F1 and F2, have no component in common, then each homogeneous cubic F that
passes through eight of their intersection points passes through the ninth point also.

We consider two points distinct points A and B. We can always chose constants c1 and c2
such that the curve defined by

F ∗ = FA,B = F − c1F1− c2F2

passes through A and B. In the case F ∗ = 0, we have finished. Assume hence that it is
nonzero, its degree is between 1 and 3. If P1, . . . , P8 are the eight points common to the three
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cubics, FA,B passes through P1, . . . , P8 as well as A and B. Now at most three of P1, . . . , P8 can
be on a line; otherwise this line will be a common component of F1 = 0 and F2 = 0. Similarly,
at most six of these points lie on a conic (this is the Bezout Theorem). Out of P1, . . . , P8, two,
say P1 and P2, always lie on a line L and five, say P4, . . . , P8, lie on a conic C. There are three
cases to be considered: In the first case, P3 lies on L. We take a point A on L and B neither
on L nor C. Because L and F ∗ = 0 have four points P1, P2, P3 and A in common, L is a
component of F ∗ = 0. The other component must be C. This contradicts the fact that B is
on F ∗ = 0. In the case where P3 lies on C, we chose A on C, B not on C neither L. On this
case F ∗ = 0 intersects C with at least 5 five points, hence C is a component of F ∗. The other
component must be L. Finally, if P3 is neither on C nor L, we chose A and B on L.

We claim that + this defines a commutative group on E. The nontrivial part is to prove
associativity. We consider only the general case. We have to prove that X = Y where X =
P1(P2 + P3) and Y = (P1 + P2)P3. We have to prove a big algebraic identity, depending on
parameters A, B, C and D. It suffices to prove this identity if the parameters are complex
numbers. Let C1 be the cubic formed by the three lines L1, L2 and L3, where L1 passes
through P1, P2 and P1P2, L2 passes through P3, P1 +P2 and P3(P1 +P2) and L3 passes through
P2P3, P2 + P3 and O. All these nine points are on E. Let C2 be the cubic formed by the three
lines l1, l2 and l3, where l1 passes through P3, P2 and P3P2, l2 passes through P1, P2 + P3 and
P1(P2 + P3) and l3 passes through P2P1, P2 + P1 and O. These nine points are also on E. It
suffices to apply the lemma.

Simpler formulae. Assume that the coordinates of P are x and y, that of 2P are x′ and y′.
Then

x′ =
(x2 − C)2 − 4D(2x+B)
4(x3 +Bx2 + Cx+D)

. (5)

The proof is easy: consider 4A2y2δ2 = (3x2 + 2Bx + C)2. Replace Aδ2 by (3), Ay2 by (1)
and expand. Assume now that we want to compute P + Q knowing P − Q. If x0, x3 are the
x-coordinates of P ±Q and x1, x2 are the coordinates of P and Q, then

x0x3 =
(x1x2 − C)2 − 2(B + x1 + x2)D

(x1 − x2)2
. (6)

The proof is easy: consider δ = (y1 − y2)/(x1 − x2) and δ′ = (y1 + y2)/(x1 − x2). We know that
x1 + x2 + x3 +B = Aδ2, x1 + x2 + x0 +B = Aδ′2. Compute x0x3 from these two equations. The
quantities δ2 + δ′2 and δ2δ′2, hence y2

1 + y2
2 and (y2

1 − y2
2)2 are needed. They are easily obtained

from (1). Expand.
Given a point P and an integer N , we want to compute NP . We assume here that N is

prime. In general, to compute this, the well know binary method is used. In order to use
Equations (5) and (6), the binary expansion of N has to be precomputed, and at each stage,
mP and (m + 1)P is computed. We need either 2mP or (2m + 2)P , this is a duplication, and
(2m+1)P , this is the sum, knowing that the difference is P . Our algorithm is sometimes faster
(should compute the mean complexity). Let N0 be N . Consider three integers a, b and c such
that ±c = a − b, aN + bM = N0. We assume A = aP , B = bP and C = cP . The value of M
is arbitrary, we assume however 0 ≤ M < N . We begin with a = 1 and b = 0. Each time the
equation is replaced by (a+ b)N + b(M −N) = N0 or a(N −M) + (a+ b)M = N0. We modify
the biggest of N andM . This means that the max is strictly decreasing. Since N0 is prime, N
and M are always coprime. This means that if N = M or M = 0 then N = 1. The algorithm
stops when M = 0, hence a = N0. The first iteration is special: because M < N , we replace b
with a+ b, that is, with a. The second iteration is also special: we have to compute a+ b = 2,
hence 2P . To minimise to number of operations, the ratio N/M should be the Golden Ratio.
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The next phase will be to change the value of the prime number. We need however to
explain a bit more what happens. Let p be a prime number, Fp the field of integers modulo p.
On this field, we define a group structure. The order L (number of elements) is easy to define.
For each i let yi be the quantity (i3 +Bi2 + Ci+D)/A. If this is 0, there is one point with i as

x-coordinate. If this is a square, there are two points, otherwise none. Recall that

(
a

p

)
is the

Legendre symbol, it is 0 if a is 0, 1 if a is a square modulo p, −1 otherwise. If we do not forget
the point at infinity, the order will be

L = 1 +
p−1∑
i=0

[
(
yi

p

)
+ 1]. (7)

This cannot be used easily. One can show that

p+ 1− 2
√
p ≤ L ≤ p+ 1 + 2

√
p. (8)

Any element of the interval can be an order, and the orders are fairly well distributed in the
interval. In fact, we shall chose the curve randomly. The idea is now to compute LP for
a point P . This will be the point at infinity. The denominator of the x-coordinate will be 0
modulo p. Assume that p is a factor of n. If we are lucky, it will not be zero modulo n. Of
course, we do not compute LP , but multiply P by a power of 2, then 3, then 5, etc. We never
compute the y coordinate. We assume that formulae (5) and (6) will give x and z, and if they
are both zero mod p, that y is not zero mod p.

Instead of considering a general curve, Ay2 = x3 + Bx2 + Cx + D we can make B or D
vanish, make A or C unity. Some people consider y2 = x3+ax+b. We prefer Ay2 = x3+Bx2+1.
The main reason is that Equations (5) and (6) simplify a lot.

Assume B′ = (B + 2)/4, x = a/b is rational in (6). Then x′ is

x′ =
(a2 − b2)2

4ab[(a− b)2 + 4abB′]
.

This can be computed in one less multiplication:

t1 = (a+ b)2 t2 = (a− b)2 x′ =
t1t2

(t1 − t2)[t2 +B′(t1 − t2)]

In the same fashion, (6) can be simplified. If we assume x1 = a/b and x2 = a′/b′ we have

t1 = (a− a′)(b+ b′) t2 = (a+ a′)(b− b′) x0x3 =
(t1 + t2)2

(t1 − t2)2

We shall implement these equations. A point P is represented by two numbers Px and Pz.
We assume that the point A is the initial point. We have to allocate space for points B and C,
for the sum D = A+B, and for t1, t2.

The problem is now to chose a curve and a point on it. We begin with choosing a point Q,
with coordinates a and b such that 3Q = 0. This is easy to construct: Q and 2Q must have the
same x-coordinates. Using (5) gives

B =
−3a4 − 6a2 + 1

4a3
A =

(a2 − 1)2

4ab2
. (11)
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Assume once and for all n coprime to 6. The value of b is really unimportant. We want a to be
coprime to n, so that A and B are well-defined. We also want a2 − 1 to be coprime with n, so
that A is nonzero.

We now chose an initial point P0. For instance x = 3a/4. This is nonzero. In order for y to
exist, Ax(x2 +Bx+ 1) must be a square. If we expand, we find that 9− 6a2 must be a square.
exist, the quantity 9− 6a2 has to be a square. a = 6r/(r2 + 6). This gives

y =
3b(r2 − 6)

4(r2 + 6)(a2 − 1)
. (12)

The quantity r is randomly chosen.
We now have to check that a(a2 − 1) is invertible modulo n. In fact, we add another test.

Note that the point P such that x = ±1 is such that x′ = 0 for P ′ = 2P . This means that
4P = 0. The question: is this point on the curve? Consider a prime number p, coprime to
A(B − 2)(B + 2). In the case B(A+ 2) is a quadratic residue, then yA =

√
A(B + 2) for x = 1.

In the case when B(A − 2), just chose x = −1. In the case where one and only one of B ± 1
is a residue, then one of A(B ± 2) is a residue. In the other case, B2 − 4 is a residue, say
B2 − 4 = ∆2. In this case, x = (−B ±∆)/2 and x = 0 are three roots of y = 0. We do not have
4P = 0, but three points such that 2P = 0. This means that modulo each prime p, the order is
always a multiple of 4. The primes under consideration are only divisors of n.

Note that if B2 − 4 is not a square, then y = 0 has a simple root. If the case where this is
a square, it has three roots. It is easy to see that this quantity has 16a6 as denominator. The
numerator is (a2 − 1)3(9a2 − 1). To avoid multiple roots, we add the condition that 9a2 − 1 is
invertible modulo n.
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