UNIVERSITE DE PROVENCE
U.F.R. M.I.M.

ECOLE DOCTORALE DE MATHEMATIQUES ET INFORMATIQUE E.D. 184

THESE

présentée pour obtenir le grade de
DOCTEUR DE L'UNIVERSITE DE PROVENCE

Spécialité : Mathématiques Appliquées

par

Vincent Lunot

sous la direction du Dr. Laurent Baratchart

Tatre :

Techniques d’approximation rationnelle en synthese
fréquentielle : probleme de Zolotarev et algorithme de Schur

soutenue publiquement le 5 mai 2008

JURY
M. Alexander Borichev Université de Provence Président
M. Laurent Baratchart INRIA Sophia Antipolis - Méditerranée Directeur de these
M. Daniel Alpay Ben-Gurion University of the Negev (Israel) Rapporteur
M. Smain Amari Royal Military College (Canada) Rapporteur
M. Stéphane Bila Institut de Recherche XLIM, Limoges Examinateur
M. Stanislas Kupin Université de Provence Examinateur
INVITES
M. Damien Pacaud Thales Alenia Space, Toulouse
M. Edward B. Saft Vanderbilt University (USA)






Remerciements

Je remercie en premier lieu M. Alexander Borichev pour 'honneur qu’il me fait de présider
ce jury.

Il m’est difficile d’exprimer en quelques mots ce que je dois & M. Laurent Baratchart,
mon directeur de these. Sa perception globale de certains concepts mathématiques m’a été
d’une grande aide a plusieurs reprises, lorsque je me retrouvais dans une impasse. Mais je
lui dois surtout un enrichissement, tant sur le plan culturel qu’humain, acquis lors de ces
quelques années passées au sein de son projet.

La premiére partie de cette thése a été encadrée par M. Fabien Seyfert, qui m’a fait
découvrir un univers passionnant, celui des méthodes numériques employées en optimisa-
tion et approximation rationnelle. Je lui suis tout particulierement reconnaissant du temps
qu’il a pu me consacrer a me fournir de nombreuses explications, le plus souvent d’une
limpidité extréme.

Je remercie M. Daniel Alpay et M. Smain Amari qui m’obligent infiniment en accep-
tant de rapporter cette these.

Concernant I'approximation Schur, je remercie M. Stanislas Kupin et Mme Martine
Olivi avec qui j’ai eu l'occasion de travailler. La capacité de M. Stanislas Kupin a refor-
muler de maniere simplifiée des concepts complexes m’a permis une meilleure perception
du probleme. Le soutien régulier de Mme Martine Olivi m’a été d’une aide précieuse.

La partie applicative de cette these est certainement celle qui m’a apporté le plus sur
le plan de la satisfaction personnelle.
L’intérét prononcé de M. Smain Amari et M. Stéphane Bila pour mes résultats concernant
le calcul des fontions de filtrage a été un facteur de motivation supplémentaire.
De plus, la collaboration avec M. Stéphane Bila, M. Philippe Lenoir et M. Abdallah Nasser,
qui a permis de déboucher sur la fabrication de plusieurs filtres hyperfréquences multiban-
des a été réellement passionnante.

Mes trois années au sein du projet APICS seront inoubliables. Merci a tous ses mem-
bres.
Je remercie France Limouzis, Stéphanie Sorres et Christine Riehl pour leur aide concer-
nant tous les problemes organisationnels.
Un grand merci tout particulier a José Grimm, pour sa relecture attentive de certains
chapitres de ma these, pour ses remarques pertinentes (bien que parfois formulées de
maniére surprenante), pour ses explications quant & certains problemes informatiques, et
plus généralement pour tout ce que j’ai appris grace a lui.
Enfin, merci & Jean-Baptiste Pomet, Alban Quadrat, Juliette Leblond, Rania Bassila,
Stéphane Rigat, mais aussi a Sapna Nundloll, du projet voisin, Comore.

Finalement, je tiens a remercier mes parents et mon frére, ainsi que mes amis, pour
tous les moments de joie qu’ils ont pu m’apporter.






Contents

0 Introduction 1

I A generalized Zolotarev problem with application to the synthesis

of multi-band microwave filters 5
1 A short introduction to microwave filters 9
1.1 Structure of a microwave filter . . . . . . .. ... o oL 9

1.2 The scattering matrix . . . .. .. .. . L L o 10

2 Computation of optimal multiband filtering functions 15
2.1 Statement of the synthesis problem . . . . . ... ... ... ... .. 15
2.1.1 Polynomial structure of the S matrix. . . . .. ... ... ... ... 15

2.1.2 Zolotarev problem . . . . . .. ... ... 18

2.1.3 Real Zolotarev problem . . . . . ... ... ... ... 19

2.1.4  Sign combinations and characterization of the solution . . . . . . . . 20

2.2 Algorithms . . . . . . . . . e 24
2.2.1 A Remes-like algorithm for the all polecase . . . . . . ... .. ... 25

2.2.2 A differential correction-like algorithm for the rational case . . . . . 28

3 A generalized Zolotarev problem 33
3.1 A polynomial Zolotarev problem . . . . ... ... ... ... ... ... .. 33
3.1.1 Notations . . . . . . . .. . 34

3.1.2 The polynomial problem . . . . . . .. .. ... ... ... 36

3.1.3 Characterization of the solution . . . . . . .. ... ... ... .... 36

3.1.4 A Remes-like algorithm . . . ... ... ... ... o000, 41

3.2 A rational Zolotarev problem . . . . .. ... ... ... L. 48
3.2.1 Existence of a solution . . . . . . .. .. ... ... .. 49

3.2.2 Characterization of the solution . . . . . . ... ... ... ... ... 50

3.2.3 A differential-correction-like algorithm . . . . . . .. ... ... ... 55

4 Design examples 61
4.1 A dual-band filter. . . . . . . ... 61
4.2 Another dual-band filter on SPOT5 specifications . . . . . . ... ... ... 64

4.3 A tri-band filter . . . . . ... 66



ii

CONTENTS

5 Conclusion 69
5.1 A rational Remes-like algorithm . . . . . . . ... ... . ... ... ..... 69
5.2 Degree of the solution . . . . . ... ... .. L Lo 71
5.3 A complex Zolotarev problem . . . . . . .. ... ... .. 72

II  Schur rational approximation 75

6 Notations and first definitions 79

7 The Schur algorithm 81
7.1 Multipoint Schur algorithm . . . . . ... .. ... ... ... ... 81
7.2 Continued fractions . . . . . . . . ... 83
7.3 Wall rational functions . . . . . . . . . . .. ... 84

8 Orthogonal rational functions on the unit circle 91
8.1 Reproducing kernel Hilbert spaces . . . . . . ... ... ... ... ..... 91
8.2 Christoffel-Darboux formulasin £,, . . . . . . . . .. .. . ... ... .... 92
8.3 Orthogonal rational functions of the first kind . . . . . . ... .. ... ... 94
8.4 Orthogonal rational functions of the second kind . . . . . . ... ... ... 98

9 Link between orthogonal rational functions and Wall rational functions105
9.1 The Herglotz transform . . . . . .. .. ... ... ... ... . ... 105
9.2 A Geronimus theorem . . . . . . . .. ... 107
9.3 Consequences of the Geronimus theorem . . . . . . .. ... ... ...... 109

10 Some asymptotic properties 113
10.1 A Szeg6-type problem . . . . . . ... 113

10.1.1 Generalities . . . . . . . . . . 113
10.1.2 An approximation problem . . . . . ... ... oo, 114
10.2 Convergence of the Schur functions f,, . . . . . .. ... ... ... ... .. 119
10.2.1 L? convergence with respect to a varying weight . . . .. ... ... 119
10.2.2 An asymptotic-BMO-type convergence . . . . . . .. . .. ... ... 124
10.3 Convergence of the Wall rational functions A, /B, . . . .. ... ... ... 126
10.3.1 Convergence on compact subsets . . . . . . . ... ... ... .. 126
10.3.2 Convergence with respect to the pseudohyperbolic distance . . . . . 127
10.3.3 Convergence with respect to the Poincaré metric . . . . . .. .. .. 128
10.3.4 Convergence in L2(T) . . . . . . .o 129

11 Approximation by a Schur rational function of given degree 131
11.1 Parametrization of strictly Schur rational functions . . . . . . . .. ... .. 131
11.2 Computation of the LZ norm . . . . . . . . . . .. .. ... 136

11.2.1 Two methods using elementary operations on polynomials . . . . . . 136
11.2.2 A method using matrix representations . . . . . .. ... ... ... 137
11.3 Examples . . . . . . ..o 139
11.3.1 Approximation of Schur functions . . .. ... ... ... ... ... 140

11.3.2 Approximation of analytic but not Schur functions . . . . . . .. .. 148



CONTENTS

iii

12 Conclusion
12.1 J-inner matrices and the Schur algorithm . . . .. ... .. ..
12.2 Interpolation on the circle . . . . . . .. ... ... ... ....
12.3 A better algorithm 7 . . . . . ... ... Lo
12.3.1 Another algorithm . . . . ... ... ... ... ... ..
12.3.2 Relation between the two algorithms . . . . . . . .. ..
12.3.3 Toward a parametrization of all Schur rational functions

Bibliography

153
153
155
157
157
158
159

161



iv

CONTENTS




Chapter O

Introduction

Mis a part I'introduction qui est en francais, ’ensemble du manuscrit est rédigé en anglais.
Etant moi-méme fervent défenseur de la langue francaise, ce choix peut paraitre sur-
prenant. La justification est en grande partie pratique : la premiere partie étant basée sur
une série d’articles en anglais ([Bila et al., 2006], [Lunot et al., 2007] et [Lunot et al., 2008]),
il m’a semblé naturel de conserver cette langue. La seconde partie, quant a elle, devrait
faire 'objet d’un futur article. La rédiger directement dans la langue internationale m’a
donc paru approprié. De plus, certains éléments de ce travail pouvant intéresser d’autres
scientifiques, il m’a semblé dommage d’en limiter 'acces aux seuls connaisseurs de la langue
de Moliere.

De surcroit, écrire tout un manuscrit dans une langue étrangere est un excellent exercice
pour progresser dans sa pratique. En effet, cela permet d’assimiler du nouveau vocabu-
laire, mais aussi de se rendre compte, et ainsi de corriger, certaines grossieres erreurs.
Enfin, 'anglais étant la langue scientifique internationale, son utilisation a aussi été choisie
par respect pour la communauté scientifique.

Cette these traite deux problemes : la résolution d’un probleme de Zolotarev et ’ap-
proximation rationnelle sous contrainte Schur. Ces problemes ont en fait deux points
communs.

Le premier peut étre pergu au niveau du domaine d’application. En effet, ces deux problemes
apparaissent lors de la fabrication de filtres hyperfréquences. La résolution du probléeme
de Zolotarev permet de calculer des fonctions de filtrage optimales et trouve donc des ap-
plications en synthese de filtres. L’approximation rationnelle Schur, quant a elle, permet
I'identification de systemes passifs, et donc en particulier de filtres.

Le deuxieme point commun se situe au niveau théorique. Les deux problemes sont de
type max min, et les techniques employées dans leur étude font partie du domaine de
I’approximation rationnelle.

La premiere partie traite d’un probleme de Zolotarev. Le calcul de la solution d’un tel
probleme ayant déja permis la réalisation de filtres hyperfréquences aux caractéristiques
complexes, le sujet est abordé du point de vue applicatif.

Le premier chapitre présente tres succinctement les filtres hyperfréquences. Il s’agit
de filtres utilisés dans les satellites de télécommunications, et qui sont en fait une suc-



2 Introduction

cession de cavités. Leur modele théorique est une série de circuits résonnants, identifiée
a un quadripole. Celui-ci est représenté par une matrice 2 X 2 notée S, appelée matrice
de transfert, qui permet de faire le lien entre les puissances entrantes et sortantes. Les
termes S11 et Soo correspondent aux réflections de puissances, et les termes S19 et So1 aux
transmissions.

Le deuxieme chapitre définit la notion de fonction de filtrage optimale, et introduit les
divers résultats sous forme simplifiée. On montre tout d’abord que le carré du module de
la transmission s’écrit sous la forme

1
1S12)* = ———

i
q

ou p et g sont deux polynomes tels que le degré de p est supérieur au degré de q. La
fonction de filtrage F' d’un filtre est définie par F' = p/q. On dit qu’elle est optimale si
pour un niveau de transmission donné dans les bandes passantes (notées I), la réflection
est maximale dans les bandes stoppées (notées J). Comme le systéme est conservatif, la
transmission Sp2 et la réflection S1; sont libes par la relation |S11|? + [S12/?> = 1. Une
fonction est donc optimale si elle est solution du probleme normalisé suivant

Trouver (p,q) solution de : max min
(p,q)€RY, wed

o

R = {<p, 2) € PalR) x PA(R), sup

wel | q

Si p/q est optimale, alors le signe de p est constant sur les bandes stoppées J et le signe
de ¢ est constant sur les bandes passantes I. On découpe donc le probleme en sous-
problemes ot le signe de p (resp. ¢) est imposé sur chaque bande stoppée (resp. passante).
Ce sous-probléme signé admet une unique solution, qui est caractérisée par une propriété
d’alternation. On s’intéresse alors au calcul de cette solution. Pour cela, on adapte des
algorithmes classiques d’approximation rationnelle. Un algorithme de type Remes (voir
[Remes, 1934] ou [Powell, 1981]) est obtenu pour le cas polynomial. Le cas général (ra-
tionnel) utilise un algorithme de type correction différentielle (voir [Cheney and Loeb, 1961]
ou [Braess, 1986]).

Le troisieme chapitre traite un probleme généralisé. Sur les bandes passantes, la fonc-
tion n’est plus supposée comprise entre -1 et 1 mais entre deux fonctions continues. Sur
les bandes stoppées, le critere maximisé n’est plus la valeur absolue, mais ’écart a une
fonction continue. De plus, les bandes passantes et stoppées ne sont plus des intervalles
de longueur finie, mais des compacts, voir méme pour le cas polynomial des compacts du
compactifié d’Alexandroff, c’est-a-dire que la possibilité d’intervalles de longueur infinie
est considérée. Enfin, un poids est ajouté.

Le quatrieme chapitre présente la mise en pratique de la théorie. Les fonctions théoriques
et les mesures obtenues apres fabrication par les laboratoires de I'institut XLIM (Limoges)
de deux filtres bi-bandes et un tri-bandes sont données.

p(w)’ 31}.

La deuxieme partie traite ’approximation rationnelle sous contrainte Schur. On ap-
pelle fonction Schur une fonction analytique et bornée en module par 1 dans le disque



unité. L’approximation d’une fonction Schur f par une fonction rationnelle elle-méme
Schur a d’importantes applications dans l'identification de systemes passifs. Les tech-
niques habituelles d’approximation rationnelle non-contrainte L? ne permettent pas de
traiter un tel cas. En effet, lorsque la fonction f prend des valeurs proches (en module) de
1, Papproximant L? tournant autour de la fonction, celui-ci peut alors prendre des valeurs
plus grandes que 1, et ainsi ne pas étre Schur. L’idée est alors d’utiliser un algorithme de
Schur multipoints ([Jones, 1988]) qui permet d’obtenir une fonction rationnelle garantie
étre Schur.

Le premier chapitre présente un tel algorithme. A partir d’une fonction Schur et d’une
suite de points (ay) dans le disque, celui-ci fournit une suite de fonctions Schur (fy) et
une suite de points du disque i, appelés parameétres de Schur. L’algorithme est identifié a
une fraction continue, dont les convergents d’ordre pair sont appelés fonctions rationnelles
de Wall. Ces fonctions de Wall sont des fonctions Schur. Nous verrons par la suite qu’il
s’agit de candidats intéressants pour 'approximation.

Le deuxieme chapitre introduit les fonctions rationnelles orthogonales. La présentation
est basée sur le livre [Bultheel et al., 1999].

Le troisieme chapitre fournit un lien entre 'algorithme de Schur et les fonctions ra-
tionnelles orthogonales. A cette fin, nous associons par la transformée de Herglotz une
mesure a la fonction f. Un théoréme de type Geronimus (voir [Geronimus, 1944] pour la
version traitant le cas des polynémes orthogonaux, ou [Langer and Lasarow, 2004] pour
une version étendue aux fonctions rationnelles orthogonales) est ensuite présenté. Celui-
ci montre que les parametres de Schur sont liés aux valeurs des fonctions rationnelles
orthogonales aux points ay.

Le quatrieme chapitre est une étude de différentes convergences. On y présente tout
d’abord un résultat de type Szegd qui relie asymptotiquement les valeurs prises par les
fonctions rationnelles orthogonales aux points «j (tendant possiblement vers le cercle
unité) aux valeurs prises par la fonction de Szegé de la mesure en ces mémes points. On
généralise ensuite des résultats de convergence obtenus pour 'algorithme de Schur clas-
sique dans [Khrushchev, 2001]. Lorsque les points «j ne sont pas tous pris en 0 comme
dans le cas classique, des poids de type noyau de Poisson en «y apparaissent. La diffi-
culté supplémentaire vient du fait qu’ici, les points (ax) peuvent tendre vers le cercle.
On obtient d’abord une convergence L? avec poids des fonctions de Schur f,, puis pour
les fonctions rationnelles de Wall, une convergence sur les compacts, une convergence par
rapport a la distance pseudo-hyperbolique et a la métrique de Poincaré et une convergence
de type L?, toujours avec poids de type noyau de Poisson. En plus de ces extensions de
[Khrushchev, 2001], nous construisons aussi une suite de points (o) pour laquelle nous
obtenons une convergence de type “BMO asymptotique” des fonctions de Schur f,.

Le cinquiéme chapitre est une étude numérique ayant pour objectif le calcul d’un
approximant rationnel Schur de degré fixé. Pour cela, on constate tout d’abord que
P’algorithme Schur multipoints fournit un paramétrage des fonctions rationnelles stricte-
ment Schur. Un processus d’optimisation est alors mis au point. Plusieurs exemples sont
traités, et la comparaison est faite avec 'approximation non contrainte L?.
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Part 1

A generalized Zolotarev problem
with application to the synthesis
of multi-band microwave filters






Every day, people use filters without even noticing it. Indeed, in our society where
communications are omnipresent, filters are needed in order to select the relevant in-
formation. They can be found in many different systems such as mobile phones, ra-
dios, televisions, satellites, ... Therefore, it is not surprising that filters have been widely
studied by the engineering community (see for example the books of [Kurokawa, 1969],
[Hong and Lancaster, 2001] and [Cameron et al., 2007]).

However, since more and more performing filters are needed, new problems arise. In par-
ticular, being able to compute advanced filtering characteristics has become a major way
of improving and simplifying the architecture of systems.

Some recent studies (e.g. [Cameron et al., 2005b], [Macchiarella and Tamiazzo, 2005] and
[Lee and Sarabandi, 2008]) exposed methods using frequency transformations to design
multiband microwave filters. However, these lack generality. Indeed, the response is lim-
ited to symmetric specifications or by the position of the transmission zeros.

For general specifications, some optimization methods are known (e.g. [Amari, 2000] and
[Mokhtaari et al., 2006]). However, they do not guarantee the optimality of the response.
Our purpose throughout this part is to give efficient ways to compute multiband filtering
functions, that is giving algorithms which are proven to converge to the optimal solution.
In this way, an automatic tool for computing the filtering functions can be implemented.
We will adapt to that purpose some classical techniques of rational approximation.

This part is divided in four chapters. The first one introduces briefly microwave filters: a
description is given and the theoretical model is presented. The second chapter gives meth-
ods for computing multiband filtering functions. The problem to solve is in fact a Zolotarev
problem ([Todd, 1988]), that is finding a rational function bounded in modulus by one on
some intervals whose infimum in modulus on some other intervals is maximal. We tried in
this chapter to give the results in a simplified way. The Zolotarev problem, in the specific
case where only two intervals are given (i.e. the rational functions are bounded by one
over an interval, and we want to maximize the infimum on another interval), is studied in
[Le Bailly and Thiran, 1998], and an algorithm is given. However, this algorithm uses the
specific structure of the solution in this particular case, and does not extend to the general
case with more than two intervals. Therefore, we present here two algorithms, which are
adaptations of the Remes algorithm ([Remes, 1934]) and the differential-correction algo-
rithm ([Cheney and Loeb, 1961]). The purpose of the third chapter is to give full proofs of
the previous results. In fact, problems with more general constraints are studied. Finally,
in the fourth chapter, multiband filters designed using the previous theory are presented.






Chapter 1

A short introduction to microwave
filters

In this chapter, we will give a brief description of microwave filters. More details can
be found in [Kurokawa, 1969], [Hong and Lancaster, 2001], [Baratchart et al., 1998] and
[Sombrin, 2002]. We first present microwave filters and their different components. Next,
the theoretical model is introduced.

1.1 Structure of a microwave filter

The purpose of a microwave filter is to select frequency ranges, i.e. to let the signal pass for
some frequency ranges called the pass-bands and to stop the signal at some other frequen-
cies, the stop-bands. Microwave filters work in frequency domains around the GHz, and
their passbands are only a few MHz. A microwave filter is a passive system, only composed
of a sequence of cavities (i.e. finite volumes delimited by metallic walls), electromagnet-
ically coupled by irises (i.e. small apertures in the cavity). Fig. 1.1 shows a dual-mode
microwave filter with six cavities. In Fig. 1.2, the reader can see the different components
of a filter: the cavities, the irises, and some screws.

The design of a filter is complex, and is usually divided in two main steps: the synthesis

w‘w‘%\\mwﬂ

;'&* "'e

Figure 1.1: A dual-mode microwave filter with six cavities.
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Figure 1.2: Irises and screws of a dual-mode microwave filter.

and the identification.

The first one consists in determining the physical parameters which meet the specifications,
that is determining the topology, the number, the type and the size of the cavities, and
the type and size of each iris. For example, the topology of the monomode filter in Fig.
1.3 is totally different from the one of the dual-mode filter in Fig. 1.2.

Once the main structure is determined, the filter is manufactured. Since the manufactured
filter can not be perfect, tuning must be done. Tuning is realized by adjusting the screws
embedded in each cavity. In this process, in order to determine which screw should be
tuned, the actual parameters of the filter have to be identified and compared with the
theoretical ones. This process is called the identification.

1.2 The scattering matrix

As stated before, the elementary component of a filter is a cavity. When fed through a
waveguide, the effect of a cavity on the electric and magnetic fields in the waveguide sec-
tion can be modeled as a RLC circuit ([Kurokawa, 1969], [Collin, 1991], [Matthaei, 1965]).
More precisely, in a narrow band around the resonance frequency of the cavity, the ampli-
tudes of the electric and magnetic fields of the feeding mode propagating in the waveguide
behave like voltages and currents of a RLC circuit. In a similar way, several cavities con-
nected one to the other by small apertures can be modeled as a sequence of circuits coupled
electromagnetically (see Fig. 1.4). R;, L; and C; denote respectively a resistor, an inductor
and a capacitor. M;; and r;; are an inductive coupling and a resistor, which represent the
interaction between the i-th and j-th resonator circuits. Z1 and Z5 are related to the elec-
tromagnetic couplings realized between the feeding mode and the resonating modes of the
input and output cavities. The latter couplings are usually realized by the input and out-
put irises. Depending of how many modes are excited in the cavity, the latter is modelled
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Figure 1.3: A monomode microwave filter with seven cavities.
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Figure 1.4: The equivalent electrical model.
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Figure 1.5: The low-pass prototype.

@ | Quadripole ) 75

Figure 1.6: The quadripole model.

by one or two resonant circuits (one per mode). The resonance frequency of the resonating
modes are entirely determined by the dimensions of the cavity. For circular cylindrical
cavities and rectangular cavities, simple formulas are known ([Conciauro et al., 2000]). In

the circuit representation, ——— represents the frequency of the mode, and R; represents

VLiC;
the dissipation loss of the cavity.

In an ultimate approximation and normalization step, and when working in a very
narrow band around the resonance frequencies of the cavities, the response of the RLC
circuit (Fig. 1.4) is close to the response of the so-called low-pass prototype (Fig. 1.5)
around the zero frequency (for details, see [Cameron et al., 2007] or [Sombrin, 2002]). In
this transformation, the central frequency of the filter is cast to the zero frequency. In the
low-pass circuit, magnetic couplings are replaced by constant admittance inverters (jM; ;)
and the LC elements are replaced by unity inductors and frequency-invariant reactances

When considering only the input and output, the previous circuits are in fact quadripoles,
or two-port networks (see Fig. 1.6). When the first entry is powered, using Kirchhoff’s law,
we obtain a linear relation between the Laplace transforms of the currents I, Is (Fig. 1.6)
and the voltages Vi, V5 modelled by a 2 x 2 matrix Z :

(w)=2(%):

The matrix Z is called the impedance matrix. The entries of Z are rational functions
of the variable iw, where w denotes the frequency. Note that, due to the narrow-band
approximation, the polynomials of the rational function do not necessarily have real valued
coeflicients.

In practice, we can only measure the amplitude and phase of the incident and reflected
waves. These waves are denoted by aj, ag (incident waves) and by,by (see Fig.1.6) and are
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The square modulus of these quantities can be seen as the transmitted and reflected powers
at the input and output of the filter. The relation between the input and the output is
given by a 2 x 2 matrix S whose entries are denoted by S;;, 1 <1,5 < 2:

<b1>:<511 512)<a1>
ba So1 - S22 az
Definition 1.2.1 The matriz S is called the scattering matriz of the filter.

The terms S11 and Sos represent the reflection, and S1o and Ss; the transmission. In
Fig. 1.7 and 1.8, the transmission and the reflection of an ideal monoband filter are plotted
(the passband is I = [—1, 1] and the stopbands are J; = [—3,—1.1] and J, = [1.1, 3]).

Definition 1.2.2 We call attenuation level in a stopband the value (in dB) of the min-
imum of the absolute value of the transmission —201log; |S12| in this band, and we call
return loss in a passband the value (in dB) of the minimum of the absolute value of the
reflection —20log; |Saz2| in this band.

In Fig. 1.7 and 1.8, the attenuation level in the stopband [1.1, 3] is equal to 30 dB, and
the return loss in the passband [—1, 1] is equal to 22 dB.
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The matrices S and Z are related by

S =242 — 20)(Z + Zo) ' 2}/

Z1 0
Zo = ( 0 Zs ) '

We assume that the microwave filter is a stable causal linear system without loss, i.e. we
assume that R; and 7;; are small and can be approximated by 0. As the filter is modelled
by a finite sequence of resonant circuits, it is a finite dimension system. Therefore, the
entries S;; of the scattering matrix are rational functions, analytic in the right half-plane.
Furthermore, the reciprocity law implies the equality S12 = S2; and the conservativity of
the system implies that S is an inner matriz, i.e. S(iw)tS(iw) = Id for all w € R. As the
filter is supposed to be a perfect reflector without phase shift at infinite frequencies, we
impose lim,_,», S(z) = Id.

where




Chapter 2

Computation of optimal
multiband filtering functions

This chapter is essentially a compilation of the following articles: [Bila et al., 2006],
[Lunot et al., 2007] and [Lunot et al., 2008]. The purpose is to give efficient ways to com-
pute multiband filtering functions. As stated in the introduction, no existing method
is totally satisfactory. We first define the optimal filtering function as the solution of a
Zolotarev problem. We therefore study such a solution, and next, give two algorithms to
compute it. In this chapter, the results are just given. The proofs will be given in the next
chapter.

2.1 Statement of the synthesis problem

Starting from the scattering matrix, we state our problem as a max min problem. We next
show that this problem can be divided into easier sub-problems. The characterization of
the solution of such a sub-problem is given.

2.1.1 Polynomial structure of the S matrix

We have seen in the previous chapter that the scattering matrix S of a filter has the
following properties:

e The entries of S are rational functions analytic in the right half-plane, i.e. analytic
in {z € C, Re(z) > 0},

e S is an inner matrix (i.e. S(iw)'S(iw) = Id for all w € R),
e Si2 = 591,
o lim, . S(z) = Id.

For a polynomial p, we denote by p the polynomial given by p(z) = p(—Z). Note that we
have p(iw) = p(iw) for all w € R. We now give the polynomial structure of the scattering
matrix.
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Proposition 2.1.1 If a 2 x 2 matriz S satisfies the above properties, then there exist
polynomaials p, q and d and an integer n such that

s=alh bl

with d and p monic of degree n.
Furthermore :

1. the roots of d are in the left half-plane {z € C, Re(z) < 0},
2. the degree of q satisfies d°q < n — 1,

3. q=(-1)""q, and

4. dd = pp—(—1)"¢*.

Proof Since the entries of S are rational functions, det(S) is a rational function. We
define the polynomials r and d by

S = det(S)

with r and d relatively prime and d monic. We denote by n the degree of d. Since S is
inner, writing s = iw with w € R, we have S(s)!S(s) = Id so

det(S(s)") det(S(s)) = 1.

Note that det(S) is not the zero function. We get

= det(S(s))det(S(s)) = |det(S(s 2:70(8)@:7'(8)}1(8).
1 t(S(s))det(S(s)) = |[det(S(s))] S OREE

Thus, _
r(iw)r(iw) = d(iw)d(iw) for all w € R

and, since a non-zero polynomial has a finite number of roots, we obtain

r7 = dd.

Since S is stable, all the roots of d are in the left half-plane. As r and d are relatively
prime, their roots are distinct. We therefore deduce that the roots of 7 are exactly the roots

of d. Consequently, there is a complex number v such that r = 757. Thus det(S) = 7%.
Furthermore, since |det(S)| = 1 on the imaginary axis, |y| = 1.

We denote by C' the matrix
Soa =512 >
C =
< =51 Sn

Since det(S) # 0, S is invertible and S~ = C/det(S) so
vdS~! = dC. (2.1)

As S(s)~1 = 5(s)" on the imaginary axis, the entries of S~! and S are equal on an infinity
of points. Since these entries are rational functions, they are equal everywhere : S~ = St
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S being stable, S has all its poles in the right half-plane. But S~! = §t7 SO 'yéle —1 also
has its poles in the right half-plane. Since the entries of C' are, up to a sign, the entries
of S, C is stable. Thus, dC' is also stable. Therefore, using the equality (2.1), we deduce
that dC' is a rational matrix with no poles in C. Consequently, dC' is a polynomial matrix.
Then, we obtain that dS is also a polynomial matrix. We therefore get the existence of
polynomials p, g, v and v such that

d| u v

szl[p Q].

Furthermore, $ is symmetric, so « = ¢. We have S~! = §% and §~ = C/ det(S) therefore

[ 71307
dl —49 P dLa v
Thus, we deduce that v = 7p and
q=-7q (22)

We get

Since SS = Id, we have

E[ P q~H§ —w]zfd.
dd | =74 7P q P

Looking at the first entry of the previous matrix, we obtain %g‘ﬁ = 1, that is, using (2.2),

PP+ qq = pp — v¢* = dd.

Since lims_.o S(s) = Id, p is monic of degree n and the degree of ¢ is at most n — 1.
Furthermore, limg_,o, S22(s) = 1, so 7p is monic of degree n. But the leading coefficient of
p is 7(—1)"2". Therefore, v = (—1)".

[ |

In fact, in the previous representation of S, n is the number of resonators (e.g. [Cameron, 1999)).
Note that, as ¢ = (—1)""1g, the roots of ¢ are symmetric with respect to the imaginary
axis. Therefore, g is, up to a rotation, a polynomial with real coefficients. More precisely
z +— i"T1q(iz) is a polynomial with real coefficients.

Using the previous proposition, the squared modulus of the transmission parameter is
expressed as

. q,.\*_4949,. aq_ .
Satie)f = [jlie)]| = i) = 2w
B 1 B 1
- b/ - . 2
L+ B (iw) 4 ’zgzg‘ (2.3)
1

1+ |F(iw)|?
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where F = g is known as the filtering or characteristic function. In practice, the measure-
ments give values of the filtering function F'.

In the case of a single passband, one can show that all the roots of p (respectively
q) are real numbers and are in the passband (respectively in the stopband), e.g. see
[Le Bailly and Thiran, 1998]. Furthermore, the optimal function is equiripple in the bands,
i.e. there are d°p + 1 points in the passband where the maximum is reached, and d°q + 1
points in the stopband where the minimum is reached.
For given transmission zeros (i.e. ¢ is fixed), a formula using the arccosh function al-
lows the computation of a polynomial p that yields an equiripple filtering characteristic
([Cameron, 1999]). The latter formula in fact gives the solution to the so-called third
Zolotarev optimization problem that, roughly speaking, specifies in mathematical terms
the notion of a “best” filtering function for a bandpass filter. Whereas in the multi-band
situation explicit formulas no longer exist for F', we show in the following that the orig-
inal Zolotarev problem adapted to a single passband can easily be extended to take into
account several passbands and stopbands.

2.1.2 Zolotarev problem

Let I1,...,I, and Jy,...,Js be a collection of r + s finite closed intervals on the real axis,
non reduced to a point. The intervals (I;)1<;<, represent the pass-bands whereas (J;)1<i<r
represent the stop-bands. Therefore, they are disconnected two by two. We note I the
union of all the pass-bands and J the union of the stop-bands:

I:OIZ- and J = O‘Ji'
i=1 i=1

The “best” multi-band response is such that the transmission and the reflection are
as big as possible respectively on the pass-bands I and on the stop-bands J. Since the
system is conservative (|S11]? + |S12|> = 1), this is equivalent to saying that the modulus
of the transmission is as big as possible in the pass-bands I and as small as possible in the
stop-bands J. Using the expression of the transmission (see equation (2.3)), the correct
way to formulate the previous problem is to maximize the following ratio:

.| P
min |=(w)
wed | q
max
Q) EPn (C)X P, (R
(p,9) (© ()max E(w)
wel |q

where Py (K) is the set of polynomials of degree at most k with coefficients in K. If a pair
(p,q) which maximizes the above ratio is found, a multiple of this pair also maximizes
it. Therefore, we choose to normalize the ratio by assuming that max,es |p/q(w)| = 1.
Thus, we obtain the following normalized optimization problem specifying what the best
filtering function is

find (p, q) solution of: max min
(p.9)eRy, wed

2) (2.4
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Figure 2.1: Graph of a function p/q in R}, for the case of two passbands I;, I3 and one
stopband Jj.

where R}, is the set of the rational functions of numerator (resp. denominator) degree at
most n (resp. m) bounded by 1 in the pass-bands:
)
I

and .|| is the sup norm over the set I. Fig. 2.1 gives an example where I = I; U Is,
J=Ji,n=T7and m = 1.

Since the constant polynomial 1 is in R]; and has a minimum equal to 1 in J, an
optimal solution P/Q of the problem (2.4) has a criterion min,e s |p/q(w)| at least equal
to 1. Therefore, P # 0, and we can assume that P is monic. Then setting p(s) = i" P(—is)

Ry = {<p, ) € PulC) x Pi®), |

} p

and ¢(s) = tQ(—is) yields a scattering matrix with the lowest possible transmission in all
the stopbands J;, provided |So1|? > H% in the passbands I;.

2.1.3 Real Zolotarev problem
In this work, we consider solving problem (2.4) under the additional condition that p is a

polynomial with real coefficients. Therefore, the problem in which we are interested is

find (p, q) solution of: max min
(p,q) R, weJS

2w) (25)

with

q
p

gl}.
qallr

and we give the following definition of an optimal filtering function:

R, = {<p, 0) € Pa(R) x P4 (R),
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Definition 2.1.2 A filtering function % 1s said to be optimal if it is a solution of the real
Zolotarev problem 2.5.

In particular, considering the real problem implies that the synthesized scattering matrix
satisfies S11 = S22, which is clearly an extra condition. On the one hand the latter
guarantees, for example, that the response can be synthesized in a cul-de-sac topology,
but on the other hand the solution to the “complex” Zolotarev problem can achieve better
results (because less restricted).

2.1.4 Sign combinations and characterization of the solution
Sign combinations

Our goal is now to eliminate the absolute value in (2.5) to get a “linear” version of the
problem. If g is an optimal solution of (2.5) and is irreducible (i.e. gcd(P, Q) = 1) then,
as the value of the max min in (2.5) is positive, P has no zero in J and, as the absolute
value of £ is bounded by one over I, @ has no zero in I. Therefore, P has constant sign
in every interval J; and @ has constant sign in every interval ;. So there exists a sign
function o (such that o(w) = +1) that is constant in every interval I; and J; such that g
has a representative in the convex set
< 1} |
T

Of course, we do not know the signs in advance, but there are only a finite number
of possible combinations of them. For every combination of signs on the intervals, we
therefore define a signed version of (2.5) by

p

Azz{@,q)emx% o € 7 pw)o() 2 0,0 € T s (o) > 0, 2

find (p, q) solution of: max min M.

2.6
(pa)eAr, wel  q(w) (2:6)

Solving (2.6) for all possible sign combinations and retaining the overall best solution
yields an optimal solution of (2.5).

If m > 0, the number of different possible choices of sign is 2rumber of intervals However, as
‘g) — ‘—717’ — ‘%‘ — ‘}Z , we can Ol’lly consider 2number of intervals/4 — 2number of intervals—2
choices of sign. We choose the convention that the signs on the first pass-band and on the
first stop-band are positive.

If m = 0, only the signs over the intervals J; have to be taken in account, and therefore,
the number of different possible choices of sign is 2mwwber of stopbands Ji—1

For example, suppose that we want to compute the “best” filtering function of a filter
with three stop-bands Jp, Jo, J3 and two pass-bands I, I>. In this case, the number of
different possible choices of sign is 2number of intervals=2' _ 93 — g 'Then, the eight possible
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choices of sign are :

Jv It Jo Ix J3
o+ o+ o+
+ oo+ o+ -
+ o+ o+ - -
oo+ -+
+ o+ - - 4
+ o+ - - -
+ o+ -+ -
+ o+ -+ o+

Computing the solution of the problem for this eight choices of sign, and taking the overall
“best” result yields the solution to the original problem.

Note that for a tri-band filter (three pass-bands and four stop-bands), the number of
choices of sign to consider is equal to 2° = 32. Suppose you want to compute the filtering
function of a 10-band filter, then you have to consider 2! = 524288 choices of sign. We
can see here the biggest drawback of this theory: we will never be able to compute a filter
with numerous bands using this method. However, in practice, we are usually interested
in dual-band filters, and from time to time in tri-band filters, for which the amount of
signed problems to solve is quite low.

In the following, we will denote by J*, J=, I'™ and I~ the union of intervals .J; defined
by

Jt = g:l{JiﬂU(Ji) = 1}7 J = Uf:l{']iva(‘]i) = _1}7
It = U;zl{fi, O'(IZ) = 1}, I~ = U‘Z-Szl{fi, O'(IZ) = —1}.

In order to obtain the all pole case (i.e. m = 0), the polynomial ¢ has to be taken equal
to 1, and the signs are only considered in the intervals J;.

Characterization of the solution

Imagine that we are trying a numerical method to compute the solution of the polynomial
sub-problem defined by

en=7m=0

o [ =]-1,-0.3]U[0.5,1],

e Jt =[-5-1.1]U[-0.2,0.4],
o J- =][1.1,5],

and that we obtain the result in Fig. 2.2.

In an optimization process, numerical problems often happen, therefore checking the
veracity of the result whenever it is possible is only good sense. However, looking at the
previous result, it seems difficult to say whether it is good or not. In fact, intuitively, we
could expect a better solution by improving the oscillation in the left pass-band. For this
reason, being able to check whether a function is optimal or not seems to be useful.

For a given sign function o, we now give a way of testing whether a rational function
of “full rank” (where no simplification between numerator and denominator occurs) is a
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Figure 2.2: Best polynomial of degree at most seven?

solution of (2.6). The latter is based on an alternation property. Let A be the value of the

minimum of ‘g’ on J. We define the following sets of “extreme” points:

EY(p,q) = {w el g(w) - 1} U {w € J,g(w) - —)\}

and

E~(p,q) = {w e 1,2w) = —1} U {w cJ,Lw) = )\} .
q q
In Fig. 2.1, ten “extreme” points (6 in E* and 4 in £~) are plotted.

Definition 2.1.3 A sequence of consecutive points (w1 < wa < --- < wy) is called “alter-
nant” if its points belong alternatively to the sets E*(p,q) and E~(p,q).

In Fig. 2.1, an alternant sequence of nine consecutive points can be found (points A
and B belong to the same set and cannot therefore appear consecutively in an alternating
sequence). “Extreme” points allow us to determine whether a function is the solution of
Problem (2.6) or not. Indeed, the following holds (the proof is given in the next chapter):

Theorem 2.1.4 The mazimization problem (2.6) admits a unique solution. Furthermore,
g 18 an optimal solution of “full rank” if and only if there exists a sequence of N + 2

“alternant “ frequency points with N = m + n.

The alternant sequence is therefore a proof of optimality for a given filtering function.

In the single band case, the characterization we gave is equivalent to the classical
equiripple property in the passbands and stopbands. However, in the multi-band case,
this is no longer true in general. Indeed, look again at Fig. 2.2: we can check that there
are nine alternant points, seven in the pass-bands for which the value of the function is
+1 and two in the stop-bands at —0.2 and —1.1 (see Fig. 2.3). Therefore, this function is
the solution of the given signed problem, but is not equiripple.

We now give another example where the solution is not equiripple. Fig. 2.4 shows the
optimal 6 —4 function (considering all the possible combinations of sign) for the stopbands
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Figure 2.3: Optimal polynomial of degree seven!

” ]
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Figure 2.4: Optimal but non-equiripple filtering function with 6 poles and 4 zeros (trans-
mission in grey, reflection in black).
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Figure 2.5: Optimal 6-4 response with enlarged passbands and unequal return loss levels
in the passbands.

[—2; —1.3], [-0.6;0], [1.3;2] and for the passbands [—1;—0.8], [0.6;1]. The attenuation
level attained in the stop bands is of 32.2 dB whereas the return loss is set to 20 dB.
The twelve “extreme” points confirm that this 6 — 4 non-equiriple function is the optimal
solution (at least for the considered combination of sign) with respect to the specifications.
However, one might enlarge a bit the pass-bands and try to obtain an equiripple response
with different return loss levels in the passbands. This was done by solving the problem
with the following passbands [—1; —0.75] and [0.5; 1] and return loss levels of respectively
25 dB and 20 dB. As shown on Fig. 2.5, the optimal frequency response for these new
specifications is equirriple. These new specifications are harder to meet that the preceding
ones (larger passbands and higher return loss in one passband) and result in a poorer
optimal attenuation level of 22.4 dB. Here again, twelve “extreme” points confirm the
optimality of the response (for the considered choice of signs).

Another non intuitive result is that the degree of the solution is not always maximum.
We give an example in the polynomial case (m = 0). Take the intervals:

o I=[-V3-1]U[1;V3],
o Jm =[-3;—V3.6]U[V3.6;3],
o JT = [0,\/@]

and look at the polynomial —22 + 2 (Figure 2.6).
This function has seven alternant points, therefore it is the solution of the problem for
2 <n < 5. This shows that the degree of the solution is not always maximum.

2.2 Algorithms

In this section, we focus on computing the solution of the signed problem for a given
signed function o. We recall that in order to obtain the solution of the original problem,
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Figure 2.6: solution with a non maximal degree.

gnumber of bands - 2 gy;ch sub-problems have to be solved. Two different algorithms, which
are adaptation of classical techniques used in rational approximation ([Cheney, 1998],
[Braess, 1986]) are presented here. The first one is a Remes-like algorithm which can only
handle all poles functions (i.e. polynomials), but is really effective in this specific case. It
is only based on the alternation property verified by the solution. The second algorithm,
which is a differential-correction-like algorithm, works in the general case. It uses linear
programming.

2.2.1 A Remes-like algorithm for the all pole case

We are now interested in computing the solution when the functions are polynomials. We
first enounce the previous results in this particular case. The Zolotarev problem in the all
pole case is

solve : max min |p(w)]
{pEPn,lIpll1 <1} weJ

Therefore, for a given signed function o, the sub-problem has the form:

find p solution of: max min o(w)p(w). 2.7
P {PEPr(R),|Ipll; <1} wed (@plw) 2.7)

We recall that the number of such problems to solve is 2mwmber of stop-bands - 1 ‘The fo]lowing
holds :

e the maximization problem (2.7) admits a unique solution,

e P is an optimal solution of (2.7) if and only if there exists a sequence of n + 2
frequency points w; < wy < -+ < w42 such that its elements belong alternatively
to the sets ET(P) and E~(P)

with
EY(P)={wel,Pw)=1}U{we J ,Pw)=-A}

and
E7(P)={wel,Pw)=-1}U{we J", Pw)=A}.
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Note that even if the solution P of the problem is not of maximal degree (i.e. d°P < n),
it is characterized by a sequence of n + 2 alternant points.

The exchange algorithm

We now come to an algorithm to solve problem (2.7) for the general multi-band situa-
tion. The latter belongs to the family of exchange algorithms first introduced by Remes
([Remes, 1934]) for polynomial approximation. Its main idea is to determine, in an itera-
tive manner, the location of the n + 2 alternating frequency points. The algorithm is now
given, and is next fully detailed on a simple example.

To initialize the algorithm, choose n + 2 admissible points w?, ..., w9 ,.

The points Y, ... ,wY, , are admissible if

e at least one point is in I and one point is in J,
o if W) € J* (resp. J7)then w),, ¢ JT (resp. J7)

Associate to these points values of alternation a(wf), ..., a(wd ).

o if W) € J then a(wf) = o(wf),

o if W) € I then a(w)) = +1 with the value taken such that the sequence

a(wd),...,a(wl ;) is alternated.

Once the initialization is done, repeat the following steps :
1. Compute pi on the reference set wh, ... ,w§+2.

Let pr(w) = D1 afuw'.

We associate to w¥, ... ,wﬁﬁ the system of equations:
pe(wh) = —a(WF) if Wk €1,
k k ek (2.8)
pr(wf) = a(wi) A, if Wi € J.

Compute the solution of this system with n 4+ 2 equations and n 4+ 2 unknowns
(the a¥ and \j). We obtain pj and \j.

2. Look for the “worst” point wyorst-

Let M), = max (maxer [pr(w)| — 1, max,e g A — o(w)pr(w)).

If M, = 0, the algorithm stops and returns pg.

Else take wyorst associated to My, (i.e. wyorst is a value for which the max in My
is obtained) and define a(wyorst) as

a(wworst) = 59”(1 — Pk (Wworst)) if Wworst € 1,
a(wworst) == U(wworst) if Wworst € J.

3. Define a new sequence of n + 2 points w'f“, . ,wﬁi% by substituting wyorst to one

of the wf in order to keep an alternated sequence.
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We define the index j such that wf is substituted by wy,orst via the following rule:

o if WP < wWyorst < %1‘€+17 then if a(w¥) = a(Wworst), j =1, else j =i + 1.
o if Wyorst < Wk, then if a(wh) = a(Wworst), 1 = 1, else 7 =n + 2.
o if wyorst > w,’j+2, then if a(w§+2) = a(Wyorst), ] =n+ 2, else j = 1.

. k+1
This gives a sequence w’ i+ :

rk+1 Kk . .
w P Wy Vi j
rk+1
w j = Wworst

k+

)

1k+1

The new sequence w*? is obtained by sorting in increasing order the w i

The Remes algorithm gives a sequence of polynomials (p;);en which converges to P,
solution of the signed problem (2.7). The proof is given in the next chapter.

A detailed example

We now give a detailed example in order to illustrate the Remes algorithm :
n=2J =[-15-13],I =[-1,-0.5],J2 = [0,0.5], I = [1,2],0(J1) = 1,0(J2) = —1
ie. JT =J1,J = Js.

Step 0: Initial guess for the reference set
We start with an initial guess for the alternating frequencies, for example

1=-13, wr=-1, w3=-0.75 ws=-0.5
alw)) =1, a(w)=-1, alws)=1, a(ws)=-1.

Step 1: Solving problem (2.8) on the reference set
On this simple reference set we solve problem (2.8), which means that we look for the
polynomial Py of degree 2 that has maximal value, say Ag, in w; under the requirement to
remain bounded (in absolute value) by 1 on the other frequencies wo, w3, wy.

The alternation property verified by Py yields to the following set of linear equations:

Py(—1.3)=Xo, Po(=1)=1, Py(—0.75)=—1, Py(—0.5)=1

that can be solved for Py and )¢ and lead to Py = 32w? + 48w + 17 and \g = 8.68. The
resulting polynomial is shown in Fig. 2.7.

Step 2: Determining the point where the polynomial “deviates most”

Obviously the polynomial Py does not satisfy the boundedness condition on I5. We look
for the point where our current polynomial “deviates most” from a valid solution either
by exceeding the modulus bound on I or by reaching a minimal value on J that is smaller
than the current \g. More precisely we use the following rule: Let wy,q, be the point where
| Py(w)| is maximal on I, and let wy,ipn a point of J where the minimum of Py(w)o(w) is at-
tained. If | Py(wmaz)| — 1 > Ao — Po(Wmin)0(Wmin), take wyorst = Wmaz, €lse wyorst = Wimnin -
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Figure 2.7: Initialization of the exchange algorithm : A = 8.68, winqee = 2.

In the current example wyrst = 2 is selected.

Step 3: Adaptation of the reference set
We now make some change in the reference set (w1,ws,ws,ws) and obtain the following
new reference set:

w1 = —1.3, Wo = —1, w3 = —0.75, Wy = 2.

The inclusion of the new element is performed so as to be able to compute a new alter-
nating polynomial using step 1, see Fig. 2.8.

The latter iterations between step 1 and step 3 are continued until a polynomial Py
is determined that satisfies (in a numerical meaning) the boundedness condition on I and
reaches the minimum of (2.7) on J at a frequency point of the reference set (see Fig. 2.9
and 2.10). The polynomial of Figure 2.10 is the optimal solution of the problem (2.7) for
the choice of sign o. The corresponding reference set is

wi=-13, we=0, wy3=1, wqg=2
and satisfies the optimality condition of the preceding section.
In order to determine an optimal solution of the original Zolotarev problem, we also
solve the problem (2.7) with the following choice of signs o(J;) = 1,0(J2) = 1 for which

the solution is found to be the constant polynomial 1. Since 1.21 > 1, the polynomial of
Fig. 2.10 is therefore the optimal solution of the original problem.

2.2.2 A differential correction-like algorithm for the rational case

Now we present an algorithm which is an adaptation of the differential-correction algorithm
used in rational approximation ([Cheney and Loeb, 1961]). Such an algorithm uses linear
programming, which is the topic of the following section.
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Figure 2.8: Tteration 1 : A = 3.88, Wi = 1.

Figure 2.9: Tteration 2 : A = 1.99, win = 0.
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Figure 2.10: Iteration 3 : A = 1.21, all constraints satisfied.

Linear programming and polynomial approximation problems

This section is meant as a short tutorial on the use of linear programming in connec-
tion with polynomial approximation problems like the one we just stated. Suppose we
only have one stop band J = [1.1,2] and one pass band I = [—1,1]. We are interested
in the all-pole filter of order 2 that solves the related Zolotarev problem, i.e. among all
polynomials of degree < 2 that are bounded by 1 on [ find the one with the fastest
growth on J. The solution to this problem is known to be the Chebychev polynomial
P(z) = cos(2arccos(z)) = 222 — 1 (see [Rivlin, 1990]). We will now see that this result
can be recovered from a numerical algorithm. The advantage of this procedure is that it
will extend to multi-band situations for which closed form formulas are not known. Once
a sign has been chosen for the polynomial P = ax?+bx+c in J (say positive), the original
Zolotarev problem can be formulated as the following optimization problem:

find a, b and c¢ such that p is maximal, with

Ve eJ, pu<azr?+bx+e, (1)

Veel, 1>ax®+br+ec, (i7)

Veel, —1<ar®+bx+ec (i)
Here, p is an auxiliary variable which expresses the minimum of the polynomial over
sample points in the interval I yields a set of linear inequalities in the variables (a, b, ¢, 1).
In this way, the original Zolotarev problem is cast into a linear optimization problem with
linear constraints: a linear program (LP for short). These kinds of problems have been
widely studied and efficient software to solve them exists (e.g. Cplex, lp_solve, Matlab,
Maple). Using the LP solver of Matlab and taking 100 sample points over the intervals I
and J yields the following solution: a = 2.0002, b = 10~!2, ¢ = —1.0002. The advantage
of this method as compared to closed form formulas is that it can be generalized to any
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Cr={P*/Q*}

Figure 2.11: Sets C(u) for 1 < po < p* (C1 :=C(p1), Ca := C(p2) and C* := C(u*)).

number and any arrangement of the intervals I and J.

In the following, the general problem of filters with transmission zeros at finite frequencies
is tackled. This amounts to dealing with rational fractions instead of polynomials. The
general algorithmic framework remains however similar and relies in particular on the use
of linear programming.

Geometry of the sub-problem

We will now study problem (2.6) from a geometric point of view. If we denote by u the
value of the criterion min in (2.6) for a given (p, ¢) (1 can be seen as the rejection level of
% in the stopbands) then the convex set C(u) defined by

Clp) ={(p,q) € A, Vw € J : o(w)p(w) — plg(w)| = 0}

is in a way the set containing all the functions which have at least a rejection level u
in the stopbands. Let p* be the value of the criterion maxmin in (2.6) (p* is the best
possible rejection). Then, by definition of the max, C(u*) is the set of representatives of
the optimal function 5 The key point for computing the solution of problem (2.6) is
that, for u; < pe < p* < us, the following holds (see Fig. 2.11) :

o C(uz) =0,

o C(u*) = {g:} (i.e. C(p*) is the set of representatives of P*/Q*),

o C(u*) CC(u2) CCu).

Indeed, by making an hypothesis on the possible rejection level p and by checking the
emptiness of C(u), the following information on p* is known :

o if C(u) is empty, pu* < p,
e if C(u) is non-empty, u* > p.
Therefore, a dichotomy method testing emptiness can be used to compute the optimal

rational filtering function. It is crucial to notice that the convexity of the set C(u) allows
to check non-emptiness using linear programming.
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Detailed Equations for Checking Emptiness

For a criterion p, let f, be the following function:

fu(p,q) = min (o(w)p(w) — plg(w)]).
weJ

Note that C(u) = {(p,q) € A}, fulp,q) > 0}. f, is continuous and A}, is compact.
Therefore, one way of checking emptiness of C(u) is to find (p, q) in A, which maximizes
the function f,.

Computation can be done by discretising the I and J intervals. Indeed, in this way,
the equations of the constraints in A become linear in the coefficients of p and ¢. More
precisely, the problem of finding (p, g) is done by solving the LP problem :

solve : maxh (2.9)

subject to

Yyj,  o(y;)p(y;) — nqly;) = h,

Vyj, o(y)p(y;) + paly;) = h,

Vaj, o(x;)q(z;) >0,

Voj, —o(xj)q(z;) < pz;) < o(z;)q(zy),
where (x;) (resp. (y;)) are a discretization of I (resp. J). If the maximum A is positive,
then (p,q) in A}}, which maximizes f, has been computed, therefore the set C(u) is non-
empty. Else, if h < 0, the set C(u) is empty. Accuracy depends of course of the number
and placement of chosen points.

Differential Correction-Like Algorithm

Instead of using dichotomy as suggested previously, we now come to an algorithm which
adjusts u in a more efficient way by using the information gained from solving (2.9).

Initialization : Choose polynomials (pg, qo) in A7,. Compute

0 = min
H weJ

el

Then repeat :

Compute (pg, qi) which solves the LP problem (2.9) for p:= pi_1 :

f#kﬂ(pkan) = (prqrig)jn f,“fk—l(pa Q)'

If fue (Prsar) < 0 return (pr—1,qr—1) else compute

[k = min

Dk
wed (w)‘ ’

qk

In our case, as we use a discretization of I and J, the computation is done over
finite sets. This ensures that the sequence of criterion (uy)r converges toward the optimal
criterion p* (the proof is given in the next chapter).



Chapter 3

A generalized Zolotarev problem

We now give the proofs of the results mentioned in the previous chapter. The Zolotarev
problem is extended to a problem with weight and general constraints. This extension
allows, in particular, to compute the optimal filtering function with respect to some spec-
ifications. We first study the polynomial case, and next, the rational case. The tech-
niques employed are adapted from polynomial and rational approximation (see for exam-
ple [Rivlin, 1990], [Powell, 1981], [Cheney, 1998] or [Braess, 1986]). Since the problem has
been introduced in the previous chapter, we explain very briefly how it is extended, and
next, we study the related sub-problems, which are generalizations of (2.6).

3.1 A polynomial Zolotarev problem

In the previous chapter, the polynomial problem was

solve: max min |p(w)|.
{pePr(®),lIpll; <1} weJ

This problem can be formulated as

lve: i —-0,0— .
solve {pE'Pn(R),—lIélpazg)Sl for wel) glelf]l max (p(w) p(w))

We now introduce two continuous functions [ and u in order to generalize the constraints.

We also add a nonnegative “weight” ﬁ, where @ is a given polynomial. The problem

becomes

solve: max minmax<p(‘“) (e, u(w) — 2 ) (3.1)

{PEPn(R), Vwe LU(w) < 2 <u(w)} €7 1Ql(w) - 1Q(w)

The notation [ (resp. u) is chosen because [ (resp. ) is a lower bound (resp. upper bound)
for p/|@Q| on I. We therefore assume [ < u on I.

However, we assume that [ > u on J. As we are going to see, the solution is then bounded
above by u on some intervals of J, and bounded below by [ on the other intervals of J.
Indeed, suppose that the problem (3.1) has a solution p* such that ged(p*, @) = 1 and

PY@) ) (e — @)
QI @) ule) \@uw)) >0

min max
weJ
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Therefore, on each interval of .J, either %' > [, or % < u. Thus, as mentioned in the
previous chapter, the problem can be divided in sub-problems. For each sub-problem, we
choose on each interval of J to maximize the minimum of either |p—* *

We now introduce the notations and the hypotheses made in order to study such a

sub-problem.

—loru—p—‘.

3.1.1 Notations

We choose to work in the Alexandroff compactification of R, denoted by R = R U {o0}.
Therefore, the possibility of intervals of J of infinite length is considered. In order to han-
dle such an extended problem, new considerations have to be done. This is the subject of
this section, where all the notations and hypotheses of work are given.

Maximum degree: n.
n is a positive integer.

Pass-bands and stop-bands: I, J. R
I, J" and J~ are three distinct closed subsets of R such that

e [ is a compact set of R which contains at least n + 1 points,
o JtNJ =0

e J=J"U.J" is non-empty,

e INJ#ITand INJ # J,

°

—_—
e INJ=0.

Furthermore, we suppose that the parity of n is in agreement with the "unboundedness”

of J~ and JT. For example, we will never try to compute the optimal polynomial of degree

at most 8 with values —oco at —oo and +00 at +00, because this polynomial cannot be of

degree 8. We make the convention that

e if n is even, then JT is a compact set of R or J~ is a compact set of R,

e if n is odd, JT and J~ are bounded on the right or on the left (one of them is
bounded on the right and the other on the left).

We denote by X the union of I and J.

Note that, the main differences with Chapter 2 is that I and J are not unions of in-
tervals but closed sets, J is not necessary bounded, and the intersection of I and J is not
necessary empty. The case IN.J # () can be considered by a modification of the constraints.
One of the interests of such a generalization is, when considering the “simple” problem,
to impose a constraint between the intervals, for example a constraint of positivity.

Constraints or specifications: [, u.
[ and u are two functions from X into R such that :

e |(z) <u(z) for all z in I,
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e —00 < l(z) < +oo for all z in JT,
o —o0 < u(x) < +ooforall zin J™,
o IN{u=+oo}N{l=—-0c0} =0,

o I\ ({u = +oo} U{l = —o0}) is a compact set of R which contains at least n + 1
points,

[ is continuous over J and I\ {{ = —o0},
e v is continuous over J~ and I\ {u = +o0},
o if z€1NJT then u(z) = 400, and if z € I'NJ~ then I(z) = —oo,

We denote by I}* the set I\ ({u = 400} U{l = —o0}), by I, the set I N {l = —oo} and
by I,"* the set I N {u = +o0}.

Note that in Chapter 2, u =1and = —1onI,u=10=0on J, and I = I}*. Note also
that on I}, the two constraints are active, but on I\ I}*, only one constraint is active.

“Weight” or fixed denominator: Q.
Q is a function from X into R such that Q = |¢|g with g a positive continuous function
over X and ¢ a non-zero polynomial such that:

° ZQﬁIluzq),
o J\ Zg=J,

where Zg is the set of all the roots of q.

When J is unbounded, we also assume that O, uQ and [Q are negligible with respect to

x — x" (at 00). The hypothesis on Q is made to avoid limg 1 ‘%’ = 0 for every p € P,.

The hypotheses on ©Q and [Q ensure the compactness of the set of “extreme” points.
Note that in Chapter 2, Q = 1.

Admissible polynomials: A.

A:{pGRﬁWGIJ@)<g$3<u@%.

Note that A is a compact convex set because I;* contains at least n 4 1 points.

“distance” of p: §(p). B
For p € P, we define d(p) : X — R by

min (u(x) — g(x) , g(z) - l(a:)) if x € I},
Sp)(x) = ¢ B —i(x) if x € JYUL™,
u(x) — p() ifxeJ UI'.
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Criterion or minimal distance over J from p to the constraints: f,.
We denote by p, € R the value

pp = inf 5(p)(x).

zeJ

Note that p — p, is concave (but not strictly).

3.1.2 The polynomial problem

We are interested in solving the following problem :

Find (whenever it exists) a polynomial p* € A such that MAX i = fipr (3.2)
pE

We first check the existence of a solution when A is non-empty.

If for every polynomial p in A, p, = —oo, then every polynomial is solution. We now
suppose that a polynomial py with finite criterion exists (i.e. pp, > —o0). We denote by
p* the upper bound of the set {y,,p € A} and by (py,),cy @ sequence which converges to
u*. Since A is a compact set, we can suppose, without loss of generality, that the sequence
(pi);en converges (this is true for at least a subsequence). We denote by p the limit of (p;).
Let z € JT\ Zo.

As §(pi)(z) > pp,, we have p;i(x) > (I(z) + pp,)Q(z). Therefore, p(x) > (I(x) + p*)Q(z),
and we get 0(p)(x) > p*.

If z € JT N Zg, then either p/Q is continuous at x and the result is still true by continuity
because J \ Zg = J, or p(z)/Q(x) = +o0 and then §(p)(x) = +o00 > p*.

The same argument holds if x € J~. Thus, we obtain u; > p* and we therefore conclude
that p is a solution.

In the following, we assume the non-emptiness of A and the existence of a polynomial
p € A such that p, > —oc.

3.1.3 Characterization of the solution

In the case of polynomial uniform approximation, it is well known (e.g. [Cheney, 1998])
that the best approximation of degree n to f, denoted p*, is characterized by an alternation
property, that is by the existence of n + 2 points x1, ..., T,12 such that

f(wg) = p*(25) = p*(wi1) — f(wic1) = £ f —p'[|ooc for2<i<n+2

As we will see, such kind of alternation property also characterizes the solutions of the
Zolotarev problem.

Let p € A such that p, > —oo. We associate to p the following sets:
o El(u) = {w € I,p(z) = u(2)Q()},
o BY(1) = {z € I,p(z) = (z)Q(x)},
o B = E}(u) U EL(0),

o By ={xeJ" px)=((x)+p)Qx)},
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o By ={xeJ,p()= (ulz) - 1p)Qx)},
e EP = EY UEY UEY.

If J is unbounded and if the degree of p is not maximal (i.e. d°p < n), then we add the
point oo, and we denote by EP the set EP U {oc}. If J is bounded or the degree of p is
maximal, then Ep = EP.

Note that EP is a compact of R. Indeed, the sets previously defined are the inverse image
of {0} by continuous functions.

Definition 3.1.1 An element ofﬁ’ is called an extreme point of p.
We define a map v, from EY U J into {—1,1} by :

y(x):{ —1 ifze EP(u)uJ \ {oo},

P 1 ifze EY()uJt\ {oo}.

and

(=)™ if J© unbounded on the left,
(—=1)"*! if J© unbounded on the left,
+1 if J* unbounded on the right,
-1 if J~ unbounded on the right.

vp(00) =

In some way, this function indicates on which direction the polynomial could be improved
at its extreme points. For example, if a polynomial in A reaches the constraint « in I, the
only way to locally modify it in order to stay in A is to decrease its value at this point.
This decrease is indicated by the value —1 of v,. Similarly, if the reached constraint is [,
then the value has to be increased, and this is denoted by v, = +1.

We now want to characterize the solutions of the problem (3.2). We introduce to that
purpose the following functions.

Definition 3.1.2 Let p € A such that p, > —o0o. To each ¢ in EY U J, we associate a
map XZC) from Pp(R) into R defined by:

ey = | QxS iAo, |
¢ vp(00) X hy, if ( =00 and h(zx) =Y hiz'.

We call such a map a characterizing function of p at ¢.

Note that the set of all characterizing functions of p is a compact set of the space of
linear applications L(P,,R).
Indeed, the function { XIE is continuous over R so the sets {X]g,C € J N EP} and
{Xg, ¢ € EV'} are compact (as images of compact sets by a continuous function).

Lemma 3.1.3 Let p* be a solution of (3.2). There exist distinct points xg, ..., T, € Er
and positive real numbers Ao, ..., \r such that for every polynomial h in Py (R),

z’”: XX, (h) =0
i=0

withr <n+1.
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Proof The set of all characterizing functions of p* is a compact set (see the remark before
lemma). Therefore, its convex hull C' is compact.

Suppose that 0 ¢ C.
The Hahn-Banach theorem (e.g. [Brezis, 1983]) gives the existence of & > 0 and h €
Py \ {0} such that:

W e BY, Y (h) > 20> 0.

We next want to show that this hypothesis implies that p* is not optimal. We construct
to that purpose a polynomial p* + eh € A such that iy« ien > pp.

The map z — 1%‘2,‘ is continuous over R. Therefore, for each ¢ € EP", we can take
an open interval I containing ¢ and such that

h(:z:) > .

For each ¢ € Zo \ EP", we can find an open set I¢ such that 6(p*)(z) > 2aif z € - N T
and d(p*)(x) > pp + 20 if x € Ie N J.

If the infinity is an extreme point, since Q is negligible respect to x — x™ at infinity, we
can choose an open set I, on which Vp*(oo)% > a.

If the infinity is not an extreme point, p* is of maximal degree, and we define an interval
Ino = ]—00,a[U]b,+0[, a < 0,b>0 by

o for x € |b,+oo[NJ, §(> 1 (pf — %rl)xz) > ppr + o

(2

o for z € ]—00,a[NJ, (X" o(pf — (—1)"Z)a?) >y + .

Let 8 = %31615 (u(z) —I(x)) > 0.

Using the continuity, we can restrain the intervals I in order to have
Ve EP Yz eI, §(p*)(z) < B
Let 0 = U I:. 0 is an open set, therefore 0 N I and “0 N J are compact. Thus
CEEP U{oo}UZg

7= min 6(p°)(x) > 0 and 32 = min 6(p")(x) > fpr.

Let w = min(y1,v2 — pp+). Then w > 0, w < 1, ppr +w < 72 and
1. Ve e IN, 6(p*)(z) > w,
2. Ve e JN°O, 6(p*)(z) > pp + w.

Let € > 0 such that

1. € sup [hlz)]
vexneg Q)

< min (w, ),

2. §(p* +eh)(w) > ppr +aif x € I;NJ and ¢ € Zg \ BV,
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3. 8(p* +eh)(x) > aifrel-NIand ¢ € Zg\ EF,

4. if the infinity is not an extreme point, € also has to be such that

€ max |h;| < |p;§!
0<i<n 2

Let us check that p* + €h is better than p*.
The choice of epsilon is such that over each I, ( € Zg '\ EP” . we improve the polynomial
p* by adding eh. We will see that this is also true for the other intervals.
On I, we have 6(p* + €h) > - + ¢ with ¢ = min(«, ea). Therefore, on I, we improve
p* by adding an €h.
On each I¢, ¢ € EP", vp+(() 1 :L_(T:gn| > a, therefore h has the same sign that v« ().
If ¢ € Ef* (u), h is negative over I, therefore (p* +€h)/Q < p*/Q < u over I¢. Further-
more, u—p*/Q < B over Ic N1, so p*/Q —1 > 23. Consequently, (p* +€h)/Q > +1> 1.
Thus we get | < (p* + €h)/Q < u over I N I. The result is identical if { € Ef*(l).
If e Eg*, h is positive over I¢, therefore (p* + €h)Q > p*/Q > 1 + pu* over Ir N J. The
same is true if € Eg* c(p*+eh)/Q <p/Q < u—p* over Ic N J.
If z € ‘9N I, we have d(p* + €h)(z) > 0, so I(z) < (p*(z)+€h(z))/Q(x) < u(x).
If z € ‘0N J, §(p* + eh)(z) > pp-. Thus (p* +€h)/Q(x) — I(x) > pp over Jt and
u(z) — (p* +€h)/Q(x) > py- over J~.

We get fipsyen, > . This contradicts the maximality of p*. Thus 0 € C, and using the
Carathéodory theorem, we obtain the existence of an integer r < n + 1 such that

3z, @ distinct € P Ao,..., A >0, VAP, Y Aixk(h)=0.
=0

We will now see how p* can be characterized by a “simple alternation property”.

Definition 3.1.4 If ® is an application with values in {—1,1}, the points xq, ..., x, are
called ®-alternant whenever

T < Tijq1

Vi0<i<r—1,
pEstET {‘I’(fﬂi):—‘l’(%ﬂ)

Proposition 3.1.5 If p* is a solution of (3.2), p* has n+ 2 extreme vy--alternant points.

Proof Using the previous lemma, we get r + 1 distinct points xg,...,x, € EP and
T

r + 1 positive real numbers Ag, ..., A, such that for every h € Py, Z )\ixgj (h) = 0 with
=0
r<n+l. 1
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Suppose that r < n. The existence of h € P, such that x%, (k) = 1 and x&, (h) = 0 for
1 <1 < r implies

> A (h) = Ao # 0.
=0

Consequently, r =n + 1.
We now suppose that zo,...,Zp41 are not vp«-alternant. Let Z be the set defined by

IT={ieN,0<i<n,vp(x;)=—vp(Tiy1)}-

If Z = (), then every constant polynomial contradicts the nullity of the sum. Therefore,
we can suppose 1 < Card(Z) < n. To each ¢ € Z, we associate a point z; such that
x; < 2 < Tip1. We define h by h(x) = v (:L'n+1)H(:L' — Z).

€T
Then for every i, 0 <i <n+ 1, we get ng (h) > 0 if ; # oo and ng;(h) > 0. Therefore

n+1

Z /\ixij(h) >0
=0

We then deduce that xg, ..., 2,41 are vp--alternant.
|

We now obtain that the optimal polynomial p* is totally characterized by the alternant
points.

Theorem 3.1.6 Let p € A.
Then p is a solution of (3.2) if and only if p has n + 2 v,-alternant extreme points.

Proof Let p* be a solution of (3.2) and p € A be a polynomial with n + 2 v,-alternant
extreme points, denoted zq, ..., xpy1. Let h = p* — p.
If z; € E¥(u), then h(z;) =p ( i) —u(x;)Q(x;) < 0.
If z; € EY(1), then h(x;) = p*(x;) — U(zi)Q(z;) > 0.
If z; € EY, then h(z;) = p*(x;) — (I(z;) + pp) Q(z;) > 0.
If x; € EY, then h(z;) = p*(z;) — (u(;) — pp) Qi) < 0.
If z; = oo, and J is unbounded on the right, and p* is of maximal degree, then
IEIJPOO Vp(00)p™(z) = 400
and therefore v,«h(z) > 0 for « large enough. This is also true if J is unbounded on the
left.

The extreme points being v,-alternant, we deduce from what precedes that either h is
of degree n and has n + 1 roots, or h is of degree less than n — 1 and has n roots. So h is
the zero polynomial, and p = p*.

|

Looking at the previous proof, the following corollary is immediate.

Corollary 3.1.7 The problem (3.2) has a unique solution.



3.1 A polynomial Zolotarev problem 41

3.1.4 A Remes-like algorithm

We will now see how to compute the solution of the problem using an exchange algorithm.
This algorithm is an adaptation of the Remes algorithm ([Remes, 1934]), used in polyno-
mial uniform approximation.

We still assume the existence of a polynomial py in A such that pi,, > —00.

The algorithm

The algorithm consists in solving the problem over a finite number of points. More pre-
cisely, if we want to compute the best polynomial of degree at most n, we have to solve
the problem over n + 2 correctly chosen points (see the example in the previous chapter).

In order to assure the validity of these points, we associate to them a value « in the
following way:

o ifx e JT NI, a(x) =1,
eifzeJ NI, alx)=—1,
o if v € I', a(x) = £1 (we will see later how to choose the sign).
We say that n + 2 points x’f, . ,foH are valid if
e they are in X \ Zp,
e at least one point is in J,

e they are a-alternant.

We now linearize the problem. We need a new criterion to that purpose:

18 = e up U HHED =50) , ple) = (0le) Q)

sup , sup
zeJ+ 1+ |27 zeJ— L+ |27

To initialize the algorithm, we need n + 2 valid points z},...,z} , such that at least
one point is in I (if x} € I}, we choose the sign of a(z}) in order to obtain an alternated
sequence).

The algorithm is iterative. We now detail the k™ step.

1. Compute the solution py of the problem over the points a:'f, el xfj”.

Let pi(z) = Y1, aka’. We associate to z¥ the equations :

pi(at) = (MRl + 2 u(al)) Qek) if af € 1\ U,
pr(al) = (HSER(Uat) + o) + = ((ah) — b)) QGab) it at €
an =0 if 2F = +oo

(3.3)
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We obtain a system with n + 2 equations and n + 2 unknowns (the a¥ and hy,)
whose solution gives pi and hy.

2. Look for the point yi in X which most violates the constraints.

Let My = max (rgg;«wm — u(@) Q) max(l(x) Q(r) — pr()), AZ::)

If M, = 0, we stop the algorithm and return py.

Else we choose a point y;, associated to My, (i.e. a point for which the max in Mj
is obtained), and we associate a value «(yy) to this point.

Ifye € ', ayn) = sgn(ulyr) Qyr) — pr(yr))-

3. Substitute yi to one of the previous axf in order to get a new sequence of n+2 points
x’f-‘rl wk—i—%
R A Y

We look for the index j such that xé“ is replaced by y:

o If 2 <y < wf_H, then if a(2F) = a(yr), j =i, else j =i + 1.
o If yp < 2%, then if a(2}) = a(yr), 1 =1, else j =n + 2.
o If y, >k, thenif a(zf ) = a(yr), j =n+2, else j = 1.

We then define a sequence of points x’f + by:

{ g/t =zF Vi#j

i
k+1
T =Yk

1k+1

The xi—”l are obtained by sorting in increasing order the 2,
This algorithm gives a sequence of polynomials (p;);eny which converges to the optimal
polynomial p*.

Proof of convergence

We first prove that the system (3.3) at the step 1 of the algorithm always has a solution.
Next, we show that the sequence (hy) of values obtained by solving the system (3.3) is
decreasing. Finally, we prove the convergence of the sequence (py) to the optimum.

Non-singularity of the system (3.3) We first check that the system (3.3) always has
a unique solution.

Suppose that infinity is not an alternant point. For a set W, we denote by 1y the char-
acteristic function of W (i.e. 1yy(z) = 1 if x € W else 1y (z) = 0). The system (3.3) can
be written as :

L Zpto - 2piy 1y(@ng2)a(@ng2) Q(@n+2) ao
L 2o - wpy 1y(@agn)o(@ng1) Q@ng)

i xy el iJ(ml)a(xl)Q(xl) —h
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Q(Znt2) (ka(gnﬂ)u(%w) + 41+a(§n+2)*l(95n+2)>

Q) (=52 u(n) + H52 (xr)
Q(zy) (=) () 4+ 22 ()

Let H be the first matrice of the equality. Since the a(z;), 1 < i < n+ 2, are alternated,
we have

I Zpyo -0 Ty a(xl)(_l)n—'—llJ(anrQ)Q($n+2)
g | L e Tan a(21)(=1)"1(#n+1) Q(Tn+1)
1z - 2 alx)ly(r1)Q(z1)

We denote by H; ; the n+1 x n+ 1 matrix obtained by removing the ¢ —th row and j —th
column of H. We define 75, 1 < s <n+2, by v, = (—1)°det(Hs pn42). Since Hg 42 is a
Vandermonde matrix, we get

Vo= (=1)*det(Honta) = (-1)° ] (@i —=y). (3.4)

1<i<j<n+2
is,4s
Therefore,
n—+2 n+2
|det(H)| = leazs (xs) det(Hs ny2) E 15(zs)Q(xs) H (xj — ).
1<i<j<n+2
1#£8,j7#S

I <$2<"'<xn+27
at least one point z; is in € J \ Zo.
(3.5)

Suppose that the sequence (x;); is such that {

Proposition 3.1.8 Under the hypothesis (3.5), the system (3.3) has a unique solution
which satisfies h > pup«.

Proof Since the xz; are sorted by increasing order, for every s, 1 < s < n + 2, we have
H (xj —x;) > 0. Furthermore, using again the hypothesis, there is at least one

1<i<j<n+2
point z; such that 1;(z;)Q(x;) # 0. Therefore, the determinant of H is not zero. Thus,
the system (3.3) has a unique solution.

We denote by p := 3" ;a;a" the solution of the system (3.3). We get
w(x;)Q(x;) if z; € I and a(z;) =
(2:) = I(x;)Q(x;) if x; € I and a(x;) = 1
PREDT=N (U(zy) + h)Q(x;)  if i € J and al;) = 1,
(u(z;) — h)Q(x;) if x; € J and a(z;) = —1
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Suppose h < p+. Then the polynomial p(z) — p*(z) is such that

w(wi) Qi) — p*(@i) = 0 if x; € I and a(x;) = —1,
. *(\ Hz:) Qi) — p*(x3) <0 if x; € I and a(x;) =1,
p(z;) —p*(z:) = (U(z) + h)Q(xi) — p*(wi) <h—pp <0 if z; € J and a(x;) = 1,
(w(xi) — h)Q(z;) — p*(xi) > pp- —h >0 if 2; € J and a(x;) = —1.

Therefore, as x; is a sequence of n + 2 distinct points sorted in increasing order such that
the a(z;) are alternated, we deduce p — p* = 0. Since p, < h < pp+, this leads to a
contradiction. Thus, h > pi,~.

|

Now, suppose that the infinity is among the sequence of points, e.g. 2,42 = +00. Then,
the system to solve is the same as the previous one, but with n replaced by n — 1 and
with, in addition, the equation a,, = 0. Thus the proposition is also true.

We can now study the stop condition of the algorithm.
Note that M}, is always non-negative. Indeed, suppose M} < 0. Then max,c;(pr(z) —
u(z)Q(x)) < 0 and maxger(l(z)Q(x) — pr(x)) < 0, and therefore, pj, is in A. But, since
Azl’: < 0, we get

Q(z)
p(z) u(z) —hy VreJ.

{ be@) l(z) +hy Yreldt,
Q(2)

Using the previous proposition, we get a contradiction because hy > p,«. Therefore, we
deduce that M > 0 for every k > 0.

Suppose now that My = 0. The same argument implies that pj is in A and that its criterion
is greater or equal to p,+. Therefore, p;, is the solution.

Validity of the points Now, we are going to show that the new points obtained at
each iteration are valid (in particular that they satisfy (3.5)).

Suppose that the points :UiC are valid. By construction, the new points xf“
are sorted by increasing order, and their values « are alternated.
Suppose that all the z¥*! are in T\ J. Then a(z1)(—1) (px — p*)(z¥™) > 0. We deduce
that pr = p*, which is a contradiction because pi(yx) # p*(yx) (as My > 0, pr(yx) is not
between [(yx) and u(yx)).
Suppose that y; is reached at a pole of Q and that A]’,}II: is not equal to zero. Then pi(yx) < 0
if y € JT and pg(yx) > 0 if y, € J~. We obtain again a contradiction considering pj — p*.
Finally, suppose that xf“ are all in T U {oco}. We get again that py = p*.

are in X

Thus, the new sequence of points obtained at each iteration is valid. Therefore, the
system (3.3) always has a unique solution.

Decrease of the criterion Suppose that the infinity is not among the points :L‘f“.

Consider the matrix H, and replace the last column by ((zn12)7, (2ni1), ..., (x1)7)! for
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0 < j < n. Taking the determinant of the obtained matrix, we get

n—+2

> vilw) =0
i=1

because the determinant is equal to zero since two columns are equal. Therefore, replacing
the points x; by the points xf“ obtained at the k + 1-st step, we get

n+2
Z M p(ah ) = 0 for every p € P, (3.6)

Using this equality with p := px — pg+1, we get

n+2
Z7k+1 k:—‘rl) Diot 1( k+1)) 0.

Since the points are all distinct and sorted in increasing order using (3.4), the ka are all
different from zero and alternated. The sequence a(m 1) being also alternated, we have

n+2

DAl on(at ) — e () = 0.

=1

Let Ly = {1, xkﬂ €I} and Ly = {i, :L' 1'¢ J}. Using the previous equation, we get

S ale ) = pre @) = = 3 ale ) (u(E ) - praa ().

i€Lly i€Lly
Suppose that a:'f <yi < xfl 1 9- Let 7g be the index of the point a:f’o which is replaced by yy.

First, suppose y,. € I.
Then, one point in [ is changed, and all the others are kept. Therefore,

3 alat o) = prea e = alal D (k) — i (al ™).
€Ly

Thus, we obtain

a(@ MY (e (@) = pra (@) = = D a@ Y k(2T = prera (@),
i€Ly
If a( k:+1) = —1, then pk( k’+1) > u( k—‘rl) and karl( k:-i—l) _ u( k+1)
If oz kH) =1, then py(x k“) <l(z k“) and pgi1(x chrl) l(;vfoﬂ).
Therefore
a(@P ) (e () = pera (@) = = 1ok (20 = prepa ()

7

If 25+ € J*, then we have a (¥ )y (2F 1) = (1(a™)+hy) Q(2
L&) = (=) Q).

(U f+1)+hk+1)Q( F41). Therefore, oz ) (pe(a! ) ~ppa (a5

E41) and a(ah ) py s (251 =
) B
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If xf“ € J7, the equality a(a:f“)(pk(fo) Prt1(z k“)) = (hg — hk+1)Q(ac§+1) also
holds. Combining the previous equations, we obtain

|%+1||pk( kﬂ) Pk+1 ( kH )| = Z |%k+1| hi, — i) Q( kH)-
€Ll y

Thus,

WkHHPk(Z/k) — D1 (yn)|

Sier, Q)

hk+1 = h — < hy,. (3.7)

We now suppose y € J.
Then, all the points (zF) € I were points of the reference (z¥). Therefore,

> alaf T e ) = prea(ai ™) = 0.
=,
Thus, using the same arguments as above, we get
—(he = higr) Y Q@S = —hep e QT
i€L s\ {io}
+ VL g+ (k) (P (i) — 1k) Qi)
+ e - (ue) (u(yn) Qo) — p(ur))-

This is equivalent to
hipr Y Q@) = b Y hET Q)
icLy i€Ly
+ VET L e (o) (o (i) — () + Toe) Q)
+ i PR (u(ye) — hi) Qi) — pyr).

Thus, we get
’,yk—i-l’

1 41y
Zz’eLJ ’%’Jr ‘Q( z; )
Note that, since y € J, AZ}’; is positive. We conclude that hg41 < hg. The same holds

if yp > a:fl 49 OF Yg < a:’f or if the infinity is among the points (in this case, replace n by
n—1).

hg1 = hy — (3.8)

Distance between two points Suppose that the infinity is not among the points.

Let P(k) = {p € Py, l(xF) < Q(( )) < u(zh),vak € I} We first show that py is maximum

for the n + 2 points xk that is

sup min (L (o )p(ad) — UeH)Qab) + 1y (ah)u(ah) Qat) ~ plab)) = hu.
pep(k;)ac eJ

Suppose the existence of r € P(k) such that :

min (15 (e)r(at) —1eh)Qat) + 1,- (el u(eh) Q(at) — r(al)) = .
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Then (pr — ) (z¥) = 0 or sgn((px — 7)(2¥)) = —a(aF). Therefore the points 2% being
alternated, py = r. So p is maximum for the n 4 2 pomts zk.
If the infinity is among the points, replace n by n—1 and consider only the finite points xf

We now show that one point cannot converge toward another, that is there is a min-
imum distance between two points mf and :L‘f ", 1- Suppose this is not true. Then X being
compact in R, we can extract a sub-sequence of ({z%,..., 2% ,}); which converges to a
set {z1,...,Tp42} containing at most n + 1 points.

Let p € P,, be a polynomial such that

ng) if x; € I}*,

(u(zi) —2h1)Q(xi) ifx; € (J-UIL)\ 2,

p(xi) =< (I(z;) +2h1)Q(x;)  ifa; € (J+UI+OO)\ZQ,
1 if x; € (J+UI+OO)QZQ,

-1 if o, € (J-UI“)N Zg,

and with a leading coefficient different from zero if the infinity is among the points.
If the a:f are close enough to the z;, then :

l(x)< P ))<u( kY if 2k € I,
Wak) > [ha| > kg, ifaFeJtul™,
p )

> |hy| > hy  ifaf e T U

< )
u(xf) -

x5

)
This contradicts the maximality of p;. for the points xf .
Therefore, we get the existence of d > 0 such that ¥, ; —a¥ > d foralli, 1 <i<n+1,

and for all £ > 0.

Convergence toward the solution Since there is a minimum distance between two
points, we can find a constant m > 0 such that |y¥| > m for all i and all k (see (3.4) for
the definition of 7¥).

If yx € I then we get from equation (3.7)

hie = hier = Ve ok (uk) — Prrr ()| (3.9)
> mmax (rgg;«pk(x) ~ u(@)Q(x)), max(1(x) O(x) —pk<x>>) S0, (310)

If yx € J, then using equation (3.8), we obtain
T = hir 2 1t Ay, 2 mAp, > 0.
Thus we have
hx — hg11 > mMy > 0 for every k > 0.

The sequence hj, decreases and p,+ is a lower bound, therefore the sequence converges and
we get klim My, = 0. Thus,
— 00

lim max (max(pk(x) —u(x)Q(x)), max(l(x)Q(x) —pk(:z))) =0, (3.11)

k—o00 zel xel
lim Ah’c <0. (3.12)

k—oo



48 A generalized Zolotarev problem

We deduce from (3.11) the existence of an integer N such that

Vk > N,Vz e I,l(x )—1<§( x) < u(x)+ 1.

Since the set
p(z) _
T Qx) ~

{pGPn,l() 1< ()+1vxel}

is compact, we can extract a sub-sequence ( ) which converges to a polynomlal p. Using
again (3.11), we deduce that p € A. Since pj, is maximum for the points 2% (see 3.1.4),
hi > pup- for all k. We then deduce from (3.12) that p, = lim by, > - By definition of
p*, and by uniqueness, we get p = p*. Since all the adherence values of the sequence (py)
are equal to p*, (pg) converges to p*.

3.2 A rational Zolotarev problem
We are now studying the rational case. We follow the same outline as for the polynomial

case.
Let m and n be two positive integers and I, J be two compact subsets of R such that :

e INJ =0,
e [ has at least max(m,n) + 1 points,
e J has at least m + 1 points.
We denote by X the union of I and J: X =1TU J.

Let f be a continuous function from X into R and R}, be the following set of rational
functions:

R = {z,pepn,qepfn}.

Let A}, be the set:
Ay ={re R} Veel,l|r(z) < f(x)}.

The problem we are considering is to find (if it exists) a rational function bounded by
f over I and which is “as far as possible” from f over J. i.e.

sup mln\r( )| — f(x) (3.13)
reAn, zeJ

For r € R}},, we define the criterion p, by

pr = min ()|~ £(2).
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3.2.1 Existence of a solution

We first check the existence of a solution to the above problem.

Proposition 3.2.1 If I and J have no isolated point, then Problem (3.13) has a solution.

Proof Let (r), r, = Pk € A}, be a sequence such that lim p, = sup p,. Since 7 is
q k—o0 reAn,

bounded on I, we choose to normalize g by assuming ||gx||; = 1. Therefore ||px||r < || f]1-
As I has at least max(m, n)+1 points, the sets {p € Py, ||pllr < ||f]lr} and {qg € Pm, || ¢ 1= 1}
are compact sets (for every norm because the dimension is finite). Therefore we can ex-
tract from (p), (resp. (qx);) a sub-sequence which converges to p* € Py, (resp. ¢* € Py,).
As |pr(x)| < |gx(z)|f(x) for all x € I, we also have |p*(z)| < |¢*(z)|f(x) for all x € I.
Since ||gx||r = 1, ¢* is not the zero polynomial. Therefore, ¢* vanishes at a finite number of
points. Suppose that ¢*(z) = 0 at a point x € I. There is an open set O containing = such
that ¢* has no root in O \ {z} and therefore, ‘fl’*gzgg < f(y) forally € INO\ {x}. Since
I has no isolated point, I N O\ {z} # 0. Thus, p*/¢* is bounded in a neighborhood of z,
and consequently, it is also bounded at . We then deduce that P isin A7 . Furthermore,

as |px| > (f + wry,)|qx| over J, we have |p*| > [¢*|(f + sup p,) over J. Using again the
reA

fact there is no isolated point, we get sup p, = pp* .
reAn, q*

Suppose that Problem (3.13) has a solution 7* such that g, > —ingf(x) (i.e. the
xe
solution has a better criterion than the zero function). Write r* as an irreducible function:
r* = Z—* with ged(p*,¢*) = 1. Since p > —ingf(x), p* does not vanish on J. Therefore
HAS

p* has a constant sign on each connected component of J. Furthermore, as r* is bounded
on I, ¢* does not vanish on I, so ¢* has a constant sign on each connected component of
1.

We therefore divide X in distinct parts over which p and g have a constant sign. Let
I, I=, J" and J~ be four compact sets of R such that:

e The intersection of two sets in {I*,1~,J*, J~} is empty,
e [ =" UI has at least max(m,n) + 1 points,
e J=J"UJ has at least m + 1 points.

We denote by S, R and A the sets :

S={(p,a),p € Pn.a € Pp.py+ = 0,p - <0,q+ > 0,q;- <0}

_JP
R = {q,(p,q) GS}.
A={reRVzel,|r(z)] < f(z)}.

We are now interested in finding (when it exists) a solution to the sub-problem defined
by

. 3.14
MaX iy (3.14)
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We will sometimes use the expression "Let r = £ € R (or A)” for "Let r € R (or A)
and let (p,q) € S such that r = %”, that is, we will always choose p and ¢ which respect
the sign constraints.

Proposition 3.2.2 If I and J have no isolated point, then the signed problem (3.14) has
a solution.

Proof Replacing A}, by A, the proof is identical to the previous one (passing to the limit
ensures that p* and ¢* have the good signs).
|

3.2.2 Characterization of the solution

In this part, we assume the existence of a solution. As for the polynomial case, we are now
going to characterize a solution by a sequence of alternant points.
We assume that a solution R* is such that R* non-constant and such that pup« >
—irelgf(x). We define a set S* by
xr

S* ={(p,q),p € Pn,q € Py, py+ > 0,p- < 0,q1+ > 0,q- <0},

The following lemma shows that a not trivial admissible rational function always has a
representative in S*.

Lemma 3.2.3 If R € A is such that pgp > —ingf(x), R can be written as R = £ with
re
(P.Q) €S

Ql

Proof Let (p,q) € S and R = %.

Suppose that p has a root z with multiplicity k£ in J. As p has a constant sign on each
connected component of J, k is even or z € dJ. If k is even, the polynomial ( )’;(i))k has
the same sign as p on each connected component of J. If z € 8.J, we can find z{¢} such

that [2{}, 2[ or |z, 219 is included in X . Then %(X — 2{eh)® has the same sign as p

on each connected component of .J.
As pug > —ingf(:r), the roots of p over J are also roots of g. We denote by z1,..., 2k
e

the distinct roots of p in J and my, ..., my their multiplicity. We therefore have p(X) =
pl(X)Hle(X — z;)™ where p; has no root in J, and ¢ = ql(X)Hle(X — z;)™. Thus we
can write R as

n— p1(X) IT oaq mi(X —z)™ _ PL(X) [T oaa mi(X - Zz'{e})mi

@ () I o m, (X = 2™ 1 (X) TT gad o, (X — 2LF)ms

where p1(X)[] oqq m, (X — zl{e})mi has the same sign as p on each connected component
of J, and has no root in J. Note that ¢1(X) [T ,qq s, (X — zi{e})mi also has same sign as
g on I, and that its roots in I are the roots of ¢. Since |R| < f over I, the roots of
a1 (X) TT oaq m, (X — zz{e})mi in I are also roots of p1(X)[] oqq m, (X — z;{f})mi. Therefore,
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using the same argument, we obtain two polynomials P and @ such that P has same sign
as p on J and no root in J, and ) has same sign as g on I, and no root in I.
|

Note that, conversely, if (P, Q) € 8", then pup;g > —miny f.

We denote by E" the extreme points of r, i.e. the set

E'={z e L|r(z)| = f(z)} U{z € J,|[r(z)] — f(z) = pr}.

Let (P1, Q1) and (P, Q2) € S* be such that R = Ql = 52 € A. We denote A; a ged of P

and @, i € {1,2}, and we define two applications Z/R by

Vi (z) = sgn(RA;(z)) ifxz e JnER,
R —sgn(RA(x))  if x € INEER

Note that there is a real constant A\ such that

h_ @ A

P Q2 Ay
Therefore, AA1 /A9 > 0 on X, that is A;/Ag has constant sign on X. Thus, we can define
a notion of vr-alternation in the following way :

Definition 3.2.4 Let R € A such that ur > —inf; f, (P, Q) a representative of R in S8*
and A a ged of P and Q. We define an application vg from E® into {—1,1} by :

- sgn(RA(z))  ifzr € JNER
vr(r) = —sgn(RA(z)) ifzecINER

We will say that the extreme points wy,...,w, of R are vy-alternant if
\ﬁ,ogz‘gr—L{ Wi < Wit1
vr(w;) = —vR(wit1)

This notion is independent from the choice of the representative of R and the choice of
the gcd.

Lemma 3.2.5 Assume that Problem (3.14) has a solution. Let R* = £ be a solution of

} @
(8.14), g an irreducible form of R* and N = max(m 4 d°P*,n + d°Q*).
There exist distinct extreme points xg,...,x, of R* and real positive numbers Ag, ..., Ar

such that for all polynomials h in Py,

> Aivge (zi)h(2;) =0
=0

withr < N +1.
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Proof The proof is similar to the one in the polynomial case. For { = &1, we define W,
by
Ue(x): PoxPp — R
(hi,he)  — &(h(2)Q(z) + ha(x) P*(z))

and we denote by ¥ the set

m:{@wmmweEm}

where .
sgn(R*(w)) ifweJNER
T(U/) = * : R*
—sgn(R*(w)) ifwelNkE
Since {w € E® ,7(w) = 1 and {w € E¥",7(w) = —1 are compact sets, ¥ is a compact

set (as the image of a compact set by a continuous function). Let C' be the convex hull of W.

Suppose that 0 ¢ C. Then, using the Hanh-Banach theorem, we can find o > 0 and
(P,Q) € P x Py \ {0} such that :

Vw e ER, Vo) (W) (P, Q) = T(w)(Q(w)P*(w) + P(w)Q*(w)) > a > 0.
Let
& = QP + PQ".

We therefore have
Vwe EF | 7(w)®(w) > a > 0.
We now define a rational function Ry by
P*+ AP
Ry = %
Q* —AQ

where ) is a positive real number. We will choose later the value of A\ in order to obtain
the following contradiction: pRr, >y -

For w € E®", we choose open sets Vj, such that:
e if w € I, then |R*(x)| > %infl’f(y) and sgn(®(z)) = —sgn(R*(x)) for all x € V, N I,
ye

e if w e J, then |R*(z)| < f(z)+pr-+cand sgn(®(x)) = sgn(R*(z)) for all x € V,,NJ
where c is a positive constant.

We have

. D
= B = 000 )

Since Q* does not vanish in I, we can find C] such that

VA0 < X< O, Vz € I,sgn(Q*(z) — AQ(x)) = sgn(Q*(z)).
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If w e INEY, since |R*| > Jinfyer f(x) on Vi, NI, P* does not vanish on V,, N 1.
Therefore, we can find C,, < C] such that

VA0 < A < Cy,sgn(P* + AP) = sgn(P*) on V,, N I.

Thus, for all x € V,, NI, and all A\, 0 < A < Cy,, we get sgn(Ry(z) — R*(z)) = —sgn(R*(x))

and sgn(Ry(z)) = sgn(R*(x)), and therefore we obtain |Ry(x)| < |R*(x)|.

Let Cf = min Cy,, 0 < A < C{ and 6; = | J V. Then for all 2 € I N6,
welnER: weINER"

|Rx(x)| < |R*(x)] < f(z). Furthermore, as R* is continuous on I, we can choose § > 0

such that for all x € I NOY, |R*(x)| < f(z) — 9.

Let C1, 0 < C; < CYf such that for all \, 0 < A < C4, |[Ry — R*| < % over I. Then, for all

AMNO<A<(C,andforallx €1 :

[RA(z)] < f(z) and sgn(Q(z) — AQ(z)) = sgn(Q"(z)).

Using the same argument, since P* does not vanish in J, we can find CY, such that for
all 0 < X\ < CY, sgn(P*(z) + AP(z)) = sgn(P*(x)) for all z € J. Now, note that

1 1 AP

Ry, R*  P*(P*+)\P)’

If we JNE® as |R*| < f(z) + pg- + c on Vi, NI, Q* does not vanish. Therefore

we can find C,, < C) such that for all 0 < A\ < Cy, sgn(Q* — AQ) = sgn(Q*) on V,, N J.

Thus, for all z € Vy, N.J, and all 0 < A < C, sgn (ﬁ(z) — ﬁ) — —sgn (ﬁ) and

sgn(Ry(z)) = sgn(R*(x)) and therefore |Ry(x)| > |R*(x)|.
Let C§ = min Cy, 0 < A < Cf and 6 = | ] Vi Then for all z € J N 6y,

€JNER*
v weJNER*

|Rx(z)| > |R*(z)| > f(x) + pg-. Furthermore, since = is continuous over J, we choose
d > 0 such that for all x € J Ny, |R*(x)| > f(x) + pr+ + 6. Let Cz, 0 < Cy < CY, be
such that for all 0 < A < Cs, [Ry — R*| < § on J.

Then, for all A, 0 < A < Oy, and for all x € J :
|Rx(z)| > f(z) + pr+ and sgn(P*(z) + AP (z)) = sgn(P*(z)).

Taking A < min(C1, Cs), we get a contradiction. Thus 0 € C', and using the Carathéodory

theorem, we obtain the existence of 7/ +1 distinct points g, . .., z,» € EP" and ' +1 strictly
positive real numbers X, ..., A/, such that :
T,/
V(h1,h2) € Po X Py Y N7 (@) (ha(2:)Q (1) + ha(w:) P*(z:)) = 0 (3.15)
i=0

with v < dim(P,Q* + P P*).
Let A be the quotient of P* by P*. In order to conclude, we now prove that P,Q* +
P P* = PnyA. First, note that

PnQ* + P P* = {(pQ* + ¢P*)A, (p,q) € Py X P}
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Therefore,
PnQ* + P P* C PyA. (3.16)

Furthermore, since P,,Q* + Py P* = (Pn,Q* 4+ P, P*)A, we get
dim(P,Q* + P P*) = dim ((Pr@Q* + P P*)A) = dim (P, Q* + P P*) = N + 1.
Thus, using (3.16) and the equality of the dimensions, we obtain
PrQ" + Py P* = PrA.
Consequently, if (h1,h2) € Pp X P, h1Q* + hoP* can be written as hA, h € Py. Then,

equation (3.15) becomes

,r,/

VhePn, > N(w:)Awi)h(z;) = 0.
=0

Since N A(z;)7(x;) = N;|A(i)|vg= (z;), defining \; by A; = N|A(x;)], we get

Vh € Py, Z N VR~ (ml)h(:c,) =0.

If Problem (3.14) has a solution, then it is characterized by a sequence of alternant
points:

Theorem 3.2.6 Let R € A and g be an irreducible form of R. Assume that R* is a
solution of Problem (3.14). Then :

Ur = pr+ <= R has N + 2 extreme vgr-alternant points
with N = max(m + d°P,n + d°Q).

Proof Using the same argument as in proposition 3.1.5, one can prove that R* has N +2
extreme vg-alternant points.

Suppose that R has N + 2 extreme vg-alternant points xp,...,xx42. Write R as
R=AP/AQ, (AP,AQ) € S§*. Using (3.6) with n := N, we obtain an alternated sequence
(7)N4% such that 3 v (PQ* — QP*)(x;) = 0. Therefore, as Q and Q* do not vanish on I,

and P and P* do not vanish on J,

> QQ (@) (R(x) — R (2:)) + Y %iPP* (wi) <R*2:c¢) B R(lxz-)) -

x, €1 x; €J

For z; € I, [R(x;)| = |R*(z;)], thus R(z;) = R*(x;) or sgn(R(z;) — R*(x;)) = sgn(R(i)).
Using the equality sgn(A(z;)Q(z;)) = sgn(Q*(z;)), we get

R(z;) = R*(z;) or sgn(Q(z:)Q" (i) (R(z;) — R* (1)) = sgn(A(xi) R(x)).
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Similarly, for v € J, gy = ey oF sen(P@) P (@) ey — 7)) = — 807y

that is :

1

Rla:) = R (a3) or sun(Pa)P* () (s = s ) = sl A (o) Rl

Since the points are vg-alternant, we get that the sign of PQ* — QP* alternates at the
points z1, ..., xN+t2, and therefore, PQ* — QQP* = 0. This gives R = R*.
|

The following corollary is immediate:

Corollary 3.2.7 Problem (3.14) has at most one solution.

From Proposition 3.2.2, we get:

Corollary 3.2.8 If I and J have no isolated point, then Problem (3.14) has a unique
solution.

3.2.3 A differential-correction-like algorithm

Two versions of the differential-correction algorithm are known for rational approximation.
The first one, the original method, was presented in [Cheney and Loeb, 1961]. A modified
version, with guaranteed convergence, was presented by the same authors in 1962 (e.g.
[Cheney, 1998]). However, this version seemed to be slower than the original one. Later, it
was proven that the original method is globally convergent, and that its rate of convergence
is quadratic whenever the solution is of maximal degree (e.g. [Braess, 1986]).

The algorithm presented in section 2.2.2 is akin to the modified version of the differential-
correction algorithm. We choose to study here an algorithm which is an adaptation of the
original version of the differential-correction algorithm. In practice, this algorithm seems
faster than the one presented in section 2.2.2. However, no proof of the rate of convergence
is given.

We define the function o by

(2) = +1 ifzeJtorzelm,
TV=Y 21 ifzed orxzel.

In order to initialize the algorithm, we need two polynomials Py and )y such that
(Py, Qo) € S* and % €A
The algorithm is iterative. We now detail the k"™ step:
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Let fx(P,Q) = {glggl o(x)P(x) —|g€((z))|+ k) |Q()] '

Compute Pyy1 € Py, and Q41 € P, which maximize fj, respect to the constraints:

(i) [Pet1(2)] < 0(2)Qp+1(2) f(2) for z € I,
(i) max|[Pep(2)] = 1.

Ppy1()

Qr+1(z) ~fla).

P
If fr(Pry1,Qrr1) < 0 return Ry = Q—k, else compute fig+1 = mig
k Te

Note that condition (i) implies that 0Qg+1 > 0 on I.
Condition (ii) is a choice of normalization of S’Z—:ll.

We now prove that this algorithm converges to the solution of the Zolotarev problem
under different hypotheses.

Theorem 3.2.9 Let iy, ,_1 be the optimal criterion for the general Zolotarev problem
(3.13) with degrees (m — 1,n —1). If (Py, Qo) € S*, Py/Qo € A and

Py(x)
Qo(z)

and if the signed Zolotarev problem (3.14) with degrees (m,n) has a solution, then the
algorithm converges to this solution.

o = min = f(@) > o101

zeJ

Proof In this proof, we frequently use the following equality: if a > 0 and b > 0 then
min ab > min a min b. We denote by p* the optimal criterion for the problem of degree n,
and by g* € §* the associated optimal function.

1. Let S§ ={p € Pp,op>0on J}.
We first prove by induction that if pp < p*, then fr(Pyy1, Qr+1) > 0 and Pyyq € S*.

By hypothesis, Py € S7.
Suppose that P, € S7.

If py < p*, there is a pair (P, Q) in 8* such that

min 28 — f(x) > p
\TNEeie:note by 4 the value of the criterion of P/Q, i.e. 4 = mingey |P(x)/Q(z)| - f(x).
Ji(Pres1; Qre1) 2 fr(P, Q)
2oy (g - U@ ) [5G e
= (1= ) iy P:(?) =0
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Suppose that fi(Prs1,Qr+1) = 0. Then fi(P, Q) = 0 so it exists xyp € J such that
|P(x0)| — (f(@0) + 1x)|Q(z0)| = 0.
If Q(zp) # 0, then
P(xo)
Q(zo)

which contradicts py < p. If Q(xg) = 0, then we get P(xg) = 0, which contradicts
that (P, Q) € S*. Therefore, if u < p*, then fy(Piy1,Qr+1) > 0. But the inequality
fie(Prt1, Qe+1) > 0 is possible only if P11 € S7.

— (f(zo) + i) =0

2. We now prove that if up < p*, then pgr1 > pg.

We remark that

Biy1() Pi(@) | B (2)] = (F(2) + o) |Qur ()|

Qr+1(z) Qr+1() | Pe(z)]
We stated before that if pp < p*, then fi(Pry1, Qr+1) > 0 and P, € S7. Therefore,
using (3.18), and taking the minimum over J, we get

Py ()

Qr+1(x)

Note that the previous inequality allows to check that if the algorithm stops, then
ur = p*. Indeed, suppose that pux = p* and fi(Pry1, Qgr1) > 0. Since miny | Py (z)| >
0, we obtain the following contradiction: pg1q1 > p*.

= f(z) =y + (3.18)

Te(Prt1, Qrt1) > pi. (3.19)

HE41 = pE + HlJiIl

3. Finally, we prove that the sequence % converges to the solution.

If the algorithm stops at the first iteration, then pg = p*, thus the best rational
function R* = %. Else pp > p1 > po for all & > 1 so Pr/Qy is of maximal
degree (else Py/Qy contradicts the optimality of the criterion for m — 1,n — 1). Let
(Po (k) Qar)) be a sub-sequence of (P, Q)x which converges to (P, Q). We have:

o |P(2)] < 0(2)Q()f(x) for z € T,
P(x)| = 1.
o max |P(z)]
The last point shows that P is not the zero polynomial. Therefore, using the first
point, @ is not the zero polynomial either. Since (Py, Q) € S for every k, (P, Q) is
also in S.
We denote by p the limit of the py:
= li .

= Jim

As (k) is an increasing sequence such that pg > g1 > pro > gy, 1,15

Hm—1n-1 < K-
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But, |P| > (f+p)|Q| on J, and therefore, P/(Q has better criterion than the best one
obtained for all rational functions with degrees (m—1,n—1). Therefore, ged(P, Q) =
1. Using again the inequality |P| > (f + u1)|Q| on J, we deduce that P has no root
in J. Thus, there is no sub-sequence of (Py); which converges to a polynomial with
a root in J. This leads to the existence of n > 0 such that

IIIEI(I} | Pi(x)| > n for all k. (3.20)

Furthermore, since for every k, |Py| > (f + ux)|Qr| on J, using the fact that
maxgej | Pp(z)| = 1, we get

max |Qx| < for every k > 1.

miny f + po

Thus, using the equation (3.18), we obtain
et = o 2 n(min f + po) fi (P, Qi) 2 0.
Since (Pgy1,Qk+1) maximizes fi, we have
Pt = gy 2 n(min f + po) fr (P, Q%) 2 0.

As (ug) converges, we get
hllcm fe(P*,Q") =0
and therefore,
dyed, [Pyl - (fly) +wlQ(y)]=0.

Suppose |Q*(y)| = 0. Then |P*(y)| = 0. Since (P*,Q*) € §*, we obtain a contradic-
tion. Therefore |Q*(y)| # 0, and we get p* < p. Thus, the algorithm converges to
the optimal rational function.

Since in practice, we use a discretization of J in order to compute (Pyy1,Qx+1), the

following theorem is important for applications:

Theorem 3.2.10 If J is a finite set, then the sequence of criterions (ug)r converges to
the optimal criterion pu* whatever initialization (Py, Qo) € S* N A is taken.

Proof The steps 1 and 2 of the previous proof still hold. Therefore, the sequence (py) is
increasing. Since it is bounded by p*, it is converging to a limit p’. Suppose that p' < p*.
Thus, there is a pair (P, Q) € S8* such that pu > p/. Using (3.19) and the maximality of
(Pit1, Qr+1) for fi, we get

P
“ > U +[[|'[|

k
k+1
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Since p > ¢ > muy, we have fr(P,Q) > miny ‘P‘f(ﬁ%

maxy |Px| = 1, we deduce

Pht1 = pi + mJin

P . ,
o winr1 - 7+ i

Furthermore, since for all &, g’;—i > (f + po), we get

) ) .| Py
fh1 — pi > (min f + po) min(|P| — (f + 4)|Q|) min
J J J | Pr41

> 0.

> 0 for every k > 0. Using

Therefore, passing to the limit, since (miny f + po) miny (| P| — (f + ¢')|@Q|) > 0, we obtain

lim min 0.
k—oo J k41
Thus, we find a sequence (y;)x € J" such that
P,
lim TR

k—o0 Pri1(yr)

Using again the fact that (Pyy1, Qk+1) maximizes f, we have

Py

> fr(Pes1, Q1) > fu(P,Q) > mJin(|P| = (f +1)IQ)).
Now we suppose that .J is a finite set of N points :

J = {.%'1,.@2,.. . ,J}N}.

We define ¢ by
¢ =min(|P| = (f + 1)|Q])-

Using (3.21), we get the existence of an integer K such that
|Prera(yi)| = 2¢ V4 Py(yp)| for every k > K.

By (3.22), we get
| Pi11(z)| > ¢|Pg(x)| for every x € J.

(3.21)

(3.22)

(3.23)

Using the last inequality for  # yg, and combining it with (3.23), we obtain for every

kE>K
N N1 N N
[T 1Pess (w0l = 25 T IPeta)l = 2T IPita)
=1 =1 i=1

Since for every k > 0, P, has no root in J, the previous inequality shows that there is a
k > K such that Hf\; 1 |Pr(z;)| > 1. This contradicts the fact that |P;| is bounded by 1.
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Chapter 4

Design examples

In this chapter, we present some multi-band microwave filters manufactured by the XLIM
institute (Limoges, France). The theoretical filtering functions were computed using the
previous theory. As the number of cavities is proportional to the degree of the filtering
function, we keep each time the filtering function with the smallest degree that meet the
specifications. The first two examples were presented in [Lunot et al., 2008]. We show that
for both of them, the parity of the degree seems to be important. Technicals details are
added for specialists of microwave filters.

4.1 A dual-band filter

The first example has the following electrical specifications: a return loss at 20 dB in the
passbands (I; = [—1,—0.625] and Iy = [0.25,1]), a rejection at 15 dB in the lower and
upper stopbands (J; =] —o00,—1.188] and J3 = [1.212, +-00[) and 30-dB in the intermediary
stopband (J2 = [—0.5,0.125]). One may first think of computing a 10-3 filtering character-
istic to fit in the latter specifications. Since the differential-correction-like algorithm works
on finite intervals, the two “outside” stopbands are set to [—10, —1.188] and [1.212, 10]. We
obtain the filtering function plotted in Fig. 4.1. Only 9 reflection zeros and 14 “extreme”
points appear on the graph which seems at first glance to contradict the theory or to
indicate that something is wrong with our numerical implementation. A closer inspection
of the obtained function indicates however that the lacking “extreme” point is situated in
the left limit of the first stopband, i.e. at w = —10 together with a reflection zero that
was rejected to w = —100. If we increase the size of the left stopband the reflection zero is
rejected further towards infinity. This amounts to saying that the optimal characteristic
with at most 10 reflection zeros (resp. at most 3 transmission zeros) is in fact of 9-3 type.
In some sense, the optimization process indicates that there is no way to improve this 9-3
filtering function by adding an extra reflection zero. Note that here the ability to guaran-
tee the optimality of the computed filtering function is crucial. Someone using a generic
optimizer may insist in finding a better starting point for his optimization process or try
by all means to restrict the location of reflection zeros: by the optimality argument this
can only yield a poorer result.

The low pass specifications given in Fig. 4.1 correspond to the following passbands and
stopbands at microwave frequencies: the two passbands are respectively I; = [8.28,8.31]
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Figure 4.1: Optimal transmission and reflection parameters (example 1).

GHz and I, = [8.38,8.44] GHz and the three stopbands are respectively J; = [0, 8.265]
GHz, J, = [8.32,8.37] GHz and J3 = [8.457, +0c0[ GHz. From these ideal parameters, a cou-
pled resonator network has to be derived for realizing the desired number of transmission
and reflection zeros. The network is chosen to be an extended-box one (see Fig. 4.2) since
this topology allows a practical implementation of the filtering function with aligned dual-
mode cavities. The technology selected for realizing the microwave filter consists in cylin-
drical cavities working in their dual-mode T'E11; and coupled by rectangular irises as shown
in Fig. 4.3. Applying an exhaustive coupling matrix synthesis ([Cameron et al., 2005a]),
22 real solutions have been found to realize the optimal function with the extended-box
network. A particular solution is then selected and a computer-aided design (CAD) model
is tuned, applying a coupling matrix identification at each tuning step ([Bila et al., 2001]).
However, in this case, an exhaustive computation of all the solutions to the coupling ma-
trix synthesis problem is necessary for recognizing the solution to be tuned. In case of
ambiguity between several identified solutions, the solution that corresponds to the CAD
model can be recognized by perturbing some coupling elements (dimensions of irises or
screws) and by studying the coherence of the solution modifications (corresponding cou-
pling values). The CAD model is a finite element model. Metallic losses are not considered
during CAD tuning to facilite comparison with the synthesized lossless rational function.
Moreover, no particular action, i.e. predistortion, is done for compensating losses in the
current synthesis. A hardware prototype of the filter has been built with brass. The un-
loaded quality factor is around 4000 but can be improved using silver plated cavities.
However, measured and simulated results are in good agreement as shown in Fig. 4.4.
Insertion loss is 2.15 dB in the first passband and 1.45 dB in the second one.
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Figure 4.2: Extended-box coupled resonator network for the realization of the ideal 9-3
dual band response in Fig. 4.1.

Figure 4.3: Implementation of the 9 pole 3 zero dual-band filter with in-line dual-mode
cylindrical cavities, network topology illustrated in Fig. 4.2.
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Figure 4.4: Measurements and simulation of the 9 pole 3 zero dual-band filter physically
illustrated in Fig. 4.3.

4.2 Another dual-band filter on SPOT5 specifications

The electrical specifications of the second example are defined by: a return loss at 23
dB in the passbands (I3 = [—1,—0.383] and Iy = [0.383, 1]), in the lower stopband (J; =
| —00, —1.864]), the rejection is set at 10 dB in |—oo, —1.987] and 15 dB in [—1.987, —1.864].
The rejection is set at 20 dB in the intermediary stopband (J2 = [—0.037, —0.012]) and
40 dB in the upper stopband (J3 = [1.185,400[). Here again one may think of using
an 8-3 characteristic for a realization in extended box topology ([Cameron et al., 2005a]).
However, the same phenomenon as in the first example occurs, and the optimal solution
appears to be of type 7-3 (Fig. 4.5).

At microwave frequencies, the low pass specifications shown in Fig. 4.5 match into
two passbands, respectively at I = [8.228,8.278] GHz and I, = [8.34,8.39] GHz, and
three stopbands, at J; =|0,8.158] GHz, Jy = [8.306,8.308] GHz and J3 = [8.405, +-00]
GHz. The coupled-resonator network, which is selected for realizing the latter filtering
function, is the pseudo extended-box topology presented in Fig. 4.6. This configuration of
the coupled-resonator network leads to three real solutions for realizing the ideal filtering
characteristic. A solution is chosen for implementation in stacked single-mode rectangular
cavities as described in [Bila et al., 2006]. The CAD model and the practical hardware are
tuned using an exhaustive coupling matrix identification. Measurement results of the brass-
made prototype are compared with simulations in Fig. 4.7. Insertion loss is respectively
1.4 dB and 1.25 dB in the passbands.
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Figure 4.5: Optimal transmission and reflection parameters (example 2).

Figure 4.6: Pseudo extended-box coupled resonator network for the realization of the ideal
7-3 dual-band response in Fig. 4.5.
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Figure 4.7: Measurements and simulation of the 7-3 dual-band filter, network topology
illustrated in Fig. 4.6.

4.3 A tri-band filter

We now consider a tri-band filter whose electrical specifications are given in Fig. 4.8. The
optimal filtering function is a 10-8 rational function plotted in Fig. 4.9. This filter has
been manufactured, and the measurements are given in Fig. 4.10.

-1 0.7 -0.15 ¢ 0.15 0.7 1

Figure 4.8: Specifications of the tri-band filter.
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Figure 4.9: Theoretical filtering function of the 10-8 tri-band filter.
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Figure 4.10: Measurements of the 10-8 tri-band filter.
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Chapter 5

Conclusion

In Chapters 2 and 3, we presented two algorithms for the computation of the solution
to the real Zolotarev sub-problem (2.5). One of them, the Remes-like algorithm, is only
for the polynomial case, and the other one, the differential-correction-like algorithm, is
for the general case (i.e. rational). These algorithms were used to compute the optimal
filtering functions of different multiband microwave filters, presented in Chapter 4. In
this chapter, three open problems are presented. The first section gives some clues for
the implementation of a rational Remes-like algorithm in order to improve the rate of
convergence. The second section is a discussion about the degree of the solution. Finally,
in the third section, we explain how the real polynomial Zolotarev problem (2.7) could be
extended to a complex Zolotarev problem.

5.1 A rational Remes-like algorithm

In the case of approximation of continuous functions, the Remes algorithm was extended
in order to handle rational approximation ([Werner, 1963]). This extended algorithm is
proven to be convergent when the best rational approximation is “(m,n)-normal” (i.e.
has a numerator degree equal to m or a denominator degree equal to m) and when
the starting point of the algorithm is sufficiently close to the best approximation (e.g.
[Braess, 1986]). Note that, in practice, the Remes rational algorithm is faster than the
differential-correction algorithm, but it only converges if the initialization is “quite good”.

Suppose that the rational Remes algorithm could be adapted to our case, and gives
a process which is locally convergent when the solution is “(m,n)-normal”. Therefore,
we could compute a “rough” solution using the differential-correction-like algorithm (by
discretizing the intervals with a small number of points), and next, we could refine this
solution using the rational Remes process. Combining the differential-correction-like algo-
rithm and the rational Remes algorithm would improve the time of computation of the
solution.

We next present what would be an adaptation of such an algorithm to solve our
Zolotarev problem. No proof of convergence is given.

The main idea of the rational exchange algorithm is the same as for the polynomial
exchange algorithm, that is it consists in computing in an iterative way the alternating
points which characterize the solution. The adapted algorithm for solving Problem (2.6)
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would be:

Step 1: Initialization
Compute a “rough” solution g of problem (2.6) using the differential correction-like algo-
rithm. A criterion A is found. Determine “extreme” points wi < wo < «++ < Wipinto Of %.
Associate to these points signs s; < s9 < --+ < Sptm+2 as follow :

ifw; €1,s; =sgn (%(wi))

5.1
if wi € J,s; = —sgn (g(wi)> (5:1)

Step 2: Adaptation of the reference set
Look for the point where % “deviates most” from a valid solution, either by exceeding the
modulus bound on I or by reaching a minimal value on J that is smaller than the current
A, i.e. find w such that

‘p(w)‘ = max <maxp — 1, max A — p) .
q I q J q

Associate to this point a sign as in (5.1), and include the point in the reference set in order
to keep n + m + 2 alternating points.

Step 3: Solving the problem on the new reference set
Solve the following system of n 4+ m + 2 equations

if w; € I, p(w;) = siq(w;),
if w; € J, p(w;) = sirq(wi),

with unknowns A, p and gq.

The latter iterations between Step 2 and Step 3 are repeated until a rational function
P that satisfies the boundedness condition on I is computed. If the initialization is badly
chosen, algorithm fails at Step 3 (the system (5.2) does not have any solution). The main
difference with the polynomial algorithm is in the computation of the solution (if it exists)
of system (5.2). Indeed, system (5.2) is not linear. However, it could be solved thanks to
the following observation:
If o = H;”i{nﬂ'z m’ then EZTL:—i-lm+2 a;g(w;) = 0 for all polynomials g of degree less
than n + m. Thus, from equations (5.2), we deduce that

Zaisip(wi)wf + Zaisi/\p(wi)wf =0, VO<k<m.
el ieJ
Therefore, AP = ABP, where A and B are m X n matrices defined by
Ay = Z aisiwgﬂ

el
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and

for 0 <[, 7 < m. Solving this generalized eigenvalue problem gives m + 1 possibilities for
A and ¢. Including these solutions in (5.2) leads to a linear system. If the same argument
as for rational approximation could be used ([Werner, 1963]), then at most one solution
of this problem would be such that (p,q) € A}.

5.2 Degree of the solution

In this section, we keep the same notations than in Chapter 2.

Throughout this study, we saw that the degree of the solution of the Zolotarev problem
is not always maximal. In the “simple” Zolotarev problem (2.5) where I and J are unions
of intervals, one could ask whether a slight modification of the boundaries of the intervals
of I and J could ensure at least the “(m,n)-normality” of the solution (i.e. that the degree
of the numerator is n or the degree of the denominator is m). We have no answer to that
question. However, we now show that, in the polynomial case (2.7), a slight modification
of the boundaries of the intervals ensure that the degree of the solution is at least n — 1.
We recall that in Problem (2.7), I and J are finite unions of finite intervals and that X is
defined by X =1TU J.

Note that, when the degree of the solution is equal to N < n, a sequence of N + 2+ k
extreme points exists, k > n — .

Lemma 5.2.1 Letp € A be a polynomial of degree N > 1. If p has N +2+k vy-alternant

extreme points, k > 0, then at least k + 3 of these points are in 0X = (I U J)\ (; U 3)
and are not root of the derivative of p.

[e]
Proof Note that, if w €X is a vp-alternant extreme point, then w is a local extremum
of p, and therefore the derivative of p vanishes at w. Since degp = N, the derivative of p
vanishes at most N — 1 times. Thus, the conclusion is immediate.
|

Let € > 0 and € R. We denote by B(z,€) the open interval |x — €,z + €.

Definition 5.2.2 Let e > 0.
We say that a compact set V is e-close to X if:

o V CX,

o X\ U B(xz,e) C V.
€K

Proposition 5.2.3 Let p € A be a polynomial of degree n > 1. If p has n + 2 4+ k v,-
alternant extreme points, k > 2, then there exists € > 0 and V e-close to X such that p
has ezactly n+ 2 + & v,-alternant extreme points in 'V, £ € {0,1} .
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Proof Let B be the set of v,-alternant extreme points in 0.X such that the derivative of p
does not vanish at these points. Since p is not constant, B is finite, and using the previous
proposition, this set contains at least k£ 4+ 3 points.

We next see how a slight modification of the boundaries of I and J allows to decrease
the number of extreme points. Let w € B.

If w € BN I, then there exists €, > 0 such that B(w, €,) does not contain other extreme
points. Therefore, replacing I by I \ B(w,€y), the number of extreme points of p on
I'\ B(w, €y) U J is decreased by 1.

Similarly, if w € BNJ, and if there is another extreme point w,, # w € J, then there exists
€w > 0 such that B(w,e€,) does not contain another extreme point. Therefore, replacing
J by J\ B(w, ), since 1, = p(wy,), the minimum of p on J \ B(w, €,) is equal to the
minimum of p on J. Note that the number of extreme points on IUJ\ B(w, €,) is decreased
by 1.

Using what precedes, applying a slight modification to the boundary of X, we can
remove one extreme point. Then, the maximal length of a sequence of v,-alternant extreme
points decreases by 0, 1 or 2. Since p is not constant, the number of extreme points is finite.
Therefore, this process can be repeated until the maximal length of a sequence of extreme
points is equal ton +2+4 &, £ € {0,1}.

|

The following corollary is then immediate:

Corollary 5.2.4 For every X, n, and €, if the solution of the polynomial Zolotarev prob-
lem (2.7) on X is not constant, then there exists V e-close to X such that degree of the
solution of the Zolotarev problem (2.7) on 'V is at least n — 1.

5.3 A complex Zolotarev problem
We are interested in the following problem:

find p* solution of: max min o(w)p(w).
{pePn(C),lIpll1 <1} weJ ()
This is an extension of Problem (2.7) to the complex case. We recall that here, I and J
are a sequence of closed real intervals, non reduced to a point.

Note that [p*|? is a real polynomial of degree at most 2n, positive over R. We next see
that this problem can be easily solved using our extended polynomial problem. We define
two functions [ and u by

1
I(z) = { over J

0 otherwise

and

u(zx) =

{ 1 over |

+00 otherwise

and a sign function o by ¢ = 41 everywhere. Solving the real generalized polynomial
Zolotarev problem of degree 2n presented in section 3.1, we obtain a polynomial P*. P*
is a real polynomial positive over R. Therefore there exists a complex polynomial p* such
that [p*|?> = P*. It is then straightforward that p* is a solution to the complex Zolotarev
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problem. Note that this process could be extended to a problem with fixed denominator.

Now, recall that the original problem associated to filtering functions is a “mixed”
Zolotarev problem (see (2.4)), i.e. a problem with a complex polynomial as numerator,
and a real polynomial as denominator. A “not trivial” lower bound to this problem could
be obtained the following way. First, compute the solution to the real rational Zolotarev
problem (2.6). A real rational function P/ is obtained. Next, as precedes, compute the
solution to the complex polynomial Zolotarev problem with weight 1/|Q|. This gives a
polynomial p*. The rational function p*/@ is a function such that p* € P,(C) and Q €
Pm(R), and gives a lower bound to the “mixed” problem (2.4).

Note that, if the real rational Zolotarev problem was extended, as the polynomial case,
to the entire real axis, we could also obtain a upper bound to the “mixed” problem. Indeed,
computing the solution to the problem with degrees (2n,2m) would give the solution to
the complex Zolotarev problem (i.e. the problem with complex polynomials as numerator
and denominator).

Computing the solution to the “mixed” Zolotarev problem is still an open problem.
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Schur rational approximation
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In this part, we are interested in approximating a Schur function f by a rational
function which is also Schur. A Schur function is an analytic function whose modulus
is bounded by 1 in the unit disk. This problem of approximation is very important for
the synthesis and identification of passive systems. The main idea is to use a generalized
multipoint Schur algorithm, that is a Schur algorithm where all the reference points are
not taken in 0 but are taken at points («;);>1 anywhere in the unit disk. Such an algorithm
leads to a sequence of Schur rational functions that we are studying all along this part.

In the first chapter, we introduce the generalized Schur algorithm, and rewrite it as a
continued fraction. We then give some basic properties of the convergents of this continued
fraction. In particular, the convergents of even order are Schur rational functions which
interpolate f at the points ().

In the next chapter, we introduce the orthogonal rational functions on the unit cir-
cle and give all the basic results needed on this topic. Our main reference is the book
[Bultheel et al., 1999].

The third chapter makes a connection between the Schur algorithm and the orthogonal
rational functions. This is a generalization of the Geronimus theorem ([Geronimus, 1944],
[Langer and Lasarow, 2004]) which states that the Schur parameters are equal to the
Geronimus parameters of the orthogonal polynomials of the measure associated to f by
the Herglotz transform.

The first three chapters are in fact all the necessary background to study the asymp-
totic properties of the convergents of even order. These properties are given in the fourth
chapter, and are mainly a generalization of the work of Khrushchev ([Khrushchev, 2001])
who studied the L?-convergence in the case of the classical algorithm. The difficulty here
comes from the fact that we let the points go the circle.

In addition, we obtained a “Szeg6 condition” and a result of convergence for the Schur
functions which seems to be asymptotically very close to a BMO convergence.

Finally, in the fifth chapter, we give some practical ways to approximate a Schur
function by a rational function of a given order. We prove that any strictly Schur rational
function of degree n can be written as the 2n-th convergent of the Schur algorithm if the
interpolation points are correctly chosen. This leads to a parametrization using the Schur
algorithm. We give some details about it, and also explain how to compute effectively the
L?-norm. Some examples are computed using an optimization process, and the results are
validated by a comparison with the unconstrained L? rational approximation.
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Chapter 6

Notations and first definitions

This chapter presents some basic notations and definitions that will be used throughout
our study.

We denote by D the unit disc D = {z € C,|z| < 1} and by T the unit circle T =
{z € C,|z| =1}.

H(D) and C(D) represent respectively the set of analytic functions and the set of
continuous functions over . We denote by A(D) the disk algebra, i.e. the set of analytic
functions in D, continuous on D.

For a function f, we define the infinity norm || - [oo by || fllcc = sup.ep |f(2)]-

Definition 6.0.1 An analytic function f on D such that ||f|lcc < 1 is called a Schur
function. The set S of all Schur functions is called the Schur class S.
If f is an analytic function in D with || f]leco < 1, we will say that f is strictly Schur.

Let {z,} be a subset of D\ {0} and s be a nonnegative integer. A function of the form

s 20| 2n — 2
B(2) == IZI Zn 1 — Zp2
is called a Blaschke product. Furthermore, if the set {z,} is finite, it is called a finite
Blaschke product.
It is well known (e.g. [Garnett, 2007] or [Rudin, 1987]) that if ), (1 —|z,]) < oo, then
B is in H*(D), the zeros of B are the points z, (and 0 if s > 0) and |B| = 1 almost
everywhere on T. Therefore, ) (1 — |2,|) < oo is a sufficient condition for the existence
of a non-zero function in H*°(D) with given zeros {z,}. In fact, this is also a necessary
condition (e.g. [Garnett, 2007] or [Rudin, 1987]): the zeros z, of a non-zero function in
H>*(D) satisfy >, (1 —|z,|) < .
We will sometimes use the following corollary: if a function in H°°(D) has an infinity of
zeros at the points z, and if > (1 —|2,|) = oo, then it is the zero function.

For a sequence {ay}7°, C D with ag = 0, we define the elementary Blaschke factors

Z— Qg

k>0 (6.1)

) -

Gk =

B 1—agz
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and the partial Blaschke products

By(z) =1
{ Bi(z) = Bi—1(2)Ck(2) = Hle f__c_sz for k > 1. (6.2)

The functions {By, By, ..., By} span the space

@:{%:ﬂM@:HO—%@,meﬂ} (6.3)
k=1

Tn

where P, is the space of algebraic polynomials of degree at most n.
In particular, if all the oy are equal to 0, the space £,, coincides with the space P,,. Note
that a function of £, is analytic in D.

For any function f, we introduce the parahermitian conjugate f, defined by

fu(2) = f(1/2). (6.4)

Two useful and immediate equalities are (,, = ¢, * and By, = By L.
We set for any function f € L,:

F* = By f.. (6.5)

It is immediate to check that f* is also in L.
We denote by B, ; the product H],zz? Cr. If

f=anBn+an-1Bn—1+---+a1B1 +ap

then
f* = dOBn,l + dIBn,Q + -+ an—QBn,n—l + Cin—llgn,n + anp.

Finally, we note that the leading coefficient a,, is given by

an = f*(an)

and that
ag = f(aq).

We denote by m the normalized Lebesgue measure on T : m(T) = 1.
Now that all the main notations have been presented, we are able to begin with the
study of the Schur algorithm.



Chapter 7

The Schur algorithm

Starting from a Schur function f, the classical Schur algorithm ([Schur, 1917]) gives a
sequence of Schur functions (fy), <y and a sequence of complex numbers (), as follows:

f0:f7( )

e = fr(0),

1 Fo(2) = e for k > 0.
fen (@) = Sy

Note that for every k € N, w — % is a Moebius transform which maps D onto D,
so by the Schwarz lemma ([Garnett, 2007]) fi is a Schur function for every & € N. An
interesting property ([Bakonyi and Constantinescu, 1992]) of the Schur algorithm is that
it realizes a one-to-one correspondence between the Schur class S and the sequence of
complex numbers (vx),cy having the properties: |y,| < 1 for k > 0, and if for a certain
ko, |Vke| = 1, fro(2) = Yk, is a constant function and then v, = 0 for k > ko.

Note that the Schur algorithm extends to operator-valued functions ([Potapov, 1955],

[Ceausescu and Foiag, 1978]).

7.1 Multipoint Schur algorithm
In the classical algorithm, the Schur parameters -, are obtained by evaluating the func-

tions f, at 0. This process can be extended to more arbitrary evaluation points in D (e.g.
[Jones, 1988], [Langer and Lasarow, 2004]). We next describe such an algorithm.

Let {ax}32, be a sequence of points in D and {c}32, be a sequence of points in T
with cg = 1. Then, the generalized Schur algorithm is :

For k > 0, fi and ~; are defined by

fo=1f

Ve = Crfr(hs1) for k>0
L afe— =

Jrt1 =

Cht1 1 — Vi fr
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where (i is the Moebius transform defined by (6.1).
If |y%| = 1, the algorithm stops.

The parameters («y) are the interpolations points. They are those parameters equal
to 0 in the classical Schur algorithm, which are presently taken anywhere in the disk. The
parameters (c) have modulus equal to 1, and are rotations applied to the fi at each step
of the algorithm. Note that the (cx) can also be seen as normalization parameters of the
Moebius transforms since

1 Cefe —
Cht1 1 — VCr Sk
ek fr—
Cht1 1 — VCr Sk
1 fe — frlogsr)
kGt 1 — fr(ansn) f

As in the classical case, the sequence (f,)nen is a sequence of Schur functions, therefore
the (Yn)nen lie in D.

fry1 =

Definition 7.1.1 The sequence (Vn),cn 45 called the sequence of Schur parameters of the
Schur function f associated to the sequence (o).

The Schur parameters depend only on the values of f and its derivatives fU) at the
points (ay),. More precisely,

Proposition 7.1.2 For k € N, ~, depends only on the values f(i)(Oéj_i_l), 0<j <k,
0 <4 < mjy1, where mji1 is the multiplicity of a1 at the k-th step, i.e. mji1 is the
cardinality of the set {I,0 <1 <k, ayp1 = oj41}.

a2
Proof Noticing that f;(a;) = ;71(aj)éj,12j%, the proof is immediate by
J— J

induction.
[ |

The Schur algorithm can be reversed in order to express fr_1 as a function of fr. We

obtain )
X Cefe +m-1 _ o1t + (1 —|ve=11%)cr—1¢k
L VeGSR o Ve—1Ck + fik

We denote by 7 the map

fe—1=cx (7.1)

m: D — S
A=lw®erCers
w — 1(w) = Kk Felhr1+2 if w0,
CkVE ifw=0.

Note that we should write 7;(w)(2) because 7;(w) is a Schur function of z through (x41.
Much of the recursive complexity of the Schur algorithm lies in the fact that we shall
substitute to w a function of z to make 7;(w(z))(z) a function of z only. In particular, we
have fr = 7x(fr+1). Therefore, f is equal to

f:TOOTlo"'OTn(fn+1)- (72)
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Proposition 7.1.3 The Schur algorithm stops if and only if f is a finite Blaschke product.

Proof For p a polynomial, denote by p the polynomial z"p (%) where n is the degree of
.

Suppose that f,, is a Blaschke product of degree n. Then f, can be expressed as % where
p has its roots in D, so

1 —a, 712 ¢enp — P

Z = Qpt1 D — YnCnD

Let Py = Gup — ymp. Then Py = c,(p — Enimp), sO % is of the form £ for some
polynomial P. Note that, since ¢, fn(nt1) = Yn, P vanishes at ay,41. Therefore fi, 11 is
a Blaschke product of degree n — 1. Thus, if f is a Blaschke product of degree n, f, is a
Blaschke product of degree 0, i.e. a constant of modulus 1, and the algorithm stops.

Conversely, if f;, = £ is a Blaschke product of degree n — k, then

p

fn+1 -

_ (z — ap)p + Yr—19(1 — A 2)
Jro—1 = cr—1= — - ;
P(1 —agz) + Yr—1(2 — ag)p

so fr—1 is a Blaschke product of degree at most n — k 4 1. In fact, using the first part of

the proof, we get that fr_1 is exactly of degree n — k + 1 (otherwise fi is not of degree

n — k). Therefore, if f,, is a constant of modulus 1, f is a Blaschke product of degree n.
|

7.2 Continued fractions

In this section, we give a very short introduction to continued fractions. Many good ref-
erences, such as [Wall, 1948], can be found on this topic.
A continued fraction is an infinite expression of the form

ai
bo +
bl + b a2a3
2+b3+6.l4
also denoted for economy of space by
a9 as

ot 2B
0 by + by + b3 +...

Let to(w) = by + w and
ag

= for k> 1.
b + w

tk(w)

We call the n-th convergent, and we denote by P, /@y, the fraction

P,
Q—:tootlo~~otn(0):bo+

ai
A ——
ba+
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Proposition 7.2.1 The quantities P,, and Q,, are given by the recurrence relations

P1=1,0Q-1=0,

Py =bp,Qo =1,

Pry1 = bgy1 Py + ag1 Pr1
Qk+1 = bp+1Qk + ag+1Qk—1

for all non-negative k.
More generally,

P iw+ P,
tpotio---oty(w) = —mmm.
0 ! n( ) anlw"i'Qn
Proof By induction. We have
P_1w+P0
tolw)=bg +w=—"—"-—-.
o(w) = bo Q1w+ Qo

Suppose the statement true for k. Then

Ak41
Pe-1 bpt1+w + Py

a
Qr-15 770 + Qk
Prw + b1 Py + a1 Pp—1

Qrw + bp1Qp + ap+1Qr—1
Prw + Pyiq

Qrw + Qkt+1

tootio---otpy(w) =

This gives the announced result.

7.3 Wall rational functions

In this section, we follow the same scheme as in ([Khrushchev, 2001]).

Let (di)ren be a sequence of points on the unit circle T, with dy = 1. We now define
the ¢ of the Schur algorithm by ¢; = d,2§. Let (ay) be a sequence of points in the unit disk
D. Recall from (7.2) that f =719 o7 007, (fnt1) with

(1 - ’7k|2)Cka+1

Te(W) = ek + ——
WCet1 + 5

A rational Schur function R,, of degree at most n can be obtained by interrupting the
Schur algorithm at step n, that is, by replacing f,4+1 by O:
R,=mo0T1 0071 07,(0)

(7.3)

=T790T710---0 Tn—l(cn'Yn)'

The rational functions R, play a key role in what follows. Indeed, we will see later how to
approximate f using the sequence (R,,). Therefore, we will now pay a particular attention
to the properties of these rational functions. The first one is an interpolation property:
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Theorem 7.3.1 The rational function R, interpolates f at the points ag, 1 <k <n+1,
and has the same n + 1 first Schur parameters as f.

Proof Note that 7 (w)(ag41) is independent of w. Indeed, 7 (w)(ak+1) = ckyk. Let k be
an integer such that 0 < k < n. Then:

flagy1) = 7o oTp(Thr1 0 0Ty 0 fuy1)(ary1)
= 790 0T(Tht1 0+ 07(0)) (k1)
= Rn(ak+1)-

Thus, R, interpolates f at the point ay1.

We next prove by induction that f and R, have the same n + 1 first Schur parameters.

Using what precedes, we get that f and R, have the same first Schur parameter ~y. Now,

suppose that the k first Schur parameters of f and R, are equal. Then, if we denote by
7[11 ], e ,[{L ! the Schur functions of R,, obtained through the Schur algorithm, RL{“ Vs equal

to 7, 0+~ o75 ' (Ry). Thus,

Rif(ag1) = 7o ory  (Ra) (ki)
= Tk:llo---o7’0_1070071o---orn,l(cn'yn)(ozkﬂ)

= TgO---0 Tnfl(cn'}/n)(ak-i-l) = CkVk

since 7i(w)(ak+1) = cxygx. Therefore, the k + 1-st Schur parameter of R,, is equal to the
k + 1-st Schur parameter of f.
|

The previous theorem leads to the existence of a function with given Schur parameters:

Corollary 7.3.2 Let%;, 0 <i <n—1, ben points in the unit disk D and ¢;, 0 <i <n—1,
be n points on the unit circle T. Then, there is a Schur function whose n first Schur
parameters are the ¥;, 0 <i <n —1.

Proof Using the previous theorem, the function

R, =700 7V'n—l(cn;)/n)

where )
(1 — [%&]) crCrr1

rCr1 + %

Te(w) = cxYr +

satisfies the announced condition.
[ |

We are now going to study the sequence of rational Schur function R,, using continued
fractions. We note £= the sequence of convergents associated to the continued fraction

Qn
1 — |y0[*)coa 1 1—|ml?)eade
o 3 (L= o)t (1= [uPerg -
YoG1 + cam + e +...
P2n

so that the R, are the convergents of even index: R, = oo
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By proposition 7.2.1, for n > 1:

Pop = cpynPon—1 + Pon—2
Q2n = cnmQ2n—1 + Q2n—2
Pan—1 = Yn-16nPon—2 + (1 = [1n—1]*)cn-1(n Pon—3
Q2n-1 = Fn-16aQ2n—2 + (1 = [1n-1/*)n-16nQ2n—3
with
Py=1 FR=cw="m (-1=0 Q=1

Our purpose is now to give explicit formulas in order to compute R,,, that is formulas for
Py, and Q2. The following lemma expresses the relations between the rational functions
of even and odd order. We shall make the convention that Q3, = B,Q2, and @5, | =
Bpn+1Q2n+1, and similarly for P, and Ps,41. It will actually follow from the lemma that
this convention agrees with definition (6.5), in that we will have Po,y1, Q2n+1 € L5141 and
Pgn, QQn S ﬁn by (75)

Lemma 7.3.3 Forn > 0, we have

Pont1 = Cpn10Q3,, Qont1 = Cnni1 P,
where Cy, = Zzg cp €T.
Proof For n =0 we have

P1 = olicovo0 + (1 — |[y0|*)colt = col1Q
and
Q1 =Y = oGPy

Assuming the hypothesis is true for all indices smaller than n, we obtain that

CnCni1@5, = Cnluy1(cammQan—1 + Qon—2)"
CnCnJrl(En'_YnQ;n—l + CnQSn—Q)
Cn-1Gn+1(mQ3p—1 + cnln@3;,_2)
Cr—1Cn+1(nCrna1Pan—2 + cnCp—1Pap—1)
Cnt1(WnPon—2 + cnPon—1)

Cnt1(nPon — cnh/n|2p2n—1 + cnPon—1)
= Popir.

This yields the first relation of the lemma. The proof of the other relation is similar.
|

From (7.5), we have for n > 1 :
P2n+1 = '7n€n+1P2n + (1 - h/n|2)cn€n+1p2n—l

:}’nCn—f—l(cn’VnPZn—l + P2n—2) + (1 - |'7n’2)cngn+1p2n—1
= YCnt1Pon—2 + cnCay1Pon—1
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and similarly Q2,11 = ¥ Cnr1Q2n—2 + cnlnr1Q2n—1 so that

[ Popi1 Qany1 ] _ [ cnCnt1 Ynlnt1 } [ Py 1 Q2n-1 }
Py, Q2n YnCn 1 Pop_o QQn—Q

Cnt1 O 1 cn 0 Py—1 Qan—1
0 1 Tn 1 0 1 P2n—2 Q2n—2 '
Therefore

[ cnt1 O } { Pot1 Qany1 ]
0 Cn—‘rl P2n QQn

_ Cnt1 ¢nt1 O 1 Yn G O cn 0 P11 Qan—1
“ 10 1 Yo 1 0 1 0 G Pon—2 Qan2 |~

Thus, using the previous lemma,

[Cn+1 0:| |:Q§n P2*n:|

0 1 Py, n
’ Qf (7.6)
_ Cn+1 0 1 Tn Cn 0 Cn 0 Q§n72 P2*n72
0 1 o1 0 1 0 1 Pon—a Qon—2 |
Iterating, we get
|: Cn—i—lQSn Cn+1P2*n :|
P2n Q2n
e ) ~ (7.7)
_ H k1 0 L G O c 0 I 7%
Pt 0 1 v 1 0 1 0 1 v 1 |-

Let 3, = [];_, dx- Note that, by definition of ¢z, we have 2 = (,. We choose as
representative of R, the rational function R,, = g—z with A, = X, P, and B,, = ¥,Q2,.

Definition 7.3.4 A, and B,, are called the n-th Wall rational functions associated to the
Schur function f and the sequences (o) and (dy).

As pointed out before, R, plays a key role in the theory. This role will now be empha-
sized through the Wall rational functions A,, and B,,.
From what precedes, we have :

Proposition 7.3.5 The Wall rational functions A, and B, are given by the formula

» Cn+1 0 B;kl A;(L
"0 1 A, B,

LGN BRI ER IS

with
k=n

S =[] d-

k=0
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Corollary 7.3.6 A, and B,, have the following properties :
1. Bp(2)Bi(2) — An(2) AL (2) = Bp(2)wn,

2. |Bn(&)P = |An(&)? = wn for £ €T,

3. flai) = %Z(Oéi) = fz(ozi) foralll<i<n+1

with

Proof By taking the determinant, we obtain from (7.7) that
Bn(2)By(2) — An(2)A7(2) = Q2n(2)Q3,(2) — Pan(2) P3,(2)

= B [Tl

k=0

The conclusion is then immediate.

Important properties of the Wall rational functions are:

Proposition 7.3.7 For alln >0 :

1. B, is an analytic function which does not vanish on D,

Ar :
2. 7~ is a Schur function.
n

Proof The proof will be given for Ps, and (Q2,. Since Py = v and Qg = 1, Py and Qg are
two analytic functions and Qy does not vanish on ID. Let us assume that these hypothesis
are true for n. Then both functions % and % are analytic on D. From corollary 7.3.6,
and by the maximum principle, these two functions are Schur. Furthermore, from (7.6), it

is immediate that P52 and Q2,2 are both analytic in the disk and that

|Q2nt2(2)] = [Crs1(2)Crs1Vns1 P2, (2) + Q2n(2)]
A*
> Q)] (1= bl 5]} >0

The Wall rational functions A,, and B,, are related to f by the following formula:

Theorem 7.3.8 The Wall rational functions A, and By, are rational functions € L, such

that
An(2) + Cr1(2) By (2) fos1(2)

f(z) = Bn(2) + ut1(2) A5 (2) fusa (2)
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Proof Proposition 7.2.1 applied to the continuous fraction (7.4) gives us in view of (7.2)

1
_ Pongr g + Pona _ Py, + Popy1 fras1
Q2nf%+1 + Q2n+1 QQn + Q2n+1fn+1

f(z)

But using lemma 7.3.3, we get

P2n + CnCn-l—lQ;nfn—&-l

QQn + CnCn+1P5nfn+1

—1/2

Cp / Py, + CTIL/QCTL-‘rlQ;nfTL—Fl

——1/2

Cn / Qan + Crl/QCnHPz*nan
An + Cn—i—lB;;fn—i—l

Bn + Cn—&—lA;klfn—i—l

flz) =
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The Schur algorithm




Chapter 8

Orthogonal rational functions on
the unit circle

Orthogonal rational functions have been widely studied ([Djrbashian, 1962], [Pan, 1996],
[Bultheel et al., 1999]). We recall here the main aspects of this theory. Its remarkable
feature is to make connection with the Schur algorithm as we shall see in the next chapter.

8.1 Reproducing kernel Hilbert spaces

Good references on reproducing kernel Hilbert spaces are [Schwartz, 1964, [Dym, 1989
and [Alpay, 2001]. We recall here, mostly without proof, the properties that will be useful
in what follows. We will write RKHS for “Reproducing Kernel Hilbert Space”.

A RKHS is a complex-valued function Hilbert space in which pointwise evaluation is
a continuous linear function, that is:

Definition 8.1.1 Let X be an arbitrary set and H be an Hilbert space of complex valued
functions on X. H is a RKHS if and only if the linear map f — f(x) from H to C is

continuous for each x € X.

From the Riesz-Fréchet theorem ([Rudin, 1987]), for w € X there exists a unique
function k(.,w) in H such that

flw)={f,k(,w)) VfeH.
Definition 8.1.2 The function (z,w) — k(z,w) from X x X to C such that
fw)={f;k(,w)) VfeH (8.1)
1s called the reproducing kernel of H. The reproducing kernel is clearly unique.
The reproducing kernel is a Hermitian function, that is
Vz € X,Yw € X, k(z,w) = k(w, 2).

Since in a Hilbert space of finite dimension pointwise evaluation is always continuous,
we have
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Proposition 8.1.3 A Hilbert space of functions of finite dimension is a RKHS.
The result we mainly use throughout is:

Proposition 8.1.4 If H is a RKHS, and if (ey,) is an orthonormal basis, then the repro-
ducing kernel k of H is equal to

k(z,w) =) en(2)en(w). (8.2)

n

Proof First, note that if dim(H) = oo, ), en(2)en(w) converges in H. Indeed, we have
Mo len(w)? =3, (en(.), k(,,w)) = |k(.,w)|l2 < +oo because k(.,w) € H.

We next prove the equality (8.2). Let f in H. Expressing f in the basis (e, ), we obtain
that f =), aney for some a, € C. Thus,

(f,Zen(.)en(w)> = (Zanen(.),Zen(.)en(w»
= Z<anen(-)aen(w)€n(‘)>

As the reproducing kernel is unique, we get

k(z,w) = Z en(2)en(w).

8.2 Christoffel-Darboux formulas in £,

Let i be a real probability measure on the unit circle T with infinite support and L?(y)
the familiar Hilbert space with inner product

@) = /T F(©)alE)d(©).

The space £, endowed with the inner product < .,. >, is a Hilbert space of finite dimen-
sion, so it is a RKHS. Therefore, there exists a reproducing kernel k,(z,w) such that for
every point w € D, k,(z,w) € L, as a function of z and

VI € Ln,VweD, f(w) = (f(.), kn(.,w)), . (8.3)

Let us denote by {¢o, ¢1,...,¢n} an orthonormal basis for £,, such that ¢9 = 1 and
ok € Ly \ Lr—1. Such a basis is easily obtained by the Gram-Schmidt orthonormalization
process applied to By, By, ..., B,. We can write

On = an,an + an,n—an—l +...+ an,llgl + an,OBOa Gpn = Rn. (84)
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Note that x, = ¢%(an).
For 0 < k < n, Byo¢p, is in L,. Moreover, {B,¢0,, Bnd1y, .-, Bnon,} is also an or-
thonormal basis, since

(Bndks, Bndrs) /\B P or(E)dr(£)du(€) = bry.

Using this new basis to compute the reproducing kernel, we get by (8.2) that

Letting w — v, since By, (ay,) = 0 and no term is singular except if k = n, every term in
the sum vanishes except for k = n, and computing the limit we have

kn(za an) = Bn(z)¢n*(z) wllrgn Bn(w)¢n*(w>

= 6(2)6h(om) (8.6)
= K¢y (2)-
In particular, k,(ay, an) = |kn|?. From (8.5) we may write
Ba(ew)  a(sw)

Bu(2)Bu(w)  By—1(2)Ba—1(w)
Multiplying by B, (z)B,(w) gives the following important relation:
ki (2,0) = Ga(2)Gn(w)kn—1 (2, w) = 65, ()¢5 (w). (8.7)
Using (8.2) with the orthonormal basis (¢o,. .., ¢n), we also have that
kn(2,w) = kn—1(2,w) + ¢u(2)n(w), n>1. (8.8)

We may use this relation to replace either k,(z,w) or k,_1(z,w) in relation (8.7) and
then compute the other one. We get this way the following Christoffel-Darboux relations
([Bultheel et al., 1999], Theorem 3.1.3):

Proposition 8.2.1 For z and w in C such that z and w do not coincide on T, and for
n > 1, we have

A 161 ) I A B I D) 59)

1_<n( )Cn( )
k(o) = ) Fn(w) = Gn(2)G ()9 (2) b (w) (5.10)
o 1= Ca(2)Cn(w)

A direct application of the Christoffel-Darboux relations is ([Bultheel et al., 1999],
Corollary 3.1.4):

¢n( )

Proposition 8.2.2 For alln > 1, for all z €D : ¢} (2) # 0 and )
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Proof From (8.9), we get for w = z that

(1= [Ga(2) PV kn-1(2,2) = 97 (2)]* — |dn(2)]*
But . .
Fnoi1(z,2) = > |ok(2)* =1+ [éw(2)]* > 0.
k=0 k=1

Since kn—1(z,2) > 0 and |(,(2)| < 1 for z € D, we deduce that

|60 (2)] > |9n(2)]

and the conclusion is immediate.

Using the above proposition, we get ¢} (an—1) # 0 for every n > 0. Therefore, since
¢n is uniquely determined up to a multiplicative constant of modulus 1, we can fix ¢,
uniquely by assuming ¢ (ay,—1) > 0. In what follows, we denote by ¢, the orthogonal
rational functions normalized by

¢ (ap—1) > 0. (8.11)

Note that this is not the same normalization as in [Bultheel et al., 1999], where it is
supposed that k, = ¢ () > 0.

The Christoffel-Darboux formulas imply a recurrence relation for the ¢,, which is the
object of the next section.

8.3 Orthogonal rational functions of the first kind

Evaluate (8.9) at w = o, and take into account the equality k,—1(z, an—1) = Kn—10;_(2)
(see (8.6)). This gives the relation

(2) = 9a(2)0u(an-1) — In(2)dn(an-1)
1— CR(Z)Cn(an—l)

Fon 1051 . n>1. (8.12)

Then take the superstar conjugate

_ o Gn(2) @ (n—1) — ¢, (2)nlcn-1)
Fn1fn-1(2) = Cn(2) = Cnlan-1)

and put these equations together into a linear system to obtain
[ Pplon-1)  —¢n(an-1) ] [ Pn(2) ]
_¢n(an—1) qb;kz(an—l) ¢;:,(Z)

A | R S e e R | i)

so that we have the recurrence relations

[ Pn(2) ] — To(2) [ ¢g*1(2) } Vo > 1,

¢n(2) n-1(2)
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where T,, is equal to

T — |Kn—1] [ on(an—1) Pn(an—1) ]
" |95 (@n—1)[* = |Pn(an-1)1* | dnlan-1) onlan-1)
m/’fin—l‘ 0 :| |: Cn — Cn(an—l) 0 :|
0 Kvnfl/|’fn71| 0 1-—- Cn(an—l)gn '

Now, it is easily checked that

(1= |an*)(z — an-1)
(1 — apan_1)(1 — ayz)’
(1 = Jan*)(1 — an-12)
(1 — ap@n_1)(1 — ayz)’

gn(z) - Cn(anfl) =

1- Cn(anfl)gn(z) =

so that
Cn(z) - Cn(anfl) 0 :|
0 , i 1 — Gu(an—1)Cn(2) (8.13)
_ (= on*)(A = an-12) [ M 0 ] [ Cn-1(2) 0 }
(1 —apan)(l—anz) | 0 1 0 1
where ) B
Tn = #ZZE eT. (8.14)
Furthermore,
{%( —1)  ¢n(an-1) ] [Hn—l/\/in—l! 0 ] |:77n 0]
¢n( Qp— 1) ¢ (an—l) 0 K‘nfl/"{'nfﬂ 0 1 5 (8.15)
_ |: ¢*(an 1) nkn— l/lﬁn 1‘ 0 :| |: 1 _:Yn :|
0 QS:L(O‘nfl)Klnfl/"infﬂ —Tn 1
where L
Yn = _nnwﬁn—l n > 1. (8.16)

(b;kb(an—l) Rnp—1 ’

Note that, by proposition 8.2.2, 4, is well defined in D.

Definition 8.3.1 We call 7, € D the n-th Szegd (or Geronimus) parameter of the measure
W associated to the sequence ().

Evaluating (8.12) at z = «a,,—1 and taking the square root, we get after a short com-
putation

\/‘d) (an—1)* = [pn(an-1)[?
\/1—]04” 1\ VT JanP

|kn—1] = |1 — apam—1

so that, from (8.16),

"fn—ll . ‘1 - dnan—1’

|65 (am-1)? = [$n(on-1)I> /T = [an1[2/1T = JanPl65(an-1)[y/1 = [a]>

(8.17)
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Combining (8.13), (8.15) and (8.17), we finally have that

T(2) = 1—|anl? 1 1—ap_12 [ A 0 ] [ L —%} [Cn_l(z) 0]
1—Jan-11? /1= [Fa2 1—anz 0 M —Yn 1 0 1
(8.18)
where
o L —anan] gilan—1) - Rat _ 1-anl@no1 Faot g (8.19)
" 1= andn-1 [@5(an—1)] " [Fn—1] |1 = @nan_1] [Fn—1]

We have obtained the following result ([Bultheel et al., 1999], Theorem 4.1.1, but with
another normalization of the orthogonal rational functions):

Proposition 8.3.2 The orthogonal rational functions are given by the formula

5] -l 315] e

nfl(z)

with T,,(z) defined as in (8.18).

A first application of this formula is to the location of the roots of the orthogonal
rational functions. Note that by proposition 8.2.2; since the set of roots of ¢, is the image
of the set of roots of ¢} by the map z — 1/z, we already know that the roots are in the
closed unit disk D.

Corollary 8.3.3 The orthogonal rational functions ¢, have all their roots in D.

Proof By induction, we show that ¢ has no roots in D. This is clearly true for n = 0.
én on

it 7 o) =1
in D. Using the previous recurrence formula on ¢}, we obtain that

If it is true for n, then the function 2 is analytic in D and by proposition 8.2.2,

1— ’Oén+1|2 1 - 1-— @nz - ¢7L
bpg1 = Ant1T—— O e R [l I
. 1- |Oén|2 1-— |’~7n+1’2 e 1 —apt12 n nt nqb;kl

Using the induction hypothesis, and since \%HC}L% < |Ana1| < 1for all z € D, the latter

expression does not have any root in D.
|

The recurrence relation can be inverted in order to express ¢,_1, ¢;_; as functions of

Py O

Corollary 8.3.4 The orthogonal rational functions are given by the reverse recurrence

formula
G e[ e

with T;71(2) equal to

1— a1 1 1— apz [Cnll() OH 1 %][)\n 0}
1— |ap|? 1= |32 1 — an-12 0 1 An 1 0 M\, |-




8.3 Orthogonal rational functions of the first kind 97

Proof Immediate since A, is in T hence

T, = | Ll i p L e o O L AT [
" N — Jan? M T sl 0 1 e 1 0 A

Tn
_ 1=l 1 1 — a2z [cnll(z) 0}[} }ZH)\R 0}
1— |ap|? 1— |32 1 — an-12 0 1 An 1 0 M\,
[
For w € D, we denote by P(.,w) the Poisson kernel
1— |w|?
P(z,w) = Pl z €.

Note that whenever u is harmonic in D and continuous on D, we have

u(w) :/Tu(z)P(z,w)dm(z).

This we call the Poisson identity for harmonic functions.
We now get the orthonormality of ¢y, ..., ¢, with respect to another measure than g
([Bultheel et al., 1999], Theorem 6.1.9).

Corollary 8.3.5 The rational functions ¢y, ..., ¢, are orthonormal in L? ( |(¢ |2)dm>

Proof Let N = fT i Ofg)dm Then (" ‘)dm is a probability measure. For n > 0 and

k < n, we have

fo o TNa S - /TZZP o anlm

- / Ok e - CaP s )

because we can apply the Poisson identity since ¢,* has no zero in D. We also have

/’\F¢n‘2 N’¢n’2 /P ,a)dm = 1.

Therefore, v/ N¢,, is orthonormal to vV N¢o, ...,V N¢,_1, that is to £,,_1, with respect to
];,(‘ ™ ‘2) dm. But the reverse recurrence formula (corollary 8.3.4) together with
(8.16) shows that the first » — 1 orthogonal rational functions normalized by (8.11) are

uniquely determined by the n-th orthogonal rational function and the (ag). Therefore, the

the measure

k, 0 < k < n, are the orthonormal rational functions for the measure zdm. In
VN, 0 < k he orth | rational functions for th P(||>d1
particular,
P(.,an)
N|? Pl a )m—/’ dm = 1.
JovRent S = [ S5

Thus, N = 1, and the conclusion is immediate.

Iterating the recurrence formula, we obtain an expression of ¢,.
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Corollary 8.3.6 Forn > 1, ¢, and @), are given by the relation:
2 k=1 —
Gn | _ VI—lom|® 1 11 Ak 0 L =9 || G=1(2) O 1
o | T T I\ o N f - o 1))t
with

k=1
m, = [T V1T
k=n

Proof Immediate from proposition 8.3.2 since ag = 0 and ¢g = ¢ = 1.

8.4 Orthogonal rational functions of the second kind

As in [Bultheel et al., 1999], chapter 4, we now define the sequence (¢,) of orthogonal
rational functions of the second kind. We shall see later that this sequence satisfies the
same recurrence relations as ¢y, but with 7, replaced by —j,.

Definition 8.4.1 Given u, (ax) and (¢n) as before, we call orthogonal rational functions
of the second kind the sequence v, such that

o =1 .
@) = [ FEZ (600) = a2 aut)

Tt—Z

We will see later that the v, are indeed rational functions. The following proposition
([Bultheel et al., 1999], Lemma 4.2.2 and 4.2.3) is very useful for computations.

Proposition 8.4.2 For n > 1, the functions (1) satisfy the formulas:

dn(2)9(2) = /T P2 0()g(t) — u(2)9(2)) dult)

t—z
for all g such that g. € L,—1, and moreover we have

TR (Gn(Oh(t) - 8 (2)(2)) dpt)

Vi) = |

t—2z
for all h such that hy € Ly 1.

Proof We first prove the first equality. If g is constant, the result is immediate. We
therefore suppose n > 2. Let z € D.
If z = qi for some k, 1 <k <n—1, g(z) = co. By definition, we have

Ynlon) = / EE Ok (4 () — dulan)) dis(t).

t—Oék
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But, since HO‘: € L,—1 and n > 2, we get by orthogonality

t—a

t+ ag
t— o

Wnlok) = —bn(ar) /T dpu(t)

which is the announced result when g(z) = oc.

Suppose z # a3, for all k, 1 < k < n — 1. By density, it is enough to prove the result if
g(z) is analytic at z with g(z) # 0. In order to conclude, using the defintion of 1, we just
have to check that

t+z g(t) [tttz
/Hgbn(t)g(z)du(t) = /chn(t)du(t) whenever ¢, € £,,_1.

But ;7((3 — 1 vanishes for t = z, therefore
g(t) p
—1=(0{-2) ==

where p is a polynomial in ¢ of degree at most n — 2. Thus,

[ o (M—l)dw) = [ onauts

t—=z 9(2) t—=z p—1 (t—ak)
= [ SO i
k=1 (t— o)

- / ( e+ 2)p(l) )¢n<t>du<t>

r—1 (1 —agt)

= 0

because, since t = % on T and degp < n — 2, we have on T:

G 1T p(/D)
R TON Ve ()

n—

Therefore, the first equality is proved.
Since Bph is in L£,_1, we get from the latter

t+ 2z
t—=z

n(2)Bns(2)ha(2) = / (&n () Brs () e () — b (2) B (2) e (2)) dpa(2).

We conclude by taking the lower-* conjugate in z of this expression.
|

We deduce from the following proposition that 1, is indeed a rational function (see
[Bultheel et al., 1999], Theorem 4.2.4).

Proposition 8.4.3 The sequences (¢y,) and (1) satisfy the recurrence relations:

b Un | VIl 1 ’“Hl M 0 1 -7 1T Geiz) 0 11
O —Un ] T—apr My \L [0 N[ [ - 1 0 1 1 -1

k=

|
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with
k=1
1L, = H 1- |')7k|2
k=n
In particular, 1y, is in L.
Proof From Corollary 8.3.6, we now that this relation holds for (¢, ¢ ), so we just have

to prove it for (¢, 1)). We first check that this result for n = 1. As ¢y = 1, we want to
prove that

z +
P = 51 %
with
1-— |a1|2
B — A1
1- \71\2
We have

¢m>=/“”m@ 61(2))du(t)

t—n 2=
du(t
1 —oqt 1 —alz) uit)

_ t+z< (t—2)( l—alfyl))d'u(t)

t—z \ (1 —agt)(1 —ag2)

ﬂ/ (t+2)(1 oqll) d(t)

(1 —aqt)(1 —aqz)

1— o9 t+ =z
_ g loom / ().

1—0o1z Jp1—"aqt

As ¢ is orthogonal to 1, we also have

t — 1
du(t) =« du(t). 8.20
[ imdn® =7 [ =t (3.20)
Therefore
1— oy /
¢1(2)—571_a12 (71 +2) 1—a1td”()

But, by (8.20),

1
du(t) = 1 du(
Al_th) +m/&_aﬁu

= 1+04171/1_a1td/£()

thus
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Therefore,

Yi(z) = ﬁll_iafﬂl(ﬁ+ 2)%

1 —oz 1 —am
z2+ 91

/811 e
— 12

which is the result we want.

We now proceed by induction.
Assume n > 1. Proposition (8.4.2) gives us with n replaced by n — 1 and g = 1 together

with h = (,—1,,
bn-1(t) B { bn_1(2) ] au)
o) () '

] :/§f§<

Multiplying by T,,(z) whose definition was given in (8.18), we obtain

Qﬁnfl(z)
~1(2)
S0 e |- [ ]
(z
o (2

t+ 2
t—z

T(2

Pn1(t) ] (2) )
M e

Tn(t)

t+ 2z
t—z

(1 —ant) (1 —ap_12)
(1 —anz)(1 —ap=1t)
(1 —ant)(

( )

= SSIEARE

(=
1
< )

But, by proposition (8.4.2) applied with g(z) = (1 — @,2)/(z — ap—1), the first row in the
right handside of the last term is equal to v,. So it only remains to prove that the second
row is equal to —1);:. To this effect, observe that

/t—|—z (Z-Oﬁnl Z‘“ﬂ) 1- %tgﬁn() dp(t)

t—z \t—a,_1 t—a, /) 1—0a,z
B t+z ((t—2)(an—an—1)) 1
N /t—z((t—an_l)(t—an)>1— ¢"<) u(t)

(1 — amt)(t + 2)(an — an_1) .
/ E= )t — an1)(1 — ) )

_ /Bn 1(1) (t+z)(1)(1 _O‘ZZ))%@)du(t)

j
JE
J

1—an2)(t — ap-1)

because
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as a function of ¢t for fixed z € D. Therefore,

/t+z <(1 —Tnt)(z—an_l)¢;(t) _¢Z(z)>du(t)

t== (1_7”Z)<t_an—1)

_ t+z (1 —ant)(z—an) . i

- /t—z ((1—%z)(t—an)¢n(t) on( ))du(t)
= —Yn(2)

by proposition (8.4.2) with h(z) = (1 — &yz)/(z — ay,). This achieves the induction step.
|

We now show that the sequence (1)) satisfies the same recurrence relations than (¢ ),
but with 4, replaced by —7,:

Corollary 8.4.4 The sequence 1, satisfies the recurrence relations:
5 k=1 —
Un ] VIZlanl L (e e 00 13 ) Gea() 0 1) [
(2 L—apz My \ZH[ 0 A | [ 9 1 0o 1 1

Proof Note that, by Proposition 8.4.3,

] s T ) )

k=

Proposition 8.4.5 For all z in D, it holds that

1 — Jay|?

(1 —anz)(z — ay)

2B (2).

On(2)1hn(2) + én(2)Pn(z) = 2
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Proof Taking determinants in the relation of proposition 8.4.3, we get

1— |O£n|2 k=n

O (2)1hn(2) + é(2)Pn(2) (—aw 1 Akl i1 (2)
1-—|anP 1 -z
MmN,
1— ‘O‘nP
2(1 —nz)(z — ap) 2Ba(2)
|
In particular, we have:
Corollary 8.4.6 For z € T, one has
Pn(2)Pn(2) + ¢ (2)n(2) = 2Bn(2) P(2, o) (8.21)

1—|an |?
|z—an |?

where P(z,ay,) = is the Poisson kernel at ay,.
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Chapter 9

Link between orthogonal rational
functions and Wall rational
functions

If we glance at Propositions 7.3.5 and 8.4.3, we see that the recurrence formulas for the
Wall rational functions A,, B, and for the orthogonal rational functions ¢,, ¥, look
quite similar. In this chapter, we will use this similarity to prove a generalized Geronimus
theorem (see [Geronimus, 1944] for the original version). We first need to associate to a
Schur function f a measure u: we use for this the Herglotz transform. Next, we prove a
Geronimus theorem which states the relation between the Szeg6 parameters of p and the
Schur parameters of f ([Langer and Lasarow, 2004]).

9.1 The Herglotz transform

We denote by F' the Herglotz transform of u:

Fie) = [ S 2. (9.1)

TE—2

We have ([Bultheel et al., 2006], Theorem 3.4):

Proposition 9.1.1 The Herglotz transform is related to the orthogonal rational functions
On, P associated with p by a relation of the form

i) | 2Bu(2)u(z)
ORME0)

where u is an analytic function in D.

F(z)

Proof Proposition 8.4.2 gives us with h(z) = 1/B,(2)
F)on(z) —vn(z) _  [t+z64(2) t+z (o) _ on(2)
B, (z - /t —z Bn(z)d (t) + / t—z <Bn(t) Bn(z)> du(t)
_ / t+z on(t)
N t— 2 Bp(t)

du(t).
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This is a Cauchy integral, so it is a holomorphic function of z in D. Evaluating this function
at 0, we get

/28@@=/%@ww=o

by orthogonality of ¢,, and 1. The conclusion is then immediate.
|

The Riesz-Herglotz theorem [Rudin, 1987] states that the Herglotz transform is a one-
to-one mapping between the set of probability measures on T and the set of analytic
functions F in D satisfying

F(0)=1, ReF(z)>0, zeD.

% is a Schur function that vanishes at zero, so the Schwarz lemma implies that
1F(z)—1
floy = LEE L
zF(z)+1

is also a Schur function. Therefore, we obtain a one-to-one correspondence between prob-
ability measures p on T and Schur functions f via the relation

E+2z 14 2f(2)
Ag_Z@“W—l_g@y 9.2)

For fixed z € D, we denote by €2, the map

Note that f(z) = Q.(F(z)).

Definition 9.1.2 The function f associated to u through (9.2) will be called the Schur
function of u.

Applying Fatou’s theorem on nontangential limits of harmonic functions ([Garnett, 2007])
to the real part of (9.2), we obtain an expression for the Lebesgue derivative p' of the mea-
sure p in terms of f:

11— &f(EI?
Since 1 —zf(z) is a non-zero function of H, it cannot vanish on a set of positive measure.
Therefore, ¢/ > 0 a.e. on T if and only if |f| < 1 a.e. on T.

The Schur parameters of the function f associated with p can be computed from the
orthogonal rationals functions of u:

a.e. on T. (9.3)

Proposition 9.1.3 f(z) and Q. (;ﬁf}g;) have the same first n Schur parameters.

Proof From Proposition 9.1.1, we get

ﬂ%@:<£$0®+<wgg&»m,i>u (9.4)
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Let j be an integer such that 0 < j < n — 1. We denote by m;y; the multiplicity of
ajy1 at the n-th step (see Proposition 7.1.2). Then, if 0 < i < mj4q, since By(z) =
h(2) [[21 (= — ajy1) with b € L, we have B,(f)(ajﬂ) = 0. Therefore, using (9.4), we
obtain

] e (@)
mew{g)mwy

Since f(z) = Q,(F(z)), we conclude using Proposition 7.1.2.

9.2 A Geronimus theorem

Geronimus was the first to express the relation between the classical Schur algorithm
applied to the Schur function of a measure p and the orthogonal polynomials of p. In
[Langer and Lasarow, 2004], the connection between the Geronimus parameters of the
orthogonal rational functions and the Schur parameters of a multipoint Schur algorithm is
detailed. However, the normalisation of the orthogonal rational functions in this reference
is different from ours, so the link is made with a multipoint Schur algorithm without the
rotations c;. We chose to keep our generalized multipoint algorithm and we give below
another proof of the Geronimus theorem.

Theorem 9.2.1 Fiz (ag)r>1 €D and f € S.

We associate with f the measure p given by (9.2). We denote by (7i),~, the Geronimus
parameters of u (see (8.16)), and by A\ the elements of T defined by (8.19).

If the parameters (ck),~, of the multipoint Schur algorithm are defined by

2
Cr = >\k;7 Co = 13

then the Geronimus parameters (Vi),>, and the Schur parameters (), of f are related
by B
Y1 = Y for all k > 0.

Proof We first study the connection between the recurrence formulas. From proposition
8.4.3, we have

[ Pnt1(2) wn+1(Z) ]

n+1(z) n+1 Z

= an (TR TS ) 2
[ 00 810 T R )

with

| —

Lo TTRE M

A+1: .
" s VI P

|
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Therefore, if the parameters ¢ are taken such that ¢, = )\2 for all £ > 1 and if U" stands
for the n-th convergent of a Schur function with parameters 7 := J41 for all k > 0 (such
a function exists because of Corollary 7.3.2), we get from Proposition 7.3.5 the following
expression of ¢y, ¥, with respect to U,, V,,,

[ bn+1(2) 1/1n+1(2’)
Z+1(Z) (Z)
-2 A 1 0 Cn+1 0 V;; Un* C() 0 -1 0 1 1
nEntll g 0 1 U, Vi 0 1 0 1 1 -1
v A 1 0] [ cagr O —2Vy+ Uy =2V =Uy
nErtll o 1] (o 1 —2U, +V, —2U,—V,

with ¥, = HZ:l Ak
Since

n+1 n n+1 n
H A = (H ) H A = (H \)\k|> Antl = Ant1
k—1 k=1 k=1

and cp41 = /\%H, we obtain

e g

2 (9.5)
V1= || 1 [MHO }{%w+m-ﬁw—m
1-— an+1Z n+1 A/1 — ‘7k|2 )‘TH—I —ZUn + Vn —ZUn — Vn
In particular, we have
* 1+ z%
n+l _ (96)

* Un
n+1 1 — Ry

Un(2) —Q, ( §+1(Z)> '

n+1(Z)

SO

Then, from proposition 9.1.3, ‘(f—: has the same first n 4+ 1 Schur parameters as the Schur
function f of the measure u. This gives the expected result.
|

Note that a consequence of the theorem is that the elements U, and V,, of the proof
are equal to the Wall rational functions A,, and B,, of f. In particular, equations (9.5) and
(9.6) gives us

[ -1 0 ] [ nt1(2)  Yntr(2) }

0 1 nt1(2) =¥ (2)

5 (9.7)
_ V11— lan] 1 Pwlg H—ﬁﬁAZﬁ%—%
1—anpg12 H”“ V1= |7 Antl —2A,+ B, —zA,— B,
and A
* 1+ 252

* - A, "
nt1  L—zg*
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9.3 Consequences of the Geronimus theorem

The following corollary to Theorem 9.2.1 gives the expression of the measure associated
to the Wall rational functions by the Herglotz transform. This is a generalization to the
multipoint case of [Khrushchev, 2001], Corollary 5.2.

Corollary 9.3.1 ‘g—: is the Schur function of the measure %dm.

Proof Indeed, by (8.21), we have on T :
Re < Z+1> ~ Bar (U101 + G ¥nt)

1 2| @n1|”
o P(, an+1)
’¢n+1|2
w:1+1 t+z P(t,an+1) . . . .
Thus, 5 and | 3 P OT dm(t) are two analytic functions in D with the same real

part, therefore they are related by

il :/t‘FZP(t,OénH)
¢Z+1 t—z |¢n+1(t)|2

where c¢ is a real constant. So by (9.8),

dm(t) +ic

dm(t) + ic.

An
1425 / t+ 2z P(t,any1)
t—2 |pnt1(t)]?

Evaluating the above expression at 0 gives us

P(.,
1:/(’a+21)dm+ic.
‘¢n+l|

— n
1 25"

Since the integral is real, ¢ = 0.
|

In view of Corollary 8.4.4, the Geronimus theorem also leads to another definition of
the orthogonal rational functions of the second kind:

Corollary 9.3.2 Up to a normalization, the orthogonal rational functions of the second
kind associated to f (or F') are the orthogonal rational functions of the first kind associated

to —f (or ).

The following theorem gives a useful relation between the Lebesgue derivative u’ of
the measure u, the Schur functions f, and the orthogonal rational functions ¢,,. This is a
generalization to the multipoint case of [Khrushchev, 2001], Theorem 2.

Theorem 9.3.3 Let (¢y,) be the orthogonal rational functions of a probability measure
associated to a sequence (o), and (fy) the Schur functions associated to p with the choice
cn = A2. Then
1—|fal> P
! = — ‘fZ’ ( ’O;n) a.e. on T.
|1 - Cn(néfnp ’¢”’
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Proof From Theorem 7.3.8, we have:

An + Cn-l—lB;fn—i—l 2
By + Cat1 45 froi1
|Bn + Cn+1Anfn+1| - |A + Cn+1ann+1|

LI = 1=

9.9
‘B +Cn+1A fn+1‘2 ( )
Note that on T, A% B,, = A, B} so that
Cnt14% fut1Bn + BuCot1 A o1 — AnCo1 By fre1 — AnGas1 By fas1 = 0.
Therefore, on expanding (9.9), we find that
L IfP? = (1Bal* = [An*) (A = | fn41]*)
|Bn + §n+1A;§Lfn+1|2
Furthermore, by Corollary 7.3.6, we obtain
2
B, +Cn+1Anfn+1|
where
k=n
Wn = H (1- |7k’2)‘
k=0
Using again Theorem 7.3.8, we get
% 2
g = [p et Gt
Bn + Cn—&-lA:;fn—i—l
_ ‘Bn — 2An + Guia fara (Af — 2BE) |°
Bn + Cn+1A;kan+1
In another connection, we deduce from (9.7) and Theorem 9.2.1 that
* * 1 n
ZBn - An \/1% V wn)\n+1¢n+1
Ani1z
B, — zA, \/ﬁ\/ Wn)\n-‘rl(anrl
and therefore
S 2
11— af? = l—anpz An410501 = Gt 1 frat1 Ang10nt1 (9.11)
Vv1-= ‘Oén+1‘2 Bn + Cn-l—lAan-‘rl
— 2
_ 11— Gny12? | Mr10pi1 — Cortfrr1 Anp10nr1 (9.12)
"1 = Jan? By + Gut14} fra '

From what precedes, we deduce that

1—|f[? _ 1—|fas]? 1 — |ogpgr]?
1—zf?  [0f 1 — CariCnttfrnr1Pnst]? |1 — Qnpr2)?
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Since /(&) = ﬁ gc((g))‘lg a.e. on T by (9.3) and |¢}; || = |pny1| on T, we obtain

i = 1 —|fut1l? 1 — Joy g [?
|¢n+1‘2|1 - Cn+1§n+1 i%:i fn+1|2 |£ B a"+1|

a.e.on T.
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Chapter 10
Some asymptotic properties

In [Khrushchev, 2001], various kinds of convergence for the rational functions ’g—: are

studied in the case of the classical Schur algorithm. There, it is in particular shown that
([Khrushchev, 2001], Theorem 1):

If oy, = 0 for every k >0, then |f| <1 a.e. on T if and only if lim,, [ |fn]|*dm = 0.

In this chapter, we study asymptotic properties of the Schur functions f,, and of the
Wall rational functions A, /B;,. Except for an “asymptotic-BMO-type” convergence of the
Schur functions f,, these are mainly generalizations of the results of Khrushchev where
errors are integrated against the Poisson kernel of o, rather than the Lebesgue measure.
The difficulty here comes from the fact that we let the points go to the circle.

In order to prove the convergence respect to the Poincaré metric, we first need to solve
a Szegl-type problem.

10.1 A Szego-type problem

10.1.1 Generalities

We denote by 4/ the Lebesgue derivative of the positive measure .
Definition 10.1.1 A measure u is called a Szegé measure if log(y') € L*(T).

Let u be a Szeg6 measure and let S be the Szegd function of pu:

51 =ex (5 [ 5 st )am(e)).

The Szegd function is outer ([Garnett, 2007]) and satisfies |S|? = u/ almost everywhere on
T.

Szegd proved ([Szegd, 1975]) the following relation between the orthonormal polyno-
mials ¢, of an absolutely continuous Szegé measure and the Szegé function S :

lim ¢y, (2)S(2) = 1 locally uniformly in D.
n

This was later extended to non-absolutely continuous Szegé measures (see for example
[Nikishin and Sorokin, 1991]).



114 Some asymptotic properties

A generalization of this theorem is given in [Bultheel et al., 1999] (Theorem 9.6.9) for
orthogonal rational functions :
If v is Szegd and if the points (o) are compactly included in D, then we have locally
uniformly in D
5(2)pn(2)(1 — anz)
V1—lag]
Szeg6 also proved that the convergence of the orthonormal polynomials is uniform on

the unit circle if the Lebesgue derivative of the measure is everywhere strictly positive on
T and Lipschitz-Dini continuous, i.e. satisfies

lim =1.
n

W0+ 6) — 1/(0)] < L|log(s)| 7>

where L and A are fixed positive numbers. Our study is akin to this: indeed, we will
prove that if p is absolutely continuous and Szegd, and if > 72 (1 — |a|) = oo, then the
orthogonal rational functions ¢,, satisfy

lim |7, (cn)[*[S (o) [*(1 = Jam|?) =1

as soon as p’ is strictly positive and Dini-continuous. We do not assume here that the oy,
are compactly included in D.
A direct consequence of this result is that, under the above hypotheses and if lim,, |a,,| = 1,
then |¢7 (o, )| diverges at the same rate as (1 — |a,|?) 7t

The main tools we will use are reproducing kernels (see section 8.1) and some facts
from rational approximation.

10.1.2 An approximation problem

We recall that 7, is defined in (6.3). We denote by P, (d—"Q) the subspace of L? < d“2)

[7n| [7n

du
7|2

of polynomials of degree at most n and by H? ( the closure of the polynomials in

2 d
L (|7rf\2)'

The idea here is to express |¢} (o )|?|S(an)|?(1 —|an|?) in terms of reproducing kernels

of the spaces P, |7?7u|’2 and H? |:“|2 . In what follows, we will sometime use the notation

dpip, for djz .

Es
Proposition 10.1.2 Let p be an absolutely continuous Szegd measure. Then, the repro-
ducing kernel E, of H? < dp ) s equal to

[7n[?

1 m(§)m(w)

Enl& @) = 185 s005w)

Proof First of all, it is clear that E,(.,w) is in H? (du,) for a fixed w in D because on

the one hand, Tﬁg can be uniformly approximated by polynomials in D, and in the other
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hand, the fact that S is outer implies by the Beurling theorem ([Garnett, 2007]) that there
is a sequence (py,) of polynomials such that limg [|1 — pg.S||z2(gm) = 0. Then,

1 du 1 |S|2dm / dm
- el - - 1—p
/T<S p’“) Tal? A(S p’“) mp LTS

1151 22 (@m) 11 — PrS|l£2(dm)
inf |, |2

IN

by the Schwartz inequality. Therefore, we get limy, ||pr, — 1/S||12(4u,,) = O
Next, let g be a polynomial. We have

1 m()ma(w) ) dult) 1 m(t)mn(w) [S@®)[*dm(t)
/TQ(t)<1—tw S(t)S(w))’Wn(t)P - /]TQ(t)l_tW SH)S(w)  Im®)

B q(t)  mn(w) S(t)
- /Tt—wtm(t) 5@

- ) [ a5
(

Sw) Jp(t—w

S~—
3
3
—~
o~
S~—

As 4 H is in H?, we obtain by the Cauchy theorem that

[ S0y - 2SK)

— w)mn(t) Tn (w)

Thus, we get

L m(t)m(w) ) du(?) = or ever olynomia
/ﬁ“”(l—tw su)sm)ma»?‘q“") for every d polynoial

By density, this is true for every f in H?(duy,). As the reproducing kernel is unique, the
conclusion is immediate.

Proposition 10.1.3 Let R, be the reproducing kernel of P, ( o ) Then

Buloon)l
1B ) 2

|| =

Proof Let p,_1 be a polynomial of degree at most n — 1. As ¢, is orthogonal to £,_1,

we have
—-—P 1
/ ¢n e -
Tp— 1
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But
[altan - [ Gttt
st
gt
= [0 OF o) - ) 2

i * nfil — M
-/ Wn(t)%(t)(t o () “’”) (O

Therefore, since "~ 'p,,_1 (1/t) ranges over P,,_1(z) as p,_1 ranges over the same set, 7,0
is up-orthogonal to every polynomial of degree at most n which vanishes at «,,. This is
also true for R, (., o). Thus, m,¢) and R, (., ay) are proportional. We conclude using the
following equality

Rn(-aan)
[ BRn (-5 an)ll L2 (dpn)

dp
I gy = | Ity =1=
T |7Tn| 2
L2(dpn)

We now derive an expression of ¢} (a,)|2|S () [?(1— |, |?) in terms of the reproducing
kernels R,, and F,,.

Corollary 10.1.4 For everyn > 1,

Rn(am an)

[0 (an) 215 () (1 = Jan|?) = <1 (10.1)

En(am an)
Proof By definition of the reproducing kernel, we have

du(t)
|7 ()]?

1R )22 gy = /T Rt cvn) Fon (o) — Ry, an).

Therefore, by proposition 10.1.3,

| Ru(om, an)?
| R (- O‘n)H%Z(dun)

[ (o) @, ()| = Rn(om, an)

and we get the first equality in (10.1) using the fact that, from proposition 10.1.2

1 ’Wn(an)P
1- |an‘2 |S(an)|2 .

E,(on,ap) = (10.2)

Furthermore, as R,(.,w) is the orthogonal projection of FE,(.,w) on P, (ﬁ) since
Pn(dpy) C H*(dpy), we have

1B (s )l 22 (i) < NEn (@)l L2(dps,) for all w € D.
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Therefore,
[ B )72y < 1Bl n)llZ2gp,:

As Ry (ap, ap) = \|Rn(.,an)|]%2(dun) and E,(ap, an) = HEn(.,an)H%Q(dun), we get

Rn(ana an)

< 1.
En(ana an) -

We now state our problem in an approximation-theoretic manner.
Because R,(., ;) is the orthogonal projection of E,(.,ay) on Pp(duy), Ru(., o) is
the polynomial of degree at most n which minimizes

min || En (., an) — nll 22 (dp,.)-

™ EPn
But
L m®mlen) [ ISP
E,(.,ap —rng = / T —rp(t m(t
|| ( ) ||L2(dpn) T 1—ant ) ( ) ( ) ‘ﬂ_n(t)‘Q ( )
2
B / L malan)  r®SO[
T 1-— Odnt S n) Fn(t)
Thus, finding the polynomial P, which minimizes
min || — L — (S (10.3)
PnE’Pn ]. - O[nt Wn(t) Lg(dm)
gives us Ry, (., ay) by the relation
Rn(‘a an) = Wn(an) P.
S(an)

Then, in view of (10.1) and (10.2), the quantity |} (ay)|?|S(an)|?(1 — | |?) in which we
are interested can be expressed as

* 2 2 2y _ P (an)S(an)
IS @) (1~ o) = [P, (10.9
Now, for every polynomial p,
H 1 pa()S(#) | ‘ < pn(t)S(t)> P
- =l1- —

2

- H(l— o) )

_ H( pn(an S())) 1 +<pn(an)5(an)_pn(t)5§t)> 1

T — 1( t—ay anl(an) 7Tn71( ) t—apy

2

L2(dm) ‘
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Using the orthogonality between analytic and antianalytic functions and the Cauchy the-
orem, we get

H 1 paBSW)
1—au,t 7 (t)

2

L2(dm)

2 9 (10.5)
. Pn(an)S(am) 1 Pn(an)S(an)  pa(t)S(t) 1
=|1-— 5+ — .
anl(an) 1- |an| ﬂ-nfl(an) anl(t) t— oy, L2(dm)
Therefore, if a sequence of polynomials (p,,) exists such that
2
H L _pa()SQ) _, <1> 7 (10.6)
I —ant T (t) L2(dm) 1- |Oén’2
then by the definition of P, (see (10.3)) we also have

Hl L . Pa()S(t)
“ant ()

2 1
= 0 —_— y
L2(dm) <1 - ’an|2>

lim P (an)S(an)
n Wn—l(an)

and using (10.5), we obtain
=1.

Then, (10.4) gives
lim |67, () |*| S (0n) (1 = | [*) = 1.

Now, suppose that p’ is strictly positive and Dini continuous on T. Then, % is an
analytic function, continuous on T. If > ) (1 — |ay|) = oo, then U2 Ly, is dense in the
disk algebra A(D) ([Achieser, 1992]). Therefore, a sequence of polynomials p,, of degree n
exists such that

1
lim ‘ Y —
n|S Tl
Thus,
S 1
lim ||1 — 222 ‘ < HSHOOIimH S —)
n Tn oo no 1S s
Since by the Cauchy theorem
’ 1 pea®SO|° _ Hl _ pnaS 1

the sequence (p,_1) satisfies (10.6). We therefore obtained the following theorem :

Theorem 10.1.5 If u is an absolutely continuous measure such that u' is strictly positive
and Dini continuous on T, and if Y _,(1 — |ag|) = oo, then

lim |67, () |?|S () P(1 = o [*) = 1.

Note that in our argument, we uniformly approximate the inverse of S. This leads to
quite strong hypotheses. In fact, we only need to find a sequence of polynomials which
satisfies the problem defined by (10.6). This problem is stated in term of L? norm, and
without inverse of S. Therefore, the hypotheses could be probably weakened using another
argument.
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10.2 Convergence of the Schur functions f,

We first give a L?-convergence property with respect to a varying weight which is the
Poisson kernel taken at the points «;. This leads to the construction of a sequence of
interpolation points for which we obtain an asymptotic-BMO-type convergence.

10.2.1 L? convergence with respect to a varying weight

We first show a weak-(*) convergence of the measures ‘( O“S)d

Lemma 10.2.1 If Zii‘fo(l — |ag|) = oo then

(*)—limp( @n)

R g A

Proof Corollary 8.3.5 states that ¢y, ..., $, are orthonormal in L? (ﬁ;:{;‘) dm) There-

fore, ¢o, ..., ¢, are orthonormal in L?(du) and in L2 ( \Eb ‘Q)dm> Thus,

JLowi |¢n|2 m:/qr‘”‘z’jd“

for all 0 < i,j < n. In particular, for all 0 < i < n, we have

frotgtam = [ o

As (¢r)o<k<n is a basis of L, for all g € L,,, we get

/ |¢n|2 dm /gd,u (10.7)
/ ‘%’2 ) dm — /gdu (10.8)

But, as Zijl’o(l —lag|) = oo, UFZ5° L |J UFZ5° Ly, is dense in C(T), the space of continuous
functions in T ([Achieser, 1992]) Therefore

and upon conjugating,

(%) — lim ————= PC.an)

n | gnl? dm = di-

Note that if the points are compactly included in ID and if I is an open arc on T such
that p has no mass at the end-points, then we have

P(., oy
lim/g |(¢’ TQ )dm < /gd,u for every g € C(T). (10.9)
noJI n I
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Indeed, let € > 0 and let h; be a continuous positive function such that h;(t) = 1 for every
tin I and [;hrdp < pu(I) 4 €. Then, since all the functions are positive, we have

/f |¢n|2 /h \W

We conclude using the previous lemma since

hm/h[ - m:/hjdugu(f)—Fe.
|¢n‘ T

Note also that if Zizfo(l — |ag]) = oo, since P(z, ) = z/(z — an) + anz/(1 — anz),
P(.,ap) is in L, + L, then we get using (10.7) and (10.8)

n) = !
/P |¢n|2 dm—/TP(., n)dp. (10.10)

If the interpolation points do not tend “too quickly” toward the circle, we have the
following L?-convergence :

Theorem 10.2.2 Let pu be an absolutely continuous measure. If Zﬁ:lx’(l — |ag|) = o

and limg, |ag| = 1, and if at every point of accumulation of the (ay) f is continuous and
|f] <1, then

li}ﬂn/ |fel>P (., ax)dm = 0.

Proof Suppose that the limit does not converge to 0. Then, there is € > 0, an infinite set
K C N and a sub-sequence of (ay) which converges to o € T such that

Vn € K, /|fn\2P(.,ozn)dm > €.

By theorem 9.3.3, using the elementary equality

1 —cncnjzm — 1 - 2Re(cncniz )
we get,
(62 (14 | ful? — 2Re<cn<nj;"fn>> = (1= [fa)P(s )

and therefore
P an) — |on2p 21001 Re(@aCn 52 fr)
P(',O‘n) + |¢n|2:u/ P('a an) + |¢n|2/'5/

’fn|2 =
Thus, we obtain

P(~7an) - ‘(ﬁnpﬂl _ P(~7an) - ‘¢n‘2ul
P(oan) + (a2 P(,an) + [éalw/

|fn‘2 = Re (CnCn(bnfn) + Re <qun¢nfn> .

o Pn
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Since (¢, (ay) = 0, we get by harmonicity

/Re (chn zn fn) P(.,ap)dm = 0.

Consequently,

Apn) — |Pn 2 _ n
/‘fnﬂp(,’an)dm = / ig:ani " :271}25’ (1 — Re (chn znfn>) P(.,a)dm.

But since (,, f, and i—f are Schur functions (see proposition 8.2.2),

‘1 — Re <Cnannfn>

and we get

/|fn| P(.,an)dm < 2/'1 2|¢"|2 : P(.,a)dm. (10.11)

an =+ |¢n|2

Let -
o = 2|n|*p
" P(Lam) + a2

Using the inequality
422

(1+z)2

2 _ 4(‘(%’2#/13(.’04”)—1)2
fLarptanin = | P

/Tchn\Qu’P(.,an)—lP(.,an)dm

<gforal z>0

we deduce

IN

= [ 1aPutdm <1
T

because of the orthonormality of ¢,. By the Schwarz inequality, it follows that

1/2
/gnP(.,an)dm < (/ giP(.jan)dm) <1 (10.12)
T T
Furthermore, we get again by the Schwarz inequality:
n ! P n P * n n 2u! P *9 n
/ﬂP(.,an)dm— V2[pnl V' P( @ \/(04)+|¢\M\/(a)dm
T \/P an + |¢n|2 \/§|¢n‘

IN

() (L (o))

Using (10.10) and the absolutely continuity of the measure, we get

/1r VP, an)dm < < /T gnP(.,an)dm> v < /T ,u’P(.,an)dm> " (10.13)



122 Some asymptotic properties

Since by hypothesis, (a;,) converges to @ € T and ' is continuous at «, passing to the
inferior limit in (10.13), we get

Vir(e) < /i (a ) lim inf </T gnP(., an)dm> 1/2.

Therefore, we obtain

n

liminf/gnP(.,an)dm > 1.
T

Combining this last inequality with (10.12), we obtain

lim/gnP(.,an)dm = lim/ggP(.,an)dm =1.

moJT moJr

It follows that
lim/(l—gn)zP(.,an)dm:/P(.,an)dm—2lim/gnP(.,an)dm+lim/g%P(.,an)dm: 0.
moJT T noJr nJr

Thus, using the Schwarz inequality and (10.11), we conclude that

lim/ | fal2P(., an)dm = 0.
moJT

A similar type of convergence is obtained when the (av,) are compactly in included in
D.

Theorem 10.2.3 If the (ay) are compactly included in D and if |f| < 1 a.e. on T, then

lim/ | fal2P(., on)dm = 0.

Proof We denote by a@ € D an accumulation point of (). Using the same argument
as above, equation (10.12) still holds. Now, for any open arc I on T with no mass at the
end-points, we get by the Schwarz inequality:

1 f|¢n|\/ \/P , ) + |¢n|2ﬂ
—— |/ pd = dm (10.14
/ pram \/P , ) + |¢n‘2 \f|¢n‘ ( )

1/2 1 P(.,ap,) 1/2
S gndm> (/( VA ’) dm> 10.15
<mu>/ ST ASEG (10-15)
2|¢hn |21/ (e an) !

As g, = T Pt T) Ve have 0 < g, <2 a.e on T. Let g be a weak-(x) limit of the
bounded sequence (g,), in L>(T). Passing to the limit in (10.15), and using (10.9), we

obtain /2 /2
1 p(I) 1 !
m/ Viddm < <m/ gdm> (2 o T )
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Thus, by Lebesgue’s theorem on differentiation and by Helly’s theorem ([Duren, 1970)),

1 1\ 12
Vil <.\/g (2// + 2//) < g\ a.e.on T.

Since ¢/ > 0 a.e. on T, g > 1 a.e. on T. Combining this last inequality with (10.12), and
using the fact that lim,, P(., o,,) = P(., @) uniformly on T, we obtain

lim/gnP(.,an)dm = lim/ggP(.,an)dm =1

noJr noJT

It follows that
lim/(l—gn)QP(.,an)dm:/P(.,an)dm—Zlim/gnP(.,an)dm+lim/gTQLP(.,an)dm:O.
noJr T noJT noJr

Thus, using the Schwarz inequality and (10.11), we conclude that

lim/ | fal2P(., an)dm = 0.
noJr

Combining the proofs of the two previous theorems, we obtain:

Corollary 10.2.4 Let 1 be an absolutely continuous measure. If > —7°(1 — |aw]) = oo, if
|fl <1 a.e. onT and if at every point of accumulation of the () in T, f is continuous
and |f| < 1, then

1i’£n/ |fel>P(., ax)dm = 0.

In particular, we obtain a result stated in ([Khrushchev, 2001]) for the classical Schur
algorithm:

Corollary 10.2.5 If1 <p< oo, |f| <1 a.e. on T and o =0 for every k > 1 then
lim/ |fnl? dm = 0.
noJr

Proof As | fullec <1 for all n, the sequence f, is in LP for all 1 < p < oco. But || fn||2
converges to 0, so for every sequence, we can extract a subsequence such that limy, fi(t) =0
a.e. on T. We conclude using Lebesgue’s dominated convergence.

|
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10.2.2 An asymptotic-BMO-type convergence

In the following, we will construct a sequence of interpolation points for which the sequence
fn tends in L' mean to its average on smaller and smaller intervals.

Theorem 10.2.6 Let (ex)ren be a sequence of real numbers such that

0<<€1€<l

Zk 0 €k = C

limg o0 € = 0

and f be a continuous Schur function such that |f| <1 on T.
Then the points (ax)r can be chosen such that

lim sup / | fr () a)| P(t,a)dm(t) = 0.
n OleDn
where Dy, denotes the closed disk of radius 1 — e, :
D,={z€C,|z| <1—¢,m}.

Proof Recall that
‘fn—f— ( 19)’ _ fn( 29) fn(an-i-l)
- fn(an-&-l)fn(ele)

We denote by Z,, the application from D to [0, 1] such that

[0 s [
fnle) = / L= fal@)fult)

At each step of the Schur algorithm, we may choose a1 € D,, which maximizes Z,,. Then
we have :

/T’fn+1(t)]2P(t,an+1)dm(t) _ /T

P(t,a)dm(t).

ful) = fulomin) |
1- fn(an-i—l)fn(t)

P(t, apt1)dm(t)

2
= sup/ Snlt) = Jula) P(t,a)dm(t).
a€Dnp 1_fn( ) fn(t)
As fy, is Schur, |1 — f,(a) fn(t)| < 2. Therefore,
2 [ 1fas P Pltu)im(e) = swp [ 14,0 = fu(@)l” P(t.)dm(0).
acDn
Using the Schwarz inequality, we get
2
2 [ 1funOF Ptawin() = (sw [ 140~ fu@)] Pa)an()
acDn
Thus, corollary 10.2.4 gives
lim sup / fult) — Fu(0)| Pt a)dm(t) = 0.
" aeDy,
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Corollary 10.2.7 Under the same hypothesis as the previous theorem, the points (ag)g
can be chosen such that

lim  sup 1)/I|fn—(fn)1|dm—0

=0 (1) >e, M

1
;= m(I)/Ifndm’

Proof Let I be an arc of T such that m(I) > e,.
Suppose first that m(I) < 1 and define by a; the point of D, such that oy = (1 —
m(I)w)e?" where €7 is the center of I. We have

where (fy); is defined by

P(" ar) = L—Jay?
’ 1 —2|ay| cos(0 — 0r) + |ag|?
o 1+ ’a[‘
1 —ar|+2|ar |71 ios|zl‘91)

Suppose that ¢’ € I, that is [§ — 67| < m(I)m. Using the inequality 1 — cos(z) < %, we
get

1+ ‘Oé[|
- 0—05)2
1-— ‘Oé[‘ + ‘Oé[| (1—\051)|
1+ \a1|

1— |ag| + |a1|7r |¢TI(| )?
2 — 7rm([)
(1) 4 =

P(ew,aj)

AV

> .
- m()m

Therefore, if x stands for the characteristic function of I and if ¢, < m([l) < %, then
X((ﬂ) < 7P(t,az).

Furthermore, if m(I) > 1, we have 7P(t,0) = 7 > ( 5- Thus, for all arc I of T such that

m(I) > €, a point oy in D,, exists such that

x(t)

() < wP(t,ag).

Now, remark that |(fn)r — fu(ar)| < 1/m(I) [} |fn — fu(cr)|dm. Indeed,

' 1

W /[ (fn - fn(aI))dm

)i — fulan)] = \mb) [ it — st =
Tril)/l|fn_fn(al)|dm
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We conclude using the above theorem and the following inequalities:

sup / fa— (f)ldm < sup mb) / (o = Fulan)] + | fular) = ()l dm

m(I)>e, M m(I)>en

< 2 sup /|fn fnlar)|dm
m(I) >en (

= 2 sup /X\fn—fn(al)\dm
m(I)>en m(I)

< o7 sup /!fn—fn ar)| P(.,ar)dm

>en

< 2 swp [ 1fu = fule)] P(a)dm

a€Dy,

If no constraint is made on the length of the intervals (i.e. €, = 0 for each n), then the
convergence in the previous corollary is called a BMO convergence. Details about BMO
can be found in [Garnett, 2007], Chapter 6.

Here, an unsolved question appears: which hypotheses are needed on f in order to
obtain a BMO convergence? The difficulty to answer such a question is that the hypotheses
made on f have to propagate to every f, throughout the Schur algorithm.

Note also that we do not obtain a similar result of convergence for the Wall rational
functions A,,/B,. Here, the problem is due to the mean (fy);.

10.3 Convergence of the Wall rational functions A,,/B,

We will now give different kinds of convergence for the Wall rational functions. The first one
is convergence on compact subset which is deduced merely from an elementary property
satisfied by the zeros of a non-zero function in H*°. The other three (convergence in
the pseudo-hyperbolic distance, the Poincaré metric, and in L?(T)) are implied by the
convergence of the Schur functions f,, in L*(T).

10.3.1 Convergence on compact subsets

Convergence of A,,/B,, on compact subsets of D is easily obtained, using the fact that the
zeros of a non-zero function in H satisfy the relation Y, ; (1—|ag|) < oo ([Rudin, 1987]).

Theorem 10.3.1 If Zi:{o(l — |ag|) = oo, ‘g—: converges to f uniformly on compact
subsets of D.

22n

A
Proof As ‘ 5

that converges uniformly on compact subsets can be extracted. We denote by f the limit

of such a subsequence. As 5 (ay) = f(ay) foralln > k-1, f(ay) = f(ay,) for all k. Thus,

the function f— f belongs to H> and the points ay, are its zeros. As zii’o(

<1 for all n € N, {g—z} is a normal family. Therefore, a subsequence

1 —Jag|) = oo,
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we conclude that f = f. Thus, f is the only limit point, and A, /By, converges to f, locally
uniformly in D

10.3.2 Convergence with respect to the pseudohyperbolic distance
The pseudohyperbolic distance p on D is defined by ([Garnett, 2007])

Z—w

p(z,w) =

1 —wz

Convergence with respect to the pseudohyperbolic distance is essentially a consequence
of the following well-known property.

Property 10.3.2 The pseudohyperbolic distance is invariant under Moebius transforma-
tions.

Proof Let M be the Moebius transform defined by

M(z) = Blz—_o?z with o € D and § € T.
We have
M(z) - M(w) = 8 <12__;Z N f)—_aO:J>
(1—]oP)(z —w)
(1—az)(1 — aw)
and
1= MEHMW) = 1- (ﬁ:;)ﬁf__ai
(1o ~ 2w)
1-az)(l-aw)
Therefore,
M@E) - M) | _|z-w ‘
1—M(Z)M(W) 1—zw|’

The proof of convergence is now immediate ([Khrushchev, 2001], Corollary 2.4 for
a =0):

Theorem 10.3.3 If |f| <1 on T, f continuous, and Z’;j{o(l — |ag|) = oo then

A\2
lim/ p (f, n) P(.,apt1)dm =0
n Jr B,
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Proof As the pseudohyperbolic distance is invariant under Moebius transformations, we
have in view of (7.2) and (7.3),

P (15 ) =P (oo i) 0 1u(0) = pFuin,0) = il

We conclude using Corollary 10.2.4.

10.3.3 Convergence with respect to the Poincaré metric

In the disk, the Poincaré metric is defined by

1+ p(z,w)
I ,o(z,w)

The following theorem is given in the classical case (i.e. o = 0) in [Khrushchev, 2001],
Theorem 2.6.

PB(z,w) =log < > for z,w € D.

Theorem 10.3.4 If i is an absolutely continuous measure such that u' is positive and
Dini continuous on T and if > ~;_(1 — |ag|) = oo, then

Ap
lim/ B (f, ) P(.,apt1)dm = 0.
n Jp B
In particular, this holds if |f| < 1 and f is Dini-continuous on T.

Proof Using again the invariance of the pseudohyperbolic distance under Moebius trans-

formations, we get p (f, %:) = | fn+1|. This gives

An 1+ |fn+1‘
T (f, ) = log ( . 10.16
B, T lfu o9
Using Theorem 9.3.3 and the definition of the Szegé function S, since |¢,| = |¢}] on T,

we get,
1_0_Zn§|2 _ 1_|fn|2
L=lan® 1 -G g2 ful?

PR ae. on T, (10.17)

Furthermore, if g is a Schur function, 1 — g is a function in H* such that Re(1 —g) > 0,
and therefore 1 — ¢ is an outer function (see [Garnett, 2007], Corollary 4.8). Thus,

/T log |1 — gIP(., an)dm = log(|1 — glcwn)[?).

Consequently, since (,(a;,) = 0,we obtain on putting g = ﬁ(n%fn that

/ log |1 — %cnjf:fnrzp(., )i = log(|1 — T (in)
T n

an(an)

Al f (a)]?) = lo =0.
S n(en)?) = los(1) =0
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Using the previous equation and (10.17), we get

P ) _ 2 o \dm
J1ox (162 215P =225 ) Precandm(e) = [ 1og(1 - 15, P1P(E.anam(©)

— |an|2

As ¢%, 5% and 1 — @,¢ are outer functions, we obtain
log (|7, (an)[*|S ()P (1 — |aw|?)) = /Tlog(l — | fal?)P(.; cn)dm,
and Theorem 10.1.5 gives us
li7an/Tlog(1 — fulHP(., a)dm = 0. (10.18)

Using the inequality log(1 4+ z) < x for x > —1, we get
0 < [ful? < —log(1 — | fu]?) (10.19)

and
0 <log(1l+[fnl) <|[fal. (10.20)

Therefore, by (10.19) and (10.18),
liyrln/T | ful?P(., ap)dm = 0
and, by the previous equation and (10.20),
linLn/Tlog(l 1)) P an)dm = 0
because, by the Schwarz inequality,
1/2
0< /Tlog(l 1) P am)dm < /T Ful PC ) dm < (/T \fnPP(.,an)dm) .
Since log(1 — | fn|?) = log(1 — | fn|) + log(1 + | fa]), we also have
li7an/Tlog(1 —faD)P(., a)dm = 0.

We obtain the expected result by (10.16).

10.3.4 Convergence in L*(T)

Using the relation between f, 11 and g—z and the L? convergence of the Schur functions f,,,
we shall directly obtain the L? convergence of the Wall rational functions g—z as follows.
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Lemma 10.3.5 Fort € T, we have

n

a0l [1= 2070 = |10~ F200).

Proof Proposition 7.3.8 gives

An(2) + Cnr1(2) By (2) fas1(2)
Bp(2) + Cui1(2) A5 (2) fag1(2)

f(z) =

Therefore,
B (2) — AL (2)f(2)
Bn(z) '

= Cnt1(2) fr+1(2)

= |fuy1(t)]

= ’fn+1(t)| 1-

Proposition 10.3.6 The convergence in LP, 1 < p < 0o, of fn to zero with respect to the
varying weight P(., ay,) implies the convergence in LP of g—: to f with respect to P(., api1).

Proof As f and g—z are two Schur functions, using the previous lemma, we get

’f(t) - fBlz(t)‘ < 2|fns1(t)| for ¢t € T.

The conclusion is then immediate by dominated convergence.

The two following corollaries are direct applications of the previous results.

Corollary 10.3.7 If Z’,ijfo(l — |ag|) = o0, and if |f| < 1 and f is continuous on T, then

lim/
noJr

In particular, we obtain a result given in [Khrushchev, 2001] for the classical Schur
algorithm:

2
P(.,an)dm = 0.

An—l
f a Bn—l

Corollary 10.3.8 If 1 <p < +oo, |f| <1 a.e. on T, and o, =0 for every k > 1, then

Ay
lim /
noJT

p




Chapter 11

Approximation by a Schur rational
function of given degree

The goal of this chapter is to give practical means of approximating a function by a Schur
rational function. We first show that the Schur algorithm leads to a parametrization of
all strictly Schur rational functions of given degree. We next explain how to compute
efficiently the L? norm of a rational function analytic in the unit disk. We then have all
the necessary information to implement an optimization process. Examples are given, and
compared with L? unconstrained approximation.

11.1 Parametrization of strictly Schur rational functions

Below, we parametrize the strictly Schur rational functions of order n by their convergents
of order n (see section 7.3). Let (ci)r>0 be a sequence on T with ¢g = 1. We denote by
S, the set of all strictly Schur rational functions of degree at most n and we define the
application I' by

I: D2+l — Sy
(al,...,an,'yo,...,fyn) — Rn
where
R,=myoT 0 -0Ty_107,(0)
with

(1 - ’”)’k\Q)CkaH
ViCra1 + =

Te(w) = cx vk +

The next theorem shows that I' is surjective. 3
For h a polynomial of degree n, we denote by h the polynomial of degree n defined by
h(z) = 2"h(2).

Theorem 11.1.1 Every strictly Schur irreducible rational function g of degree n can be
written as a convergent of order n.

Furthermore, the only possible interpolation points aq,. .., ap (counted with multiplicity)
are the points in the set

R={zeD,(pp—qqd)(z) =0}.
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Proof We will show that choosing the interpolation points in R leads to a constant Schur
function f,. We then conclude applying the reverse Schur algorithm.

1. We first prove that pp — q¢ has n roots in the unit disk ID. Suppose that pp — qq is
a polynomial of degree m < 2n. Then if we put p = >, apz® and ¢ = > r—o b2k,
we have

QG — bp_bp =0 for all 0 < k < 2n—m

and therefore, 0 is a root of pp —ggq with multiplicity 2n —m. Suppose now that some
root £ is on the unit circle T. As % is Schur and irreducible, ¢(£) # 0. Then %(5 )=

2
‘%(f)) = 1, and therefore, g is not strictly Schur, a contradiction. Furthermore, if

& # 0 is a root of pp — ¢4, % is also a root of pp — qG. Therefore, there are exactly n

points (counted with multiplicity) in R.

2. We now show that the degree of f; decreases at each step of the Schur algorithm if
and only if the a; are taken in R.
Recall that o
p—coygl —aiz
q—Coyop z— a1
First, note that p—cpv0q and ¢ —Coygpp are relatively prime. Indeed, if « is a common
root, we have p(a) = cyyoq() and g(a) — |y0|?q(e) = 0. Therefore, g(a) = 0 and
p(a) = 0. This contradicts the irreducibility of g.
Note also that, if deg(p—cov0q) < n—1 and deg(q—2coyop) < n—1, then degp < n—1
and deg g < n—1. Indeed, we get a,, — coyob, = 0 and b,, — ¢yypa, = 0, and therefore
an (1 — |eoyo]?) = 0 and b, (1 — |eoy0|?) = 0. Since |coyo| < 1, we obtain a,, = b, = 0.
This contradicts the hypothesis degp/q = n.
Thus, the degree of f; is equal to n — 1 if and only if

fi=¢

e 2z —  divides p — cpyoq, and

e 1 —agz divides ¢ — ¢oyp if a1 # 0, or else the degree of ¢ — ¢pygp is < n — 1.

Note that, in this case, d°f — d°f; = 1.
Suppose a1 € R. Then (pp — qq¢)(a1) = 0. As % is irreducible and analytic in D,
q(aq) # 0. Thus
(4G — pp)(cn)
q(a1)

_ 1 - 1
ai'q () —CoYo - a1''p <> =0.
aq aq

We deduce that 1 —a7z divides ¢ —cgyop- If a3 = 0, by (11.1), the degree of ¢ —cgyop
is strictly less than n. Furthermore, by definition of g, z — a4 divides p—cgypgq. Thus,
deg f1 =n—1.

= q(a1) — coyop(ar) = 0. (11.1)

If a; # 0, then

Conversely, if a; # 0 with p(aq) — covog(er) = 0 and q(a%) — cofyop(o%) = 0,
then ¢(a1) — coyop(a1) = 0, from which it follows that ay € R. If oy = 0 and
p(0) = co0q(0) with deg(q —coyop) < n, then G(0) —coyop(0) = 0 and again oy € R.
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3. We finally prove that if f; = %, then the roots of p1p1 — ¢1¢1 that lie in the unit
disk are the points of R \ {1} (counting multiplicity). Since
).

_ o~ -1 _
<101 Coql>:<2—a1 0 > < o —’Yo><P
@1 Cop1 0 1—-aqz —coyo 1 q

taking determinants, we get

e

PP — 44
z—aq)(1—agz)

o1 —qigi = (1 — |’YO|2)(

Therefore, the set of the roots of p1p1 — q1¢1 in D is R\ {an }.

Iterating this process n times, we get f,(z) = v,. Conclusion is then immediate.
|

We endow the space of rational functions of degree n with the differential structure
which is naturally inherited from the coefficients of the numerators and denominators.
Then it becomes a smooth submanifold of every Hardy space HP, 1 < p < oo, of the disk
of dimension 2n + 1 over C ([Alpay et al., 1994]).

Theorem 11.1.2 Ifa = (a1,...,Qn,%0,---,Vn) 1S such that the points aq, ..., oy are all
distinct and d°T'(a) = n, then the derivative dl'(a) at a € D*"* is an isomorphism.

Proof We give a proof by induction. The result is immediate if n = 0. We denote by I';:
Fi(ai-i-la ey Oy Yoy e v 7771) =T7;0--:0 Tn(o)
We therefore have

F(ala"'aanavoa"'a’Yn) = TOOFl(QQw"aana’yl)"'a’Yn)
ClFl(O&Q,---,an,’71,---,’7n)+'YO
]-+%<1F1(a25"'7an7’715"‘7’yn)'

Note that, in the following, we will just write I'y for I'; (v, ..., an, Y1, ..., ¥n). On differ-
entiating if the space of rational functions of degree n is viewed as a submanifold of HP,
1 < p < oo, we have

ar 1
oo 1+70(2)T1(2)

o a@ENE)(GETT(Z) +)
Mo (1 +30¢1(2)T1(2))?

or Iy (2) 1 —|yol?
oar (1 +%G(2)1(2))? 1 —agz
or GETi(z) (1 —]wl)z

Jar (1 +%G(2)li(2)? 1-agz
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and for k > 1,

a0 - |w?) on
e (L4+%0¢(2)T1(2))? O
o ()0 = |w?) o
M (1+70()T1(2)? 0%
o G =) o

dagrr (1 +73061(2)T1(2))? dagpa
or  Gz)d—|w*) o

Orr1 (1 +70¢1(2)T1(2))? dag

Suppose that the hypothesis is true for n — 1, that is if aso,...,a, are all distinct and
d°T'1(a) = n — 1 then dI'1(a) is an isomorphism, with @ = (a9, ..., an, Y1, .-, Tn)-
Suppose there exists a linear combination such that:

or or or or or or
—d dy + ——d d —dy, + —d7, =0
;(&n ”Yz-i-al + N Q41 + aal+1>+8% Y +8777

Then we have for every z, on multiplying by (1 + 75¢1(2)I'1(2))?,

n—1
ar, or, oy Ty
0= ()1 — vl < dy + —Ld + dagyq + F)
G(2)(1 = [l ); oy T G T Gy do + G —dan

or or
a0 - hof) (5 v + Gt

(11.2)
+ G (Tt — (@) + o + S )
1— |3
t g LRI
1—o1z
Evaluating at a1, we get
Ly (1) (1 — |yl*)
dyy = d 11.
0 e (11.3)

Therefore, the last row in (11.2) can be expressed as :

(1= ) (220 - 2 ) o,

a2 1—aqz

This can be written as
I'(«
(ol = 161(2) () + @220 )

with
['1(2) —Ti()
Z— '

9i(z) =
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A cancellation by (; in (11.2) gives us:

or or or or
0=(1- |l )Z (c’?vld% 8*1 di + By - dOél+1 + 8alildal+1>
1=1

oIy oIy
0 Mn

(- o) (d iy
(11.4)

+T'1(2) (%d% — (G1(2)T'1(2) + v0)d70 + de)
(ol — 1) (gmz) w“(o‘l)) do,

1 —Joq?

T'; is a rational irreducible functlon of degree n—1 by Theorem 11.1.1. Thus 8F1 € 7)2” 2
where [J denotes any of the Varlable aj, v, @; or 7;. In fact, in the previous expresswn

792n 2

, except perhaps

~Gi(=)(2)d70

all terms are in

and

2l (=
(1 o) 2 gy
— 12

Using (11.3) and (11.4), we get

(—Cl(z)ﬁ(z) i) | 2Th(2) ) day e D=2 (11.5)

1—Jau)? 1-a72

Note that

(1 —Jaa)zq1(2) = T1(a1)(z — a1)pi(z)
(1 —la1[?)(1 = ar12)qi(2)?

Fl(al) ZFl(Z)
1-— |O¢1|2 1—agz

~Gi(2)I5(2) - (11.6)

Suppose that day # 0.
Then, if oy # 0, combining (11.5) and (11.6), we get

p(1/a) (au(1/aD) ~ Tala)pi(1/an)) = 0.

= p1(2)

If p1(1/a7) = 0, then

p(z) _ (2= a)pi(2) + covon (2)(1 — aiz)
q9(z)  q(2)(1 —a1z) +c@Yo(z — a1)pi(2)

has the same degree than X m L (because 1 — @7z is a common factor).

If 1 (1/a7r) — Ti(a1)pi(1/@r) = 0, then (p151 — q1d1)(a1) = 0 and «; is a multiple root.
Furthermore, if «; = 0, we have zp;(z) (ql(z) —T(O)pﬂz)) € Paop_o if and only if
deg(zp1(z)) < n—1ordeg(q(z)—T1(0)p1(z)) < n—2, which is equivalent to deg(zp1(z)) <

n—1or (pp—qq)(0) = 0.
From what precedes, we deduce that if deg p/q = n and oy is not a multiple root, then
the derivative dI'(a) is injective (and therefore surjective counting dimensions).
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11.2 Computation of the L? norm

In order to be able to optimize with respect to the L? norm, we will now see how to
numerically compute efficiently the Hermitian product (f,g) = [1 f (t)g(t)dm(t) for f,g
rational functions analytic inside the unit disk. Two kind of methods are presented :
the first one uses elementary operations on polynomials, and the other one uses matrix
operations.

11.2.1 Two methods using elementary operations on polynomials

The two methods proposed brings the computation of the Hermitian product of two ra-
tional functions back to the computation of the Hermitian product of two polynomials.
Therefore, they essentially use the elementary property :

Property 11.2.1 Ifp = Z’;igl prz® and ¢ = Zzzg qe2® are two polynomials then

min(m,n

)
pa)= D T
k

=0

The first method is very basic and gives an approximation of the Hermitian product.
However, it is quite efficient for Schur rational functions of small degree. It simply consists
in approximating f and g by their Taylor polynomials of order NV, the Hermitian product
is then obtained using the previous property. If N is sufficiently big, the result is very
good (for the examples presented in the next section, two hundred Taylor coefficients were
taken). The Taylor coefficients are easily obtained using the “long” division with respect
to increasing powers.

The second method has the advantage of avoiding any truncation. However, it requires
to efficiently compute an extended gcd. For a neater notation, the following computation
is done for § and 7 rational functions analytic outside the unit disk, i.e. the roots of b and
q are in the unit disk. This is equivalent to the corresponding problem in the disk upon
changing z into 1/z. Here, for a polynomial ¢, we denote by § the polynomial § = 24°9¢ (%)
As ged(b, §) = 1, there exist w and v such that ub 4+ vg = 1. Then, if r = riq + ro with

d°rg < d°r,
(8.9 - a(ub+vq) r
b’ r b q

|
=
£
<
o,
+
T
Q
4
QQ
| 3
~_—

where we have taken into account the orthogonality of H?(D) and H?(C\ D). As ¢ =

2%y (%), we have
avq r avz®4
—, ) = r).
b’ b’
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The euclidean division of avz®"? by b gives
avz®? = kb + p.

Therefore,

<%7 g> = (au,r1) + (k1,7) .

Note that the Hermitian product of two rational functions f = ‘g—g and g = Z—O analytic
inside the unit disk is
_ [% To
<f7 g> - < b(] 9 9 >

. Zd"qo 7:0 Zdobo aN()

- zdoro q”o’ Zdoao bN()
and is therefore obtained as a Hermitian product of two rational function analytic outside
the disk.

11.2.2 A method using matrix representations

We now present a method which adopts the matrix point of view. The computation is
carried out using a realization of f and g, i.e. by expressing these functions with matrices.
More details about realizations and system theory can be found in [Kailath, 1980].

Definition 11.2.2 A rational function is proper (resp. strictly proper) if the numerator’s
degree is less or equal (resp. strictly less) than the denominator’s degree.

A matriz is proper rational (resp. strictly proper rational) if its entries are rational proper
(resp. strictly proper) functions.

In fact, we will study here how to compute the L? norm of proper rational matrices.
For this, we first want to express strictly proper rational matrices using 3 complex matrices
A B,C.

Let H(s) be a strictly proper rational matrix m x p and let d(s) = s" +dys" ! +...+d,

be the least common denominator of the entries of H(s). Then H(s) = ];[((;)), where N(s)
is a matrix m X p with polynomial entries. As H is strictly proper, there exist complex
matrices m x p Ni, No, ..., N, such that N(s) = Nys" ™' 4+ Nas™2 + ... + N,..

We denote by I, the p x p identity matrix.

We define the matrices A : pr x pr , B:prxp,C :m X pr by :

( [ —dyI, —dol, - —d,],
A = . . )
- (0) L 0
_Ip
0
B= :
C=[N Ny N, ]
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Then:
(sI—A) [, &2, - L]
[ (s+d)I, dol, - d,I, s"L,
—1I, sl (0) s"21,
(0) —Ip sl Ip
[ (8" +dis" L+ das" 2+ L+ dy)
(_87“—1 +Sr—1)]p
i —sl + sl
Iy
0
= d(s) | .
0
s"*lfp * ek
s, :
We deduce that (s — A)~! = ﬁ P " |- Therefore,
I, * *
C(sI-—A)'B
1 — _ t
= [ N1 N, N, | [s7, s, 1]
NP+ Nas™ 2+ L+ N,
N d(s)
_ N
-~ d(s)
= H(s)

Definition 11.2.3 Let H(s) be a proper rational matriz. We call realization of H any
4-tuple (A, B,C, D) of complex matrices such that H(s) = C(sI — A)"'B+ D .

From what precedes, a realization of a strictly proper rational matrix always exists.
Let now H be proper rational and let D = limg_,oo H. Then H — D is strictly proper, so
there exists (A, B, C) such that H—D = C(sI—A)~1B. Therefore, H = C(sI—A)"!B+D.
Thus, we have obtained a realization for a proper rational matrix. Note that a proper
rational matrix does not have a unique realization.

A realization is called a minimal realization of H if the size of A is minimal among all
the possible realizations of H.

We now briefly explain how to compute the L? norm using a minimal realization.

We now suppose that (A, B,C, D) is a minimal realization of a proper rational matrix
H whose entries are analytic outside the unit disk and up to the unit circle. It is well-known
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that the eigenvalues of A are the poles of H ([Kailath, 1980], [Gohberg et al., 2006]). By
analyticity of H, the eigenvalues of A are therefore inside the unit disk. We have

AN o~ (AY 5 (+1)
R | 4 _ 1 4N Jo—(+1
(s —A) s <I s) S Z(s) ZAS .
7=0 7=0
Therefore, H(s) = D+ 22, CA'Bs~U+), Let Hy and Hy be two strictly proper rational
matrices whose entries are analytical outside the unit disk. From what precedes, we have

H; (8) =D+ Z(;io ClA{Bls_(j+l), and
HQ(S) = D2 + Z(;.;O CQA%BQS_(j—"_l).

Thus

o
(Hi,Hy) = Tr|DiDj+» CiA{B1B;5(A5)Cs
=0

o
= Tr|DiDs+Ci [ > A{BiB3(A5) | Cs
j=0

We denote by P the matrix P =372, A{BlB’Q“ (A3%)?, which is well-defined since A; and
As have all their eigenvalues in D. It is immediate that P is a solution of the Stein (or
Lyapounov) equation: A PA% 4+ B1B; = P. Since all the eigenvalues of A; and Aj are
in D, no eigenvalue of A; is the reciprocal of an eigenvalue of As. Therefore, the Stein
problem has a unique solution. Since (Hi, He) = Tr(D;Dj + C1PC5), solving the Stein
problem gives the value of (Hi, Ha).

More details about the matrix P and the Stein problem can be found in [Ball et al., 1990].

11.3 Examples

In order to approximate a function f, we have implemented an optimization process using
the parametrization presented in section 11.1. The criterion which is minimized is the
relative L? error

_ ||f —P(Oél,. - Oy Y0, - 7/Yn)||2

(a1, s Ay Y0y -+ -y V) =
’ 1f12
In practice, the points of the unit disk ai,...,an,70,...,7n are parametrized by the
application
N R — D
. x - Y .
(z,9) = Va2+y2+1 * Ve

This allows to do an unconstrained optimization : to compute a Schur rational function
of degree n, we would like to optimize

inf 1f = TA@ars Yo )s - - s A Y )[l2-

(mal yYarp sy sTyp sYyn )€R4n+2
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Degree 7 | Degree 8 | Degree 9

L? l-loo || 1.0235 1.0056 1.0014
(hyperion) error || 6.72e2 | 1.16 e2 | 1.32¢-3
Schur error | 6.89 e-2 | 1.19e-2 | 1.51 e-3

L? normalized | error || 7.09 e-2 | 1.29 e-2 | 1.99 e-3

Table 11.1: Approximation of the Schur function p30 : comparison between our Schur
process and hyperion

This problem depends of 4n + 2 real parameters. Note that, as the parametrization I' is
not defined for parameters of modulus 1, the infimum is not necessarily attained.

In the following examples, the initialization of the optimization is done using the
asymptotic-BMO-type criterion (see section 10.2.2), that is by computing a sequence of
points (ay,) such that oy, 1 minimizes

I,(a) = /T

No refined attempts at solving this optimization problem were made: we simply used a
grid search.

The results obtained by this “Schur optimization” are compared with the L? uncon-
strained approximation given by the hyperion software! ([Grimm, 2000]). In particular,
we check that the error of our result s lies between the L? error of the result h given by
hyperion and the “normalized L? error” (i.e. the error of the arl2 function of the hyperion
software scaled into the unit disk in order to obtain a Schur function), that is we check

that e(h) <e(s) <e (%)

2

Snl) = Il |y ().

1 — fal@) fu(t)

In the following figures, when a function g is plotted, the left graph represents the
image by g of the unit circle, and the right graph is the modulus of this image, i.e. we
plot:

On the left: t — g(e") and on the right: t — |g(e™)] for —m <t<m.

11.3.1 Approximation of Schur functions
Example 1

We are now interested in approximating a polynomial p30 of degree 30 plotted in Fig.
11.1. Note that p30 is Schur and ||p30]|2 = 0.7852.

The results given by our optimization process and by hyperion for degrees 7 to 9 are
presented in Tab. 11.1. None of the best L2-unconstrained approximations is Schur.

1The hyperion software essential feature is to find a rational approximation of McMillan degree n of
a stable transfer function given by incomplete frequency measures. Its development has been abandoned
in 2001. The Endymion software, which is still under development, will offer most of the functionalities of
hyperion. Note that the author of the hyperion software chose to write “hyperion” in lowercase letters.
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Figure 11.1: Function p30, polynomial of degree 30, Schur.

Degree 7 | Degree 8 | Degree 9

L? l-lloo || 1.0053 1.0037 1.0014
(hyperion) error || 2.97e-2 | 1.69e2 | 4.5e-3
Schur error || 3.01 e-2 | 1.70 e-2 4.7 e-3

L? normalized | error || 3.02 e-2 | 1.73 -2 4.8 e-3

Table 11.2: Approximation of the Schur function p60 : comparison between our Schur
process and hyperion

Fig. 11.2 is a good example of what happens when one approximates a Schur function
whose modulus is near 1 on an interval of the unit circle: the L? unconstrained approxi-
mation oscillates (in modulus) around one. Here, where the approximation computed by
hyperion exceeds 1 (in modulus), the Schur approximation “hits” one.

On this example, the initialization points are not very good (see fig. 11.3, 11.5 and
11.7).

Example 2

We are now interested in approximating a polynomial p60 of degree 60 plotted in fig. 11.8.
Note that p60 is Schur and [|p60]|2 = 0.9304.

The approximations of degree 7 to 9 obtained using our Schur process and hyperion
are compared in Tab. 11.2. Note that none of the best L?-unconstrained approximations
is Schur.

For the initialization, we first computed points a, . . ., aig using the asymptotic-BMO-
type criterion and chose among them. The initial interpolation points at degree 7 are the
points ao,...,as, at degree 8 they are agq,...,as, and at degree 9 they are ao,..., ap.
The initializations for the degrees 7 and 8 are quite good (see fig. 11.10 and fig. 11.12).
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Figure 11.2: Function p30 (blue), Schur approximation (green) and L? approximation (red)
of degree 7.

Figure 11.3: Initialization points (left) and optimized points (right) of the Schur function
of degree 7 : parameters a (blue) and ~y (red).
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Figure 11.4: Function p30 (blue), Schur approximation (green) and L? approximation (red)
of degree 8.

Figure 11.5: Initialization points (left) and optimized points (right) of the Schur function
of degree 8 : parameters a (blue) and «y (red).
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Figure 11.6: Function p30 (blue), Schur approximation (green) and L? approximation (red)
of degree 9.

Figure 11.7: Initialization points (left) and optimized points (right) of the Schur function
of degree 9 : parameters a (blue) and ~y (red).
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Figure 11.8: Function f, polynomial of degree 60.

Figure 11.9: Function p60 (blue), Schur approximation (green) and L? approximation (red)
of degree 7.
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Figure 11.10: Initialization points (left) and optimized points (right) of the Schur function
of degree 7 : parameters a (blue) and ~y (red).

Figure 11.11: Function p60 (blue), Schur approximation (green) and L? approximation
(red) of degree 8.
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Figure 11.12: Initialization points (left) and optimized points (right) of the Schur function
of degree 8 : parameters a (blue) and «y (red).

Figure 11.13: Function p60 (blue), Schur approximation (green) and L? approximation
(red) of degree 9.
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Figure 11.14: Initialization points (left) and optimized points (right) of the Schur function
of degree 9 : parameters a (blue) and ~y (red).

11.3.2 Approximation of analytic but not Schur functions

In the two following examples, we are interested in approximating analytic, but not Schur,
functions. In practice, standard applications arise from the fact that the function is known
to be Schur, but some measurement errors occurred and lead to a function with values
greater than 1 in modulus at some places.

Example 3

An example is taken of a rational function 75 of degree 5 such that ||75]|«c = 1.01 and
|r5|l2 = 0.6225. Note that r5 is not Schur but is analytic in the unit disk. As the
asymptotic-BMO-type criterion can be applied only to Schur functions, the initialization
was done upon applying it to the Schur function 75/{|75||cc-

Using our optimization process, we obtain an approximation of degree 5 with an error
of 7.89¢ — 3. Scaling r5 into the unit disk (i.e. considering the function ﬁ) gives an
error of 9.90e — 3.

Consider the initial and optimized parameters (see fig. 11.16). In this example, the
interpolation points « given by the asymptotic-BMO-type criterion are surprisingly good.

Example 4

We want here to approximate a rational function 710 of degree 10, analytic in the unit disk,
and such that ||710]|oc = 1.02 and [|r10|]2 = 0.6772. The asymptotic-BMO-type criterion
applied to r10/]|710||o gives a sequence of points with one of multiplicity 3. As such an
initialization could numerically leads to some problems, we chose to apply the asymptotic-
BMO-type criterion to the strictly Schur function {})%. The result is quite good : indeed,
only one of the interpolation points a seems to have moved (see fig. 11.17).

The error of approximation is 2.58¢ — 3 (see fig. 11.18). Scaling 710 into the unit disk
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Figure 11.15: Function r5 (red) and Schur approximation (green) of degree 5.

Figure 11.16: Initialization points (left) and optimized points (right) of the Schur function
of degree 5 : parameters a (blue) and ~y (red).
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Figure 11.17: Initialization points (left) and optimized points (right) of the Schur function
of degree 10 : parameters a (blue) and ~y (red).

gives an error of 1.96e — 2.

On the last three examples, at least one initialization for a given degree seems to be
quite good. However, all the initial interpolation points of the first example are bad. We
chose to compute again an initialization but this time to the scaled strictly Schur function
0.97 x p30. This leads to the points plotted in fig. 11.19 for the degree 7. The interpolation
points are “in the same directions” than the optimized points of the fig. 11.3.
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Figure 11.18: Function r10 (red) and Schur approximation (green) of degree 10.

Figure 11.19: Another initialization for the approximation of degree 7 of p30 : parameters
a (blue) and ~y (red).
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Chapter 12

Conclusion

In the previous chapter, we used a parametrization with Schur parameters of modulus
strictly less than 1 only. Using this method, only strictly Schur rational functions could
be represented. Finding a way to parametrize all Schur rational functions of given degree
would be a great improvement. This is our attempt in this chapter. We will present an
interpolation on the circle, and also another algorithm with Schur parameters strictly less
than 1, but which has the advantage to have a limit when the parameters tend toward the
circle. How to merge the two types of parametrization into a single one is an open problem
as for now.

12.1 J-inner matrices and the Schur algorithm
This section is an introduction to the J-inner matrices and some of their properties.

1 0

Definition 12.1.1 Let J = < 0 —1

> . A 2 X2 matriz-valued funtion 6 is called J-inner

if it is meromorphic in D and
e 0(2)JO(z)* < J at every point z of analyticity of 8 in D, and

e 0(2)J0(z)* = J at almost every point z of T.

Many properties of J-inner matrices can be found in ([Dym, 1989]). A basic one is the
following:

b1 b2
o1 022
Schur function, then (6219 + 622) is invertible in D. Furthermore, if Ty(g) is defined by

Proposition 12.1.2 If 0 = ( ) 1s 2 X 2 J-inner and analytic in D and g is a

To(g) = (6119 + 012)(B21g + 022) "

then f = Ty(g) is a Schur function.

The result carries to higher sizes of 6 but we will not need it.
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Proof The proof can be found in different references, e.g. [Dym, 1989] for the matricial
case. However, for a better understanding, we choose to give it again.

We first prove that 0219 + 099 is invertible at any point of D. As @ is J-inner, we have
0J0* < J that is

< 011" — 012> 911921—912022><<1 0 > D
021011 — 022612 [021]* — 022> ) =\ 0 —1 ’

This leads to |021]? — |f22|> < —1, which is equivalent to |@22]? > 1+ |021]?. Therefore, oy
is invertible at any point of D. We thus have

01 | 1
1—|—| >——=>0
o)) |622]2
2
that is % < 1 at any point of D. We then deduce that 219 + 029 = 922(92_219219 +1)is

invertible at any point of .
We now prove that f is Schur. We have:

I\ _ [ 0ug+oi2 S g .
( 1 ) o ( 0219 + 020 ) (O219+022)" " =16 1 (0219 + 622)

(1) o(1)--r

and

Therefore,

fP=1 = (01g+022) (g 1 )0*J9< ? ) (0219 + 022) !

(6219 + 022) " (|g]* = 1)(O21g + O22) "
0

IA A

and f is Schur.

|
Note that the multipoint Schur algorithm we used is such that
Fo Cf 1_—1- Y0
1+ %G f1
that is f = Tp, (f1) with
1 z
01(2) = N < ﬁgé(l) 710 ) . (12.1)
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It is easy to check that #; is J-inner. Indeed,

e NIBH ) — g Gi(z) 1 Gi(z) 10G(z)
J —01(2)J0(2) d ,/1—W§|<70<1(2) 1>J\/1—Wo|< 1 )

Yo
= T (e 1) (48 )
")

_ 1 ( 1—Gi(2)[” —’Vo(!Cl
1=\ =TGP =1) |ol? 1—!41

_ 1= 1—|G(=) < I >
1- |’Yo Yo "70|2

_ 1-la@)P ( 1 )
1—|’>’0 0

> (OforzeDand =0for z € T.

The Schur algorithm is based on the following result:

Let f be a Schur function. f satisfies the interpolation property f(ai1) = o if and only if
f =Ty, (f1) for some Schur function fi.

This result holds if we replace 6; by any J-inner function of the form 6y H where H is
a constant matrix satisfying H*JH = J (such a matrix H is called J-unitary). This is a
very particular case of the Nevanlinna-Pick interpolation problem studied for example in
[Dym, 1989].

In section 12.3, another choice of J-inner matrix will be proposed.

12.2 Interpolation on the circle

The Schur algorithm studied in the previous chapter falls short of considering points on
the unit circle. We now study an algorithm which manages such an interpolation.

The following proposition shows a relation between the value of a Schur function at
points of the unit circle, and the value of its angular derivative. The proof can be found
in [Ball et al., 1990].

Proposition 12.2.1 Let ap and yp in T. We denote by f'(ar) the limit lim,_.q,. f'(2)
where z converges to ap nontangentially. If f is a Schur function such that f(ar) = ~r,
then f'(ar) = paryr where p is a positive real constant.

We now define a J-inner matrix which leads to an interpolation scheme on the circle.

Proposition 12.2.2 Let ar and vyp be points of the unit circle, p be a positive real con-
stant, and x7 be the vector such that zk, = (1 4r). Then, the matriz 02 defined by

is J-inner.
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Proof We have

1 1
J = 0(2)J05(2)" = J— <I2 + HO‘TxTxi}J) J <12+ <Z+QT)JxTxi}>
pz—oar p\z—oar

20z — ar 20\ z —ar vrir
1 |z+oar 9
(2p)2 2 — ar ( |’YT| ):ETxT

As |yr| =1, we get

J — 92(Z)J92(Z)* = ——

z+ar <z—|—aT>] . 1 <Z+04T> X
+ rrry = ——Re TTTp.
Z — QT Z — ar P z —ar

But Re (ZJFO‘T) = Re (|Z|2+°‘T2*@TZ*|QT‘2> = M < 0 for all z € D, and conse-

z—ar |z—ar|?

quently, J — 02(z)J02(2)* > 0.

Proposition 12.2.3 If g is a Schur function such that g(ar) # ~yr then f = Tp,(g) is a
Schur function such that f(ar) = ~yr and f'(ar) = pagyr.

Proof We have

- AT ztar 1 ztar

14 Lztar  _orztor
92(2) _ 2p z—ar 2p z—ar

20 z—ar 2 z—ar
so that
f(2) = (2p(z — ar) + (2 + ar))g(2) — yr(2 + ar)
Yr(z + ar)g(z) + 2p(z — ar) — (2 + ar)
Therefore

2ar(g(ar) — 1)

o) = s Girglar —1) = "

because g(ar) # yr.
A direct computation gives

((2p+ g(ar) + 2arg'(ar) —y7)
2ar(yrg(ar) — 1)
(Yrg(ar) + 2ary7ry (1) + 2p — 1)(2ar(g(ar) — 1)
(2ar(yrg(ar) —1))?
2p(g(ar) — 1)
2ar(Yyrg(ar) — 1)
= pariT-

fllar) =

Note that if f = p/q, an interpolation point in the circle is always a root of pp — qG. We
will now show that if we apply the algorithm associated to 62 to a Schur rational function
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p/q of degree n such that p/q(ar) = vyr and (p/q)'(ar) = paryr, then g = Ty (%) is a
Schur rational function of degree n — 1. Indeed,

20(= — ar)? ~ (= + 1) (5 — )

g =
2p(z — ar) + (z + ar) (1 — 77T§)
%0p — (2 + g2

2pq — (2 + ar)yr1Et

But evaluating the numerator and denominator of g at ar gives

2pp(ar) — 2apq(ar) f'(ar) = 2pyrq(ar) — 2arq(ar) paryr = 0
and
2pq(ar) — 200yrq(ar) f'(ar) = 2pq(ar) — 200y7rq(ar) paryr = 0.

Therefore, the degree of g is at most n—1. Applying the linear transform 7}, to ¢ increases
the degree of at most one. Thus, the degree of g is exactly n — 1.

12.3 A better algorithm ?

We are now going to study another parametrization whose advantage is to have a limit
when points tend towards the circle. The link with the previous Schur algorithm is given.

12.3.1 Another algorithm

Proposition 12.3.1 Let a and vy be points of the unit disk D, and x be the vector (1 7)t.
Then, the matriz 03 defined by

Calz) —1

O3(z) = I + - P

xaz*J (12.2)

is J-inner.

Proof We have

J—03(2)J03(z) = J— (Ig + m:px*J> J (IQ + sz:*ca(z)’y_l)

Galx) =1 . Ga(z)=1 |G -1
B e T T el
= = (IGa(®) = 1P+ Cal2) 1+ Ga(3) — 1) T

- G DG D+ ) 1+ EE - D
- hP
> (forall z€D.
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Proposition 12.3.2 Let g be a Schur function. Then f = Ty,(g) is a Schur function such
that f(a) = .
Proof We have

1
¥ J03(a) = 2*J — ———=x* Jxx*J
(@) 1—|y?

and z*Jx = 1 — |y|%, therefore 2*J03(a) = 0. Thus,

e (1) =t () (@anlglo) + @) =0

and we get f(a) = .

12.3.2 Relation between the two algorithms

We now show that the J-inner matrix of the “new” algorithm is in fact the J-inner matrix
of the previous algorithm multiplied by a constant matrix H.
The proof of the following lemma is immediate.

Lemma 12.3.3 Let v in D and

1 1
o=y (1)
The matriz H(7y) has the following properties:
o H(~) is J-unitary, i.e. H(y)JH(y)* = J,
o H(y)™' = H(—7).

We now give another expression of the J-inner matrix associated to the “new” algo-
rithm ([Hanzon et al., 2006]).

Proposition 12.3.4 The matriz 03 defined by (12.2) is of the form

e =) () ) e
Proof We have

HE0H0) = 1) (12 S ) 1)

= Iz+mﬂ(—v)$x*JH(v)
~ L+ SO IVIERE (o ) VISRE(1 0)

(%0,
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Note that the matrix #; defined by (12.1) is of the form

91—H(7)<%a (1]>

Therefore, the link between the matrix 3 and 67 is given by

93 = 91H(*’y)

12.3.3 Toward a parametrization of all Schur rational functions

We now show that when the point « tends to a point a7 of the unit circle, 83 tends to 6o
([Hanzon et al., 2008]). We have

Calz) =1 —lelza g

L-[f@) —  1-|f(a)P

—lol(z—a)—(a—|o|?z)

_ a-fol’z_
1— f(a)f(e)
_ (Jal- 1) s
1— f(a)f(a)

Using a Taylor expansion, we get

fle) = flar) + (a — ar) f'(ar) + o(la — ar]).

Therefore,
1—f(a)f(a) = —2Re|(a—ar)f(ar)f'(ar)| +o(la —ar|)
= —2Rel(a— ar)yrparyr] + o(|a — ar|)
= —2Re[p(aar —1)] + o(|a — a|)
and we get
Calz) —1 (Jaf = 1) (\ZT;‘ZOT;)

1= [f(@P ~ 2Re[plaar — 1)] + o(la — arl)’
It remains to check that QRE‘(O‘% tends toward . Let 7 be a complex number such that
T—1) 2

o =aar + n. Then
lo)? = |ag|? + 2Re(nar) + 2 = 1+ 2Re(nar) + |n|*

and we deduce that
la| = 1+ Re(nar) + o(n).

Thus |a|—1 = Re(nar)+o(n). As 2Re (aap — 1) = 2Re(nar), the conclusion is immediate.
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As stated before, only strictly Schur rational functions can be represented using the
parametrization of the previous chapter. From what precedes, we see that the algorithm
associated to A3 could be combined with interpolation on the unit circle, and therefore,
parameters could be taken in the closed unit disk D. This could be a great improvment.
However, new questions arise: could this algorithm be related to orthogonal rational func-
tions ? And in practice, when do you choose to take interpolation points on the circle and
how could one compute the parameter p?
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Techniques d’approximation rationnelle en synthése fréquentielle : probleme
de Zolotarev et algorithme de Schur

Cette these présente des techniques d’optimisation et d’approximation rationnelle ayant
des applications en synthese et identification de systemes passifs.

La premiere partie décrit un probléme de Zolotarev : on cherche a maximiser sur une
famille d’intervalles 'infimum du module d’une fonction rationnelle de degré donné, tout
en contraignant son module & ne pas dépasser 1 sur une autre famille d’intervalles. On
s’intéresse dans un premier temps a l'existence et a la caractérisation des solutions d’un
tel probleme. Deux algorithmes, de type Remes et correction différentielle, sont ensuite
présentés et étudiés. Le lien avec la synthese de filtres hyperfréquences est détaillé. La
théorie présentée permet en fait le calcul de fonctions de filtrage, multibandes ou monoban-
des, respectant un gabarit fixé. Celle-ci a été appliquée a la conception de plusieurs filtres
hyperfréquences multibandes dont les réponses théoriques et les mesures sont données.

La deuxieme partie concerne I’approximation rationnelle Schur d’une fonction Schur.
Une fonction Schur est une fonction analytique dans le disque unité bornée par 1 en mod-
ule. On étudie tout d’abord 'algorithme de Schur multipoints, qui fournit un paramétrage
des fonctions strictement Schur. Le lien avec les fonctions rationnelles orthogonales, obtenu
grace a un théoreme de type Geronimus, est ensuite présenté. Celui-ci permet alors d’établir
certaines propriétés d’approximation dans le cas peu étudié ou les points d’interpolation
tendent vers le bord du disque. En particulier, une convergence en métrique de Poincaré
est obtenue grace a une extension d’un théoreme de type Szego. Une étude numérique sur
I’approximation rationnelle Schur a degré fixé est aussi réalisée.

Rational approximation techniques and frequency design: a Zolotarev problem
and the Schur algorithm

This thesis presents some rational approximation and optimization techniques with appli-
cations to the synthesis and identification of passive systems.

In the first part, we study a Zolotarev-type problem: to maximize on some set of
intervals the infimum of the modulus of a rational function of given degree, under the
constraint that the modulus of this function is bounded by 1 on another set of intervals.
We are first concerned with the existence and the characterization of the solutions to such
a problem. Next, a Remes-type algorithm and a differential-correction-type algorithm are
studied. The link with the synthesis of microwave filters is carried out in detail. In fact,
the theory we present allows one to compute multiband filtering functions with respect
to given specifications. From the practical viewpoint, some microwave filters have been
designed using this theory, and their theoretical response is compared to the real one.

In the second part, the Schur rational approximation of a Schur function is studied.
A Schur function is an analytic function whose modulus is bounded by 1 in the unit
disk. First, the multipoint Schur algorithm is presented. It gives a parametrization of all
strictly Schur functions. Next, the link with orthogonal rational functions is developed via
a Geronimus-type theorem. The latter allows us to prove some approximation properties,
where the interpolation points may tend to the unit circle. In particular, a convergence in
the Poincaré metric is obtained thanks to an extension of a Szego-type theorem.

A numerical study for the computation of the Schur approximants of given degree is also
presented.



